PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57055

Please be advised that this information was generated on 2018-11-03 and may be subject to change.
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY CONVEX COMPACTOIDS

by

W.H. SCHIKHOF

Report 8736
December 1987

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY
CONVEX COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a correspondence $p \leftrightarrow p^0$ is established between seminorms p on E and compactoids p^0 in E^*. Examination of it yields the solution of two open problems (see §4 and §8) and a reformulation of Serre's renorming problem (see §2). As a by-product results on metrizable compactoids are obtained (see §6).

§0 THE CORRESPONDENCE $p \leftrightarrow p^0$.

Throughout this note K is a non-archimedean valued field, complete with respect to the metric induced by the nontrivial valuation $|\cdot|$. Let E be a K-vector space, let E^* be its algebraic dual. A (non-archimedean) seminorm p on E is polar ([3], Definition 3.1), if

$$p = \sup \{|f| : f \in E^*, |f| \leq p\}$$

Let P_E be the set of all polar seminorms on E. For each $p \in P_E$ we set

$$p^0 = \{f \in E^* : |f| \leq p\}$$

Then p^0 is an absolutely convex, edged ([3],§1b) subset of E^*. It is easy to see that p^0 is a closed compactoid ([3],§1e) with respect to the topology $\sigma(E^*,E)$, hence complete.
Let \(C_\mathcal{E}^* \) be the set of all closed absolutely convex, edged compactoids in \(\mathcal{E}^* \) with respect to \(\sigma(\mathcal{E}^*, \mathcal{E}) \).

PROPOSITION 0. The map \(p \mapsto p^0 \) is a bijection of \(P_\mathcal{E} \) onto \(C_\mathcal{E}^* \). Its inverse assigns to every \(A \in C_\mathcal{E}^* \) the seminorm \(p \) given by

\[
p(x) = \sup \{|f(x)| : f \in A\} \quad (x \in \mathcal{E})
\]

Proof. We shall prove surjectivity of \(p \mapsto p^0 \) leaving the (easy) rest of the proof to the reader. So, let \(A \in C_\mathcal{E}^* \); we shall prove that \(A = p^0 \) where \(p(x) = \sup \{|f(x)| : f \in A\} \).

Obviously, \(A \subseteq p^0 \). Now let \(g \in \mathcal{E}^* \backslash A \), we prove that \(g \notin p^0 \). The space \(\mathcal{E}^* \) is of countable type hence strongly polar ([3], Theorem 4.4). So by [3], Theorem 4.7, there exists a \(\theta \in (\mathcal{E}^*, \sigma(\mathcal{E}^*, \mathcal{E}))' \) such that \(|\theta| \leq 1 \) on \(A \), \(|\theta(g)| > 1 \). But, by [3], lemma 7.1, \(\theta \) has the form \(f \mapsto f(x) \) for some \(x \in \mathcal{E} \). Thus, \(|f(x)| \leq 1 \) for \(f \in A \), \(|g(x)| > 1 \) i.e., \(p(x) \leq 1 \) and \(|g(x)| > 1 \) and it follows that \(g \notin p^0 \).

Remarks.

1. Let \(K \) be spherically (= maximally) complete. Then each nonarchimedean seminorm \(p \) on \(\mathcal{E} \) for which \(p(x) \leq |x| \) (\(x \in \mathcal{E} \)) is polar ([3], Remark following 3.1).

2. Let \(\tau \) be the locally convex topology on \(\mathcal{E} \) induced by all nonarchimedean seminorms i.e., \(\tau \) is the strongest among all locally convex topologies on \(\mathcal{E} \). It is not hard to see that \((\mathcal{E}, \tau) \) is a complete polar (([3], Definition 3.5) space and that \((\mathcal{E}, \tau) \) and \((\mathcal{E}^*, \sigma(\mathcal{E}^*, \mathcal{E})) \) are each others strong dual spaces.
§1 NORMS p FOR WHICH p₀ IS c'-COMPACT

Recall that an absolutely convex subset A of a locally convex space F over \(K \) is c'-compact if for each neighbourhood U of 0 in F there exist \(x_1, \ldots, x_n \in A \) (rather than \(x_1, \ldots, x_n \in F \)) such that \(A \subseteq U + \langle x_1, \ldots, x_n \rangle \). (Here \(\langle \cdot \rangle \) indicates the absolutely convex hull)

Theorem 1.1. For a polar seminorm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(a) \(p(x) \leq |K| \) for each \(x \in E \). Each one-dimensional subspace of \(E \) has a \(p \)-orthocomplement.

