PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/57055

Please be advised that this information was generated on 2021-09-21 and may be subject to change.

A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY CONVEX COMPACTOIDS

by

W.H. SCHIKHOF

;

÷

Report 8736 December 1987

DEPARTMENT OF MATHEMATICS CATHOLIC UNIVERSITY Toernooiveld

6525 ED Nijmegen The Netherlands

A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY

CONVEX COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a correspondence $p \nleftrightarrow p^0$ is established between seminorms p on E and compactoids p^0 in E^{*}.

Examination of it yields the solution of two open problems (see §4 and

§8) and a reformulation of Serre's renorming problem (see §2). As a

by-product results on metrizable compactoids are obtained (see §6).

§0 THE CORRESPONDENCE $p \mapsto p^0$.

Throughout this note K is a non-archimedean valued field, complete with respect to the metric induced by the nontrivial valuation | |. Let E be a K-vector space, let E^* be its algebraic dual. A (non-archimedean) seminorm p on E is polar ([3], Definition 3.1), if

$$p = \sup \{ |f| : f \in E^*, |f| \le p \}$$

Let P_E be the set of all polar seminorms on E. For each $p \in P_E$ we set

$p^{0} = \{f \in E^{*} : |f| \leq p\}$

Then p^0 is an absolutely convex, edged ([3],§1b) subset of E^* . It is easy to see that p^0 is a closed compactoid ([3],§1e) with respect to the topology $\sigma(E^*,E)$, hence complete.

Let
$$C_{E}^{*}$$
 be the set of all closed absolutely convex, edged compactcids
in E^{*} with respect to $\sigma(E^{*}, E)$.

•

PROPOSITION 0. The map
$$p \mapsto p^0$$
 is a bijection of P_E onto C_E^* . Its inverse
assigns to every $A \in C_E^*$ the seminorm p given by
 $p(x) = \sup \{ |f(x)| : f \in A \}$ $(x \in E)$

<u>Proof</u>. We shall prove surjectivity of $p \mapsto p^0$ leaving the (easy) rest of the proof to the reader. So, let A $\epsilon \ C_E^*$; we shall prove that $A = p^0$ where $p(x) = \sup \{|f(x)| : f \in A\}$. Obviously, $A \in p^0$. Now let $g \in E^* \setminus A$, we prove that $g \notin p^0$. The space E^* is of countable type hence strongly polar ([3], Theorem 4.4). So by [3], Theorem 4.7, there exists a $\theta \in (E^*, \sigma(E^*, E))^4$ such that $|\theta| \le 1$ on A, $|\theta(g)| \ge 1$. But, by [3], lemma 7.1, Θ has the form $f \mapsto f(x)$ for some $x \in E$. Thus, $|f(x)| \le 1$ for $f \in A$, $|g(x)| \ge 1$ i.e., $p(x) \le 1$ and $|g(x)| \ge 1$ and it follows that $g \notin p^0$.

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean seminorm p on E for which $p(x) \in |K|$ (x \in E) is polar ([3], Remark

following 3.1).

2. Let τ be the locally convex topology on E induced by all nonarchimedean seminorms i.e., τ is the strongest among all locally convex topologies on E. It is not hard to see that (E, τ) is a complete polar ([3],Definition 3.5) space and that (E, τ) and (E^{*}, σ (E^{*},E)) are each others strong dual spaces.

1 NORMS p FOR WHICH p IS c'-COMPACT

Recall that an absolutely convex subset A of a locally convex space F over K is c'-compact if for each neighbourhood U of O in F there exist $x_1, \ldots, x_n \in A$ (rather than $x_1, \ldots, x_n \in F$) such that $A \subset U + co \{x_1, \ldots, x_n\}$. (Here co indicates the absolutely convex hull)

THEOREM 1.1. For a polar seminorm p on a K-vector space E the following are equivalent.

