p-ADIC LOCAL COMPACTOIDS

by

W.H. Schikhof
p-ADIC LOCAL COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a complete local compactoid \(A \) in a locally convex space \(E \) over a non-archimedean valued field \(K \) it is proved that \(A = D \oplus B \) where \(D \) is a subspace and \(B \) is a compactoid. As a corollary Katsaras' Theorem is extended to complete local compactoids.

TERMINOLOGY. Throughout \(K \) is a non-archimedean valued field that is complete with respect to the non-trivial valuation \(| \cdot | \). A subset \(A \) of a \(K \)-vector space \(E \) is absolutely convex if it is a module over the ring \(B(0,1) := \{ \lambda \in K : |\lambda| \leq 1 \} \). For a subset \(X \) of \(E \) we denote by \([X] \) the \(K \)-vector space generated by \(X \), by \(\overline{co}X \) the smallest absolutely convex subset of \(E \) containing \(X \). For an absolutely convex set \(A \subset E \) we set \(A^o := A \) if the valuation of \(K \) is discrete and \(A^e := \bigcap \{ \lambda A : \lambda \in K, |\lambda| > 1 \} \) if the valuation of \(K \) is dense. \(A \) is edged if \(A = A^e \).

The \(K \)-Banach space consisting of all sequences \((\xi_1, \xi_2, \ldots) \) in \(K \) with \(\lim_{n \to \infty} \xi_n = 0 \) and with the norm \((\xi_1, \xi_2, \ldots) \mapsto \max_n |\xi_n| \) is denoted \(c_0 \).

Let \(E \) be a locally convex space over \(K \). The closure of a set \(X \subset E \) is denoted \(\overline{X} \). Instead of \(\overline{co}X \) we write \(\overline{\overline{X}} \). For each continuous seminorm \(p \) on \(E \), let \(E_p \) be the space \(E / Ker p \) with the norm induced by \(p \), let \(E_p^\wedge \) be its completion. The maps

\[\pi_p : E \to E_p \to E_p^\wedge \]

induce a map

\[E \to \prod_p E_p^\wedge \]

which is, if \(E \) is Hausdorff, a linear homeomorphism onto a subspace of the product. An absolutely convex subset \(A \) of \(E \) is a compactoid if for each zero neighbourhood \(U \) in \(E \) there exists a finite set \(F \subset E \) such that \(A \subset U + \overline{co}F \). \(A \) is a local compactoid in \(E \) if for each zero neighbourhood \(U \) in \(E \) there exists a finite dimensional space \(D \subset E \) with \(A \subset U + D \).

For terms that are unexplained here we refer to [4].

INTRODUCTION. We quote the following theorem, first proved by Katsaras.
THEOREM ([2],[1]). Let A be a compactoid in a locally convex space E over K. Let $\lambda \in K, \lambda = 1$ if the valuation of K is discrete, $|\lambda| > 1$ otherwise. Then, for each neighbourhood U of 0 in E there exists a finite set F in λA such that $A \subseteq U + coF$.

The theorem implies that compactoidity of A is a property of the topological $B(0,1)$-module A and does not depend on the embedding space E.

Surprisingly, Katsaras' Theorem does not extend to local compactoids in general (Example 3.6); we shall prove such a theorem only for complete local compactoids (Theorem 3.4).

Remarks

1 Let K be spherically (= maximally) complete. Then completeness & local compactoidity is equivalent to c-compactness ([5],Theorem 11). By using this fact and well-known properties of c-compact sets one may derive the results of this paper in a much easier way.

2 Because of the previous remark our proofs, although valid for any K, are only of importance if K is not spherically complete.

§1 LOCAL COMPACTOIDS

Throughout §1 E is a Hausdorff locally convex space over K. The proofs of the next two Propositions are left to the reader.

PROPOSITION 1.1. Let A be an absolutely convex subset of E.

(i) If A is a local compactoid in E and $B \subseteq A$ is absolutely convex then B is a local compactoid in E.

(ii) If A is a local compactoid in E then so is \overline{A}.

(iii) If F is a Hausdorff locally convex space over K, if $T : E \to F$ is a continuous linear map and if A is a local compactoid in E then TA is a local compactoid in F.

