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A CONNECTION BETWEEN p~ADIC BANACH SPACES AND LOCALLY
CONVEX COMPACTOIDS
by

W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a

Q . :
correspondence p # p 1is established between seminorms p on E and

*
compactoids po in E .

Examination of it vields the solution of two open problems (see §4 and
§8) and a reformulation of Serre's renorming problem (see §2). As a

by-product results on metrizable compactoids are obtained (see §6).

50 THE CORRESPONDENCE pf*'po‘

Throughout this note K 1s a non—archimedean valued field, complete with
respect to the metric induced by the nontrivial valuation ] |.

*
Let E be a K-vector space, let E be its algebraic dual. A {non-archimedean)

seminorm p on E is polar ([3], Definition 3.1), if

P = sup {|f| : £ ¢ E*, ifl < p}

Let PE be the set of all polar seminorms on E.

For each p € PE we set

po = {feB : [£] < p}

. *
Then po is an absolutely convex, edged (L31,81b) subset of E . It is

easy to see that po is a closed compactoid ([3],81e) with respect to the

*
topology o(E ,E), hence complete.



Let CE* be the set of all closed absolutely convex, edged compactcids

> *
in E with respect to o(E ,E).

0 . ; . :
PROPOSITION 0. The map pt+> p is a bijecticn °§_Pﬁ onto CE*. Its inverse

- W eww

assigns to every A ¢ CE* the seminorm p given by

p(x) = sup { f(x)‘ : £ € A} (x € E)

Proof. We shall prove surjectivity of pr+'p0 leaving the (easy) rest of

0

the proof to the reader. So, let A € CE*;'we shall prove that A = p

where p{x) = sup {|{f{x)| : £ ¢ al.

Cbviously, A c.po. Now let g ¢ E*\ﬁ, we prove that g £ po. The space

E* is of countable type hence stronély polar ([3],Theoxem 4.4). So by

{3], Theorem 4.7, there exists a 6 ¢ (E*, U(E*,EI)' such that |0[ <1

on A, [0(g)| > 1. But, by [3], lemma 7.1, © has the fpnm £ £({x) for

some X € E. Thus, [f(x)| £ 1 for £ ¢ 3, [g(x)[ >1 i.e., p(x) £ 1 and [gi(x)] > 1

and it follows that g £ pG.

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean

L 4 o ——

seminorm p on E for which p(x) ¢ |K| (x € E) is polar ([3], Remark

following 3.1).

2. Let T be the locally convex topology on E induced by all nonarchimedean
seminorms i.e., T is the strongest among.all locally convex topologies
on E. It is not hard to see that (E,T) is a complete polar
([3],pefinition 3.5) space and that (E,T) and (E*,U(E*,E)) are each

others strong dual spaces.



Q
§1 NORMS p FOR WHICH p IS c'~COMPACT

Recall that an absolutely convex subset A of a locally qonvéx space F
over K is c'-compact if for each neighbourhood U of 0 in F there exist

reeerX € F) such that A € U + co {xl,...,x }.

XyponogX € A (rather than X n

1

(Here co indicates the absolutely convex hull)

AR E— essss—— — A I

THEOREM 1.1. For a polar seminorm p on a K-vector space E the following

are equivalent.

(¢) p(x) € |K|‘§q£.each x € E. Each onedimensional subspace of E has a

p~orthocomplement.

TSR TR

(8) p0 is c¢'-compact.

Proof. (a) = (B). By [7], Theorem 3.2, it suffices to prove that for

* * '
each ¢ ¢ (E , o(E ,E))
0
max {|¢(f)| : £ € p }
exists. Since ¢ is an evaluation map we therefore have to show that
0
max {|f(x)| : £ € p }

exists for each x € E. This is obviously true if p(x) = 0. So agsume

p(x) > 0. Since p{x) ¢ |K| we may assume that p(ﬁ) = 1, For such x we

must prove
0
max {|f(x)| : £Eep} =1
By (&), XKx has a p—orthocomplemént H. The function

f : Ax + hv A (A € XK, h € H)



is in E*. We have ‘f(x}‘ =1, For A € K, h e H
|E(Ax + B)| = [A] = p(Ax) < max(p(Ax), p(h)) = p(Ax + h)
0

so that £ € p .

