The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57055

Please be advised that this information was generated on 2019-12-27 and may be subject to change.
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY CONVEX
COMPACTOIDS

by

W.H. SCHIKHOF

Report 8736
December 1987

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY
CONVEX COMPACTOIDS
by
W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a
 correspondence $p \mapsto p^0$ is established between seminorms p on E and
 compactoids p^0 in E^*. Examination of it yields the solution of two open
 problems (see §4 and §8) and a reformulation of Serre's renorming problem
 (see §2). As a by-product results on metrizable compactoids are obtained (see §6).

§0 THE CORRESPONDENCE $p \mapsto p^0$.

Throughout this note K is a non-archimedean valued field, complete with
respect to the metric induced by the nontrivial valuation $|\cdot|$. Let E be a
K-vector space, let E^* be its algebraic dual. A (non-archimedean) seminorm p on E is polar ([3], Definition 3.1), if

$$p = \sup \{ |f| : f \in E^*, |f| \leq p \}$$

Let P_E be the set of all polar seminorms on E. For each $p \in P_E$ we set

$$p^0 = \{ f \in E^* : |f| \leq p \}$$

Then p^0 is an absolutely convex, edged ([3], §1b) subset of E^*. It is easy to see that p^0 is a closed compactoid ([3], §1e) with respect to the topology $\sigma(E^*, E)$, hence complete.
Let C_E^* be the set of all closed absolutely convex, edged compactoids in E^* with respect to $\sigma(E^*,E)$.

PROPOSITION 0. The map $p \mapsto p^0$ is a bijection of P_E onto C_E^*. Its inverse assigns to every $A \in C_E^*$ the seminorm p given by

$$p(x) = \sup \{|f(x)| : f \in A\} \quad (x \in E)$$

Proof. We shall prove surjectivity of $p \mapsto p^0$, leaving the (easy) rest of the proof to the reader. So, let $A \in C_E^*$; we shall prove that $A = p^0$ where $p(x) = \sup \{|f(x)| : f \in A\}$.

Obviously, $A \subset p^0$. Now let $g \in E^* \setminus A$, we prove that $g \not\in p^0$. The space E^* is of countable type; hence strongly polar ([3], Theorem 4.4). So by [3], Theorem 4.7, there exists a $0 \in (E^*, \sigma(E^*,E))'$ such that $|0| \leq 1$ on A, $|0(g)| > 1$. But, by [3], lemma 7.1, θ has the form $f \mapsto f(x)$ for some $x \in E$. Thus, $|f(x)| \leq 1$ for $f \in A$, $|g(x)| > 1$ i.e., $p(x) \leq 1$ and $|g(x)| > 1$ and it follows that $g \not\in p^0$.

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean seminorm p on E for which $p(x) \in \bar{K}$ ($x \in E$) is polar ([3], Remark following 3.1).

2. Let τ be the locally convex topology on E induced by all nonarchimedean seminorms i.e., τ is the strongest among all locally convex topologies on E. It is not hard to see that (E,τ) is a complete polar ([3], Definition 3.5) space and that (E,τ) and $(E^*, \sigma(E^*,E))$ are each others strong dual spaces.
§1 NORMS \(p \) FOR WHICH \(p^0 \) IS c'-COMPACT

Recall that an absolutely convex subset \(A \) of a locally convex space \(F \) over \(K \) is c'-compact if for each neighbourhood \(U \) of 0 in \(F \) there exist \(x_1, \ldots, x_n \in A \) (rather than \(x_1, \ldots, x_n \in F \)) such that \(A \subseteq U + \text{co} \{x_1, \ldots, x_n\} \).
(Here co indicates the absolutely convex hull)

THEOREM 1.1. For a polar seminorm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(a) \(p(x) \in |K| \) for each \(x \in E \). Each onedimensional subspace of \(E \) has a \(p \)-orthocomplement.

(\(\beta \)) \(p^0 \) is c'-compact.

