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A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY

CONVEX COMPACTOIDS

by

W.H. S c h ik h o f

ABSTRACT. For a vector space E over a non-archimedean valued field K a

correspondence p p^ is established between seminorras p on E and
0 * compactoids p in E *

Examination of it yields the solution of two open problems (see 54 and 

§8) and a reformulation of Serre's renorming problem (see §2). As a 

by-product results on metrizable compactoids are obtained (see §6).

§0 THE CORRESPONDENCE p ^  p°

Throughout this note K is a non-archimedean valued field, complete with 

respect to the metric induced by the nontrivial valuation
★Let E be a K-vector space, let E be its algebraic dual. A (non-archimedean) 

seminorm p on E is polar (C3], Definition 3.1), if

p = sup { | f | : f € E*, |f| ^ p)

Let P be the set of all polar seminorms on E. 
E

For each p e P_ we set
* E

p^ « {f £ E : |f| S p}

0 *Then p is an absolutely convex, edged (L3j,§lb) subset of E . It is

easy to see that p^ is a closed compactoid ([3],§le) with respect to the
:ktopology a(E ,E), hence complete.



2

Let C * be the set of all closed absolutely convex, edged compactoids
E

*k icin E with respect to a(E ,E).

PROPOSITION 0. The map pr* p° is _a bijection of P£ onto CE*- Its inverse

assigns to every A e C * the seminorm p given by

p(x) = sup {If(x)| : f e A} (x  e E)

Proof. We shall prove surjectivity of pH> p leaving the (easy) rest of
_  0 the proof to the reader. So, let A e C *; we shall prove that A = phi

where p(x) = sup {|f(x)| : f e a }.
0 j  0 Obviously, A c p . now let g € E \A, we prove that g f. p . The space

E is of countable type hence strongly polar ([3],Theorem 4.4). So by 

[3], Theorem 4.7, there exists a 0 e (E*, a(E*,E^)' such that |0[ < 1 

on A, 10(g) | > 1. But, by [3], lemma 7.-1, 6 has the form ft-** f(x) for

some x e E. Thus, [f(x) | ^ 1 for f e A, |g(x) [ > 1 i,e*, p(x) £ 1 and |g(x) | > 1
0and it follows that g i p .

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean
« I“ * 1 ...... mi

seminorm p on E for which p(x) c |k| (x  e E) is polar ([3], Remark
following 3.1)

2. Let t be the locally convex topology on E induced by all nonarchimedean 

seminorms i.e., T is the strongest among all locally convex topologies 

on E. It is not hard to see that (E,t) is a complete' polar 

([3],Definition 3.5) space and that (E,t ) and (E /tf(E ,E)) are each 

others strong dual spaces.
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§1 NORMS p FOR WHICH p° IS C ’ -COMPACT

Recall that an absolutely convex subset A of a locally convex space F
■

I  «

over K is c1-compact if for each neighbourhood U of 0 in F there exist

x.,...,x £ A (rather than x,,...,x e F) such that A c u + co {x,T ... ,x } 
I n  i n  i n

(Here co indicates the absolutely convex hull)

THEOREM 1.1. For a polar semlnorm p on K-vector space E the following

are equivalent.
m

(a) p(x) e |K| for each x e E. Each onedimensional subspace of E has a
*p~ orthocomp lenient.

(3) p® i£ c1-compact.

Proof- (a) (3). By [7], Theorem 3.2, it suffices to prove that for
★ ^ f each <J> e (E , a (E ,E))

max { | <f> (f) | : f e p^}

exists. Since $ is an evaluation map we therefore have to show that

max {If(x)I : f e p^}

exists for each x e E. This is obviously true if p(x) » 0. So assume
%

I I  *p(x) > 0. Since p(x) e |k | we may assume that p(x) = 1. For such x we 
must prove

max {|f(x) : f e p^} = 1

By (a), Kx has a p-orthocomplement H. The function

f : Xx + h»+ X (X 6 K, h e H)



~k  1 Iis in E . We have |f(x)| — 1. For X e K, h e H
t

f (Xx + h) | = |X| » p(Xx) £ max(p(Xx), p(h) ) * p(Xx + h) 

so that f e
(3) *> (a). Let x e E. The map f*-> |f(x) | (f e E )

is a continuous seminorm on (E , a(E ,E)). By c’-compactness its
0 0 Irestriction to p has a maximum so there exists a g e p with |g(x) = p(x) 

(It follows that p(x) e |k |). We prove that Ker-g is a p- ortho complement
r

of Kx. In fact, for z e Ker g we have

p(x+z) £ g(x+z) =» g(x) — p(x)

Then also

p(x+z) £ p(z)

completing the proof of Theorem' 1.1.