(a) $p(x) \in |K|$ for each $x \in E$. Each onedimensional subspace of E has a

p-orthocomplement.

(β) p⁰ is c'-compact.

<u>Proof</u>. (a) \Rightarrow (β). By [7], Theorem 3.2, it suffices to prove that for each $\phi \in (E^*, \sigma(E^*, E))'$

max { $|\phi(f)|$: $f \in p^0$ }

exists. Since ϕ is an evaluation map we therefore have to show that

 $\max \{ |f(\mathbf{x})| : f \in p^0 \}$

exists for each x ϵ E. This is obviously true if $p(x) \approx 0$. So assume p(x) > 0. Since $p(x) \in |K|$ we may assume that p(x) = 1. For such x we

٠

must prove

$$\max \{ |f(x)| : f \in p^0 \} = 1$$

By (α) , Kx has a p-orthocomplement H. The function

f: $\lambda x + h \mapsto \lambda$ ($\lambda \in K, h \in H$)

is in E^* . We have |f(x)| = 1. For $\lambda \in K$, $h \in H$ $|f(\lambda x + h)| = |\lambda| = p(\lambda x) \le \max(p(\lambda x), p(h)) = p(\lambda x + h)$ so that $f \in p^0$. (β) \Rightarrow (α). Let $x \in E$. The map $f \leftrightarrow |f(x)|$ ($f \in E^*$) is a continuous seminorm on (E^* , $\sigma(E^*, E)$). By c'-compactness its restriction to p^0 has a maximum so there exists a $g \in p^0$ with |g(x)| = p(x)(It follows that $p(x) \in |K|$). We prove that Ker g is a p-orthocomplement of Kx. In fact, for $z \in Ker g$ we have

$$p(x+z) \ge |g(x+z)| = |g(x)| = p(x)$$

Then also

 $p(x+z) \ge p(z)$

completing the proof of Theorem 1.1.

Note. It is not hard to see that (α) of above is equivalent too. (γ) For each x ϵ E there exists an f ϵ E^{*} with |f(x)| = p(x) and $|f| \le p$.

· .

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be a seminorm on

E for which $p(x) \in |K|$ for all $x \in E$.

Then the following are equivalent. (a) $p(x) \in |K|$ for each $x \in E$. (b) p^{0} is c'-compact.

Proof. By [1], lemma 4.35, each onedimensional subspace has a p-ortho-

complement.

\$2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let || || be a norm on E. Then there exists a norm || || on E, equivalent to || ||, such that $||\mathbf{x}||' \in |\mathbf{K}|$ for all $\mathbf{x} \in \mathbf{E}$.

(**) Let K be spherically complete and let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then there exist a $\lambda \in K$ with $|\lambda| > 1$ and a c'-compact B such that

 $A \subseteq B \subset \lambda A$.

The question as to whether (*) is true or not is known as Serre's renorming problem. See [2] for more details. We are able to reformulate this problem in terms of compactoids:

PROPOSITION 2.1. The above statements (*) and (**) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], Theorem 3, A, as a topological module over $B(0,1) := \{\lambda \in K: |\lambda| \le 1\}$, is isomorphic to a bounded submodule of K for some set I. Let E be the algebraic direct sum $\oplus K_1$, where $K_1 = K$ for all $i \in I$. ieI Then $(E^{\star}, \sigma(E^{\star}, E))$ is in a natural way isomorphic to K^{\perp} with the product topology. So we may assume that $A = p^0$ where p is a seminorm on E. By (*) there exists a seminorm q, equivalent to p, such that $\dot{q}(x) \in |K|$ for all $x \in E$. By a suitable scalar multiplication we can arrange that, in addition, $p \leq q \leq |\lambda| p$ for some $\lambda \in K$, $|\lambda| > 1$. Then

$$p^{0} \subset q^{0} \subset \lambda p^{0}$$

and q^0 is c'-compact by Corollary 1.2. This proves (**). Now assume (**). To prove (*) we may assume (see [2]), that K is spherically complete. Let p be a norm on E. By (**) there is a c'-compact B and a $\lambda \in K$, $|\lambda| > 1$ with $p^0 \subset B \subset \lambda p^0$. Then $B = q^0$ for some seminorm q on E. We have

 $p \leq q \leq |\lambda| p$

and $q(x) \in |K|$ for all $x \in E$ by Corollary 1.2.

