The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/59414

Please be advised that this information was generated on 2019-02-16 and may be subject to change.
In this note we shall prove some properties of c-compact sets that may or may not be part of the 'folklore'. The concept of c-compactness, introduced by Springer [7], takes over the role played by convex-compact sets in Functional Analysis over \(\mathbb{R} \) or \(\mathbb{C} \) (or, any locally compact valued field).

Throughout, let \(K \) be a nonarchimedean nontrivially valued field with valuation \(| \cdot | \). We assume \(K \) to be maximally (= spherically) complete. A subset \(A \) of a \(K \)-linear space \(E \) is absolutely convex if it is a submodule of \(E \), considered as a module over the valuation ring \(\{ \lambda \in K : |\lambda| \leq 1 \} \).

A set \(C \subseteq E \) is convex if it is either empty or an additive coset of an absolutely convex set. For a set \(X \subseteq E \) we denote by \(\text{co} X \) its absolutely convex hull, by \([X] \) its \(K \)-linear span.

From now on in this paper \(E \) is a locally convex space over \(K \) ([8]). We assume \(E \) to be Hausdorff.
§ 1. DEFINITION AND FIRST PROPERTIES

DEFINITION 1.1. ([7]) Let $C \subseteq E$ be a nonempty convex set. A convex filter on C is a filter of subsets of C that has a basis consisting of convex sets. C is c-compact if each convex filter on C has a cluster point in C.

In other words, C is c-compact if and only if the following is true. Let C be a family of nonempty relatively closed convex subsets of C such that $C_1, C_2 \in C$ implies $C_1 \cap C_2 \in C$. Then $\cap C \neq \emptyset$.

We quote the following properties, proved in [7].

PROPOSITION 1.2.

(i) K is c-compact.

(ii) A c-compact set is complete.

(iii) A nonempty closed convex subset of a c-compact set is c-compact.

(iv) Let $(E_i)_{i \in I}$ be a family of Hausdorff locally convex spaces over K. Suppose, for each i, C_i is c-compact in E_i. Then $\bigcap_{i \in I} C_i$ is c-compact in $\bigcap_{i \in I} E_i$.

(v) The image of a c-compact set under a continuous linear map is c-compact.

In [1] we find the following.

PROPOSITION 1.3.

(i) If K is locally compact then a bounded nonempty convex set $C \subseteq E$ is c-compact if and only if it is convex and compact.

(ii) E is c-compact if and only if E is linearly homeomorphic to a
In § 3 (Theorem 3.3) we shall characterize arbitrary c-compact sets in the spirit of Proposition 1.3 (ii). But we conclude this first section with two statements that have nothing to do with the sequel. I just want to get rid of them.

PROPOSITION 1.4.

A c-compact set is a Baire space.

Proof.

Let U_1, U_2, \ldots be (relatively) open dense subsets of a c-compact set $C \subseteq E$. We prove that $\bigcap_n U_n \neq \emptyset$. There exists a nonempty open convex subset $B_1 \subseteq U_1$. As U_2 is dense we can find a nonempty open convex set $B_2 \subseteq B_1 \cap U_2$. Continuing this way we find nonempty open convex sets $B_n \subseteq \bigcap_{i=1}^n U_i$ for each n. The open sets B_n are cosets of an additive group, hence closed. By c-compactness, $\bigcap_n B_n \neq \emptyset$. It follows that $\bigcap_n U_n \neq \emptyset$.

PROPOSITION 1.5.

Let $X \subseteq E$ be closed, let $C \subseteq E$ be c-compact. Then $X+C$ is closed.

Proof.