Proof. (a) \(\Rightarrow \) (\(\beta \)). By [7], Theorem 3.2, it suffices to prove that for each \(\phi \in (E^*, \sigma(E^*,E))^\prime \)

\[
\max \{ |\phi(f)| : f \in p^0 \}
\]

exists. Since \(\phi \) is an evaluation map we therefore have to show that

\[
\max \{ |f(x)| : f \in p^0 \}
\]

exists for each \(x \in E \). This is obviously true if \(p(x) = 0 \). So assume \(p(x) > 0 \). Since \(p(x) \in |K| \) we may assume that \(p(x) = 1 \). For such \(x \) we must prove

\[
\max \{ |f(x)| : f \in p^0 \} = 1
\]

By (a), \(Kx \) has a \(p \)-orthocomplement \(H \). The function

\[
f : \lambda x + h \mapsto \lambda \quad (\lambda \in K, \ h \in H)
\]
is in E^*. We have $|f(x)| = 1$. For $\lambda \in K, h \in H$

$$|f(\lambda x + h)| = |\lambda| = p(\lambda x) \leq \max(p(\lambda x), p(h)) = p(\lambda x + h)$$

so that $f \in p_0^1$.

$(\beta) \Rightarrow (\alpha)$. Let $x \in E$. The map $f \mapsto |f(x)|$ ($f \in E^*$) is a continuous seminorm on $(E^*, \sigma(E^*, E))$. By c'-compactness its restriction to p_0^1 has a maximum so there exists a $g \in p_0^1$ with $|g(x)| = p(x)$ (It follows that $p(x) \in |K|$). We prove that $\ker g$ is a p-orthocomplement of Kx. In fact, for $z \in \ker g$ we have

$$p(x+z) \leq |g(x+z)| = |g(x)| = p(x)$$

Then also

$$p(x+z) \leq p(z)$$

completing the proof of Theorem 1.1.

Note. It is not hard to see that (a) of above is equivalent too.

(γ) For each $x \in E$ there exists an $f \in E^*$ with $|f(x)| = p(x)$ and $|f| \leq p$.

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be a seminorm on E for which $p(x) \in |K|$ for all $x \in E$.

Then the following are equivalent.

$(\alpha) p(x) \in |K|$ for each $x \in E$.

$(\beta) p_0^1$ is c'-compact.

Proof. By [1], lemma 4.35, each one-dimensional subspace has a p-orthocomplement.
§2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let $|||\ |||$ be a norm on E. Then there exists a norm $||| \ |||'$ on E, equivalent to $||| \ |||$, such that $|||x|||' \leq |K|$ for all $x \in E$.

(**) Let K be spherically complete and let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then there exist a $\lambda \in K$ with $|\lambda| > 1$ and a c'-compact B such that $A \subseteq B \subseteq \lambda A$.

The question as to whether (*) is true or not is known as Serre's renorming problem. See [2] for more details. We are able to reformulate this problem in terms of compactoids:

PROPOSITION 2.1. The above statements (*) and (**) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], Theorem 3, A, as a topological module over $B(0,1) := \{ \lambda \in K : |\lambda| \leq 1 \}$, is isomorphic to a bounded submodule of K^I for some set I. Let E be the algebraic direct sum $\oplus K_i$ where $K_i = K$ for all $i \in I$. Then $(E^*, \sigma(E^*, E))$ is in a natural way isomorphic to K^I with the product topology. So we may assume that $A = p^0$ where p is a seminorm on E.

By (*) there exists a seminorm q, equivalent to p, such that $q(x) \in |K|$ for all $x \in E$. By a suitable scalar multiplication we can arrange that, in addition, $p \leq q \leq |\lambda|p$ for some $x \in K$, $|\lambda| > 1$. Then

$p^0 \leq q^0 \leq \lambda p^0$
and q^0 is c'-compact by Corollary 1.2. This proves (**). Now assume (**).

To prove (*) we may assume (see [2]), that K is spherically complete.

Let p be a norm on E. By (**) there is a c'-compact B and a $\lambda \in K$, $|\lambda| > 1$
with $p^0 \subset B \subset \lambda p^0$. Then $B = q^0$ for some seminorm q on E. We have

$$p \leq q \leq |\lambda|p$$

and $q(x) \in |K|$ for all $x \in E$ by Corollary 1.2.

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH p^0 IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset A of a locally convex space
over K is a KM-compactoid if it is complete and if $A = \overline{\text{co} X}$ where X is
compact. (Here $\overline{\text{co} X}$ is the closure of $\text{co} X$).

Before stating the theorem we first make some simple observations. Let

p be a norm on E. We say that a collection $(e_i)_{i \in I}$ in E is a

p-orthonormal base of E if for each $x \in E$ there exist a unique

$(\lambda_i)_{i \in I} \subset K^I$ such that $\{i \in I, |\lambda_i| > \epsilon\}$ is finite for each $\epsilon > 0$ and

$$x = \sum_{i \in I} \lambda_i e_i$$

$$p(x) = \max_{i} |\lambda_i|$$

If (E,p) is complete this definition coincides with the usual one.