Note. It is not hard to see that (a) of above is equivalent too.
* i i  (y) For each x e E there exists an f € E with f (x) - p(x) and f 5 p

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be & seminorm on

E for which p(x) e |k | for all x e E.
i

Then the following are equivalent.
I I * 1(a) p(x) e |K| for each x £ E,

0(3) p .is c1 -compact.

Proof. By LI], lemma' 4.35, each onedimensional subspace has a p-ortho 

complement.
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§2 APPLICATION: A NEW LIGHT ON SERRE 'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let ,| be a norm on E. Then there

exists a norm on E, equivalent to , such that
x e ]k | for all x £ E.

(**) Let K be spherically complete and let A be a complete absolutely 

convex compactoid in a Hausdorff locally convex space over K. Then
»

thereexist a X e K with |x| > i and a c1-compact B such that 

A c b c XA.

The question as to whether (*) is true or not is known as Serré*s 

renorming problem. See [2] for more details. We are able to reformulate
•4

this problem in terms of coropactoids:

PROPOSITION 2.1. The above statements (*) and (**) are equivalent

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], 

Theorem 3, A, as a topological module over B(0,1) {X e K:|x| £ l},
9

is isomorphic to a bounded submodule of K* for some set I. Let E be the
a

algebraic direct sum $ where - K for all. i £ I.
iel

Then (E ,a(E ,E)) is in a natural way isomorphic to K with the product 

topology. So we may assume that A = p^ where p is a seminorm on E.

By (*) there exists a seminorm q, equivalent to p, such that q(x) £ |k
*

for all x £ E, By a suitable scalar multiplication we can arrange that, 

in addition, p £ q & X p for some X £ K, Ixl > 1. Then

0 Û . 0 p c q c Xp
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and is c'-corapact by Corollary 1.2. This proves (**). Now assume (**). 

To prove (*) we may assume (see [2]), that K is spherically complete.

Let p be a norm on E. By (**) there is a c1-compact B and a X e K, |x| > 1
0 , 0  0 with p c b c Ap . Then B = q for some seminorm g on E. We have

p < q £ X p

and q(x) e |k | for all x £ E by Corollary 1.2

j

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH p° IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset A of a locally convex space 

over K is a KM-compactojd if it is complete and if A = co X where X is 

compact. (Here co X is the closure of co X).

Before stating the theorem we first make some simple observations. Let

p be a norm on E. We say that a collection (e.) in E is a
1 £ I

p-orthonormal base of E if for each x e E there exist a unique
X(X.) c k such that {i e I, |x.| 2 e} is finite for each e > 0 and

X 161 i

x = E X.e,. _ i i 
le i

p(x) - max X,
X

1

If (E,p) is complete this definition- coincides with the usual one.

LEMMA

Then (E,p) has a p-orthonormal ba^e if and only if (E ,p’) has a

P  -orthonormal base
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Proof. It is not hard to see that each p-orthonormal base of (E,p) is
a  A  A

also a p -orthonormal base of (E ,p ). Conversely, let (e . ) be a
1 iel

A  ^  ^

p -orthonormal base of (E ,p ). For each i e l ,  choose an f. £ E with

p (ei “ fi> s T
A  «

By Cl], Exercise 5.C, (f ) is a p  orthonormal base of (E ,p ).
i£l

Clearly (f.) is a p-orthonormal base of (E,p)i
1 iel

w •THEOREM 3.2. For â polar norm p on a. K-vector space E the following are 

equivalent.
%

(a) (E,p) has a_ p-orthonorma1 base
0(3) p is a KM-compactoid.

