The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/59417

Please be advised that this information was generated on 2018-11-26 and may be subject to change.
Throughout, let K be a nonarchimedean nontrivially valued complete field with valuation $| |$.

§ 0. PRELIMINARIES, NOTATIONS

For fundamentals on Banach spaces, locally convex spaces over K we refer to [1], [6], [3].

Let E be a K-vector space. A subset A of E is absolutely convex if it is a submodule of E considered as a module over $\{ \lambda \in K : |\lambda| \leq 1 \}$. A nonempty set is convex if it is an additive coset of an absolutely convex set. For $X \subset E$ let $\text{co} X$ be its absolutely convex hull (= the module generated by X), let $[X]$ be its K-linear span. X is a finite dimensional set if $\dim [X] < \infty$.

Let E be a locally convex space over K. The closure of $X \subset E$ is denoted \overline{X}. Instead of $\text{co} X$ we write $\text{co} \ X$. The dual space E' of E is the K-linear space of all continuous linear maps $E \rightarrow K$. The weak topology
on E is the weakest locally convex topology on E for which all elements of E' are continuous. For a normed space $E = (E, \| \|)$ and a nonempty bounded subset X of E we write

$$\text{diam } X := \sup \{ \|x-y\| : x \in X, y \in X \}. $$
§ 1. COMPACTOIDS OF FINITE TYPE

We recall the definition of compactoidity ([1], p. 134).

DEFINITION 1.1. An absolutely convex subset A of a locally convex space E over K is (a) compactoid if for each neighbourhood U of 0 in E there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in E$ such that $A \subseteq U + \text{co}\{x_1, \ldots, x_n\}$.

The purpose of this paper is to study the impact of the following innocent-looking modification of Definition 1.1.

DEFINITION 1.2. An absolutely convex subset A of a locally convex space E over K is a compactoid of finite type if for each neighbourhood U of 0 in E there exists a bounded finite dimensional (absolutely convex) set $F \subseteq A$ such that $A \subseteq U + F$.

Two remarks.

(i) A compactoid of finite type is, indeed, a compactoid in the sense of Definition 1.1. (One verifies easily that a bounded finite dimensional set lies in the absolutely convex hull of some finite set.)

(ii) Suppose the valuation of K is discrete. It is not hard to prove ([3], Lemma 8.1) that in this case we can without harm replace the expression '$x_1, \ldots, x_n \in E$' in Definition 1.1 by '$x_1, \ldots, x_n \in A$'. Thus, each compactoid is automatically of finite type. Therefore

FROM NOW ON IN THIS PAPER WE ASSUME THAT THE VALUATION OF K IS DENSE.

For the construction of a compactoid that is not of finite type we shall use the following simple lemma.
LEMMA 1.3. Let \(x_1, x_2, \ldots \) be linearly independent elements of a K-vector space. Let \(F \) be a finite dimensional absolutely convex subset of \(\text{co}(x_1, x_2, \ldots) \). Then \(F \subseteq \text{co}(x_1, \ldots, x_n) \) for some \(n \).

Proof. \([F]\) is a finite dimensional subspace of \([x_1, x_2, \ldots]\) so \(F \subseteq [x_1, \ldots, x_n] \) for some \(n \). From linear independence it follows easily that \(\text{co}(x_1, x_2, \ldots) \cap [x_1, \ldots, x_n] = \text{co}(x_1, \ldots, x_n) \).

EXAMPLE 1.4. There exists a compactoid \(A \) in \(c_0 \) that is not of finite type.

Proof. Choose a two-sided sequence \((\lambda_n) \in \mathbb{Z} \) in \(K \) such that
\[
|\lambda_n| < |\lambda_{n+1}|
\]
for each \(n \in \mathbb{Z} \), \(\lim_{n \to \infty} |\lambda_n| = 1 \), \(\lim_{n \to \infty} |\lambda_n| = 0 \). Let \(e_1, e_2, \ldots \) be the standard unit vectors in \(c_0 \), define
\[
x_n := \lambda_n e_1 + \lambda_{-n} e_{n+1}
\]
and set
\[
A := \text{co}(x_1, x_2, \ldots).
\]