(b) \(p₀ \) is c'-compact.

Proof. (a) \(\Rightarrow \) (b). By [7], Theorem 3.2, it suffices to prove that for each \(\langle f \rangle \in (E^*, \sigma(E^*, E))' \)

\[
\max \{ |\phi(f)| : f \in p₀ \}
\]

exists. Since \(\phi \) is an evaluation map we therefore have to show that

\[
\max \{ |f(x)| : f \in p₀ \}
\]

exists for each \(x \in E \). This is obviously true if \(p(x) = 0 \). So assume \(p(x) > 0 \). Since \(p(x) \in |K| \) we may assume that \(p(x) = 1 \). For such \(x \) we must prove

\[
\max \{ |f(x)| : f \in p₀ \} = 1
\]

By (a), \(Kx \) has a \(p \)-orthocomplement \(H \). The function

\[
f : \lambda x + h \mapsto \lambda
\]

(\(\lambda \in K, h \in H \))
is in E^*. We have $|f(x)| = 1$. For $\lambda \in K$, $h \in H$

$$|f(\lambda x + h)| = |\lambda| = p(\lambda x) \leq \max(p(\lambda x), p(h)) = p(\lambda x + h)$$

so that $f \in p^0$.

(β) \Rightarrow (α). Let $x \in E$. The map $f \mapsto |f(x)|$ is a continuous seminorm on $(E^*, c(E^*, E))$. By c'-compactness its restriction to p^0 has a maximum so there exists a $g \in p^0$ with $|g(x)| = p(x)$.

(It follows that $p(x) \in |K|$). We prove that $\text{Ker} \cdot g$ is a p-orthocomplement of Kx. In fact, for $z \in \text{Ker} \cdot g$ we have

$$p(x+z) \geq |g(x+z)| = |g(x)| = p(x)$$

Then also

$$p(x+z) \geq p(z)$$

completing the proof of Theorem 1.1.

Note. It is not hard to see that (α) of above is equivalent too.

(γ) For each $x \in E$ there exists an $f \in E^*$ with $|f(x)| = p(x)$ and $|f| \leq p$.

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be a seminorm on E for which $p(x) \in |K|$ for all $x \in E$.

Then the following are equivalent.

(α) $p(x) \in |K|$ for each $x \in E$.

(β) p^0 is c'-compact.

Proof. By [1], lemma 4.35, each onedimensional subspace has a p-orthocomplement.
§2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let \(| \cdot \|\) be a norm on E. Then there exists a norm \(| \cdot \|'$ on E, equivalent to \(| \cdot \|\), such that
\[|x|' \leq |K| \text{ for all } x \in E. \]

(**) Let K be spherically complete and let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then there exist a $\lambda \in K$ with $|\lambda| > 1$ and a c_1-compact B such that $A \subset B \subset \lambda A$.

The question as to whether (*) is true or not is known as Serre's renorming problem. See [2] for more details. We are able to reformulate this problem in terms of compactoids:

Proposition 2.1. The above statements (*) and (**) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], Theorem 3, A, as a topological module over $B(0,1) := \{\lambda \in K : |\lambda| \leq 1\}$, is isomorphic to a bounded submodule of K^I for some set I. Let E be the algebraic direct sum $\bigoplus_{i \in I} K_i$ where $K_i = K$ for all $i \in I$.

Then $(E^*, E^* \otimes E)$ is in a natural way isomorphic to K^I with the product topology. So we may assume that $A = p^0$ where p is a seminorm on E.

By (*) there exists a seminorm q, equivalent to p, such that $q(x) \leq |K|$ for all $x \in E$. By a suitable scalar multiplication we can arrange that, in addition, $p \leq q \leq |\lambda| p$ for some $\lambda \in K$, $|\lambda| > 1$. Then
\[p^0 \subset q^0 \subset \lambda p^0. \]
and q^0 is c'-compact by Corollary 1.2. This proves (**). Now assume (**).

To prove (*) we may assume (see [2]), that K is spherically complete.

Let p be a norm on E. By (**) there is a c'-compact B and a $\lambda \in K$, $|\lambda| > 1$ with $p^0 \subset B \subset \lambda p^0$. Then $B = q^0$ for some seminorm q on E. We have

$$p \leq q \leq |\lambda| p$$

and $q(x) \in |K|$ for all $x \in E$ by Corollary 1.2.

