§1. Introduction and summary. (For terminology, see §2) In [2] the following separation theorem is proved. Let K be spherically complete and let E be a locally convex space over K. If $A \subseteq E$ is closed and absolutely convex and if $x \in E \setminus A$ then there is an $f \in E'$ such that

\[f(A) < 1, \quad f(x) = 1. \]

In order to obtain, 'real' separation one would prefer to have

\[|f(A)| < 1, \quad f(x) = 1 \]

rather than (*). However, with the techniques used in [2], it is not clear how to arrive at such a result for densely valued fields K. The main obstruction is the fact that for an open absolutely convex, absorbing set A its associated seminorm q_A,

\[q_A(x) := \inf\{|\lambda| : \lambda \in K : x \in \lambda A\} \quad (x \in E) \]

does not determine A; one only has the rather 'vague' relation
\{x \in E : q_A(x) < 1\} \subset A \subset \{x \in E : q_A(x) \leq 1\}.

(Example. The open and closed convex sets \((\xi_1, \xi_2) \in K^2 : |\xi_1| \leq 1, |\xi_2| \leq 1\), \((\xi_1, \xi_2) \in K^2 : |\xi_1| \leq 1, |\xi_2| < 1\), \((\xi_1, \xi_2) \in K^2 : |\xi_1| < 1, |\xi_2| < 1\) all have the associated (semi)norm \((\xi_1, \xi_2) \mapsto \max(|\xi_1|, |\xi_2|)).

In this paper we shall extend the notion of a seminorm by admitting a larger range yielding the notion of a distinguishing seminorm (Definition 2). We shall prove that each absolutely convex absorbing set can be written as \(\{x \in E : p(x) < 1\}\) for some distinguishing seminorm \(p\) (Theorem 5). Next, we shall prove a Hahn Banach theorem for linear functions majorized by distinguishing seminorms (Theorem 6) and shall obtain, as a corollary, a strong separation theorem (with \((**)\) in place of \((*)\)). Here the notion of distinguishing seminorm is used only in the proof, not in the formulation (Theorem 8).

Note. This separation theorem can (for Banach spaces) also be obtained as a corollary of [1], Theorem 6.21. However, one techniques differ very much from the ones used in the (clever) proof of [1]. Also, the notion of a distinguishing seminorm may very well yield new applications.

§2. Terminology

Throughout \(K\) is a non-archimedean complete non-trivially valued field with valuation \(|\cdot|\) \(|X| := \{|\lambda| : \lambda \in X\}\). \(E\) is a vector space over \(K\).

A **seminorm** on \(E\) is a map \(q : E \rightarrow [0,\infty)\) satisfying (i) \(q(0) = 0\),

(ii) \(q(\lambda x) = |\lambda| q(x)\) (\(x \in E, \lambda \in K\)),

(iii) \(q(x+y) \leq q(x) \vee q(y)\) (\(x, y \in E\))

where \(\vee\) indicates 'maximum'.

A subset \(A\) of \(E\) is **absolutely convex** if it is a module over the ring \(\{\lambda \in K : |\lambda| \leq 1\}\), **convex** if it is an additive coset of an absolutely convex set, **absorbing** if \(\bigcup_{\lambda \in K} \lambda A = E\).
Each convex subset of K has the form $\{x \in K : |x-a| < r\}$ or $\{x \in K : |x-a| \leq r\}$ for some $a \in K$, $r \in [0,\infty]$.

For a seminorm q the sets $\{x \in E : q(x) < 1\}$ and $\{x \in E : q(x) \leq 1\}$ are absolutely convex and absorbing. Conversely, for an absorbing, absolutely convex subset A of E the associated seminorm q_A defined by

$$q_A(x) := \inf\{|\lambda| : \lambda \in K : x \in \lambda A\} \quad (x \in E)$$

is a seminorm satisfying

$$\{x \in E : q_A(x) < 1\} \subset A \subset \{x \in E : q_A(x) \leq 1\}.$$

K is spherically complete if for any collection C of convex subsets for which $A, B \in C \Rightarrow A \cap B \neq \emptyset$ we have $\cap C = \emptyset$. A locally convex space is a K-vector space E with a topology induced by a collection of seminorms. Its dual space is denoted E'.