\(A \) is a compactoid since \(A \subseteq \{ x \in c_0 : ||x|| \leq |\lambda_n| \} + \text{co}(e_1, \ldots, e_n) \) for each \(n \in \mathbb{N} \). Now let \(F \) be a finite dimensional absolutely convex subset of \(A \); we shall prove that \(A \) is not contained in \(U+F \) where
\[
U := \{ x \in c_0 : ||x|| \leq |\lambda_1| \}.
\]
Lemma 1.3 \((x_1, x_2, \ldots \text{ are linearly independent})\) yields \(F \subseteq \text{co}(x_1, \ldots, x_n) \) for some \(n \). For each \(i \in \{1, \ldots, n\} \)
\[
||x_i|| = ||\lambda_i e_1 + \lambda_{-i} e_{i+1}|| = |\lambda_i| \leq |\lambda_n|
\]
We see that the norm function is bounded by \(|\lambda_n|\) on \(\text{co}(x_1, \ldots, x_n) \), so certainly on \(F \), hence also on \(U+F \). Consequently, \(x_{n+1} \in A\setminus U+F \).

The set \(A \) we just have constructed is not closed. (It is not hard to see that its closure is of finite type.) This is not completely accidental:
THEOREM 1.5. Let K be spherically (= maximally) complete. Let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then A is of finite type.

Proof. A is bounded and c-compact ([4], Proposition 2.2). Now apply [4], Proposition 2.3.

PROBLEM. Let A be an absolutely convex complete compactoid in a Banach space E over a nonspherically complete K. Does it follow that A is of finite type? (By [1] 4.S (viii) it suffices to consider $E = c_0$.)

Surprisingly we have

EXAMPLE 1.6. Let K be not spherically complete. The unit ball \(\{ x \in c_0 : \|x\| \leq 1 \} \) is, for the weak topology on c_0, a complete compactoid but not of finite type.

Proof. From the reflexivity of c_0 ([1], Theorem 4.17) it follows that the weak topology is quasicomplete ([3], Theorem 9.6). As the unit ball is weakly bounded and weakly closed it is weakly complete. The other statements follow from the following example (where K is allowed to be spherically complete):

EXAMPLE 1.7. The unit ball of c_0 is a weak compactoid but not of finite type.

Proof. Weak compactoidity of $A := \{ x \in c_0 : \|x\| \leq 1 \}$ follows almost immediately from the fact that each weak neighbourhood of 0 contains a K-linear space with finite codimension. Now choose $\tau_1, \tau_2, \ldots \in K$ such that $0 < |\tau_1| < |\tau_2| < \ldots$, $\lim_{n \to \infty} |\tau_n| = 1$. There is a (unique) $f \in c_0'$ for which $f(e_n) = \tau_n$ for each $n \in \mathbb{N}$. Then $|f(x)| < 1$ for each $x \in A$. The set

\[U := \{ x \in c_0 : |f(x)| \leq \frac{1}{2} \} \]
is a weak neighbourhood of 0. Let $F \subset A$ be finite dimensional; we prove that A is not contained in $U+F$. By Gruson's Theorem ([1], Theorem 5.9) the (finite dimensional) space $[F]$ has an orthonormal base z_1, \ldots, z_n.

From $F \subset A \cap [F] \subset \text{co}(z_1, \ldots, z_n)$ we obtain

$$\sup_{F} |f| \leq \max_{1 \leq i \leq n} |f(z_i)| < 1.$$

It follows that

$$\sup_{U+F} |f| < 1.$$

But

$$\sup_{A} |f| = \sup_{n} |f(e_n)| = \lim_{n \to \infty} |x_n| = 1$$

and therefore $A \not\subset U+F$.
§ 2. SOME GENERAL PROPERTIES

In § 2, E and E_i are (Hausdorff) locally convex spaces over K.

PROPOSITION 2.1. If $A \subset E$ is a compactoid of finite type then so is \bar{A}.

Proof. Let U be an absolutely convex neighbourhood of 0 in E. There is a finite dimensional bounded $F \subset A$ with $A \subset U+F$. Now $U+F$, and also its complement, is a union of cosets of the open additive group U. So $U+F$ is closed and $\bar{A} \subset U+F$.