*
(B) = {(a). Let x ¢ E. The map f«+'|f(x)‘ (£ € E )

* .
is a continuous. seminorm on (E , 0(E ,E))}. By c'~compactness its
0 . . 0 ~ _

restriction to p has a maximum so there exists a g € p  with ‘g(x)] = p(x)
(It follows that p(x) € IK|). We prove that Ker'g is a p-orthocomplement

of Kx. In fact, for z € Ker g we have
p{xtz) = Ig(x+z)| f ‘?(x)i = p{x)
Then also
p(x+z) 2 p(z)

completing the proof of Theorem 1.1.

Note. It is not hard to see that (a) of above is equivalent too.

(Y) For each x € E there exists an f ¢ E  with |£(x)| = p(x) and |£]| < p.

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be a seminorm on

E for which p(x) € |k| for all x e E.

Then the following_ara ggpivaleng,

(a) pix) € |K| for each x € E.

(8) p° is c'-compact.

Proof. By [1], lemma 4.35, each onedimensional subspace has a p~-ortho-

complement.



§2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM,

Consider the following two statements (*) and (%%},
(*) Let E be a K-vector space and let [‘ IJ be a norm on E. Then there
'

exists a norm ‘l || on E, equivalent to ‘| ||, such that

llxl[' € ‘K\ for all x € E.

(**) Let K be spherically complete and let A be a complete absolutely
convex compactoid in a Hausdorff locally convex space over K. Then
thereexist a A € K with IA[ > | and a ¢'-compact B such that

A < B < AA.

The question as to whether (*) is true or not is known as Serre's
renorming problem. See [2] for more details. We are able to reformulate

this preblem in terms of ccmpactoidé:

PROPOSITION 2.1. The abeve statements (*) and (*%) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By (8],

Theorem 3, A, as a topological module over B(0,1) := {A € K:|l| < 1},
is isomorphic to a bounded submodule of KI for some set I. Let E be the

algebraic direct sum & K, where K

| 1 ' K for all i € 1.
1€l

* * I .
Then (E ,0(E ,E)) is in a natural way isomorphic to K with the product
topology. So we may assume that A = po whexre p is a seminorm on E.
By (*) there exists a seminorm g, equivalent to p, such that g{x) ¢ |Kl

for all x € E. By a suitable scalar multiplicaﬁion we can arrange that,

in addition, p = g S ]Alp»for some \ € K, |l| > 1. Then

0 0 0
P € g < Ap



and qO iz c'-compact by Corollary 1.2. This proves (#%). Now assume (*%%).
To prove (*) we may assume (see [2]), that K is spherically complete.
Let p be a norm on E. By {(**) there is a c¢'-compact B and a A € K, |l| > 1

with po cBC Apo. Then B = qO for some seminorm g on E. We have

p<qgs |Alp

and q{x) ¢ |Kl for all x €. E by Corollary 1.2.

Note. Serxre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH po IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset A of a locally convex space

over K is a KM-compactoid if it is complete and if A = co X where X is

compact. (Here co X is the closure of co X).

Before stating the theorem we first make some simple observations. Let

p be a norm on E. We say that a collection (ei) in E is a
i eI
p-orthonormal base of E if for each X € E there exist a unique

(A

) - KI such that {i ¢ I, llil 2 ¢} is finite for each € > 0 and

1°ieI

p(x) = max |A |
i

If (E,p) is complete this definition. coincides with the usual one.

LEMMA 3.1. Let (E,p) be a normed space, let (E ,p );gg.its completion.

Then (E,p) has a p-orthonormal base if and only if (E ,p') has a .

)

p —oxrthonormal base.

Wl PruinF—




Proof. It is not hard to see that each p-orthonormal base of (E,p) is

ailln wiy -

also a p —orthonormal base of (E ,p ). Conversely, let (ei) be a
i€l

p —orthonormal base of (E ,p ). For each i € I, choose an fi € B with

- 1
p (ei -~ fi) < -
By [1], Exercise 5.C, (fi) is a p orthonormal base of (E ,p ).
iel
Clearly (fi) ls a p-orthonormal base of (E,p).-

iel

THEOREM 3.2. For a polar norm p on a K-vector space E the following are

eggivalent.