Let $z \in \overline{X+C}$ (the closure of $X+C$), let \mathcal{U} be the collection of all absolutely convex neighbourhoods of 0. For each $U \in \mathcal{U}$ the set $z+U$ intersects $X+C$ so

$$C_U := \{ c \in C : z-c \in X+U \}$$

is not empty. $X+U$ is a union of cosets of U, so is its complement.
Therefore, \(X+U\) is closed and \(C_U\) is closed in \(C\). Further we have

\[C_U \cap C_V \supseteq C_{U \cap V} \quad (U, V \in U)\]

By \(c\)-compactness there exists a \(c \in C\) such that

\[z-c \in \bigcap \{X+U \mid U \in U\} = X = X\]

i.e., \(z \in X+c \subseteq X+C\).

Remark.

If the base field is not spherically complete there exist a complete absolutely convex compactoid \(C \subseteq C_0\) and an element \(a \in C_0\) such that \(C+a\) is not closed ([3], 6.25).
§ 2. LOCAL COMPACTOIDITY

DEFINITION 2.1. ([3], (6.7)) A subset X of E is a local compactoid if for each neighbourhood U of 0 in E there exists a finite dimensional K-linear subspace D of E such that $X \subseteq U + D$.

PROPOSITION 2.2.

Let A be an absolutely convex subset of E. A is c-compact if and only if A is a complete local compactoid.

Proof.

For E a Banach space this is proved in [3], 6.15. Now let E be a locally convex.

(i) Assume A is c-compact. By Proposition 1.2 (ii), A is complete. To prove local compactoidity let U be an absolutely convex neighbourhood of 0 in E. There is a continuous seminorm p such that $\{x \in E : p(x) \leq 1\} \subseteq U$.

Let $\pi_p : E \to E_p$ be the quotient map where E_p is the canonically normed space $E/\ker p$. Now $\pi_p(A)$ is c-compact (Proposition 1.2 (v)) so by the above it is a local compactoid in the completion E^π of E_p. By Corollary 6.15 of [3] we have $\pi_p(A) = R + T$ where R is a compactoid and T a finite dimensional subspace of E^π_p. Then $T \subseteq E_p$. Now $\pi_p(U)$ is open in E_p and by Katsaras' Theorem ([5], Lemma 8.1) there exist $x_1, \ldots, x_n \in [R]$ such that $R \subseteq \pi_p(U) + \text{co}(x_1, \ldots, x_n)$. Combining our knowledge on R and T we find a finite dimensional space $F \subseteq [\pi_p(A)]$ such that $\pi_p(A) \subseteq \pi_p(U) + F$. Choose a finite dimensional space $D \subseteq [A]$ such that $\pi_p(D) = F$. Then

$$A \subseteq U + D + \ker \pi_p \subseteq U + D.$$

(ii) Let A be a complete local compactoid. Let Γ be the collection of all continuous seminorms on E. For each $p \in \Gamma$ we have that $\pi_p(A)$, and also $\pi_p(A)$, is a local compactoid in E^π_p.
As E^* is a Banach space we know that $\prod_{\beta} \pi_\beta(A)$ is c-compact. Then also $A_0 := \prod_{\beta} \pi_\beta(A)$ is a c-compact subset of $\prod_{\beta} E^*$ (Proposition 1.1 (iv)).

The canonical map $E \to \prod_{\beta} E^*$ sends A homeomorphically and linearly into A_0. Its image is closed in A_0 because A is complete. Then A is c-compact (Proposition 1.2 (iii)).

The following Proposition may look innocent.

PROPOSITION 2.3.

Let $A \subset E$ be absolutely convex and c-compact. For each neighbourhood U of 0 there exists a finite dimensional absolutely convex set $F \subset A$ such that $A \subset U + F$.

(The crucial part is the phrase 'F \subset A'.) For the proof we use a lemma.

LEMMA 2.4.

Let A, U be absolutely convex subsets of E, where U is closed, A is c-compact. Let $x \in E$ be such that $A \subset U + Kx$. Then there exists an $y \in E$ and an absolutely convex $C \subset K$ such that $Cy \subset A$ and $A \subset U + Cy$.

Proof.

Let $C := \{ c \in K : (U + cx) \cap A \neq \emptyset \}$. We have $A \subset U + CX$, $C = \{ c \in K : cx \in A + U \}$, so C is absolutely convex. If $C = (0)$ then $A \subset U$ and we choose $y := 0$.