PROPOSITION 2.2. Let T be a continuous linear map of E_i into E_2. If $A \subset E_i$ is a compactoid of finite type then so is $TA \subset E_2$.

Proof. Let U be an absolutely convex neighbourhood of 0 in E_2. There is a finite dimensional bounded $F \subset A$ with $A \subset T^{-1}(U)+F$. Then $TF \subset TA$ is finite dimensional, bounded and $TA \subset U+TF$.

PROPOSITION 2.3. Let $A_i \subset E_i$ (i $\in I$) be compactoids of finite type. Then $A := \prod_{i} A_i$ is a compactoid of finite type in $E := \prod_{i} E_i$.

Proof. Let U be a neighbourhood of 0 in E; we construct a finite dimensional $F \subset A$ with $A \subset U+F$. We may assume that $U = \prod_{i} U_i$, where, for each i, U_i is an absolutely convex neighbourhood of 0 in E_i and where $U_i = E_i$ except for i in some finite set $J \subset I$. For each $j \in J$, choose a finite dimensional $F_j \subset A_j$ such that $A_j \subset U_j+F_j$. If $i \in I\setminus J$, choose $F_i := (0) \subset A_i$. The set

$$F := \prod_{i} F_i$$

is finite dimensional and $F \subset A$. To prove $A \subset U+F$, let $a = (a_i)_{i} \in E \in A$. If $j \in J$, choose $u_j \in U_j$, $f_j \in F_j$ such that

$$a_j = u_j + f_j.$$
If \(i \in I \setminus J \), take \(u_i^k := a_i \) and \(f_i^k := 0 \). We obtain a decomposition

\[a = u + f \]

where \(u = (u_i^k)_{i \in I} \in \mathcal{U} \) and \(f = (f_i^k)_{i \in I} \in \mathcal{F} \).

Absolutely convex subsets of a compactoid of finite type may fail to be of finite type (Example 1.4: \(\overline{A} \) is of finite type, \(\overline{A} \) is not). In fact, each compactoid is a subset of some compactoid of finite type. ([5], Theorem 2.1. Observe that \(\overline{\bigcup X} \) (\(X \) compact) is of finite type.) However, we do have results for special subsets (Proposition 2.4 and 2.5).

Proposition 2.4. Let \(A \subset E \) be a compactoid of finite type. Then so is \(A^i := \bigcup_{|\lambda| < 1} \lambda A \).

Proof. An obvious verification yields

\[(S + T)^i = S^i + T^i \]

for absolutely convex \(S, T \subset E \). Now let \(U \) be an absolutely convex neighbourhood of 0 in \(E \). There is a bounded absolutely convex finite dimensional \(F \subset A \) with \(A \subset U + F \). Then \(A^i \subset (U + F)^i = U^i + F^i \subset U + F^i \) and \(F^i \subset A^i \).

Proposition 2.5. Let \(A \subset E \) be a compactoid of finite type, let \(U \subset E \) be an absolutely convex neighbourhood of 0. Then \(A \cap U \) is of finite type.

Proof. Let \(V \) be an absolutely convex neighbourhood of 0 in \(E \). To prove that \(A \cap U \subset V + F \) for some finite dimensional \(F \subset A \cap U \) we may assume \(V \subset U \). There is a finite dimensional bounded absolutely convex \(G \subset A \) for which \(A \subset V + G \). Set \(F := G \cap U \). If \(x \in A \cap U \) then \(x = v + g \) for some \(v \in V \subset U \) and \(g \in G \). Then \(g = x - v \in U \). Hence, \(A \cap U \subset V + F \).
Proposition 2.4 leads to a 'dual' question. For an absolutely convex set $A^e := \bigcap \lambda A$. If A is a compactoid of finite type, does it follow that A^e is of finite type? This question is more difficult than the one for A^i. I can answer it only for spherically complete K. (Proposition 2.7.)

Lemma 2.6. Let $S, T \subset E$ be absolutely convex. Suppose S is closed and T is c-compact. Then $(S+T)^e = S^e + T^e$.