(x) (E,p) has a p-orthonormal base

(B) po is a KM-compactoid.

Proof. (a) = (B). Let (ei) be a p-orthonormal base of (E,p). The
iel

formula

$(E) = (f(ei))
iel

defines a map ¢ :lpo ~+-B(O,,1)I., Straightforward verifications show that
¢ is an isomorphism of topological B(0,1)-mocdules. From [8], Theoxem 16
we obtain that B(O,l)I, hence po, is a KM-compactoid.

(B) = (a). Suppose po = co X where X is a compact subset of E*.

Let C(X*K) be the Banach space of all continuous functions X + K,

with the supremum norm,|‘ l\m. Then C(X*K) has an orthonormal base.

(L1}, Theorem 5.22).

The formula
d(x) (£) = £(x) (f € X)

defines a K~linear map ¢ : E » C(X*K). From



||¢(X)1im = max |£(x)| = sup lE(x) | = sup, |£(x) | = p(x)
feX fecoX fep
we obtain that ¢ is an isometry (E,p) =+ (C(X*K), L! |‘W).

ey PP

By Gruson's Theorem ([1], 5.9) ¢(E) has an orthonormal base. Then so

has ¢ (E) by Lemma 3.1 and has E.

84 APPLICATION: A COMPLETE ¢'~COMPACT SET WHICH IS NOT A KM~COMPACTOID.

We shall give a negative answer to the Problem following Theorem 1.7

of L6&1.

PROPOSITION 4.1. Let K be spherically complete, let || = [0;=).

Then there exist a locally convex space F over K and a complete

c'-compact subset A < F which is not a KM-compactoid.

o X
Proof. Let BE := lm and let F := (1 ) (with the topology we agreed upon

in 80). Let p be the standard norm on lm, and set A := po. Since,
trivially, p(x) € ‘K| for all x € lm, we have that p0 is ¢'~compact
(Corollary 1.2). |

However, it is known ([1], Cor. 5.198) that 1 has no orthogonal base
so that (Theorem 3. 2) po is not a KM-compactoid.

55 NORMS p FOR WHICH p0 1S METRIZARLE.

THEOREM 5.1. For'ghpolar seminorm p on a K-vector space E the following

are eggivalent.

(¢) (E,p) is of countable type ([3], Definition 4.3).

(8) po is metrizable.



Proof. (a) = (B). There exist LA CIARE in E with,p(ei) < 1 for each i

such that the K—-linear span of ei,ez,... 1s p~dense i1n E. The formula

¢(f) = (f(el)r f(ez)rt--)

0

defines a map ¢ : p **B(O,i)lq. Straightforward verifications show that

¢ is an isomorphism of topological B(0,1)-modules of po‘onto a submodule

of B0, 1)

Now 155(0,.1):lN is metrizable (the product topology is induced by the metric

(a,b) vy sup |ai—bi‘2ml) hence so is po.

1IN
(B) = (o). Let A € K, ll|”> 1. 8ince pD is a metrizable compactoid

there exist, by (3], Proposition 8.2, fl,f yeve € Apo with lim fn = Q

-0

2
such that

w0 c zo {£,,£,,...} < ApD

The map

$ : Xt (fl(x), fz(x),...) (x € E)

is K-linear, ¢{(E) ¢ c.. We have for x ¢ B

0

|]¢(x)i| = sup lfn(x)} = sup {lg(x)l : g éng'{flf .1}

’.
neN 2

It follows that
p(x) £ ||¢x)|] < |A]ptx)

so that p is equivalent to xtr 1|¢(x)|l, a seminorxrm of countahle type.

Hence, p is of countable.type.



~10~

86 APPLICATION: DESCRIPTION OF METRIZABLE CCOMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally

convex space F over K. The following are equivalent.

(¢) A is a metrizable compactoid.

(B) As a topological B(0,1)-module, A is isomorphic to a submodule of

5o, 1),

(y) As a topelogical B(O,1)-module, A is isomorphic to a compactoid in

CO.

(6) For each A € K, ‘A| > 1 then exist e

. € A A with 1lim en =0
}.

e

i,ez,l.

and A < co {el,ez,...

}.