Proof, (a) “*• (3). Let (e ) be a p-orthonormal base of (E,p) . The
iel

formula

♦(f) = (f(e ))
iel

defines a map <J> : ** BtO,!)1. Straightforward verifications show that

4> is an isomorphism of topological B(0,1)-modules. From [8], Theorem 16
I  0we obtain that B(0,1) , hence p , is a KM-compactoid.

(3) (ct). Suppose p - co X where X is a compact subset of E .

Let C(X-*-K) be the Banach space of all continuous functions X K,
»

with the supremum norm 1 1 1 .  Then C(X*HC) has an orthonormal base.
■ * 1 00

([13/ Theorem 5.22).

The formula

<|>(x) (f) = f(x) (f e X)

defines a K~linear map <j> : E •*- C(X*>K). From



| I ij) (x) I |w = max |f(x)| = sup |f (x) | = sup |f(x)| = p(x)
f eX fecoX

we obtain that <J> is an isometry (E,p) (CtX^K), |j |w).

By Gruson's Theorem ([I], 5.9) <f>(E) has an orthonormal base. Then so 

has tf'(E) by Leiraaa 3.1 and has E.

§4 APPLICATION: A COMPLETE c1 -COMPACT SET WHICH IS NOT A KM-COMPACTOID

We shall give a negative answer to the Problem following Theorem 1.7 

of [6],

PROPOSITION 4.1. Let K be spherically complete/ let |k = [0,®). 

Then there exist a locally convex space F over K and a comi
.................... I .................... . ........ ii ■ ■  n i H  m * i i  iW ■ m  P i  ■  i ■  i ■■ i ■  —  —  i i ■ ■  ■

c'~compact subset A c F which is not ja KM-compactoid.

CO 00 icProof. Let E 1 and let F := (1 ) (with the topology we agreed upon
co Qin §0). Let p be the standard norm on 1 , and set A p . Since,

i 00 0 trivially, p(x) e |K for all x e 1 , we have that p is c'-compact
h

*  *

(Corollary 1.2).
a

However, it is known (Cl], Cor. 5.19) that 1 has no orthogonal base 

so that (Theorem 3.2) p^ is not a KM-compactoid.

0§5 NORMS p FOR WHICH p IS METRIZABLE.

THEOREM 5.1. For a polar seminorm p on a. K-vector space E the following 

are equivalent.
A

(a)(E,p) is of countable type ([3], Definition 4.3).

(3) p^ is metrizable-
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Proof, (ct) =*> (3). There exist in E with p(e.) < 1 for each i

such that the K-linear span of e^e^f.-. is p-dense in E* The formula

(f) - (fCe^), f(e2),...)

defines a map <p ; p® + B(0, l)^1. Straightforward verifications show that
0<j> is an isomorphism of topological B(0,1)-modules of p onto a submodule

TNOf B (0/1) .
]NNow B(0,1) is metrizable (the product topology is induced by the metric

*

0(a,b)K* sup |a,-b.|2 ) hence so is p .
ieHN 1

S b

(B) (a). Let X e K, |x|”> 1. Since p° is a metrizable compactoid
0there exist, by [3], Proposition 8.2, e Xp with lim f = 0

n -Hx>

such that

0

The map

(x e E)

is K-linear, <J>{E) c c^. We have for x e E

sup |f (x)| 
ne]N

- sup {|g(x)

It follows that

so that p is equivalent to xH- I |(}>(x) | , a seminorm of countable type.
THence, p is of countable type.



§6 APPLICATION: DESCRIPTION OP METRIZABLE CGMPACTOIDS.

THEOREM

convex space P over K. The following are equivalent.
v(a) A .is ct metrizable compactoid.

(3) As a_ topological B(0,1)-module, A is isomorphic to submodule of
IN

W  ji topological B (0,1)-module, A is isomorphic to a. compactoid in

V
m

(5) For each X € K, Ixl > 1 then exist e* ,e_,'... e X A with lim e = 0--------' ..... i i ----  nn-*“
and A c co {e^,e^,...}.

*

(e ) There exist e1fe^,... e F with lim e_ = 0 and A c co {ei,en,__}.1 --r'" ' — ■- ■ x £ t 1 ■ *' n --t. x a
r r * "  _______

(n) There exists an ultrametrjzable compact X c F with A <=• co X.