(iv) A is a compactoid (in E) if and only if A is a bounded local compactoid in E.

PROPOSITION 1.2. Let $(E_i)_{i \in I}$ be a family of Hausdorff locally convex spaces over K. If, for each i, A_i is a local compactoid in E_i then $\prod_i A_i$ is a local compactoid in $\prod_i E_i$.

PROPOSITION 1.3. Let A be a closed local compactoid in a K-Banach space E. Then $\overline{[A]}$ is of countable type and A is a local compactoid in $\overline{[A]}$.

Proof. [3], 6.9 and Theorem 6.7.
LEMMA 1.4. Let A be a local compactoid in E. Then there exists a Hausdorff locally convex space E_1 of countable type and a linear homeomorphism of $[A]$ into E_1 such that $i(A)$ is a local compactoid in E_1.

Proof. For each continuous seminorm p the set $\overline{\pi_p(A)}$ is a local compactoid in E_p^\wedge (Proposition 1.1), hence in a subspace D_p of countable type (Proposition 1.3). By [4], Proposition 4.12 (iii), $E_1 := \prod D_p$ is of countable type. The restriction of the embedding $E \hookrightarrow \prod E_p^\wedge$ yields a linear homeomorphic embedding $i : [A] \hookrightarrow E_1$. Now $i(A)$ is a subset of $\prod \overline{\pi_p(A)}$, which is a local compactoid in E_1 (Proposition 1.2). Then, $i(A)$ is a local compactoid in E_1.

COROLLARY 1.5. If A is a local compactoid in E then $[A]$ is of countable type.

Proof. $[A]$ is linearly homeomorphic to a subspace of E_1. Now apply [4], Proposition 4.12 (i).

PROPOSITION 1.6. Let E be a polar space and let A be a local compactoid in E. Then, on A, the weak topology $\sigma(E, E')$ and the initial topology coincide. A is complete if and only if A is weakly complete.

Proof. The proofs of [4], 5.7-5.11 can easily be modified in such a way that the conclusion of [4], Theorem 5.12 holds for local compactoids, rather than just compactoids.

PROPOSITION 1.7. Let A be a local compactoid in E. Then, as a topological $B(0,1)$-module, A is isomorphic to a $B(0,1)$-submodule of some power of K.

Proof. By Lemma 1.4 we may suppose that E is of countable type, hence polar. So, by Proposition 1.6, A is a topological $B(0,1)$-submodule of $(E, \sigma(E, E'))$. The map

$$z \mapsto (f(z))_{f \in E'} \quad (z \in E)$$

is a linear homeomorphism of $(E, \sigma(E, E'))$ into $K^{E'}$. The statements follows.

§2 LOCAL COMPACTOIDS IN K^I.

Throughout §2, E is a vector space over K (no topology) and E' its algebraic dual, with the topology $\sigma(E', E)$ of pointwise convergence. Then E' is Hausdorff, locally convex, complete and of countable
type. Every absolutely convex subset of E^* is a local compactoid in E as each neighbourhood of 0 in E^* contains a subspace with finite codimension. It is not hard to see that each $\Theta \in (E^*)'$ has the form $f \mapsto f(x)$ $(f \in E^*)$ for some $x \in E$, so that we may identify $(E^*)'$ and E.

To see the connection with the title of §2 observe that E is the (algebraic) direct sum $\bigoplus K_i$, where $K_i = K$ for each i and that E^* is linearly homeomorphic to K^I.

A subset X of E is K-polar if for each $y \in E \setminus X$ there exists an $f \in E^*$ with $|f(X)| \leq 1$, $|f(y)| > 1$.

For $X \subset E$, $Y \subset E^*$ we set, as usual

$$X^0 := \{ f \in E^* : |f(X)| \leq 1 \}$$

$$Y^0 := \{ x \in E : |Y(x)| \leq 1 \}.$$

Proposition 2.1. Let $X \subset E$, $Y \subset E^*$.

(i) X is K-polar if and only if $X = X^{00}$.

(ii) $Y = Y^{00}$ if and only if Y is closed, (absolutely convex) and edged.

Proof. Direct verification yields (i). For (ii) observe that $(E^*)' \cong E$ and that E^* is strongly polar. Now apply [4], Theorem 4.7.