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH p^0 is a krein-milman compactoid.

Recall that an absolutely convex subset A of a locally convex space over K is a KM-<u>compactoid</u> if it is complete and if $A = \overline{co} X$ where X is compact. (Here $\overline{co} X$ is the closure of co X).

Before stating the theorem we first make some simple observations. Let

p be a norm on E. We say that a collection (e) in E is a $i \in I$ p-orthonormal base of E if for each $x \in E$ there exist a unique $(\lambda_i)_{i \in I} \subset K^I$ such that $\{i \in I, |\lambda_i| \ge \varepsilon\}$ is finite for each $\varepsilon > 0$ and

 $x = \sum_{i \in I} \lambda_i e_i$

.

$$p(\mathbf{x}) = \max_{i} |\lambda_{i}|$$

If (E,p) is complete this definition coincides with the usual one.

<u>Proof.</u> It is not hard to see that each p-orthonormal base of (E,p) is also a p-orthonormal base of (E,p). Conversely, let (e₁) be a $i \in I$ p-orthonormal base of (E,p). For each i $\in I$, choose an f_i $\in E$ with p (e_i - f_i) $\leq \frac{1}{2}$. By [1], Exercise 5.C, (f_i) is a p orthonormal base of (E,p). Clearly (f_i) is a p-orthonormal base of (E,p).

THEOREM 3.2. For a polar norm p on a K-vector space E the following are

•

equivalent.

(
$$\alpha$$
) (E,p) has a p-orthonormal base
(β) p⁰ is a KM-compactoid.

Proof. (
$$\alpha$$
) \Rightarrow (β). Let (e₁) be a p-orthonormal base of (E,p). The i ϵ I formula

$$\phi(f) = (f(e_{i}))$$

$$i \in I$$

defines a map $\phi : p^{0} \rightarrow B(0,1)^{T}$. Straightforward verifications show that

 ϕ is an isomorphism of topological B(0,1)-modules. From [8], Theorem 16 we obtain that B(0,1)^I, hence p⁰, is a KM-compactoid. (β) \Rightarrow (α). Suppose p⁰ = \overline{co} X where X is a compact subset of E^{*}. Let C(X+K) be the Banach space of all continuous functions X + K,

with the supremum norm $|| ||_{\infty}$. Then C(X+K) has an orthonormal base. ([1], Theorem 5.22).

The formula

 $\phi(\mathbf{x})$ (f) = f(x) (f ϵ X)

defines a K-linear map ϕ : E \rightarrow C(X \rightarrow K). From

$$\| \phi(\mathbf{x}) \|_{\infty} = \max \| f(\mathbf{x}) \| = \sup \| f(\mathbf{x}) \| = \sup_{\mathbf{f} \in \mathbf{COX}} \| f(\mathbf{x}) \| = p(\mathbf{x})$$

fecox $f \in p^{0}$
we obtain that ϕ is an isometry $(\mathbf{E}, \mathbf{p}) \rightarrow (C(\mathbf{X} \rightarrow \mathbf{K}), \| \| \|_{\infty})$.
By Gruson's Theorem ([1], 5.9) $\overline{\phi(\mathbf{E})}$ has an orthonormal base. Then so
has $\phi(\mathbf{E})$ by Lemma 3.1 and has E.

§4 APPLICATION: A COMPLETE c'-COMPACT SET WHICH IS NOT A KM-COMPACTOID. We shall give a negative answer to the Problem following Theorem 1.7

of [6].

