The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57049

Please be advised that this information was generated on 2019-02-04 and may be subject to change.
WEAK C'-COMPACTNESS IN p-ADIC BANACH SPACES

by

W.H. SCHIKHOF

Report 8648
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
WEAK C'-COMPACTNESS IN p-ADIC BANACH SPACES

by

W.H. Schikhof

Report 8648
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
WEAK C'-'-COMPACTNESS IN p-ADIC BANACH SPACES

by

W.H. Schikhof

ABSTRACT. Let \(X \) be a subset of a locally convex space \(E \) of countable type over a nonarchimedean densely valued field \(K \). If, for each continuous linear function \(f : E \to K \), \(\max |f| \) exists then \(X \) is a compactoid in \(E \).
§ 1. PRELIMINARIES

Throughout, K is a nonarchimedean nontrivially valued complete field with valuation | |. For fundamentals on Banach spaces and locally convex spaces over K we refer to [3], [6], [4]. We recall a few definitions and facts and fix some notations. Let E be a locally convex space over K. E' is the linear space of all continuous linear functions \(E \rightarrow K \). If \(E = (E, \| \|) \) is a nonzero Banach space and \(f \in E' \) then \[\| f \| : = \sup \{ | f(x) / \| x \| : x \in E, x \neq 0 \} \]. E is a polar space if there exists a base of continuous seminorms \(p \) for which \[p = \sup \{ |f| : f \in E', |f| \leq p \} . \]

PROPOSITION 1.1.

Let \(E \) be a Banach space over K with a base. Then \(E \) is a polar space.

Proof.

By [3], Corollary 3.7 there exists a norm \(\| \| \) inducing the topology of \(E \) for which \(E \) has an orthogonal base \(\{ e_i : i \in I \} \). It is not hard to see that we even may assume that \(\{ e_i : i \in I \} \) is orthonormal. For each \(i \in I \), let \(f_i \) be the i-th coordinate function. Let \(x \in E \). Then \[x = \sum_{i \in I} f_i(x) e_i \text{ and } \| x \| = \max_{i \in I} | f_i(x) | . \]

For a subset \(X \) of a locally convex space \(E \) over K we denote by \(\text{co} X \) its absolutely convex hull, by \([X]\) its K-linear span, by \(\overline{X} \) its closure. Instead of \(\text{co} X \) we write \(\overline{\text{co}} X \). For an absolutely convex \(A \subset E \) the formula \[p_A(x) = \inf \{ |\lambda| : x \in \lambda A \} \]
defines, on \([A]\), the seminorm \(p_A \) associated to \(A \).
PROPOSITION 1.2.

Let $A \subset E$ be absolutely convex. Then

$$\{x \in [A] : p_A(x) < 1\} \subset A \subset \{x \in [A] : p_A(x) \leq 1\}.$$

Proof.

Straightforward.

An absolutely convex $A \subset E$ is **edged** if for each $x \in E$ the set

$$\{\lambda \in [\lambda] : \lambda x \in A\}$$

is closed in $[\lambda] := \{\lambda \in \lambda \subset X\}$. A is edged if and only if $A = \{x \in [A] : p_A(x) \leq 1\}$. A subset X of E is a **compactoid** if for each neighbourhood U of 0 in E there exists a finite set $F \subset E$ such that $X \subset U + \operatorname{co} F$. For some elementary properties of compactoids, see [2].
§ 2. BANACH SPACES WITH A BASE

In § 2 we assume that the valuation of K is dense.

Lemma 2.1.

The closed absolutely convex hull of an orthonormal set in a Banach space over K is edged.

Proof.

For an orthonormal set $\{e_i : i \in I\}$, set $A := \text{co} \{e_i : i \in I\}$, $D := \{e_i : i \in I\}$. Without any trouble one verifies that $D = [A]$, $\| \cdot \|$ on D and $A = \{x \in D : \|x\| \leq 1\}$.

Lemma 2.2.

Let E be a Banach space of countable type over K. Let A be an absolutely convex neighbourhood of 0 in E and suppose that, for each $f \in E'$, the restriction of $|f|$ to A has a maximum.

(i) A is bounded; p_A is a norm $\| \cdot \|$ inducing the topology of E.

(ii) Let $\{e_i : i \in I\}$ be a maximal $\| \cdot \|$-orthonormal set in E.