Lemma 3.1. Let (E,p) be a normed space, let (\hat{E},\hat{p}) be its completion.

Then (E,p) has a p-orthonormal base if and only if (\hat{E},\hat{p}) has a

\hat{p}-orthonormal base.
Proof. It is not hard to see that each \(p \)-orthonormal base of \((E,p)\) is also a \(\hat{p} \)-orthonormal base of \((\hat{E},\hat{p})\). Conversely, let \((e_i)_{i \in I} \) be a \(\hat{p} \)-orthonormal base of \((\hat{E},\hat{p})\). For each \(i \in I \), choose an \(f_i \in E \) with
\[
p(e_i - f_i) \leq \frac{1}{2}.
\]
By [1], Exercise 5.C, \((f_i)_{i \in I} \) is a \(\hat{p} \)-orthonormal base of \((\hat{E},\hat{p})\).

Clearly \((f_i)_{i \in I} \) is a \(p \)-orthonormal base of \((E,p)\).

THEOREM 3.2. For a polar norm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(a) \((E,p)\) has a \(p \)-orthonormal base

(3) \(p^0 \) is a KM-compactoid.

Proof. (a) \(\Rightarrow \) (3). Let \((e_i)_{i \in I} \) be a \(p \)-orthonormal base of \((E,p)\). The formula
\[
\phi(f) = (f(e_i))_{i \in I}
\]
defines a map \(\phi : p^0 \rightarrow B(0,1)^I \). Straightforward verifications show that \(\phi \) is an isomorphism of topological \(B(0,1)^I \)-modules. From [8], Theorem 16 we obtain that \(B(0,1)^I \), hence \(p^0 \), is a KM-compactoid.

(3) \(\Rightarrow \) (a). Suppose \(p^0 = \text{co} X \) where \(X \) is a compact subset of \(E^* \).

Let \(C(X*K) \) be the Banach space of all continuous functions \(X + K \), with the supremum norm \(|| ||_\infty \). Then \(C(X*K) \) has an orthonormal base.

([1], Theorem 5.22).

The formula
\[
\phi(x) (f) = f(x) \quad (f \in X)
\]
defines a \(K \)-linear map \(\phi : E \rightarrow C(X*K) \). From
\[\|\phi(x)\|_w = \max_{f \in X} |f(x)| = \sup_{f \in \mathcal{F}} |f(x)| = p(x) \]

we obtain that \(\phi \) is an isometry \((E, p) \to (C(X^K), \| \|_w)\).

By Gruson's Theorem ([1], 5.9) \(\overline{\phi(E)} \) has an orthonormal base. Then so has \(\overline{\phi(E)} \) by Lemma 3.1 and has \(E \).

§4 APPLICATION: A COMPLETE \(c' \)-COMPACT SET WHICH IS NOT A KM-COMPACTOID.

We shall give a negative answer to the Problem following Theorem 1.7 of [6].

PROPOSITION 4.1. Let \(K \) be spherically complete, let \(|K| = \mathbb{R}_+ \).

Then there exist a locally convex space \(F \) over \(K \) and a complete \(c' \)-compact subset \(A \subset F \) which is not a KM-compactoid.

Proof. Let \(E := l^\infty \) and let \(F := (l^\infty)^* \) (with the topology we agreed upon in §0). Let \(p \) be the standard norm on \(l^\infty \), and set \(A := \overline{p^0} \). Since, trivially, \(p(x) \in |K| \) for all \(x \in l^\infty \), we have that \(\overline{p^0} \) is \(c' \)-compact (Corollary 1.2).

However, it is known ([1], Cor. 5.19) that \(l^\infty \) has no orthogonal base so that (Theorem 3.2) \(\overline{p^0} \) is not a KM-compactoid.

§5 NORMS \(p \) FOR WHICH \(p^0 \) IS METRIZABLE.

THEOREM 5.1. For a polar seminorm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(α) \((E, p) \) is of countable type ([3], Definition 4.3).

(β) \(p^0 \) is metrizable.
Proof. (a) ⇒ (B). There exist \(e_1, e_2, \ldots \) in \(E \) with \(p(e_i) \leq 1 \) for each \(i \) such that the \(K \)-linear span of \(e_1, e_2, \ldots \) is \(p \)-dense in \(E \). The formula

\[\phi(f) = (f(e_1), f(e_2), \ldots) \]

defines a map \(\phi : p^0 \to B(0,1)^\mathbb{N} \). Straightforward verifications show that \(\phi \) is an isomorphism of topological \(B(0,1) \)-modules of \(p^0 \) onto a submodule of \(B(0,1)^\mathbb{N} \).