PROPOSITION 4.1. Let K be spherically complete, let $|K| = [0, \infty)$. Then there exist a locally convex space F over K and a complete c'-compact subset A \subset F which is not a KM-compactoid.

<u>Proof.</u> Let $E := 1^{\infty}$ and let $F := (1^{\infty})^*$ (with the topology we agreed upon in §0). Let p be the standard norm on 1^{∞} , and set $A := p^0$. Since, trivially, $p(x) \in |K|$ for all $x \in 1^{\infty}$, we have that p^0 is c'-compact (Corollary 1.2). However, it is known ([1], Cor. 5.19) that 1^{∞} has no orthogonal base so that (Theorem 3.2) p^0 is not a KM-compactoid.

§5 NORMS p FOR WHICH p IS METRIZABLE.

THEOREM 5.1. For a polar seminorm p on a K-vector space E the following

....

are equivalent.

(a) (E,p) is of countable type ([3], Definition 4.3). (β) p⁰ is metrizable. <u>Proof</u>. (a) \Rightarrow (β). There exist e_1, e_2, \dots in E with $p(e_i) \leq 1$ for each i such that the K-linear span of e_1, e_2, \dots is p-dense in E. The formula

-9-

$$\phi(f) = (f(e_1), f(e_2), ...)$$

defines a map ϕ : $p^0 \rightarrow B(0,1)^{\mathbb{N}}$. Straightforward verifications show that ϕ is an isomorphism of topological B(0,1)-modules of p onto a submodule of $B(0,1)^{IN}$. Now $B(0,1)^{\mathbb{N}}$ is metrizable (the product topology is induced by the metric

$$(a,b) \mapsto \sup_{i \in \mathbb{N}} |a_i - b_i|^{2^{-i}}$$
 hence so is p^0 .
 $(\beta) \Rightarrow (\alpha)$. Let $\lambda \in K$, $|\lambda| > 1$. Since p^0 is a metrizable compactoid
there exist, by [3], Proposition 8.2, $f_1, f_2, \dots \in \lambda p^0$ with $\lim_{n \to \infty} f_n = 0$
such that

$$p^{0} \subset \overline{co} \{f_{1}, f_{2}, \ldots\} \subset \lambda p^{0}$$

The map

$$\phi : x \mapsto (f_1(x), f_2(x), \dots) \qquad (x \in E)$$

is K-linear, $\phi(E) \subset C_0$. We have for $x \in E$

-

$$||\phi(\mathbf{x})|| = \sup_{n \in \mathbb{N}} |f_n(\mathbf{x})| = \sup_{n \in \mathbb{N}} \{|g(\mathbf{x})| : g \in \overline{co} \{f_1 f_2, \ldots\}\}$$

It follows that

$p(x) \leq ||\phi(x)|| \leq |\lambda|p(x)$

so that p is equivalent to $x \mapsto ||\phi(x)||$, a seminorm of countable type.

Hence, p is of countable type.

56 APPLICATION: DESCRIPTION OF METRIZABLE COMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally convex space F over K. The following are equivalent.

- (α) A is a metrizable compactoid.
- (β) As a topological B(0,1)-module, A is isomorphic to a submodule of B(0,1)^{IN}.
- (γ) As a topological B(0,1)-module, A is isomorphic to a compactoid in

$$C_0^{\bullet}$$

(o) For each
$$\lambda \in K$$
, $|\lambda| > 1$ then exist $e_1, e_2, \dots \in \lambda \land With \lim_{n \to \infty} e_n = 0$
and $\lambda \subset \overline{co} \{e_1, e_2, \dots\}$.
(c) There exist $e_1, e_2, \dots \in F$ with $\lim_{n \to \infty} e_n = 0$ and $\Lambda \subset \overline{co} \{e_1, e_2, \dots\}$.

(n) There exists an ultrametrizable compact $X \subset F$ with $A \subset \overline{CO} X$.