Proof. We may assume $S = S^e$, $T = T^e$; we prove that $(S+T)^e \subset S+T$. Let $z \in (S+T)^e$. For each $\lambda \in K$, $|\lambda| > 1$ we have $z \in \lambda(S+T)$ i.e. $z-\lambda S$ meets λT. So, for each $\lambda \in K$, $|\lambda| > 1$ the convex set

$$V_\lambda := (z-\lambda S) \cap \lambda T$$

is a nonempty closed subset of λT, hence c-compact. If $1 < |\lambda| < |\mu|$ then $V_\lambda \subset V_\mu$. By c-compactness there is a $t \in \bigcap |\lambda| > 1 V_\lambda$. Then $t \in \bigcap |\lambda| > 1 \lambda T = T^e = T$ and $t \in z-\lambda S$ for all $\lambda \in K$, $|\lambda| > 1$, i.e. $z-t \in S^e = S$. It follows that $z \in S+T$.

Proposition 2.7. Let K be spherically complete. If $A \subset E$ is a compactoid of finite type then so is $A^e := \bigcap |\lambda| > 1 \lambda A$.

Proof. Let U be an absolutely convex neighbourhood of 0 in E, let $\lambda \in K$, $0 < |\lambda| < 1$. There is a finite dimensional absolutely convex set $F \subset A$ such that $A \subset \lambda U + F$. Now λU is closed and F is c-compact (each convex subset of K^n is closed hence c-compact) so that we may apply the previous Lemma. We find

$$A^e \subset (\lambda U + F)^e = (\lambda U)^e + F^e \subset U + F^e$$
which proves Proposition 2.7.

PROBLEM. Is the statement about A in Proposition 2.7 true if K is not spherically complete? (See [2], Example 5.4 for the difficulties one encounters with the identity $(S+T)^e = S^e + T^e$.)

PROPOSITION 2.8. Let $A \subset E$ be a compactoid of finite type. For each continuous seminorm p on E there exists a finite dimensional set $F \subset A$ for which $\sup_A p = \sup_F p$.

Proof. We may suppose $\sup_A p > 0$. Set $U := \{x \in E : p(x) \leq \frac{\sup_A p}{2}\}$.

There is a finite dimensional absolutely convex set $F \subset A$ for which $A \subset U + F$. Then $A = A \cap U + F$. Now $p \leq \frac{\sup_A p}{2}$ on $U \cap A$. It follows easily (strong triangle inequality) that $\sup_A p = \sup_F p$.

LEMMA 2.9. Let K be spherically complete, let $F \neq (0)$ be a finite dimensional absolutely convex subset of some K-vector space. Then there are one-dimensional absolutely convex sets F_1, \ldots, F_n for some $n \in \mathbb{N}$ such that $F = \sum_{i=1}^{n} F_i$.

Proof. [2], Corollary 2.13 (i).

Remark. Let K be not spherically complete. The unit ball of K_0^2 (see [1], p. 68) is twodimensional but indecomposable.

COROLLARY 2.10. Let K be spherically complete, let $A \subset E$ be a compactoid of finite type. For each continuous seminorm p on E there exists $x \in E$ such that $\sup_{Kx \cap A} p = \sup_A p$.

Proof. We may assume $p \neq 0$. By Proposition 2.8, $\sup_{A} p = \sup_{F} p$ for some finite dimensional absolutely convex $F \subset A$. By the Lemma,

$$F = \bigoplus_{i=1}^{n} F_{i}$$

for some onedimensional F_{1}, \ldots, F_{n}. The strong triangle inequality yields $\sup_{F} p = \max_{i} \sup_{F_{i}} p = \sup_{F_{j}} p$ for some j. There is an $x \in E$ and an absolutely convex set $C \subset K$ such that $F_{j} = Cx$. Then $Kx \cap A = Cx$ and we have

$$\sup_{F} p = \sup_{C} p \leq \sup_{Kx \cap A} p \leq \sup_{A} p = \sup_{F} p.$$
§ 3. COMPACTOIDS OF FINITE TYPE IN NORMED SPACES

THEOREM 3.1. Let E be a normed space over K, let $A \subseteq E$ be absolutely convex. The following are equivalent.