§3. Distinguishing seminorms

We enlarge the set $[0,\infty)$ by giving each positive real number a an immediate predecessor a^-. Formally

$$V := [0,\infty)^- \cup (0,\infty)^-$$

where $(0,\infty)^- := \{a^- : a \in (0,\infty)\}$ is a second copy of $(0,\infty)$. Further we define $0^- := 0$. The formulas

$$a^- < b \iff a \leq b \quad (a, b \in (0,\infty))$$
$$a^- < b^- \iff a < b^- \iff a < b \quad (a, b \in (0,\infty))$$
$$0 < a \quad (a \in V, a \neq 0)$$

define a linear ordering $<$ on V extending the usual ordering on $[0,\infty)$.
The projection map $\pi : V \rightarrow [0,\infty)$ is defined by

$$\pi(a) := a \quad (a \in [0,\infty))$$

Finally we extend the multiplication on $[0,\infty)$ to a multiplication $[0,\infty) \times V \rightarrow V$ by requiring $a \cdot b^- := (ab)^-$ for all $a, b \in [0,\infty)$.

Proposition 1 collects some direct consequences from the definitions.

Proposition 1.

(i) Let $b, c \in V, b \leq c$. Then $ab \leq ac$ for all $a \in [0,\infty)$.

(ii) $\pi(a \lor b) = \pi(a) \lor \pi(b)$, ($a, b \in V$).

(iii) $\pi(ab) = a\pi(b)$, ($a \in [0,\infty), b \in V$).

Definition 2. A distinguishing seminorm on E is a map $p : E \rightarrow V$ satisfying

(i) $p(0) = 0$

(ii) $p(\lambda x) = |\lambda| p(x)$ \hspace{1cm} ($\lambda \in K, x \in E$)

(iii) $p(x+y) \leq p(x) \lor p(y)$ \hspace{1cm} ($x, y \in E$).

If, in addition, $p(x) = 0$ implies $x = 0$ then p is a distinguishing norm.

Examples

1. Any seminorm on E.

2. The map $(\xi_1, \xi_2) \mapsto |\xi_1| \lor |\xi_2|$ ($((\xi_1, \xi_2) \in K^2)$) is a distinguishing norm on K^2.

3. Let E be the space of all bounded K-valued functions on a set X.

Then

$$\|f\|_\infty := \sup\{|f(x)| : x \in X\} \quad (f \in E),$$

where the supremum is taken in V, defines a distinguishing norm on E.

Observe that for $f \in E$ we have $\|f\|_\infty \leq 1$ if and only if $|f(x)| \leq 1$ for
all \(x \in E \) but
\[
\| f \|_\infty < 1 \iff \| f \|_\infty \leq 1 \iff |f(x)| < 1 \text{ for all } x \in E
\]
so that \(\| f \|_\infty = 1 \) if and only if \(1 = \max\{|f(x)| : x \in X\} \).

Proposition 3. Let \(p \) be a distinguishing seminorm on \(E \). Then \(\pi \circ p \) is a seminorm on \(E \).

Proof. The statement follows directly from Proposition 1 (ii), (iii).

Definition 4. Let \(A \subseteq E \) be absorbing and absolutely convex, and let \(q_A \) be its associated seminorm. The **distinguishing seminorm** \(p_A \), associated to \(A \) is
\[
p_A(x) := \begin{cases}
 q_A(x)^{-1} & \text{if } q_A(x) = \min\{ |\lambda| : \lambda \in K, x \in \lambda A \} \\
 q_A(x) & \text{otherwise.}
\end{cases}
\]

The following theorem shows that the associated distinguishing seminorm of an absorbing absolutely convex set \(A \) determines \(A \).

Theorem 5. Let \(A \subseteq E \) be absorbing and absolutely convex. Let \(p_A \) and \(q_A \) be as in Definition 4. Then \(p_A \) is a distinguishing seminorm with \(\pi \circ p_A = q_A \). Further we have
\[
A = \{ x \in E : p_A(x) < 1 \} = \{ x \in E : p_A(x) \leq 1 \}.
\]

Proof. Clearly \(\pi \circ p_A = q_A \). We first check the equality
\[
A = \{ x \in E : p_A(x) < 1 \}. \quad \text{Let } p_A(x) < 1. \quad \text{If } p_A(x) < 1^{-1}, \text{ then } q_A(x) < 1, \text{ so } x \in A. \quad \text{If } p_A(x) = 1^{-1}, \text{ then } 1 \in \{ |\lambda| : \lambda \in K, x \in \lambda A \} \text{ so that } x \in \mu A \text{ for some } \mu \in K, |\mu| = 1. \text{ By absolute convexity, } x \in \mu^{-1} \mu A = A. \text{ Conversely, let } x \in A. \quad \text{Then } q_A(x) \leq 1 \text{ so that } p_A(x) \leq q_A(x) \leq 1. \quad \text{If } p_A(x) = 1 \text{ then } 1 = \inf\{ |\lambda| : x \in \lambda A \} \text{ is not a minimum contradicting } x \in A. \quad \text{Hence,}
\]
$p_A(x) < 1$. Finally we prove the conditions (i), (ii), (iii) of Definition 2 for a distinguishing seminorm for $p = p_A$. We have $p_A(0) = 0^- = 0$. To prove (ii) we may assume $\lambda \neq 0$ and $p_A(x) \neq 0$. If $p_A(x) \in (0,\infty)$ then