Then $A = \text{co} \{e_i : i \in I\}$.

Proof.

(i) A is weakly bounded hence bounded by [4], Corollary 7.7. The interior of A is not empty and A is an additive group so A is open (and closed) and (i) follows.

(ii) $B := \text{co} \{e_i : i \in I\}$ is contained in A. Suppose $B \neq A$; we shall prove
that \(\{e_i : i \in I\} \) is not maximal yielding a contradiction. The set \(B \) is closed and edged (Lemma 2.1) so by [4], Proposition 4.8 and 3.4, there exists an \(f \in E' \) with \(|f| \leq 1 \) on \(B \) and \(|f(y)| > 1 \) for some \(y \in A \). Then \(\max_A |f| > 1 \) and after multiplying \(f \) by a suitable scalar we obtain \(g \in E' \) for which

\[
|g| < 1 \text{ on } B, \max_B |g| = 1.
\]

From

\[
(*) \quad \{x \in E : \|x\| < 1\} \subset A \subset \{x \in E : \|x\| \leq 1\}
\]

(Proposition 1.2) it follows that \(\|g\| = 1 \). Choose an \(a \in A \) with \(|g(a)| = 1 \). We claim that \(\{a\} \cup \{e_i : i \in I\} \) is an orthonormal set in \(A_m \). In fact, we have \(a \in A_m \). By (*) \(\|a\| \leq 1 \) but also

\[
1 = |g(a)| \leq \|g\| \|a\| = \|a\| \text{ so that } \|a\| = 1.
\]

To prove orthogonality it suffices to show that for a \(K \)-linear combination \(z = \sum_{i \in F} \lambda_i e_i \) \((F \subset I, F \text{ finite})\) we have

\[
\|a-z\| \geq \|a\|.
\]

If \(\max_i |\lambda_i| > 1 \) this is an obvious consequence of the strong triangle inequality so assume \(\max_i |\lambda_i| \leq 1 \). Then \(z \in B \) so \(|g(z)| < 1 \) and

\[
\|a\| = 1 = |g(a)| = |g(a-z)| \leq \|g\| \|a-z\| = \|a-z\|
\]

which finishes the proof.

Remark.

The above proof works for a strongly polar ([4], Definition 3.5) Banach space \(E \), in particular for any Banach space over a spherically complete \(K \).

Two corollaries obtain. The first one we shall need later on. The
second one is rather surprising.

PROPOSITION 2.3.

Let A be an absolutely convex subset of a finite dimensional space E over K. The following are equivalent.

(a) For each $f \in E'$, $\max_A |f|$ exists.

(b) For each seminorm p on E, $\max_A p$ exists.

(γ) There exists a finite set $F \subset A$ with $A = \text{co } F$.

Proof.

(γ) ⇒ (β) is easy, (β) ⇒ (α) is trivial. To prove (α) ⇒ (γ) we may assume $[A] = E$. Then A is open (with respect to the unique Banach space topology of E). Lemma 2.2 (ii) yields a (finite) set F with $A = \text{co } F = \text{co } F$ (the second equality because each convex set in E is closed).

LEMMA 2.4.

Let E,A be as in Lemma 2.2. Then E is finite dimensional.

Proof.

Suppose E is not finite dimensional. From Lemma 2.2 we infer that E has an orthonormal base $\{e_i : i \in \mathbb{N}\}$ (with respect to the norm $\|\|_1$) and that $A = \text{co } \{e_i : i \in \mathbb{N}\}$ is the 'closed' unit ball of $(E,\|\|_1)$. Now choose τ_1, τ_2, \ldots in K such that $0 < |\tau_1| < |\tau_2| < \ldots$, $\lim_{n \to \infty} |\tau_n| = 1$ and define $f \in E'$ by the formula

$$f\left(\sum_{i \in \mathbb{N}} \lambda_i e_i \right) = \sum_{i \in \mathbb{N}} \lambda_i \tau_i \quad (\lambda_i \in K, \lim_{i \to \infty} \lambda_i = 0).$$

We have $\sup_A |f| = 1$ but $|f(x)| < 1$ for each $x \in A$, a contradiction.

The proof of the next Lemma is left to the reader.
LEMMA 2.5.
Let A be an absolutely convex subset of a locally convex space E over K. Suppose $\max \limits_A |f|$ exists for each $f \in E'$.