(a) A is a compactoid of finite type.

(b) There exist bounded finite dimensional absolutely convex sets F_0, F_1, \ldots such that $\lim_{n \to \infty} \text{diam } F_n = 0$ and

$$\sum F_n \subseteq A \subseteq \sum F_n$$

Proof.

(a) \Rightarrow (b). For $n \in \mathbb{N}$, set $U_n := \{x \in E : \|x\| < 2^{-n}\}$. There is a bounded finite dimensional absolutely convex $F_0 \subseteq A$ such that $A \subseteq U_1 + F_0$. Then $A = A \cap U_1 + F_0$. By Proposition 2.5, $A \cap U_1$ is a compactoid of finite type. So there exists a finite dimensional absolutely convex $F_1 \subseteq A \cap U_1$ such that $A \cap U_1 \subseteq U_2 + F_1$ i.e.

$$A \cap U_1 = A \cap U_2 + F_1.$$

We have $\text{diam } F_1 \leq 2^{-1}$ and $A = A \cap U_2 + F_1 + F_0$.

Inductively we find bounded absolutely convex finite dimensional sets F_0, F_1, \ldots with $\text{diam } F_n \leq 2^{-n}$ and

$$A = A \cap U_1 + \sum_{i=1}^{n-1} F_i$$

for each $n \in \{1, 2, \ldots\}$. As $\text{diam } A \cap U_n \leq 2^{-n}$, (b) follows.

(b) \Rightarrow (a). Let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ such that $\text{diam } F_n \leq \varepsilon$ for $n \geq N$. We see that

$$\sum_{i=1}^{n-1} F_i \subseteq \{x \in E : \|x\| \leq \varepsilon\} + \sum_{i=0}^{n-1} F_i.$$

The set at the right hand side is closed so that

$$A \subseteq \{x \in E : \|x\| \leq \varepsilon\} + \sum_{i=0}^{n-1} F_i$$

and we have (a).
Two remarks.

(i) For spherically complete K we have a more refined version of Theorem 3.1, namely we may replace (B) by:

(B)' There exist e_1, e_2, \ldots in E and absolutely convex sets $C_1, C_2, \ldots \subset K$ such that $C_n e_n$ is bounded for each n,

$$\lim_{n \to \infty} (\text{diam } C_n) \| e_n \| = 0 \text{ and }$$

$$\sum_{n=1}^{\infty} C_n e_n \subset A \subset \sum_{n=1}^{\infty} C_n e_n.$$

The proof is obvious (Lemma 2.9).

(ii) It is not hard to generalize Theorem 3.1 to the case of a metrizable absolutely convex set A in a locally convex space E. We leave the details to the reader.
§ 4. WEAK COMPACTOIDS OF FINITE TYPE

The main goal in this section is the following theorem, which is a generalization of Example 1.7. Recall that the valuation of K is dense.

THEOREM 4.1. Let E be a Banach space with an orthogonal base over a spherically complete K. If $A \subseteq E$ is a compactoid of finite type for the weak topology then A is a compactoid (of finite type) for the norm topology.

This Theorem is in contrast to

PROPOSITION 4.2. Let E be a Banach space over a spherically complete K. An absolutely convex $A \subseteq E$ is a compactoid for the weak topology if and only if A is bounded for the norm topology.

Proof. A weak compactoid is weakly bounded, hence bounded by [6], Théorème 4.21. Conversely, if A is norm bounded, let U be a weak neighbourhood of 0 in E. There is a closed K-subspace D of E of finite codimension with $D \subseteq U$. Let $\pi : E \to E/D$ be the quotient map. $\pi(A)$ is bounded in the finite dimensional space E/D, so a compactoid. As $\pi(U)$ is open in E/D there exist $x_1, \ldots, x_n \in E/D$ such that

$$\pi(A) \subseteq \pi(U) + \text{co}\{x_1, \ldots, x_n\}.$$ Let $y_1, \ldots, y_n \in E$ be such that $\pi(y_i) = x_i$ for each $i \in \{1, \ldots, n\}$. It is easy to see that $A \subseteq U + \text{co}\{y_1, \ldots, y_n\}$.