$q_A(x) = \inf \{ |t| : x \in \tau A \}$ is not a minimum. Then neither is

$q_A(\lambda x) = \inf \{ |t| : \lambda x \in \tau A \}$ so that $p_A(\lambda x) = q_A(\lambda x) = |\lambda|q_A(x) = |\lambda|p_A(x)$. If $p_A(x) \in (0,\infty)^-$ then $q_A(x) = \min \{ |t| : x \in \tau A \}$. Then also

$q_A(\lambda x) = \min \{ |t| : \lambda x \in \tau A \}$ so that

$p_A(\lambda x) = q_A(\lambda x)^- = (|\lambda|q_A(x))^- = |\lambda|q_A(x)^- = |\lambda|p_A(x)$. For the proof of the strong triangle inequality (iii) we may assume $p_A(x+y) \neq 0$. We distinguish two cases.

(i) $p_A(x+y) \in (0,\infty)^-$. By Proposition 1 (ii) and $\pi \circ p_A = q_A$, from

$q_A(x+y) \leq q_A(x) \vee q_A(y)$

we obtain $p_A(x+y) = q_A(x+y)^- \leq q_A(x)^- \vee q_A(y)^- \leq p_A(x) \vee p_A(y)$.

(ii) $p_A(x+y) \in (0,\infty)$. Then the valuation of K is dense. Assume $p_A(y) \leq p_A(x)$. Suppose $p_A(x+y) > p_A(x)$; we derive a contradiction. There is a $\lambda \in K$ such that $p_A(x+y) \geq |\lambda| > p_A(x)$. (In fact, if $p_A(x) \neq p_A(x+y)^-$ then the interval $(p_A(x), p_A(x+y))$ contains infinitely many elements of $|K|$, if $p_A(x) = p_A(x+y)^-$ then $p_A(x+y) \in |K|$ and we may choose $\lambda \in K$ such that $|\lambda| = p_A(x+y)$. Then $p_A(\lambda^{-1}y) \leq p_A(\lambda^{-1}x) < 1$ so that $\lambda^{-1}y \in A$, $\lambda^{-1}x \in A$ and, by absolute convexity, also $\lambda^{-1}(x+y) \in A$ implying $p_A(x+y) < |\lambda|$, a contradiction.

§4. Hahn-Banach Theorem

For $a \in K$, $a \in V$ we write $B(a,a) = \{ \lambda \in K : |\lambda-a| \leq a \}$.

THEOREM 6. (Hahn-Banach Theorem) Let K be spherically complete, let p
be a distinguishing seminorm on a K-vector space E. Let D be a K-linear subspace of E, let $f : D \to K$ be a K-linear map satisfying $|f(d)| \leq p(d)$ ($d \in D$). Then f can be extended to a K-linear $\tilde{f} : E \to K$ such that $|\tilde{f}(x)| \leq p(x)$ ($x \in D$).

Proof. (It consists of checking that replacing of a seminorm by a distinguishing seminorm does not harm the well-known proof.) A simple application of Zorn's Lemma reduces the problem to the case $E = \{\lambda x + d : \lambda \in K, d \in D\}$ for some $x \in E \setminus D$. We are done if we can choose $\tilde{f}(x) = \xi \in K$ such that

$$|\lambda \xi + f(d)| \leq p(\lambda x + d) \quad (\lambda \in K, d \in D).$$

As this condition is satisfied for $\lambda = 0$ and all $d \in D$ and since for $\lambda \neq 0$

$$p(\lambda x + d) = |\lambda| p(x + \lambda^{-1}d)$$

$$|\lambda \xi + f(d)| = |\lambda| |\xi + f(\lambda^{-1}d)|$$

it suffices, by Proposition 1 (i) to produce a $\xi \in K$ such that

$$|\xi - f(d)| \leq p(x - d) \quad (d \in D),$$

i.e. we must have that

$$\n \cap_{d \in D} B(f(d), p(x-d)) \neq \emptyset.$$

By spherical completeness it suffices to show that for any $d_1, d_2 \in D$ we have $B(f(d_1), p(x-d_1)) \cap B(f(d_2), p(x-d_2)) \neq \emptyset$. But this follows easily from $|f(d_1) - f(d_2)| \leq p(d_1 - d_2) \leq p(d_1 - x) \vee p(x - d_2)$.