Proof. (a) \Rightarrow (β). It is not hard to see, by using the absolute convexity of A, that A is also metrizable. As there is no harm in taking F complete we therefore may assume that A is complete. To prove (β) we also may assume that A is edged. By [8], Theorem 3, A $\subset B(0,1)^T \subset K^T$ for some set I. Like in the proof of Proposition 2.1 we may conclude that $A = p^{0}$ where p is a polar seminorm on $\oplus K_1$ ($K_1 = K$ for each i). Then p is of i∈I countable type by Theorem 5.1. From the proof of (a) \Rightarrow (b) of that

Theorem we obtain an isomorphism $A = p^{0} \leftrightarrow B(0,1)^{\mathbb{N}}$.

(β)
$$\Rightarrow$$
 (γ). Choose $\lambda_1, \lambda_2, \dots \in K$, $|\lambda_1| > |\lambda_2| > \dots$, $\lim_{n \to \infty} \lambda_n = 0$. The

formula

$$\phi((a_1)) = (\lambda_1 a_1 \lambda_2 a_2, \dots) \in C_0$$

i \in IN

defines a B(0,1)-module isomorphism of B(0,1) onto C := $\overline{co} \{\lambda_1 e_1, \lambda_2 e_2, \dots\}$ where e_1, e_2, \dots are the standard unit vectors in c_0, ϕ is a homeomorphism

 $B(0,1)^{\mathbb{N}} \rightarrow C$, and maps A onto a compactoid in c_0 . (δ) \Rightarrow (ε) is trivial. (c) \Rightarrow (n), {0,e₁,e₂,...} is compact and ultrametrizable. $(\eta) \Rightarrow (\alpha)$, We may assume that F is complete. It suffices to prove the metrizability of $B := \overline{CO} X$. B is a complete, edged compactoid. As before we may assume that $B = p^{0}$ for some polar seminorm p en some K-vector space E while $B \subseteq E$. The

$$(\gamma) \Rightarrow (\delta)$$
 See [3]. Proposition 8.2.

map ϕ : E \rightarrow C(X \rightarrow K) defined by

$$\phi(\mathbf{x}) \quad (\mathbf{f}) = \mathbf{f}(\mathbf{x}) \qquad (\mathbf{f} \in \mathbf{X})$$

is an isometry $(E,p) \rightarrow (C(X \rightarrow K), || ||_{\infty})$.

Now X is ultrametrizable so by [1], Exercise 3.5, $C(X \rightarrow K)$ is of countable type. Hence so is p. By Theorem 5.1, $B = p^0$ is metrizable.

\$7 NORMS p FOR WHICH (p) IS OF FINITE TYPE.

Recall that an absolutely convex set A in a locally convex space F over K is of finite type if for each zero neighbourhood U in F there exists a finite-dimensional bounded set $S \subset A$ such that $A \subset U + S$. Let us say that a seminorm p on a K-vector space E is of finite type

if Ker $p = \{x \in E : p(x) = 0\}$ has finite codimension.

LEMMA 7.1. Let A be an absolutely convex subset of a locally convex

- space F whose topology is generated by a collection of seminorms of finite type. Then the following are equivalent.
- (a) A is a compactoid of finite type.
- (β) For each closed linear subspace H of finite codimension there is a finite dimensional bounded set $S \subset A$ with $A \subset H + S$.

<u>Proof.</u> (α) \Rightarrow (β). (<u>Note</u>. This implication holds for any locally convex space F.) We may assume [A] = F. H has the form $D^{\perp} := \{x \in F : f(x) = 0 \text{ for all } f \in D\}$ where D is a finite dimensional subspace of F[']. Let f_1, \ldots, f_n be a base of D. There exist $x_1, \ldots, x_n \in F$ with $f_i(x_j) = \delta_{ij}$ (i, j $\in \{1, \ldots, n\}$). Since [A] = Fthere exists a $\lambda \in K$, $\lambda \neq 0$ such that $\lambda x_i \in A$ for each i $\in \{1, \ldots, n\}$. Set

$$U := \bigcap \{x \in F : |f_{i}(x)| \leq |\lambda| \}$$
$$i=1$$

Then U is a zero neighbourhood in F. A is a compactoid of finite type,

so there exists a finite dimensional set $S_1 \subset A$ with $A \subset U + S_1$. Let