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH p^0 IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset A of a locally convex space over K is a KM-compactoid if it is complete and if $A = \overline{\text{co}} \ X$ where X is compact. (Here $\overline{\text{co}} \ X$ is the closure of $\text{co} \ X$).

Before stating the theorem we first make some simple observations. Let p be a norm on E. We say that a collection $(e_i)_{i \in I}$ in E is a p-orthonormal base of E if for each $x \in E$ there exist a unique $(\lambda_i)_{i \in I} \subset K^*$ such that $\{i \in I, |\lambda_i| \geq \varepsilon\}$ is finite for each $\varepsilon > 0$ and

$$x = \sum_{i \in I} \lambda_i e_i$$

$$p(x) = \max_{i} |\lambda_i|$$

If (E,p) is complete this definition coincides with the usual one.

Lemma 3.1. Let (E,p) be a normed space, let (\hat{E},\hat{p}) be its completion.

Then (E,p) has a p-orthonormal base if and only if (\hat{E},\hat{p}) has a \hat{p}-orthonormal base.
Proof. It is not hard to see that each p-orthonormal base of (E,p) is also a p-orthonormal base of (E,p). Conversely, let $(e_i)_{i \in I}$ be a p-orthonormal base of (E,p). For each $i \in I$, choose an $f_i \in E$ with $p(e_i - f_i) \leq \frac{1}{2}$.

By [1], Exercise 5.C, $(f_i)_{i \in I}$ is a p-orthonormal base of (E,p).

Clearly $(f_i)_{i \in I}$ is a p-orthonormal base of (E,p).

THEOREM 3.2. For a polar norm p on a K-vector space E the following are equivalent.

(a) (E,p) has a p-orthonormal base

(b) p^0 is a K-compactoid.

Proof. (a) \Rightarrow (b). Let $(e_i)_{i \in I}$ be a p-orthonormal base of (E,p). The formula

$$\phi(f) = (f(e_i))_{i \in I}$$

defines a map $\phi : p^0 \rightarrow B(0,1)^I$. Straightforward verifications show that ϕ is an isomorphism of topological $B(0,1)$-modules. From [8], Theorem 16 we obtain that $B(0,1)^I$, hence p^0, is a K-compactoid.

(b) \Rightarrow (a). Suppose $p^0 = \text{co} X$ where X is a compact subset of E^*. Let $C(X+K)$ be the Banach space of all continuous functions $X + K$, with the supremum norm $\| \|_\infty$. Then $C(X+K)$ has an orthonormal base. ([1], Theorem 5.22).

The formula

$$\phi(x)(f) = f(x) \quad (f \in X)$$

defines a K-linear map $\phi : E \rightarrow C(X+K)$. From
\[\| \phi(x) \|_w = \max \{ f(x) \} = \sup_{f \in \mathcal{X}} \{ f(x) \} = \sup_{f \in \mathcal{P}} \{ f(x) \} = p(x) \]

we obtain that \(\phi \) is an isometry \((E,p) \to (\mathcal{C}(X^K), \| \|_w)\).

By Gruson's Theorem ([1], 5.9) \(\overline{\phi(E)} \) has an orthonormal base. Then so has \(\phi(E) \) by Lemma 3.1 and has \(E \).

§4 APPLICATION: A COMPLETE \(c' \)-COMPACT SET WHICH IS NOT A KM-COMPACTOID.

We shall give a negative answer to the Problem following Theorem 1.7 of [6].

PROPOSITION 4.1. Let \(K \) be spherically complete, let \(|K| = [0,\infty) \).
Then there exist a locally convex space \(F \) over \(K \) and a complete \(c' \)-compact subset \(A \subset F \) which is not a KM-compactoid.

Proof. Let \(E := l^\infty \) and let \(F := (l^\infty)^* \) (with the topology we agreed upon in §0). Let \(p \) be the standard norm on \(l^\infty \), and set \(A := p^0 \). Since, trivially, \(p(x) \in |K| \) for all \(x \in l^\infty \), we have that \(p^0 \) is \(c' \)-compact (Corollary 1.2).

However, it is known ([1], Cor. 5.19) that \(l^\infty \) has no orthogonal base so that (Theorem 3.2) \(p^0 \) is not a KM-compactoid.

§5 NORMS \(p \) FOR WHICH \(p^0 \) IS METRIZABLE.

THEOREM 5.1. For a polar seminorm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(a) \((E,p)\) is of countable type ([3], Definition 4.3).