Now \(B(0,1)^\mathbb{N} \) is metrizable (the product topology is induced by the metric

\[((a,b)) \mapsto \sup_{i \in \mathbb{N}} |a_i - b_i|2^{-i} \]

hence so is \(p^0 \).

(B) ⇒ (a). Let \(\lambda \in K, |\lambda| > 1 \). Since \(p^0 \) is a metrizable compactoid there exist, by [3], Proposition 8.2, \(f_1, f_2, \ldots \in \lambda p^0 \) with \(\lim_{n \to \infty} f_n = 0 \) such that

\[p^0 \leq \sup \{ f_1, f_2, \ldots \} < \lambda p^0 \]

The map

\[\phi : x \mapsto (f_1(x), f_2(x), \ldots) \quad \text{(x \in E)} \]

is \(K \)-linear, \(\phi(E) \subset c_0 \). We have for \(x \in E \)

\[||\phi(x)|| = \sup_{n \in \mathbb{N}} |f_n(x)| = \sup \{ |g(x)| : g \in \sup \{ f_1, f_2, \ldots \} \} \]

It follows that

\[p(x) \leq ||\phi(x)|| \leq |\lambda| p(x) \]

so that \(p \) is equivalent to \(x \mapsto ||\phi(x)|| \), a seminorm of countable type.

Hence, \(p \) is of countable type.
§6 APPLICATION: DESCRIPTION OF METRIZABLE COMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally convex space F over K. The following are equivalent.

(a) A is a metrizable compactoid.

(b) As a topological $B(0,1)$-module, A is isomorphic to a submodule of $B(0,1)^\mathbb{N}$.

(c) As a topological $B(0,1)$-module, A is isomorphic to a compactoid in C_0.

(d) For each $\lambda \in K$, $|\lambda| > 1$ then exist $e_1, e_2, \ldots \in \lambda A$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \operatorname{co} \{e_1, e_2, \ldots\}$.

(e) There exist $e_1, e_2, \ldots \in F$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \operatorname{co} \{e_1, e_2, \ldots\}$.

(f) There exists an ultrametrizable compact $X \subseteq F$ with $A \subseteq \operatorname{co} X$.

Proof. (a) \Rightarrow (b). It is not hard to see, by using the absolute convexity of A, that \overline{A} is also metrizable. As there is no harm in taking F complete we therefore may assume that A is complete. To prove (b) we also may assume that A is edged. By [8], Theorem 3, $A = B(0,1)^I \subseteq K^I$ for some set I. Like in the proof of Proposition 2.1 we may conclude that $A = \overline{p^0}$ where p is a polar seminorm on $\oplus_{i \in I} K_i$ ($K_i = K$ for each i). Then p is of countable type by Theorem 5.1. From the proof of (a) \Rightarrow (b) of that Theorem we obtain an isomorphism $A = p^0 \cong B(0,1)^\mathbb{N}$.

(b) \Rightarrow (c). Choose $\lambda_1, \lambda_2, \ldots \in K$, $|\lambda_1| > |\lambda_2| > \ldots$, $\lim_{n \to \infty} \lambda_n = 0$. The formula

$$\phi(\mathbf{a}) = (\lambda_1 a_1, \lambda_2 a_2, \ldots) \in c_0$$

$$\phi(\mathbf{a}) = (\lambda_1 a_1, \lambda_2 a_2, \ldots) \in c_0$$

defines a $B(0,1)$-module isomorphism of $B(0,1)^\mathbb{N}$ onto $C := \overline{\operatorname{co} \{ \lambda_1 e_1, \lambda_2 e_2, \ldots \}}$ where e_1, e_2, \ldots are the standard unit vectors in c_0. ϕ is a homeomorphism
\[B(0,1)^\mathbb{N} \rightarrow C, \text{ and maps } \text{A onto a compactoid in } C_0. \]

(y) \Rightarrow (\delta). See [3], Proposition 8.2.