 $x \in U$. Write x = y + z where .

$$y := x - \sum_{i=1}^{n} f_i(x) x_i$$

$$z := \sum_{i=1}^{n} f_i(x) x_i$$

$$i = 1$$

Now, since $x \in U$, $|f_i(x)| \le |\lambda|$ for each i so that $z = \sum_{i=1}^{n} f_i(x) x_i \in A$.

Further, for each $j \in \{1, \ldots, n\}$

$$f_{j}(y) = f_{j}(x) - \sum_{i=1}^{n} f_{i}(x)f_{j}(x_{i}) = f_{j}(x) - f_{j}(x) = 0$$

and it follows that $y \in D^{\perp} = H$. So $x = y + z$

 $\in H + [x_1, \dots, x_n] \cap A$. We see that

$$A \subset U + S_1 \subset H + S_2 + S_1$$

where $S_2 := [x_1, \dots, x_n] \cap A$. Then (β) is proved with $S := S_1 + S_2$. (β) \Rightarrow (α). Let U be a zero neighbourhood in F. Since continuous seminorms are of finite type, U contains a closed subspace H of finite codimension. By (β) there exists a finite dimensional set $S \subset A$ with S bounded and $A \subset H + S$. Then $A \subset U + S$.

From now on we assume that the valuation on K is dense. Recall that for an absolutely convex set B we have $B^{i} := \bigcup_{\lambda > 1} \lambda B$.

THEOREM 7.2. Let p be a polar norm on a K-vector space E. Then the following are equivalent.

(a) For each finite dimensional subspace D of E there exists a seminorm $q \text{ on } E, q \text{ of finite type}, q \leq p \text{ and } q = p \text{ on } D.$

•

(β) (p^0)ⁱ <u>is of finite type</u>.

<u>Proof.</u> $(\alpha) \Rightarrow (\beta)$. As each continuous seminorm on E^* is of finite type it suffices to prove, by Lemma 7.1, that for a closed subspace H of E^* of finite codimension there exists a finite dimensional set $S \in (p^0)^{i}$ such that $(p^0)^{i} \subset H + S$.

Now, by (α), there is a seminorm q of finite type, $q \le p$ on E and q = p on D := H^{\perp} . Let

$$S_1 := \{f \in E^* : |f| \leq q\}.$$

We see that S_1 is finite dimensional and since $q \le p$ we have $S_1 \subseteq p^0$. We now shall prove that $(p^0)^i \subseteq H + S$ where $S := (S_1)^i$. In fact, let $f \in (p^0)^i$. Then there is a $\lambda \in K$, $0 < |\lambda| < 1$ with $|f| \le |\lambda|p$.

Choose $\lambda' \in K$ with $|\lambda| < |\lambda'| < 1$.

We have $|f| \leq |\lambda| q$ on D (since p = q on D) so we can extend f to a

 $g \in E^*$ with $|g| \leq |\lambda'| q$ on E. (This is because q is of finite type so

that (E,q) is strongly polar.) Now write

f = f - g + g

Since f = g on D we have f - g $\in D^{\perp} = H$.