(b) \(p^0 \) is metrizable.
Proof. (a) \Rightarrow (b). There exist e_1, e_2, \ldots in E with $p(e_i) \leq 1$ for each i such that the K-linear span of e_1, e_2, \ldots is p-dense in E. The formula

$$\phi(f) = (f(e_1), f(e_2), \ldots)$$

defines a map $\phi : p^0 \rightarrow B(0,1)^\mathbb{N}$. Straightforward verifications show that ϕ is an isomorphism of topological $B(0,1)$-modules of p^0 onto a submodule of $B(0,1)^\mathbb{N}$.

Now $B(0,1)^\mathbb{N}$ is metrizable (the product topology is induced by the metric $(a,b) \mapsto \sup \{ |a_i - b_i| 2^{-i} \}$ hence so is p^0.

(b) \Rightarrow (a). Let $\lambda \in K$, $|\lambda| > 1$. Since p^0 is a metrizable compactoid there exist, by [3], Proposition 8.2, $f_1, f_2, \ldots \in \lambda p^0$ with $\lim_{n \to \infty} f_n = 0$ such that

$$p^0 \subset \sup \{ f_1, f_2, \ldots \} \subset \lambda p^0$$

The map

$$\phi : x \mapsto (f_1(x), f_2(x), \ldots) \quad (x \in E)$$

is K-linear, $\phi(E) \subset c_0$. We have for $x \in E$

$$||\phi(x)|| = \sup_{n \in \mathbb{N}} |f_n(x)| = \sup \{ |g(x)| : g \in \sup \{ f_1, f_2, \ldots \} \}$$

It follows that

$$p(x) \leq ||\phi(x)|| \leq |\lambda|p(x)$$

so that p is equivalent to $x \mapsto ||\phi(x)||$, a seminorm of countable type.

Hence, p is of countable type.
§6 APPLICATION: DESCRIPTION OF METRIZABLE COMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally convex space F over K. The following are equivalent.

(a) A is a metrizable compactoid.

(b) As a topological $B(0,1)$-module, A is isomorphic to a submodule of $B(0,1)\mathbb{N}$.

(c) As a topological $B(0,1)$-module, A is isomorphic to a compactoid in C^0.

(d) For each $\lambda \in K$, $|\lambda| > 1$ then exist $e_1, e_2, \ldots \in \lambda A$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \overline{\mathbb{e}_1 \oplus \mathbb{e}_2 \oplus \ldots}$.

(e) There exist $e_1, e_2, \ldots \in F$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \overline{\mathbb{e}_1 \oplus \mathbb{e}_2 \oplus \ldots}$.

(f) There exists an ultrametrizable compact $X \subseteq F$ with $A \subseteq \overline{\mathbb{X}}$.

Proof. (a) \Rightarrow (b). It is not hard to see, by using the absolute convexity of A, that \overline{A} is also metrizable. As there is no harm in taking F complete we therefore may assume that A is complete. To prove (b) we also may assume that A is edged. By [8], Theorem 3, $A \subseteq B(0,1)^{\mathbb{I}} \subseteq K^{\mathbb{I}}$ for some set \mathbb{I}. Like in the proof of Proposition 2.1 we may conclude that $A = p^0$ where p is a polar seminorm on $\oplus_{\mathbb{I}} K (K_i = K$ for each i). Then p is of countable type by Theorem 5.1. From the proof of (a) \Rightarrow (b) of that Theorem we obtain an isomorphism $A = p^0 \cong B(0,1)^{\mathbb{N}}$.

(b) \Rightarrow (c). Choose $\lambda_1, \lambda_2, \ldots \in K$, $|\lambda_1| > |\lambda_2| > \ldots$, $\lim_{n \to \infty} \lambda_n = 0$. The formula

$$\phi((a_i)) = (\lambda_1 a_1, \lambda_2 a_2, \ldots) \in C_0$$

for $i \in \mathbb{N}$ defines a $B(0,1)$-module isomorphism of $B(0,1)^{\mathbb{N}}$ onto $C := \overline{\mathbb{e}_1 \oplus \mathbb{e}_2 \oplus \ldots}$ where e_1, e_2, \ldots are the standard unit vectors in C_0. ϕ is a homeomorphism.
Let $B(0,1)^\mathbb{N} \to \mathcal{C}$, and maps A onto a compactoid in c_0.

$(\gamma) \Rightarrow (\delta)$. See [3], Proposition 8.2.

$(\delta) \Rightarrow (\varepsilon)$ is trivial.

$(\varepsilon) \Rightarrow (\eta), \{0,e_1,e_2,\ldots\}$ is compact and ultrametrizable.