(e) There exist el,ez,... € F with limren =0 and A < EE'{el,e
e |

L

ST TEERAAM S PRItV Mmbiedl FPER e E——pyylep s e A .

Proof. (o) = (B). It is not hard to see, by using the absolute convexity
of A, that A is also metrizable. As there is no harm in taking F complete

we therefore may assume that A is complete. To prove (8) we also may

assume that A is edged. By [ 8], Theorem 3, A C'B(O,l); c KI for some

set I. Like in the proof of Proposition 2.1 we may conclude that A = po

where p is a polar seminorm on @ Ki (Ki
1€
countable type by Theorem 5.1, From the proof of (a) = (B) of that

Theorem we obtain an isomorphism A = p0‘+'B(O,1)nq.

= K for each 1i). Thenlg i5 of

(8) = (y). Choose A ) € K, }All > ]).2| > ..., lim A = 0. The .

r-tob
2 -

formula

¢((ai) )y = {A,a, \.a .) € ¢

yoe
ieW 1717272 0

defines a B(0,1)-module isomorphism of B(O,l)JN onto C := ng{kle }

1'A282'¢o4

where YA are the standard unit vectors in Cqe $ is a homeomorphism

2’ll‘
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B(O,i)nq-+ C, and maps A onto a compactoid in e
(v} = (6). See [3], Proposition 8.2.
(6) =» (e) is trivial.

(e) = (n).{O,el,e } is compact and ultrametrizable.

2,-.ﬂ
(n} = (o). We may assume that F is complete. It suffices to prove the
metrizability of B := co X.

: | 0
B is a complete, edged compactold. As before we may assume that B = p

*
for some polar seminorm p en some K-vector space E while B < E . The

map ¢ : E > C(X - K) defined by
¢({x) (£) = £(x) (f € X)

is an isometry (E,p) -+ (C(X + K), || I‘m).
Now X is ultrametrizable so by [1], Exercise 3.5, C(X + K) is of

countable type. Hence so is p. By Theorem 5.1, B = po is metrizable.

§7 NORMS p FOR WHICH (po)l IS OF FINITE TYDBE.

Recall that an absolutely convex set A in a locally convex space I over

K is of finite type if for each zero neighbourhood U in F there exists
a finite-dimensional bounded set S € A such that A < U + 5.

Let us say that a seminorm p on a K-vector sﬁace E is of finite type

if Ker p = {x € E : p(x) = 0} has finite codimension.

LEMMA 7.1. Let A be an absolutely convex subget of a locallz'conéex

space F whose topology is generated by a collection of seminorxrms of

finite type. Then the folléwing are equivalent.

(ad) A is a compactoid of finite type.

(B) For each closed linear subspace H of finite codimension there is a

”»

finite dimensional bounded set 8§ © A with A ¢ H + S.
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Proof. {a) = (B). (Note. This implication holds for any locally convex
space F.) We may assume f[A}] = F.
H has the ft:n:n:n.li}'L = {x e F : £(x) = 0 for all £ € D} where D is a

finite dimensional subspace of F . Let £ ..,fn be a base of D. There

1’°

exiSt ¥ ,...,x € F with £ (x,) = 5§ . (i,5 €{1,...,n}). Since [A] = F

1777 n

i}

there exists a A € K, 420 suchfthat A X, € A for each i € {1,...,n}.

Set

o
il
| [ R’

{xer: [, ] s [a}}
. i

1=]1
Then U is a zero neighbourhood in F. A is a compactoid of finite type,

sO there exists a finite dimensional set S c A with A c U + 5,. Let

1 1
X € U. Write x = ¥y + z where .
n
= - X £ .
y X - i(x) Xs
n
2 .= 4 fi(X) X,
i=1 -
n
Now, since x ¢ U, {fi(X}l < |l| for each i so that z = I fi(x) xi € A.
i=1
Further, for each j ¢ {1,...,n}
n - .
fly) =f.(x) - X £ xX)F (x,) =£f.(x)-Ff (x) =0
3 J j=g * 1% 3 3

and it follows that y ¢ Dl = H. SO x =9y + 2

€ H +_Ex1,...,xn] N A. We see that

AcCcU+S5, «cH+§, +8S

1 2 1

where S, = ﬁxi,...,xnﬂ N A, Then (B) is proved with S := 5, + 82.