*

Proof. (a) => (3). It is not hard to see, by using the absolute convexity

of A, that A is also metrizable. As there is no harm in taking F complete

we therefore may assume that A is complete. To prove (3) we also may
I  Iassume that A is edged. By [8], Theorem 3, A ^ Bi0,1)- c K for some 

set I. Like in the proof of Proposition 2.1 we may conclude that A = p^
*where p is a polar seminorm on © K (K - K for each i). Then p is of

iel
countable type by Theorem 5.1. jFrom the proof of (a) => (3) of that

0 3NTheorem we obtain an isomorphism A = p *-*- B(Q,1)
•  *

(3) (y)- Choose £ K, |X̂ | > | I  > lira X =0. The .
rr>*

4

formula

*<(a ) ) = (X a X a ,...) € cQ
i£3N

3 N  —  rdefines a B (0# 1)-module isomorphism of B (0 ,1 )  onto C := co '•̂ iej'^2e2' #  *

where e^e^#*.» are the standard unit vectors in Cq . <fi is a homeomorphism



]NB (0,1 ) C, and maps A onto a compactoid in cQ.

(y) => (5). See L3], Proposition 8.2.

(6) ** (e) is trivial.

(e) ^  (n),{0/el/e2,...} is compact and ultrametrizable.
(n) =* (a). We may assume that F is complete. It suffices to prove the 

metrizability of B := co X.
0B is a complete, edged compactoid. As before we may assume that B — p

jçfor some polar seminorm p en some K-vector space E while B ^ e . The 

map $ : E C(X K) defined by

<J>(x) (f) = fix) if e X)

is an isometry (E,p) ■+■ (C(X ■+ K), | | | |w).

Now X is ultrametrizable so by Cl], Exercise 3.5, C(X K) is of 

countable type. Hence so is p. By Theorem 5.1f B ■ p^ is metrizable

§7 NORMS p FOR WHICH (p0)1 IS OF FINITE TYPE.

Recall that an absolutely convex set A in a locally convex space F over 

K is of finite type if for each zero neighbourhood U in F there exists
* ►

a finite-dimensional bounded set S c a such that A c u + S.

Let us say that a seminorm p on a K-vector space E is of finite type 

if Ker p = {x e E : p(x) = 0} has finite codimension.

LEMMA 7.1. Let A be an absolutely convex subset of a locally convex
space F whose topology is generated by ci collection of seminorms of

♦ i

finite type. Then the following are equivalent.

(a) A is a compactoid of finite type.
♦  %

(3) For each closed linear subspace H of finite codimension there is a
*  .

finite dimensional bounded set S c a with A c h + S.
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Proof . (a) =»> (3)« (Note. This implication holds for any locally convex 

space F.) We may assume 1[a | = F.

H has the form D"1 := {x e F : f(x) - 0 for all f a D} where D is a
ifinite dimensional subspace of F . Let £ be a base of D. Therei n

exist x, t.,. ,x £ F with f . (x .) - 5 . . (i, j  e{ 1,... ,n}). Since l[A| = FI n  i j ij
there exists a X e K, X * 0 such that Ax. e A for each i e {1 ̂ * ̂ n)«

i

Set

n
U n {x e F : |f.(x)| < \x\} 

i=l 1

Then U is a zero neighbourhood in F. A is a compactoid of finite type,
*

*
bso there exists a finite dimensional set S^c-A with A c u + S^. Let 

x e U. Write x = y + z where -

n
y := x - Z f .(x) x.

i - 1  1  1

n
Z := £ f .(x) X, 

i=l 1 1
n

Now, since x c U, |f (x)| £ |\| for each i so that z - E f .(x) x. e A
1 i-1 1 x

Further, for each j e {l,...,n}

f (y) = f .(x) - I f.(x)f (x.) * f (x) - f (x) « 03 1 i~l j x 3 j

and it follows that y e DX = H. So x = y + z
i

e H + llx. , ...,x J n A. We see that1 n

A c u + si c H + S2 + Si

where S^ ix^,...,x^J n A. Then (3) is proved with S := + S^. .

