PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57173

Please be advised that this information was generated on 2019-08-29 and may be subject to change.
Synthesis and self-assembly of giant porphyrin discs†

Marga C. Lensena, Sandra J. T. van Dingenen,a Johannes A. A. W. Elemansa, Harm P. Dijkstra,b Gerard P. M. van Klink,b Gerard van Koten,b Jan W. Gerritsena, Sylvia Spellera, Roeland J. M. Noltia and Alan E. Rowana,

a NSRIM Center, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
E-mail: jelemans@sci.kun.nl; E-mail: rowan@sci.kun.nl; Fax: (+31) 24 365 2929; Tel: (+31) 24 365 2238
b Debye Institute, Department of Metal-Mediated Synthesis, Utrecht University, The Netherlands

Received (in Cambridge, UK) 27th January 2004, Accepted 6th February 2004
First published as an Advance Article on the web 23rd February 2004

A giant porphyrin disc ($M_w = 15$ kDa) has been synthesized and its self-assembly behaviour at an interface studied by liquid STM which reveals the presence of huge domains ($> 400 \times 400$ nm2) of very well ordered and molecularly resolved columnar stacks.

Nowadays, one of the most appealing topics in the field of supramolecular chemistry is the (non-covalent) synthesis of multi-porphyrin arrays.1 These arrays are ideal model systems, not only for the study of energy transfer mechanisms and as mimics of the natural photosynthetic system, but they can also be foreseen as functional components in nanodevices.2 We have been working on natural photosynthetic system, but they can also be foreseen as for the study of energy transfer mechanisms and as mimics of the elemental analysis confirmed the identity and purity of both Mw = 14895 for $3a$ and 15721 for $3b$ (Scheme 1). This molecule, in which 12 porphyrins are arranged in a circular fashion around a rigid central core, has an extended molecule, in which 12 porphyrins are arranged in a circular fashion.

The resonances in the 1H-NMR spectra of $3a$ and $3b$ are severely broadened as compared to the spectra of 1 and 2. The considerably upfield shifted resonances of the cis-phenyl protons ($\Delta \delta = -1.2$ ppm for $H4$, -0.7 for $H6$, -1.0 for $H5$ and -0.6 for $H7$, respectively, see Fig. 1) and of the OCH$_2$ protons ($\Delta \delta = -0.9$ ppm for H3$2$ and -1.43 for H1$8$, respectively), as compared to 1, indicate strong shielding of these protons by a neighbouring porphyrin plane. In contrast, the signals of the core-phenyl protons and link-benzyl protons are shifted downfield ($\Delta \delta = +0.9$ ppm for $H6a$, $+1.4$ for Hc and $+1.3$ for Hb, respectively) compared to the $\text{dodecakis}(\text{methoxy})$ derivative of 2.† Based on the 1D and 2D 1H-NMR experiments (COSY, NOESY), molecular modeling indicated that in solution both $3a$ and $3b$ adopt a unique ‘yo-yo’-like shape, in which two disks each of 6 porphyrin moieties are stacked in an off-set fashion (Fig. 1).

UV/Vis spectroscopy of $3a$ in chloroform revealed an overall broadening, but not a shift of the Soret absorption (at 423 nm) as compared to a monomeric reference porphyrin. This indicates that at micromolar concentrations there is no apparent aggregation of the molecules. From a concentrated solution in 1-phenyloctane, however, the disc-like molecules appeared to self-assemble at a solid/liquid interface. Scanning tunneling microscopy (STM) studies revealed that $3a$ forms stable monolayers at the HOPG/solution interface (Fig. 3a) in which the individual dodecamers, despite their large diameter (4–8 nm), could be clearly distinguished. The observation that the molecules on the surface are ‘edge-on’ oriented and not parallel, which is the most common orientation observed for porphyrins on HOPG,6 indicates the presence of strong intermolecular $\pi-\pi$-interactions. Surprisingly, molecules of zinc derivative $3b$ did not form stable adlayers at the solid/liquid interface. This is tentatively attributed to the axial coordination of water molecules to the zinc ions as a result of which stacking is inhibited. We have shown previously that aggregation of zinc porphyrin hexamers can be induced by the addition of the bidentate ligand 1,4-diaz[a][2.2.2]bicyclooctane (DABCO) to the solution of these porphyrins.4 The binding of DABCO to $3b$ was

![Scheme 1 Synthesis of porphyrin dodecamers.](image)

† Electronic supplementary information (ESI) available: experimental procedures and characterization data, NMR- and UV/Vis-titration data. See http://www.rsc.org/suppdata/cc/b4/b401324g/

Fig. 1 Left: proposed ‘yo-yo’-like shape of $3a$ in solution (alkyl tails have been omitted for clarity). Right: proton designations and proposed respective orientation of two porphyrin moieties within $3a$ as derived from 1D and 2D NMR.
investigated by UV/Vis and NMR titrations in chloroform. Upon binding of DABCO, the Soret band shifted from 424 to 427 nm, indicative of the formation of a DABCO : 3b complex (Fig. 2a). In the spectra one isosbestic point was present (Fig. 2b, inset) which suggests the formation of only one distinct porphyrin species during the titration. The titration curve displayed an inflection point after the addition of ~6 equivalents of DABCO, a stoichiometry at which a sandwich-like DABCO : 3b complex is most feasible, and leveled off after the addition of ~12 equivalents (Fig. 2b). 1H-NMR titrations of DABCO and 3b showed a resonance of the DABCO protons at ~4.9 ppm (Fig. 2c, top), which indicates that the ligand molecules bind in between two porphyrin moieties in a sandwich-like geometry, either in an intra- or intermolecular fashion (Fig. 2a). Both the peak width (at half height) and the upfield shift of the DABCO protons are minimal when ~6 molecules of DABCO are bound (Fig. 2c, bottom). In addition, the 1H-NMR resonances for the porphyrins and tails became more symmetric, indicative of a change in the porphyrin arrangement from an offset to a cofacial geometry. After the addition of more than 6 equivalents of DABCO, it was expected that the excess ligands would compete with the ones bound in the sandwich complex. The peak at ~4.9 ppm indeed broadened, but remained visible, even after the addition of a 500-fold excess of DABCO or after dilution to 0.17 mM (two processes which are expected to shift the equilibrium towards a 1 : 1 complex, Fig. 2a bottom). In addition, the cofacial arrangement of the porphyrins appeared to be retained. These results suggest that the sandwich complex which is formed after the addition of 6 equivalents of DABCO is exceptionally stable. STM was used to directly observe the complexes. Whereas 3b alone did not form stable monolayers at the HOPG/solution interface, the addition of an excess of DABCO to the solution of 3b caused the instantaneous formation of huge domains (> 400 × 400 nm²) of stable lamellae of the supramolecular complex, in which the dodecamer molecules are arranged in a similar fashion as observed for 3a (Fig. 3b). The individual dodecamers can be clearly discerned, and although the DABCO molecules cannot be resolved in the STM images, they are proposed to be bound in between the porphyrins. This coordination is further indicated by the fact that the molecules of 3b are positioned at a slightly larger distance than those of 3a. The dramatic effect of the addition of DABCO on the self-assembly behaviour of 3b at a solid/liquid interface suggests that the ligand acts as a ‘glue’ to connect the dodecamers and freezes the dynamics within the monolayer.

We are currently investigating whether manganese derivatives of the porphyrin dodecamer can be assembled into columnar arrays in a similar fashion to create catalytically active surfaces.

Notes and references