Theorem 4.1 and Proposition 4.2 indicate that, for a compactoid, to require it to be of finite type may be a severe restriction!

PROBLEM. Does the conclusion of Theorem 4.1 hold for arbitrary Banach spaces over a spherically complete K or for decent Banach spaces
The proof of Theorem 4.1 requires several preparations. From now on in § 4 we assume that K is spherically complete.

For an element \(f \) of the dual \(E' \) of a Banach space \(E \) over \(K \), let \(\| f \| \) denote the operator norm of \(f \) defined by the usual formula

\[
\| f \| = \inf \{ M : |f(x)| \leq M\|x\| \text{ for all } x \in E \}.
\]

Lemma 4.3. Let \(E \) be a Banach space over \(K \). Then

\[
\| f \| = \sup \{ |f(x)| : \|x\| \leq 1 \}
\]

Proof. We may assume \(\dim E \geq 1 \). Set \(\| f \|_0 := \sup \{ |f(x)| : \|x\| \leq 1 \} \).

If \(x \in E \), \(0 < \|x\| \leq 1 \) then \(|f(x)| \leq \frac{|f(x)|}{\|x\|} \leq \| f \| \) so that \(\| f \|_0 \leq \| f \| \).

Conversely, let \(x \in E \), \(x \neq 0 \). As the valuation of \(K \) is dense we can find \(\lambda_1, \lambda_2, \ldots \in K \) such that

\[
|\lambda_1| < |\lambda_2| < \ldots , \lim_{n \to \infty} |\lambda_n| = \|x\|^{-1}.
\]

Then \(\| \lambda_n x \| \leq 1 \) whence \(|f(\lambda_n x)| \leq \| f \|_0 \) for each \(n \). We have

\[
\frac{|f(x)|}{\|x\|} = \frac{|f(\lambda_n x)|}{\|\lambda_n x\|} \leq \frac{\| f \|_0}{\|\lambda_n x\|}
\]

which, after taking limits becomes \(\frac{|f(x)|}{\|x\|} \leq \| f \|_0 \) and we obtain \(\| f \| \leq \| f \|_0 \).

Lemma 4.4. Let \(\{ D_i : i \in I \} \) be an orthogonal system of closed subspaces (§1, p. 166) in a Banach space \(E \) over \(K \). For each \(i \in I \), let \(S_i \subset D_i \) be closed, absolutely convex, \([S_i] = D_i \), \(S_i^e = S_i \) (see the remark following Proposition 2.5). Then \((ES_i)^e = ES_i \).

Proof. Let \(x \in (ES_i)^e \). Then \(x \in \overline{ES_i} \) so \(x \) has a unique decomposition
x = \sum d_i where d_i \in D_i = [S_i] for each i \in I. For any \lambda \in K,
0 < |\lambda| < 1, \lambda x \in \overline{LS_i} so \lambda x = \sum s_i where s_i \in S_i for each i. But also
\lambda x = \sum \lambda d_i. By the uniqueness of the decomposition of \lambda x we have
d_i = s_i i.e. d_i \in \lambda^{-1} S_i for each i. This goes for any \lambda \in K,
0 < |\lambda| < 1 and we find d_i \in S_i^e = S_i for each i. It follows that
x \in \overline{LS_i}.

Lemma 4.5. Let S be a closed absolutely convex subset of a Banach space
E over K for which S = S^e. If x \in E\setminus S there exists an f \in E' with
|\lambda| \leq 1 on S, |f(x)| > 1.

Proof. [6], Théorème 4.7a.

Lemma 4.6. Let E be a Banach space over K such that each maximal
orthogonal system of vectors in E is an orthogonal base. Then E is
finite dimensional.

Proof. [1], Theorem 5.16 (a) \Rightarrow (\theta). (Recall that the valuation of K is
dense.)