(B) = (a).Let U be a zero neighbourhood in F. Since continuous seminorms

are of finite type, U contains a closed subspace H of finite codimension.

By (B) there exists a finite dimensional set S © A with S bounded and
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ACH+ S, Then A <€ U + S.

From now on we assume that the valuation on XK is dense.

. i
Recall that for an absolutely convex set B we have B = U AB.

2] <1

THEOREM 7.2. Let p be a polar norm on a K-vector space E. Then the

following are gguivalenﬁ.

A IR

(o) For each finite dimensional subsEéce’D of E there exists a seminoxm

q on E, g of finite type, g = p and @ = p on D.

A—————
v

(B) (po)i is of finite type.

*
Proof. (o) = (B). As each continucus seminorm on E is of finite type

*
it suffices to prove, by Lemma 7.1, that for a closed subspace H of E
: - : ) i
of finite codimension there exists a finite dimensional set S € (po)
0,1
such that (p' )" ¢ H + S.
Now, by (a), there is a seminorm q of finite type, ¢ £ p on'E and ¢ = p

on D := H . Let

s, :={f e E : |£] = q}.

We see that S1 is finite dimensional and since g = p we have's1 c po.
We now shall prove that (po)i < H+ S where § := (S
In fact, let f ¢ (po)i. Then there is a A ¢ K, 0 < |A| < 1 with |£] < | 2] p.
Choose A' € K with lll < IA'I < 1.

We have Ifl < [k{ q on D (since p = q on D) so we can extend f to a

* .
g € E with ]gl < ]l'l q on E. (This is because q is of finite type so

that (E,q) is strongly polar.) Now write
E=f~g+ g

Since £f = gon D we have £ -~ g € Dl= H.



B e A A v

also, | (A gl £ q so that (l')_lg € S, 1.e. g€ (sl}l = 8.

1

0,1
(B) = (a). By lemma 7.1 there exists a finite dimensional set 5 ¢ (p)

Q. i L ’
so that (p )l = D n (po)l + S.

Set g(x) := sup |h(x)|. (x € E).
heS

Then g(x) = 0 for all x in the space Sl which has finite codimension.
So ¢ is of finite type.

Further, for x € E we have

suplh(x)| € sup |h(x)| = sup hix)| = px),
hes 0,1 O
he(p ) hep

g(x)

so g £ p. Finally, if x € D then

p(x) = sup If(x)l = sup |f(x)]| = sup |lhix) + t(x)|
fepo fe(po)l haszr.‘f"n(,12:'0)"L
tes
= suplt(x)| = g{x). Hence, p = q on D,
tesS

58 APPLICATION: A COMPLETE COMPACTOID IN ¢, THAT IS NOT OF FINITE TYPE.

If K is spherically complete each complete absolutely convex compactoid
is of finite type (See [4], 2.3).

If K is not spherically complete the unit ball of ¢, is a complete

O
compactoid for the weak topology but not of finite type (See [5], 1.6).

This is a non-metrizable compactoid. A compactoid in (c,, I| [|), not

0
of finite type, is given in [5], 1.4. However this compactoid is not

closed. The following example provides an answer to the Problem

following 1.5 in [51].
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PROPOSITION 8.1. Let K be not spherically complete. Then there exists

an absolutely convex complete compactoid in ¢, that is not of finite

0 g S

type.

vV , ,
Proof. Let (K ,i [)'be the spherical completion of (K,| |) in the sense

of [1], Theorem 4.49. Let E bé a K-subspace of Kv of countably infinite
dimension and let p be the valuation | l restricted to E. Then X,y € E,
x 1l y in the sense of p implies x = 0 or v = 0. Obviously, the norm p
is of countable type (hence polar) so, by Theqrem 5.1, po is metrizable
and is by Theorem 6.1, isomorphic to a compactoid in Cqe
Suppose po were of finite type. Then so would (po)i ([5], Proposition 2.4).
By Theorem 7.2 we would have a Seminorm ¢ on E, q £ p, q of finite type,
qg(x) = p{x) for some x ¢ E, x # 0. But then x L Ker g in the sense of p

(If gq(y) = 0 then p(x~y} 2 g{x-y) = g{x) = p(x)) which is impossible.

So, po is not of finite type.
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