(i) For each $f \in E'$, $\max \limits_A |f|$ exists.

(ii) If $T : E \to F$ is a continuous linear map into a locally convex space F over K then, for each $f \in F'$, $\max \limits_T |f|$ exists.

LEMMA 2.6.
Let E be a Banach space over K with a base. Let $A \subset E$ be absolutely convex and suppose that for each $f \in E'$ the restriction of $|f|$ to A has a maximum. Then A is a compactoid.

Proof.
We may assume ([3], Corollary 3.7) that E has an orthogonal base.

Suppose A is not a compactoid. By [3], Theorem 4.38, (ζ) \Rightarrow (a) there exists an orthogonal sequence e_1', e_2', \ldots in A with $\inf \limits_n \|e_n\| > 0$. Set $D := \{e_1', e_2', \ldots\}$, and choose a linear continuous projection $P : E \to D$ ([3], Corollary 3.18). By Lemma 2.5, for each $f \in D'$ the restriction of $|f|$ to PA has a maximum. Also $PA > \text{co} \{e_1', e_2', \ldots\}$ is open in D and D is infinite dimensional. But this is impossible (Lemma 2.4).

We now formulate the main theorem of this section.

THEOREM 2.7.
Let E be a Banach space with a base over (a densely valued) K. For a nonempty subset X of E the following are equivalent.

(a) For each $f \in E'$, $\max \limits_X |f|$ exists.

(b) For each weakly continuous seminorm p, $\max \limits_X p$ exists.

(c) For each weak neighbourhood U of 0 there exists a finite set $P \subset X$
such that \(X \subset U + co F \).

(\delta) For each continuous seminorm \(p \) on \(E \), \(\max_X p \) exists.

(\epsilon) For each neighbourhood \(U \) of \(0 \) there exists a finite set \(F \subset X \) such that \(X \subset U + co F \).

Proof.

Let (*) be any of the statements (a) - (e). It is not hard to see that, for a nonempty set \(Y \subset E \),

\[
(*) \text{ holds for } X := Y \leftrightarrow (*) \text{ holds for } X := co Y
\]

Therefore, to prove Theorem 2.7, we may assume that \(X \) is absolutely convex. The equivalences \((\beta) \leftrightarrow (\gamma) \) and \((\delta) \leftrightarrow (\epsilon) \) are proved in [5], Theorem 3.3. Obviously, \((\delta) \Rightarrow (\beta) \Rightarrow (\alpha) \). We shall prove \((\alpha) \Rightarrow (\beta) \) and \((\gamma) \Rightarrow (\epsilon) \). Suppose (a) and let \(p \) be a weakly continuous seminorm on \(E \). Then \(\ker p \) has finite codimension. Let \(\pi_p : E \rightarrow E/\ker p \) be the quotient map and let \(\overline{p} \) be the norm on \(E/\ker p \) induced by \(p \). For each \(f \in (E/\ker p)' \), \(\max |f| \) exists (Lemma 2.5). Then also (Proposition 2.3)

\[
\max_{\pi_p(X)} \overline{p}
\]

exists. But \(\{p(a) : a \in X\} = \{\overline{p}(x) : x \in \pi_p(X)\} \) and therefore

\[
\max_X p
\]

exists and we have (\beta). Now suppose (\gamma). Lemma 2.6 tells us that \(X \) is a compactoid. \(E \) is a polar space (Proposition 1.1) so by [4], Theorem 5.12, the weak topology and the norm topology coincide on \(X \). Let \(U \) be an absolutely convex neighbourhood of \(0 \). There is a weak neighbourhood \(V \) of \(0 \) with \(V \cap X \subset U \cap X \). By (\gamma) there is a finite set \(F \subset X \) such that \(X \subset V + co F \). Then also \(X \subset (V \cap X) + co F \subset U + co F \) and (\epsilon) is proved.
Remark.

In the terminology of [4], Theorem 2.7 entails that weak c'-compactness implies c'-compactness. Compare [1], Proposition 3a, where it is proved that weak c-compactness implies c-compactness.

PROBLEM.

Are (a) - (e) equivalent for a nonempty subset X of a strongly polar ([4], Definition 3.5) Banach space E (in particular, an arbitrary Banach space E over a spherically complete K)? The following example shows that just 'E is a polar space' is not enough.