$(\eta) \Rightarrow (\alpha)$. We may assume that F is complete. It suffices to prove the

metrizability of $B := \overline{co}X$.

B is a complete, edged compactoid. As before we may assume that $B = p^0$

for some polar seminorm p on some K-vector space E while $B \subset E^*$. The

map $\phi : E \to C(X^K)$ defined by

$$\phi(x)(f) = f(x) \quad (f \in X)$$

is an isometry $(E,p) \to (C(X^K), ||| \cdot |||_\omega)$.

Now X is ultrametrizable so by [1], Exercise 3.5, $C(X^K)$ is of

countable type. Hence so is p. By Theorem 5.1, $B = p^0$ is metrizable.

§7 NORMS p FOR WHICH (p_0^1) IS OF FINITE TYPE.

Recall that an absolutely convex set A in a locally convex space F over

K is of finite type if for each zero neighbourhood U in F there exists

a finite-dimensional bounded set $S \subset A$ such that $A \subset U + S$.

Let us say that a seminorm p on a K-vector space E is of finite type

if $\text{Ker } p = \{x \in E : p(x) = 0\}$ has finite codimension.

Lemma 7.1. Let A be an absolutely convex subset of a locally convex

space F whose topology is generated by a collection of seminorms of

finite type. Then the following are equivalent.

(a) A is a compactoid of finite type.

(b) For each closed linear subspace H of finite codimension there is a

finite dimensional bounded set $S \subset A$ with $A \subset H + S$.

Proof. \((a) \Rightarrow (\beta)\). (Note. This implication holds for any locally convex space \(F\).) We may assume \([A] = F\).

\(H\) has the form \(D' := \{x \in F : f(x) = 0 \text{ for all } f \in D\}\) where \(D\) is a finite dimensional subspace of \(F'\). Let \(f_1, \ldots, f_n\) be a base of \(D\). There exist \(x_1, \ldots, x_n \in F\) with \(f_i(x_j) = \delta_{ij}\) \((i, j \in \{1, \ldots, n\})\). Since \([A] = F\) there exists a \(\lambda \in K, \lambda \neq 0\) such that \(\lambda x_i \in A\) for each \(i \in \{1, \ldots, n\}\).

Set

\[
U := \cap_{i=1}^{n} \{x \in F : |f_i(x)| \leq |\lambda|\}
\]

Then \(U\) is a zero neighbourhood in \(F\). \(A\) is a compactoid of finite type, so there exists a finite dimensional set \(S_1 \subseteq A\) with \(A \subseteq U + S_1\). Let \(x \in U\). Write \(x = y + z\) where

\[
y := x - \xi \sum_{i=1}^{n} f_i(x) x_i
\]

\[
z := \xi \sum_{i=1}^{n} f_i(x) x_i
\]

Now, since \(x \in U\), \(|f_i(x)| \leq |\lambda|\) for each \(i\) so that \(z = \xi \sum_{i=1}^{n} f_i(x) x_i \in A\).

Further, for each \(j \in \{1, \ldots, n\}\)

\[
f_j(y) = f_j(x) - \sum_{i=1}^{n} f_i(x)f_j(x_i) = f_j(x) - f_j(x) = 0
\]

and it follows that \(y \in D' = H\). So \(x = y + z \in H + [x_1, \ldots, x_n] \cap A\). We see that

\[
A \subseteq U + S_1 \subseteq H + S_2 + S_1
\]

where \(S_2 := [x_1, \ldots, x_n] \cap A\). Then \((\beta)\) is proved with \(S := S_1 + S_2\).

\((\beta) \Rightarrow (a)\). Let \(U\) be a zero neighbourhood in \(F\). Since continuous seminorms are of finite type, \(U\) contains a closed subspace \(H\) of finite codimension.

By \((\beta)\) there exists a finite dimensional set \(S \subseteq A\) with \(S\) bounded and
A \subseteq H + S. Then A \subseteq U + S.

From now on we assume that the valuation on K is dense.

Recall that for an absolutely convex set B we have \(B^i := \bigcup_{|\lambda| < 1} \lambda B. \)

THEOREM 7.2. Let \(p \) be a polar norm on a K-vector space \(E \). Then the following are equivalent.

(a) For each finite dimensional subspace \(D \) of \(E \) there exists a seminorm \(q \) on \(E \), \(q \) of finite type, \(q \leq p \) and \(q = p \) on \(D \).

(b) \((p^0)_1 \) is of finite type.