Remark. It is easy to see that each linear subspace of E is K-polar. If K is spherically complete even each edged subset of E is K-polar. However this conclusion is false in general.

Lemma 2.2. Let $X \subset E$ be absolutely convex. The following are equivalent.

(a) X is absorbing.

(b) X^0 is a compactoid.

(γ) X^0 does not contain linear subspaces of E^* other than {0}.

Proof. A typical zero neighbourhood in E^* has the form F^0 where F is a finite subset of E. By (α) we have $\lambda X \supset F$ for some $\lambda \in K$. Then $X^0 \subset \lambda F^0$. It follows that X^0 is bounded hence a compactoid (for example from Proposition 1.1(iv)). This proves $(\alpha) \Rightarrow (\beta)$. The implication $(\beta) \Rightarrow (\gamma)$ is easy. To prove $(\gamma) \Rightarrow (\alpha)$, let $f \in E^*$, $f([X]) = \{0\}$. Then $Kf \in X^0$ so that $f = 0$. Then, $[X] = E$ i.e. X is absorbing.

The next Proposition is the heart of this paper.
PROPOSITION 2.3. Let A be a closed absolutely convex subset of E^*. Let D be the largest K-subspace of E^* that is contained in A. Then D is closed. There exists a closed absolutely convex compactoid $B \subset A$ such that $D \cap B = \{0\}$, $D + B = A$, and the canonical map $D \times B \to A$ is a homeomorphism.

Proof.

(i) First assume that A is edged. Then $A = A_0^0$. Trivially, D is closed. D^0 has an (algebraic) complement F in E. Set

$$B := (F + A^0)^0$$

Then B is closed, edged. Since $F + A^0 \supset A^0$ we have $B \subset A_0^0 = A$. Since also $F + A^0 \supset F$ we have $D \cap B \subset D \cap F^0 = D_0^0 \cap F^0 = (D^0 + F)^0 = E^0 = \{0\}$. From this it follows, in turn, that B does not contain subspaces except $\{0\}$. By Lemma 2.2, B is a compactoid. Finally we prove that $A \simeq D \times B$.

From $E = F \oplus D^0$ we obtain two standard projections $\pi_1 : E \to F, \pi_2 : E \to D^0$. For each $f \in E^*$ we have $f = f \circ \pi_1 + f \circ \pi_2$. If $f \in A$ then $f \circ \pi_1 \in D_0^0$, so that $f \circ \pi_1 \in A$. Also $f \circ \pi_2 \in F^0$. Then $f \circ \pi_2 \in A \cap F^0 = A_0^0 \cap F^0 = (A^0 + F)^0 = B$. Then

$$f \mapsto (f \circ \pi_1, f \circ \pi_2) \quad (f \in A)$$

maps A onto $D \times B$. It follows easily that it is, indeed, a homeomorphism.

(ii) To prove the general case we apply (i) to A°. So $A^\circ = D \oplus C$ where D is a closed subspace and C is a closed compactoid, both contained in A°. Then $D \subset A$ and $A = D \oplus B$ where $B := A \cap C$, a closed compactoid.

§3 CONCLUSIONS

THEOREM 3.1 (Compare [3], Corollary 6.5). Let A be a complete local compactoid in a Hausdorff locally convex space E over K. Then, as a topological $B(0,1)$-module A is a direct sum $D \oplus B$ where D is the largest subspace contained in A and B is some complete compactoid in A.

Proof. Immediate from Proposition 1.7 and 2.3.

COROLLARY 3.2. (Compare [3], Lemma 6.3). Let A be a complete local compactoid in a Hausdorff locally convex space over K.
(i) A does not contain subspaces other than \{0\} then A is a compactoid.

(ii) If A is unbounded then A contains a linear space \(\neq \{0\} \).

To prove Theorem 3.4 we need the following lemma.

Lemma 3.3. Let D be a linear subspace of a Hausdorff locally convex space E. Let U be an absolutely convex zero neighbourhood in E and let \(D \subset U + K z \) for some \(z \in E \). Then \(D \subset U + K a \) for some \(a \in D \).