Also,
$$|(\lambda^{*})^{-1}g| \leq q$$
 so that $(\lambda^{*})^{-1}g \in S_{1}$ i.e. $g \in (S_{1})^{1} = S$.
(β) \Rightarrow (α). By lemma 7.1 there exists a finite dimensional set $S \subset (p^{0})^{1}$
so that $(p^{0})^{1} = D^{1} \cap (p^{0})^{1} + S$.
Set $q(x) := \sup_{h \in S} |h(x)|$. $(x \in E)$.
hes Then $q(x) = 0$ for all x in the space S^{1} which has finite codimension.
So q is of finite type.
Further, for $x \in E$ we have

$$q(x) = \sup_{h \in S} |h(x)| \le \sup_{h \in S} |h(x)| = \sup_{h \in S} |h(x)| = p(x),$$

$$h \in (p^0)^i \qquad h \in p^0$$

so $q \leq p$. Finally, if $x \in D$ then

•

¢.

$$p(x) = \sup |f(x)| = \sup |f(x)| = \sup |h(x) + t(x)|$$

$$f\epsilon p^{0} \qquad f\epsilon (p^{0})^{i} \qquad h\epsilon D^{1} n(p^{0})^{i}$$

$$t\epsilon S$$

=
$$\sup |t(x)| = q(x)$$
. Hence, $p = q$ on D.
tes

\$8 APPLICATION: A COMPLETE COMPACTOID IN CO THAT IS NOT OF FINITE TYPE.

If K is spherically complete each complete absolutely convex compactoid is of finite type (See [4], 2.3).

If K is not spherically complete the unit ball of c_0 is a complete compactoid for the weak topology but not of finite type (See [5], 1.6). This is a non-metrizable compactoid. A compactoid in $(c_0, || ||)$, not

of finite type, is given in [5], 1.4. However this compactoid is not

closed. The following example provides an answer to the Problem

following 1.5 in [5].

PROPOSITION 8.1. Let K be not spherically complete. Then there exists an absolutely convex complete compactoid in content is not of finite type.

Proof. Let $(K', | \cdot |)$ be the spherical completion of $(K, | \cdot |)$ in the sense of [1], Theorem 4.49. Let E bé a K-subspace of K of countably infinite dimension and let p be the valuation | restricted to E. Then x, y $\in E$, $x \perp y$ in the sense of p implies x = 0 or y = 0. Obviously, the norm p

is of countable type (hence polar) so, by Theorem 5.1, p^0 is metrizable and is by Theorem 6.1, isomorphic to a compactoid in c_0 . Suppose p^0 were of finite type. Then so would $(p^0)^i$ ([5], Proposition 2.4). By Theorem 7.2 we would have a seminorm q on E, $q \le p$, q of finite type, q(x) = p(x) for some $x \in E$, $x \neq 0$. But then $x \perp Ker q$ in the sense of p (If q(y) = 0 then $p(x-y) \ge q(x-y) = q(x) = p(x)$) which is impossible. So, p⁰ is not of finite type.

•

REFERENCES

- [1] A.C.M. van Rooij: Non-Archimedean Functional Analysis. Marcel Dekker, New York (1978).
- [2] A.C.M. van Rooij: Notes on p-adic Banach spaces. Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, 1-62 (1976).
- [3] W.H. Schikhof: Locally convex spaces over nonspherically complete

valued fields. Groupe d'étude d'analyse ultramétrique 12 no. 24, 1-33 (1984/85).

[4] W.H. Schikhof: Some properties of c-compact sets in p-adic spaces.

Report 8632, Department of Mathematics, Catholic University,

Nijmegen (1986), 1-12.

- [5] W.H. Schikhof: Ultrametric compactoids of finite type. Report 8634, Department of Mathematics, Catholic University, Nijmegen (1986), 1-19.
- [6] W.H. Schikhof: The closed convex hull of a compact set in a non-Archimedean locally convex space. Report 8646, Department of Mathematics, Catholic University, Nijmegen (1986), 1-11.

[7] W.H. Schikhof: Weak c'-compactness in p-adic Banach spaces. Report

8648, Department of Mathematics, Catholic University, Nijmegen

(1986), 1-13.

[8] W.H. Schikhof: Compact-like sets in non-archimedean functional analysis. Proceedings of the Conference on p-adic analysis,

Hengelhoef (1986).