So assume $C \neq (0)$. For each $c \in C$, $c \neq 0$ define

$$H_c := c^{-1}(A \cap (cx + U)).$$

Each H_c is a convex, closed, nonempty subset of $c^{-1}A$ hence c-compact. Further, if $c,d \in C$, $0 < |c| \leq |d|$ then $H_d \subset H_c$. (Proof. Let $z \in H_d$. Then $dz \in A \cap (dx + U)$. By absolute convexity of A and U,
\[cz = \frac{c}{d} \cdot dz \in A \]
\[cz \in \frac{c}{d} (dx+U) \subseteq cx + \frac{c}{d} U \subseteq cx+U. \]

It follows that \(cz \in A \cap (cx+U) \) i.e. \(z \in H_c \). By \(c \)-compactness there exists an \(y \in \cap H_c \). Let \(c \in C, c \neq 0 \). Then
\[cy \in ch_c \subseteq A \cap (cx+U) \subseteq A. \]

Also, \(cy \in cx+U \) so that \(cx-cy \in U \). Let \(a \in A \). Then \(a = u+cx \) for some \(u \in U, c \in C \). We see that \(a = u+cy+cx-cy \in cy+U \). It follows that
\[A \subseteq u+cy+U. \]

Proof of Proposition 2.3.

We may assume that \(U \) is absolutely convex. By Proposition 2.2 \(A \) is a local compactoid so there exist \(x_1, \ldots, x_n \in E \) such that
\[A \subseteq U+Kx_1+\ldots+Kx_n. \]
By the Lemma, applied to \(U+Kx_2+\ldots+Kx_n \) in place of \(U \), there exist a \(y_1 \in E \) and an absolutely convex \(C_1 \in K \) such that
\[C_1 y_1 \subseteq A \]
and
\[A \subseteq U + C_1 y_1 + Kx_2 + \ldots + Kx_n = (U + C_1 y_1 + Kx_3 + \ldots, Kx_n) + Kx_2 \]
and we can continue. After \(n \) of these procedures we arrive at
\[y_1, \ldots, y_n \in E, \text{ absolutely convex } C_1, \ldots, C_n \subseteq K \text{ such that } C_i y_i \subseteq A \]
for each \(i \) and \(A \subseteq U+C_1 y_1+\ldots+C_n y_n \).

Warning.

The property of Proposition 2.3 is not shared by all absolutely convex local compactoids even when we require them to be closed! In fact we have:
EXAMPLE 2.5.

Let the valuation of \(K \) be dense. Set

\[
A = \{ x \in c_0 : \| x \| \leq 1 \}.
\]

([4], p.47).

(i) \(A \) is a closed (local) compactoid for the weak topology of \(c_0 \).

(ii) There exists a weak neighbourhood \(U \) of 0 such that for any finite dimensional set \(F \subset A \)

\[A \not\subset U+F. \]

Proof.

(i) Let \(U \) be a weak neighbourhood of 0. There exists a weakly continuous seminorm \(p \) such that \(\{ x \in c_0 : p(x) \leq 1 \} \subset U \). Then \(\ker p \) has finite codimension. Choose a finite dimensional space \(D \subset c_0 \) with \(\pi_p(D) = E_p \) (where as previously, \(E_p := c_0/\ker p \) and \(\pi_p : c_0 \rightarrow E_p \) is the quotient map). We have \(A \subset \ker p + D \subset U + D \) (in fact, we have shown that each subset of \(c_0 \) is a local compactoid for the weak topology). To prove weak closedness of \(A \), let \((x_i)_{i \in I} \) be a net in \(A \) converging weakly to \(x \in c_0 \). By [4], Lemma 4.35 (i) there exists an \(f \in c_0^* \) \(f \not= 0 \) for which \(|f(x_i)| = \| f \| \| x_i \| \). We have

\[
|f(x)| = \lim_{i \to \infty} |f(x_i)| \leq \limsup \| f \| \| x_i \| \leq \| f \|
\]

so that \(\| x \| \leq 1 \).