(3) => (a). Let U be a zero neighbourhood in F. Since continuous seminorms 

are of finite type, U contains a closed subspace H of finite codimension 

By (3) there exists a finite dimensional set S c a with S bounded and
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A  c h + S* Then A c U + S.

From now on we assume that the valuation on K is dense.
4 iRecall that for an absolutely convex set B we have B : = U AB.

A <1

THEOREM

following are equivalent.
wFor each finite dimensional subspace'D of E there exists _a seminorm

q on E, q of finite type, q ^ p and q *= p on D.
f

(3) (p̂ ) ̂  is. of finite type.

Proof, (a) ** (3). As each continuous seminorm on E is of finite type
*it suffices to prove, by Lemma 7.1, that for a closed subspace H of E

0. iof finite codimension there exists a finite dimensional set S e (p )
r \  1

such that (p )1 c h + S.
%

hNow, by (a), there is a seminorm q of finite type, q is p on-E and q = p
lon D := H . Let

Sj := {f e E : jfj £ q}.

We see that is finite dimensional and since q ^ p we have c p®m
0 1 *We now shall prove that (p ) c h + S where S (Ŝ ) .

0 i ii ii In fact, let f e (p > . Then there is a A e K, 0 < A < 1  with f | A p

Choose A1 e K with |a | < |X < 1.

We have |f| £ |a | q on D (since p = q on D) so we can extend f to a 

g 6 E with |g £ A* q on E, (This is because q is of finite type so 

that (E,q) is strongly polar.) Now write

g + g

Since f = g on D we have f - g e D1- H



1 1 1 Alsof | (X1) g| £ q so that (X1) g £ S^ i.e. g £ (S1)1 ~ S.

(B) **► (a). By lemma 7.1 there exists a finite dimensional set S c {p )
4

/ 0 i ± , O.i so that (p ) - D n (p ) + S.

Set q(x) : = sup |h(x)|. (x £ E).
h£S

Then q(x) - 0 for *11 x in the space which has finite codimension.

So q is of finite type.

Further/ for x £ E we have

q(x) = sup|h(x) | ^ sun |h{x) | = sup |h(x) | = p(x),
h£S  ̂ , O.i . 0he (p ) hep

so q i p. Finally, if x £ D then

, 0,i

p(x) - sup | fix) | *■ sup | f(x) | » sup |h(x) + t(x)
fep f£(p ) h£D n(p )

tes

» sup|t(x)| - q(x). Hence, p - q on D.
te s

§8 APPLICATION: A COMPLETE COMPACTOID IN CQ THAT IS NOT OF FINITE TYPE.

If K is spherically complete each complete absolutely convex compactoid 

is of finite type (See [4], 2.3).

If K is not spherically complete the unit ball of Cq is a complete 

compactoid for the weak topology but not of finite type (See [5], 1.6). 

This is a non-metrizable compactoid. A compactoid in (ĉ , || ||), not 

of finite type, is given in [5], ,1.4. However this compactoid is not
■

closed. The following example provides an answer to the Problem 

following 1.5 in [5].



PROPOSITION 8,1. Let K be not spherically complete. Then there exists 

an absolutely convex complete compactoid in c^ that is not of finite

Proof. Let (KV,| |) be the spherical completion of (K,| |) in the sense
vof [l3, Theorem 4.49. Let E be a K-subspace of K of countably infinite 

dimension and let p be the valuation \ restricted to E. Then x,y € E, 

x l y in the sense of p implies x = 0 or y = 0. Obviously, the norm p 

is of countable type (hence polar) so, by Theorem 5 .1 , p^ is metrizable
4

and is by Theorem 6 .1 , isomorphic to a compactoid in Cq .

Suppose p^ were of finite type. Then so would (p^)^ (1153, Proposition 2.4) 

By Theorem 7.2 we would have a seminorm q on E, q ^ p, q of finite type, 

q(x) = p(x) for some x e E, x * 0. But then x 1 Ker q in the sense of p
♦

(If q(y) « 0 then p(x-y) £ q(x-y) = q(x) = p(*)) which is impossible.
0 'So, p is not of finite type.
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