(\delta) \Rightarrow (\varepsilon) \text{ is trivial.}

(\varepsilon) \Rightarrow (\eta), \{0, e_1, e_2, \ldots\} \text{ is compact and ultrametrizable.}

(\eta) \Rightarrow (\alpha). We may assume that \(F \) is complete. It suffices to prove the

metrizability of \(B := \text{co} X. \)

\(B \) is a complete, edged compactoid. As before we may assume that \(B = p^0 \)

for some polar seminorm \(p \) en some K-vector space \(E \) while \(B \subset E^*. \) The

map \(\phi : E \rightarrow C(X \times K) \) defined by

\[\phi(x)(f) = f(x) \quad (f \in X) \]

is an isometry \((E, p) \rightarrow (C(X \times K), ||| \cdot |||_\infty). \)

Now \(X \) is ultrametrizable so by [1], Exercise 3.5, \(C(X \times K) \) is of

countable type. Hence so is \(p. \) By Theorem 5.1, \(B = p^0 \) is metrizable.

\section{Norms \(p \) For Which \((p^0)^* \) is of Finite Type.}

Recall that an absolutely convex set \(A \) in a locally convex space \(F \) over

\(K \) is of finite type if for each zero neighbourhood \(U \) in \(F \) there exists

a finite-dimensional bounded set \(S \subset A \) such that \(A \subset U + S. \)

Let us say that a seminorm \(p \) on a K-vector space \(E \) is of finite type

if \(\ker p = \{x \in E : p(x) = 0\} \) has finite codimension.

\textbf{Lemma 7.1.} Let \(A \) be an absolutely convex subset of a locally convex

space \(F \) whose topology is generated by a collection of seminorms of

finite type. Then the following are equivalent.

(\alpha) \(A \) is a compactoid of finite type.

(\beta) For each closed linear subspace \(H \) of finite codimension there is a

finite dimensional bounded set \(S \subset A \) with \(A \subset H + S. \)
Proof. (a) ⇒ (β). (Note. This implication holds for any locally convex space F.) We may assume \(\{A\} = F \).

H has the form \(D^\perp := \{ x \in F : f(x) = 0 \text{ for all } f \in D \} \) where D is a finite dimensional subspace of \(F' \). Let \(f_1, \ldots, f_n \) be a base of D. There exist \(x_1, \ldots, x_n \in F \) with \(f_i(x_j) = \delta_{ij} \) (\(i, j \in \{1, \ldots, n\} \)). Since \(\{A\} = F \), there exists a \(\lambda \in K, \lambda \neq 0 \) such that \(\lambda x_i \in A \) for each \(i \in \{1, \ldots, n\} \).

Set

\[
U := \bigcap_{i=1}^n \{ x \in F : |f_i(x)| \leq |\lambda| \}
\]

Then U is a zero neighbourhood in \(F \). A is a compactoid of finite type, so there exists a finite dimensional set \(S_1 \subseteq A \) with \(A \subseteq U + S_1 \). Let \(x \in U \). Write \(x = y + z \) where

\[
y := x - \sum_{i=1}^n f_i(x) x_i
\]

\[
z := \sum_{i=1}^n f_i(x) x_i
\]

Now, since \(x \in U \), \(|f_i(x)| \leq |\lambda| \) for each \(i \) so that \(z = \sum_{i=1}^n f_i(x) x_i \in A \).

Further, for each \(j \in \{1, \ldots, n\} \)

\[
f_j(y) = f_j(x) - \sum_{i=1}^n f_i(x)f_j(x_i) = f_j(x) - f_j(x) = 0
\]

and it follows that \(y \in D^\perp = H \). So \(x = y + z \)

\(\in H + [x_1, \ldots, x_n] \cap A \). We see that

\[
A \subseteq U + S_1 \subseteq H + S_2 + S_1
\]

where \(S_2 := [x_1, \ldots, x_n] \cap A \). Then (β) is proved with \(S := S_1 + S_2 \).

(β) ⇒ (a). Let \(U \) be a zero neighbourhood in \(F \). Since continuous seminorms are of finite type, \(U \) contains a closed subspace \(H \) of finite codimension.

By (β) there exists a finite dimensional set \(S \subseteq A \) with \(S \) bounded and
A \subset H + S. Then A \subset U + S.

From now on we assume that the valuation on K is dense.

Recall that for an absolutely convex set B we have \(B^i := \bigcup_{|\lambda| < 1} \lambda B. \)

Theorem 7.2. Let \(p \) be a polar norm on a K-vector space \(E \). Then the following are equivalent.

(a) For each finite dimensional subspace \(D \) of \(E \) there exists a seminorm \(q \) on \(E \), \(q \) of finite type, \(q \leq p \) and \(q = p \) on \(D \).