A typical application: let $\ell^\infty := \{(\xi_1, \xi_2, \ldots) : \xi_n \in K \text{ for all } n, \sup |\xi_n| < \infty\}$.

Let K be spherically complete. Then there is a linear function $g : \ell^\infty \to K$
of norm 1 such that (i) \(g((x_1, x_2, \ldots)) = \lim_{n \to \infty} x_n \) if \(\lim_{n \to \infty} x_n \) exists and
(ii) \(|g((x_1, x_2, \ldots))| < 1 \) if \(|x_n| < 1 \) for all \(n \in \mathbb{N} \).

(Proof: Choose in the above theorem \(D := c \) (the space of the convergent sequences), \(f((x_1, x_2, \ldots)) := \lim_{n \to \infty} (x_1, x_2, \ldots) \in c \), and \(p((x_1, x_2, \ldots)) := \sup |x_n| \), where the sup is taken in \(V \). Take \(g := f \).)

§5. Separation of convex sets

Throughout §5, let \(E \) be a locally convex space over \(K \). We shall need the following observation.

PROPOSITION 7. An open convex subset of \(E \) is closed.

Proof. Any convex set is a coset of an absolutely convex set.

An open absolutely convex set is the complement of a union of cosets.

Theorem 8. Let \(K \) be spherically complete. Let \(A \subset E \) be closed, absolutely convex and let \(x \in E \setminus A \). Then there exists an \(f \in E' \) such that \(|f(A)| < 1 \) and \(f(x) = 1 \).

Proof. There is an absolutely convex open neighbourhood \(U \) of 0 such that \((x+U) \cap A = \emptyset \). Then \(U+A \) is absolutely convex, open, hence closed (Proposition 7). Further, \(x \notin U+A \). Thus, we may assume that \(A \) is open and closed. Then \(A \) is absorbing. Let \(p_A \) be the distinguishing seminorm of \(A \), let \(D := \{\lambda x : \lambda \in K\} \) and define \(g : D \to K \) by \(g(\lambda x) := \lambda \) (\(\lambda \in K \)). Then \(g(x) = 1 \). Since

\[
A = \{y \in E : p_A(y) < 1\}
\]

(Theorem 5) and \(x \notin A \) we have \(p_A(x) \geq 1 \) so that for \(\lambda \in K \)

\[
p_A(\lambda x) = |\lambda| p_A(x) \geq |\lambda| = |g(\lambda x)|, \text{ i.e. } |g| \leq p_A \text{ on } D.
\]

By Theorem 6 \(g \) extends to a linear \(f : E \to K \) such that \(|f(y)| \leq p_A(y) \) for all \(y \in E \).
We have $f(x) = g(x) = 1$ and, for $y \in A$, $|f(y)| \leq p_A(y) < 1$. The continuity of f follows from the continuity of $\pi \circ p_A$ and the inequality $|f| \leq \pi \circ p_A$.

COROLLARY 9. Let K be spherically complete. Each closed convex set is weakly closed.

Let A, B be convex subsets of E. If $f : E \to K$ is a linear function then $f(A)$ and $f(B)$ are convex in K. Hence, if $f(A) \cap f(B) = \emptyset$ then $\text{dist}(f(A), f(B)) > 0$. With this in mind the following definition is quite natural.

DEFINITION 10. Two convex subsets A, B of E are separated by an $f \in E'$ if $f(A) \cap f(B) = \emptyset$.

If A and B are separated by $f \in E'$ then, since $\text{dist}(f(A), f(B)) > 0$ there is an open convex neighbourhood U of 0 such that $(A+U) \cap B = \emptyset$ (if E is a normed space this is equivalent to $\text{dist}(A,B) > 0$). To prove the converse we need spherical completeness.

THEOREM 11. Let K be spherically complete. Let A, B be convex subsets of E and suppose there is an open convex neighbourhood U of A such that $(A+U) \cap B = \emptyset$ (observe that this condition is satisfied if A is open).

Then A and B can be separated by some $f \in E'$.

Proof. We may assume that A is open. Let $C := A-B$. Then $0 \notin C$, and $C = U - (A-b)$ is open, convex. Choose $c \in -C$. Then $T := c + C$ is absolutely convex, open, hence closed and $c \notin T$. By Theorem 8 there is an $f \in E'$ such that $f(c) = 1$, $|f(T)| < 1$. Thus, for each $a \in A$, $b \in B$ we have

$$1 > |f(c + a - b)| = |1 + f(a) - f(b)|.$$

It follows that $|f(a) - f(b)| = 1$ for all $a \in A$, $b \in B$. In particular, $f(A) \cap f(B) = \emptyset$.
References.