EXAMPLE.

Let K be not spherically complete, let \(A = \{ x \in l^\infty : \| x \| \leq 1 \} \). Then for each \(f \in (l^\infty)' \), \(\max_A |f| \) exists although A is not a compactoid. [Since \((l^\infty)' \cong c_0 \) ([3], Theorem 4.17) an \(f \in (l^\infty)' \) has the form

\[
\sum_{i} x_i a_i \quad \text{for some } a \in c_0.
\]

\(\Rightarrow \) \(x \in l^\infty \)
§ 3. LOCALLY CONVEX SPACES OF COUNTABLE TYPE

Also in § 3 we assume that the valuation of \(K \) is dense. We shall extend the results of § 2 to locally convex spaces of countable type (i.e. for each continuous seminorm \(p \) the normed space \(E_p := E/\text{Ker} \ p \) with the norm induced by \(p \) is of countable type, see [4], Definition 4.3).

First we extend Lemma 2.6.

LEMMA 3.1.

Let \(E \) be a locally convex space of countable type over \(K \). Let \(A \subset E \) be absolutely convex and suppose that for each \(f \in E' \) the restriction of \(|f| \) to \(A \) has a maximum. Then \(A \) is a compactoid.

Proof.

Let \(U \) be a neighbourhood of 0 in \(E \). There is a continuous seminorm \(p \) such that \(\{ x \in E : p(x) \leq 1 \} \subset U \). Let \(E_p^- \) be the completion of \(E_p \) (see above). The canonical map \(\pi_p^0 : E \to E_p^- \subset E^- \) is continuous. By Lemma 2.5, for each \(f \in E_p^- \) the restriction of \(|f| \) to \(\pi_p^0(A) \) has a maximum. Now \(E_p^- \) is of countable type and therefore has a base ([3], Theorem 3.16) so we may apply Lemma 2.6 and conclude that \(\pi_p^0(A) \) is a compactoid in \(E_p^- \), hence in \(E_p \). Since \(\pi_p(U) \) is open in \(E_p \) there is a finite set \(F \subset E \) such that

\[
\pi_p^0(A) \subset \pi_p^0(U) + \text{co} \pi_p^0(F).
\]

We have

\[
A \subset U + \text{co} F + \text{Ker} \ p \subset U + \text{co} F.
\]

THEOREM 3.2.

Let \(X \) be a nonempty subset of a locally convex space \(E \) of countable type over \(K \). The statements (a) - (c) of Theorem 2.7 are equivalent.
Proof.

The proof of Theorem 2.7 applies with two modifications in the proof of $(\gamma) \Rightarrow (c)$. The compactoidity of X follows from Lemma 3.1 (rather than Lemma 2.6) and the fact that E is a polar space is proved in [4], Theorem 4.4.
§ 4. DISCRETELY VALUED BASE FIELDS

One may wonder what happens to our results if we allow the valuation of K to be discrete. The next two Properties show the deviation from the previous theory.

PROPOSITION 4.1.

Let A be an absolutely convex subset of a locally convex space E over a discretely valued K. The following are equivalent.

(a) A is a compactoid.

(b) Each continuous seminorm $E \to [0,\infty]$ has a maximum on A.

Proof.

[5], Remark following Theorem 3.3.

PROPOSITION 4.2.

Let A,E,K be as above. The following are equivalent.

(a) A is a compactoid for the weak topology.

(b) Each weakly continuous seminorm on E has a maximum in A.

(γ) For each $f \in E'$, $\max_A |f|$ exists.

(δ) A is bounded.

Proof.

For (α) ⇔ (β) see [5], Remark following Theorem 3.3. (α) ⇔ (δ) is proved in [4]. (β) ⇒ (γ) is obvious. (γ) implies weak boundedness of A, hence boundedness ([4], Corollary 7.7), so that we have (γ) ⇔ (δ).
REFERENCES

 48 (1983), 297-309.

[3] A.C.M. van Rooij: Non-Archimedean Functional Analysis. Marcel Dekker,

 valued fields. Groupe d'étude d'Analyse ultramétrique 12

 Functional Analysis. Report 8647, Department of Mathematics,
 CatholicUniversity, Nijmegen, the Netherlands (1986), 1-18.

 249-289.