(b) \((p^0)^{1\ast} \) is of finite type.

Proof. (a) \(\Rightarrow \) (b). As each continuous seminorm on \(E^* \) is of finite type it suffices to prove, by Lemma 7.1, that for a closed subspace \(H \) of \(E^* \) of finite codimension there exists a finite dimensional set \(S \in (p^0)^{1\ast} \) such that \((p^0)^{1\ast} \subset H + S. \)

Now, by (a), there is a seminorm \(q \) of finite type, \(q \leq p \) on \(E \) and \(q = p \) on \(D := \overline{H}. \) Let

\[
S_1 := \{ f \in E^* : |f| \leq q \}.
\]

We see that \(S_1 \) is finite dimensional and since \(q \leq p \) we have \(S_1 \subset p^0. \)

We now shall prove that \((p^0)^{1\ast} \subset H + S \) where \(S := (S_1)^{1\ast}. \)

In fact, let \(f \in (p^0)^{1\ast}. \) Then there is a \(\lambda \in K \), \(0 < |\lambda| < 1 \) with \(|f| \leq |\lambda| p. \)

Choose \(\lambda' \in K \) with \(|\lambda| < |\lambda'| < 1. \)

We have \(|f| \leq |\lambda| q \) on \(D \) (since \(p = q \) on \(D \)) so we can extend \(f \) to a \(g \in E^* \) with \(|g| \leq |\lambda'| q \) on \(E. \) (This is because \(q \) is of finite type so that \((E,q) \) is strongly polar.) Now write

\[
f = f - g + g \]

Since \(f = g \) on \(D \) we have \(f - g \in D^\perp = H. \)
Also, $|\lambda'^{-1}g| \leq q$ so that $(\lambda'^{-1}g) \in S_1$ i.e. $g \in (S_1)^i = S$.

$(B) \Rightarrow (a)$. By lemma 7.1 there exists a finite dimensional set $S \subset (p^0)^i$ so that $(p^0)^i = D^\perp \cap (p^0)^i + S$.

Set $q(x) := \sup_{h \in S} |h(x)|$. (x $\in E$).

Then $q(x) = 0$ for all x in the space S^\perp which has finite codimension.

So q is of finite type.

Further, for $x \in E$ we have

$q(x) = \sup_{h \in S} |h(x)| \leq \sup_{h \in (p^0)^i} |h(x)| = \sup_{h \in (p^0)^i} |h(x)| = p(x)$,

so $q \leq p$. Finally, if $x \in D$ then

$p(x) = \sup_{f \in p} |f(x)| = \sup_{f \in (p^0)^i} |f(x)| = \sup_{h \in D^\perp \cap (p^0)^i} |h(x) + t(x)|$

$= \sup_{t \in S} |t(x)| = q(x)$. Hence, $p = q$ on D.

§8 APPLICATION: A COMPLETE COMPACTOID IN c_0 THAT IS NOT OF FINITE TYPE.

If K is spherically complete each complete absolutely convex compactoid is of finite type (See [4], 2.3).

If K is not spherically complete the unit ball of c_0 is a complete compactoid for the weak topology but not of finite type (See [5], 1.6).

This is a non-metrizable compactoid. A compactoid in $(c_0, ||||)$, not of finite type, is given in [5], 1.4. However this compactoid is not closed. The following example provides an answer to the Problem following 1.5 in [5].
PROPOSITION 8.1. Let K be not spherically complete. Then there exists an absolutely convex complete compactoid in c_0 that is not of finite type.

Proof. Let $(K^V, | |)$ be the spherical completion of $(K, | |)$ in the sense of [1], Theorem 4.49. Let E be a K-subspace of K^V of countably infinite dimension and let p be the valuation $| |$ restricted to E. Then $x, y \in E, x \perp y$ in the sense of p implies $x = 0$ or $y = 0$. Obviously, the norm p is of countable type (hence polar) so, by Theorem 5.1, p^0 is metrizable and is by Theorem 6.1, isomorphic to a compactoid in c_0.

Suppose p^0 were of finite type. Then so would $(p^0)^i$ ([5], Proposition 2.4).

By Theorem 7.2 we would have a seminorm q on E, $q \leq p$, q of finite type, $q(x) = p(x)$ for some $x \in E, x \neq 0$. But then $x \perp \text{Ker } q$ in the sense of p (If $q(y) = 0$ then $p(x-y) \geq q(x-y) = q(x) = p(x)$) which is impossible.

So, p^0 is not of finite type.
REFERENCES