Proof. If \(K z \subset U \) we may take \(a := 0 \), so assume \(K z \not\subset U \) i.e. \(p(z) \neq 0 \) where \(p \) is the seminorm associated to \(U \). For each \(\lambda \in K, \lambda \neq 0 \) we have

\[
D = \lambda D \subset \lambda U + K z
\]

so that for \(d \in D \) and \(n \in \mathbb{N} \) we have a decomposition

\[
d = u_n + \lambda_n z
\]

where \(p(u_n) \leq 1/n \) and \(\lambda_n \in K \). Since also \(p(z) \neq 0 \) it follows easily that \(\lambda := \lim_{n \to \infty} \lambda_n \) exists. Hence, \(u := \lim_{n \to \infty} u_n \) exists and \(p(u) = 0 \). Thus, \(d = u + \lambda z \) i.e.

\[
D \subset K e + K z
\]

If \(D \subset K e \) we may take again \(a := 0 \). If not then \(z = a + v \) where \(a \in D, v \in K e \). Then \(K v \in K e \) so that \(D \subset K e + K v + K a \subset K e + K a \subset U + K a \).

Theorem 3.4 (Katsaras' Theorem for local compactoids). Let A be a complete local compactoid in a Hausdorff locally convex space E over K. Let \(\lambda \in K, \lambda = 1 \) if the valuation of K is discrete, \(|\lambda| > 1 \) otherwise. Then for each zero neighbourhood U in E there exists a finite dimensional space \(F \subset A \) and finitely many points \(x_1, ..., x_n \in \lambda A \) such that \(A \subset U + F + \operatorname{co}\{x_1, ..., x_n\} \).

Proof. We may assume that U is absolutely convex. Let \(A = D + B \) as in Theorem 3.1. By Katsaras' Theorem

\[
B \subset U + \operatorname{co}\{x_1, ..., x_n\}
\]
for some $x_1, ..., x_n \in \lambda B \subseteq \lambda A$. By local compactoidity of D there exist $y_1, ..., y_m \in E$ such that

$$D \subseteq U + Ky_1 + ... + Ky_m$$

By repeated application of Lemma 3.3 we can arrange that $y_1, ..., y_m \in D$. The Theorem follows with $F := [y_1, ..., y_m]$.

COROLLARY 3.5. Let A be a complete local compactoid in a Hausdorff locally convex space E over K. Then A is a local compactoid in $[A]$.

The easy proof is left to the reader.

To see that everything goes wrong if we drop the completeness condition consider the following. (Compare [3], Example 6.4.)

EXAMPLE 3.6. There exists a (non-closed) local compactoid A in c_0 with the following properties.

(i) A is unbounded.

(ii) A does not contain linear subspaces other than $\{0\}$.

(iii) A is not a local compactoid in $[A]$.

Proof. Let $p \in K, 0 < |p| < 1$. Define

$$z_1 = (p^{-1}, p, 0, 0, ...)$$

$$z_2 = (p^{-2}, 0, p^3, 0, ...)$$

$$z_3 = (p^{-3}, 0, 0, p^3, 0, ...)$$

etc. and set $A := \mathrm{co}\{z_1, z_2, \ldots\}$. Then (i),(ii) are clear.

Since

$$\overline{A} \subseteq K e_1 + \overline{\mathrm{co}\{p e_2, p^2 e_3, \ldots\}}$$

(where e_1, e_2, \ldots is the standard base of c_0), A is a local compactoid in c_0. To obtain (iii) we prove that there exists no finite dimensional set $F \subseteq [A]$ with $A \subseteq U + F$ where $U = \{x \in c_0 : ||x|| \leq 1\}$. Suppose such F does exist. Then we may assume $F \subseteq A + U$, F absolutely convex. Suppose $Ka \subseteq F$ for some $a \neq 0$. Since U is bounded it is easy to see that then $Ka \subseteq \overline{A}$. But the only subspace $\neq \{0\}$ of \overline{A} is Ke_1, so $a \in Ke_1$, which is impossible since $Ke_1 \cap [A] = \{0\}$. Hence, F contains no subspaces other than $\{0\}$ so F is bounded. But then $A \subseteq U + F$ would be bounded, a contradiction.
REFERENCES