(ii) Choose \(\tau_1, \tau_2, \ldots, \in K, 0 < |\tau_1| < |\tau_2| < \ldots, \lim_{n \to \infty} |\tau_n| = 1 \). The formula

\[
f(a_1, a_2, \ldots) = \sum_{i=1}^{\infty} a_i \tau_i
\]

defines an element \(f \in c_0^* \). Observe that \(\sup f = 1 \) but \(|f(x)| < 1 \) for each \(x \in A \). Set \(U := \{ x : |f(x)| \leq \frac{1}{2} \} \), let \(F \) be any finite dimensional
set in A. We shall arrive at $A \not\subset U + F$ by showing that $\sup_{U + F}|f| < 1$. To this end it suffices to prove $\sup_F|f| < 1$. $[F]$ is a finite dimensional subspace of c_0 and therefore $([4]$, Theorem 5.9) has an orthonormal base x_1, \ldots, x_n. It is easily seen that

$$F' := \text{co} \{x_1, \ldots, x_n\} \supset F$$

and $\sup_{F'}|f| = \sup_F|f| = \max(|f(x_1)|, \ldots, |f(x_n)|) < 1$.

Remark.
The above construction works also for the case where the base field is not spherically complete. Then A is even weakly complete! $([5]$, Theorem 9.6 and $[4]$, Theorem 4.17)
§ 3. A REPRESENTATION THEOREM FOR C-COMPACT SETS

LEMMA 3.1.
Let \(\lambda \in K, |\lambda| > 1 \). Let \(G \subseteq E \) be closed, absolutely convex, and let \(F \subseteq [G] \) be a finite dimensional set. If \(\{x_i\}_{i \in I} \) is a net in \(G+F \) converging to 0 then \(x_i \in \lambda G \) for large \(i \).

Proof.
[6], Lemma 1.3.

PROPOSITION 3.2.
(See also [2], Proposition 4, p. 93.) Let \(A \subseteq E \) be absolutely convex, c-compact. Let \(\tau' \) be a Hausdorff locally convex topology on \(E \), weaker than the initial topology \(\tau \). Then \(\tau = \tau' \) on \(A \).

Proof.
Let \(\{x_i\}_{i \in I} \) be a net in \(A \) converging to 0 for \(\tau' \). Let \(\lambda \in K, |\lambda| > 1 \), let \(U \) be an absolutely convex neighbourhood of 0 for \(\tau \). Then \((\lambda^{-1}U) \cap A \) is c-compact in \((E,\tau)\) hence in \((E,\tau')\), so that \((\lambda^{-1}U) \cap A \) is \(\tau' \)-closed.
There is (Proposition 2.3) a finite dimensional \(F \subseteq A \) with \(A \subseteq \lambda^{-1}U+F \).
Then \(A = (\lambda^{-1}U) \cap A + F \). Lemma 3.1 applies. It follows that \(x_i \in \lambda(\lambda^{-1}U) \cap A \subseteq U \) for large \(i \), so \(\lim x_i = 0 \) in the sense of \(\tau \).

THEOREM 3.3.
Let \(A \subseteq E \) be absolutely convex. The following are equivalent.
(a) \(A \) is c-compact.
(b) \(A \) is isomorphic (as a topological module over \(\{\lambda \in K : |\lambda| \leq 1\} \)) to a closed submodule of some power of \(K \).
Proof.

$(\beta) \Rightarrow (\alpha)$. This follows from Proposition 1.2, (i), (iv), (iii). Now suppose (α). The map

$$x \mapsto (f(x))_{f \in E'}$$

is a continuous linear injection $E \to K^E$ (Hahn-Banach Theorem).

According to Proposition 3.2 it is a homeomorphism, if restricted to A, and (β) follows.
REFERENCES