Lemma 4.7. Let A be an absolutely convex subset of a K-vector space.
For the seminorm p_A associated to A defined on [A] by the formula
\[
p_A(x) = \inf \{ |\lambda| : \lambda \in K, x \in \lambda A \} \quad (x \in [A])
\]
we have
\[
\{ x \in [A] : p_A(x) < 1 \} \subset A \subset \{ x \in [A] : p_A(x) \leq 1 \}.
\]
Further, A = A^e if and only if
\[
A = \{ x \in [A] : p_A(x) \leq 1 \}.
\]

Proof. Left to the reader.
PROPOSITION 4.8. (Compare Example 1.7.) Let \(E \) be a Banach space over \(K \) and suppose there exists an open absolutely convex set \(A \subseteq E \) that is a compactoid of finite type for the weak topology. Then \(E \) is finite dimensional.

Proof. By Proposition 2.7 we may assume that \(A = A^e \). \(A \) is bounded by Proposition 4.2 and therefore the seminorm associated to \(A \) is norm \(\| \| \) inducing the topology of \(E \). Lemma 4.7 yields

\[
A = \{ x \in E : \| x \| \leq 1 \}.
\]

Now let \(\{ e_i : i \in I \} \) be a maximal orthogonal system in \(E \), it suffices to prove that it is an orthogonal base for \(E \) (Lemma 4.6). For each \(i \in I \) set \(C_i := \{ \lambda \in K : \lambda e_i \in A \} \). Then \(C_i = \{ \lambda \in K : |\lambda| \leq \| e_i \|^{-1} \} \) so that \((C_i e_i)^e = C_i e_i \). Set

\[
B := \bigoplus_{i \in I} C_i e_i.
\]

Obviously, \(B \subseteq A \). It remains to prove that \(B = A \). Suppose \(B \neq A \). Lemma 4.4 tells us that \(B = B^e \) so, by Lemma 4.5, there exists an \(f \in E' \) such that \(|f| \leq 1 \) on \(B \) and \(\sup_{A} |f| > 1 \). According to Corollary 2.10 and Lemma 4.3 there exists an \(x \in E \) such that

\[
\|f\| = \sup_{A} |f| = \sup_{Kx \cap A} |f| > 1.
\]

Without harm (suitable scalar multiplication) we may assume \(x \in A \) and \(|f(x)| > 1 \). Now \(x \neq e_i \) for each \(i \in I \) and, by maximality, the system \(\{x\} \cup \{ e_i : i \in I \} \) is not orthogonal. So there exists a (finite) \(K \)-linear combination \(z = \sum \lambda_i e_i \) for which \(\|x-z\| < \|x\| \). Then

\[
\max_i \|\lambda_i e_i\| = \|z\| = \|x\| \leq 1,
\]

so that \(\lambda_i \in C_i \) for each \(i \) whence \(z \in B \) and \(|f(z)| < 1 \). We get

\[
(*) \quad |f(x)| = |f(x-z)| \leq \|f\| \|x-z\| < \|f\| \|x\|.
\]
Now let $C := \{ \lambda \in K : \lambda x \in A \}$. We have $\lambda \in C \Rightarrow \|\lambda x\| \leq 1$. Hence,

$$(\text{diam } C) \|x\| \leq 1.$$

On the other hand we obtain, using (*),

$$\|f\| = \sup_{\lambda \in C} |f(\lambda x)| = (\text{diam } C) |f(x)| < (\text{diam } C) \|f\| \|x\|$$

yielding

$$(\text{diam } C) \|x\| > 1,$$

a contradiction.

Proof of Theorem 4.1. Suppose A is not a compactoid for the norm topology. Then, by [1], Theorem 4.38, (n) \Rightarrow (a) there exists an orthogonal sequence e_1, e_2, \ldots in A such that $\inf_{n} \|e_n\| > 0$. Set $D := [e_1, e_2, \ldots]$. By [1], Corollary 3.18 there exists a continuous linear projection P of E onto D. Since $e_n \in PA$ for each n and $\inf_{n} \|e_n\| > 0$ we have that PA is open in D. But (P is also weakly continuous) the weak closure of PA is a compactoid of finite type in D for the weak topology of D (Propositions 2.2 and 2.1). This is impossible by Proposition 4.8. Thus, A is a compactoid for the norm topology. To see that A is also of finite type it suffices to observe that the weak and norm topology coincide on A ([3], Theorem 5.12).
REFERENCES