Proof. (a) \(\Rightarrow \) (b). As each continuous seminorm on \(E^* \) is of finite type it suffices to prove, by Lemma 7.1, that for a closed subspace \(H \) of \(E^* \) of finite codimension there exists a finite dimensional set \(S \in (p^0)_1 \) such that \((p^0)_1 \subseteq H + S. \)

Now, by (a), there is a seminorm \(q \) of finite type, \(q \leq p \) on \(E \) and \(q = p \) on \(D := H^1. \) Let

\[
S_1 := \{ f \in E^* : |f| \leq q \}.
\]

We see that \(S_1 \) is finite dimensional and since \(q \leq p \) we have \(S_1 \subseteq p^0. \)

We now shall prove that \((p^0)_1 \subseteq H + S \) where \(S := (S_1)^\perp. \)

In fact, let \(f \in (p^0)_1 \). Then there is a \(\lambda \in K, 0 < |\lambda| < 1 \) with \(|f| \leq |\lambda| p. \)

Choose \(\lambda' \in K \) with \(|\lambda| < |\lambda'| < 1. \)

We have \(|f| \leq |\lambda| q \) on \(D \) (since \(p = q \) on \(D \)) so we can extend \(f \) to a \(g \in E^* \) with \(|g| \leq |\lambda'| q \) on \(E. \) (This is because \(q \) is of finite type so that \((E,q) \) is strongly polar.) Now write

\[
f = f - g + g
\]

Since \(f = g \) on \(D \) we have \(f - g \in D^1 = H. \)
Also, \(|(\lambda')^{-1}g| \leq q\) so that \((\lambda')^{-1}g \in S_1\), i.e. \(g \in (S_1)^i = S\).

\((\beta) \Rightarrow (a)\). By lemma 7.1 there exists a finite dimensional set \(S \subset (p^0)^i\) so that \((p^0)^i = D^i \cap (p^0)^i + S\).

Set \(q(x) := \sup_{h \in S} |h(x)|\) \((x \in E)\).

Then \(q(x) = 0\) for all \(x\) in the space \(S^1\) which has finite codimension.

So \(q\) is of finite type.

Further, for \(x \in E\) we have

\[q(x) = \sup_{h \in S} |h(x)| \leq \sup_{h \in (p^0)^i} |h(x)| = \sup_{h \in (p^0)^i} |h(x)| = p(x), \]

so \(q \leq p\). Finally, if \(x \in D\) then

\[p(x) = \sup_{f \in p} |f(x)| = \sup_{f \in (p^0)^i} |f(x)| = \sup_{h \in D \cap (p^0)^i} |h(x) + t(x)| \]

\[= \sup_{t \in S} |t(x)| = q(x). \text{ Hence, } p = q \text{ on } D. \]

§8 APPLICATION: A COMPLETE COMPACTOID IN \(c_0\) THAT IS NOT OF FINITE TYPE.

If \(K\) is spherically complete each complete absolutely convex compactoid is of finite type (See [4], 2.3).

If \(K\) is not spherically complete the unit ball of \(c_0\) is a complete compactoid for the weak topology but not of finite type (See [5], 1.6).

This is a non-metrizable compactoid. A compactoid in \((c_0, \|\|\|\|),\) not of finite type, is given in [5], 1.4. However this compactoid is not closed. The following example provides an answer to the Problem following 1.5 in [5].
PROPOSITION 8.1. Let K be not spherically complete. Then there exists an absolutely convex complete compactoid in c_0 that is not of finite type.

Proof. Let $(K^v, | |)$ be the spherical completion of $(K, | |)$ in the sense of [1], Theorem 4.49. Let E be a K-subspace of K^v of countably infinite dimension and let p be the valuation $| |$ restricted to E. Then $x, y \in E$, $x \perp y$ in the sense of p implies $x = 0$ or $y = 0$. Obviously, the norm p is of countable type (hence polar) so, by Theorem 5.1, p^0 is metrizable and is by Theorem 6.1, isomorphic to a compactoid in c_0.

Suppose p^0 were of finite type. Then so would $(p^0)^1$ ([5], Proposition 2.4).

By Theorem 7.2 we would have a seminorm q on E, $q \leq p$, q of finite type, $q(x) = p(x)$ for some $x \in E$, $x \neq 0$. But then $x \perp \text{Ker } q$ in the sense of p (If $q(y) = 0$ then $p(x-y) \geq q(x-y) = q(x) = p(x)$) which is impossible.

So, p^0 is not of finite type.
REFERENCES

