The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/57034

Please be advised that this information was generated on 2020-01-29 and may be subject to change.
NON-ARCHIMEDEAN MONOTONE FUNCTIONS

by Wilhem H. SCHIKHOFF (*)
[Kath. Univ., Nijmegen]

Introduction.

In the sequel, K is a non-archimedean, non-trivially valued field, that is complete under the metric induced by the valuation. The residue class field of K is denoted by k. X will always be a closed, non empty subset of K without isolated points (except in 2.2, if you want).

Since K admits no ordering in the usual sense it is not possible to define monotone functions X → K just by taking over the classical definitions. Thus, our procedure will be to try and find statements for functions R → R equivalent to monotony, and formulated in terms that are translatable to K. This way we will obtain several definitions of "f : X → K is monotone", that are, although not equivalent, closely related.

The connections between these various definitions and the properties of the non-archimedean monotone functions can be put together to form a little theory which is interesting in its own right, but of which the relations to the other parts of p-adic analysis are yet not very tight.

1. Monotone functions.

For a function f : R → R the following conditions are equivalent:

(a) f is monotone (in the non-strict sense),
(b) If C ⊆ R is convex then f⁻¹(C) is convex,
(c) If x is between y, z then f(x) is between f(y) and f(z).

Also, the following conditions are equivalent:

(a) f is strictly monotone,
(b) f is injective. If C ⊆ R is convex then f(C) is relatively convex in f(R),
(c) If f(x) is between f(y) and f(z) then x is between y and z.

Let x, y ∈ K. Then the smallest ball that contains x, y is denoted by [x, y]. z ∈ K is between x and y if z ∈ [x, y]. (If z ∉ [x, y], we

(*) Texte reçu le 12 mars 1979.
call x, y at the same side of z). A subset $C \subseteq K$ is called convex if $x, y \in C$, $z \in [x, y]$ implies $z \in C$. Each convex subset of K can be written in at least one of the following forms

$$\{x : |x - a| < r\}, \{x : |x - a| \leq r\}$$

for some $a \in K$, $r \in (0, \infty)$.

Let $Z \subseteq Y \subseteq K$. Then Z is called convex in Y if $Z = C \cap Y$, where C is convex.

With all these definitions we have the following theorem.

Theorem 1.1. Let $f : X \to K$. Then the following conditions are equivalent:

1. If $x, y, z \in X$, x is between y and z then $f(x)$ is between $f(y)$ and $f(z)$.

2. If $C \subseteq K$ is convex, then $f^{-1}(C)$ is convex in X.

We denote the collection of those $f : X \to K$ satisfying (1) or (2) by $M_b(X)$, i.e. $f \in M_b(X)$ if and only if, for each $x, y, z \in X$,

$$|x - y| \leq |y - z| \implies |f(x) - f(y)| \leq |f(y) - f(z)|.$$

Isometries are in M_b (viz. exp), but also non trivial locally constant functions (e.g., choose a center in each ball of radius $r > 0$, and let f be the map assigning to $x \in X$ the center of the ball of radius r to which x belongs. Then $f \in M_b(X)$).

Theorem 1.2. Let $f : X \to K$. Then the following conditions are equivalent

1. If $x, y, z \in X$, $f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z.

2. If $C \subseteq X$ is convex in X then $f(C)$ is convex in $f(X)$. f is injective.

We denote the collection of those $f : X \to K$ satisfying (1') or (2') by $M_s(X)$, i.e. $f \in M_s(X)$ if and only if, for each $x, y, z \in X$,

$$|x - y| < |y - z| \implies |f(x) - f(y)| < |f(y) - f(z)|.$$

The classical situations suggests the question as to whether $M_s(X) \subseteq M_b(X)$ and also whether $f \in M_b(X)$, f injective implies $f \in M_s(X)$. In general, both statements are false, but we do have the following:

Theorem 1.3. $f \in M_s(X)$ implies $f^{-1} \in M_b(f(X))$. $f \in M_b(X)$, f injective implies $f^{-1} \in M_s(f(X))$. If k is finite and X is convex, then an injective M_b-function is in $M_s(X)$.
So we are led to define $M_0(X) := M_b(X) \cap M_s(X)$ as being the more or less natural translation of "the space of the strictly monotone functions".

The following theorem concerns continuity of monotone functions. For a function $f : X \to K$, we define its oscillation function, ω_f, in the usual way:

$$\omega_f(a) := \lim_{n \to \infty} \sup \{|f(x) - f(y)| ; |x - a| \leq \frac{1}{n}, |y - a| \leq \frac{1}{n}\}$$

$$= \lim_{n \to \infty} \sup \{|f(x) - f(a)| ; |x - a| \leq \frac{1}{n}\} (a \in X).$$

f is continuous at a if, and only if, $\omega_f(a) = 0$.

Theorem 1.4. Let f be either in $M_b(X)$ or in $M_s(X)$. Then

(i) $\omega_f(a) = \inf_{z \neq a} |f(z) - f(a)|$ (a $\in X$)

(ii) f is bounded on compact subsets of X.

(iii) For each $a \in X$ we have the following alternative. Either f is continuous at a, or for each sequence x_1^a, x_2^a, \ldots ($x_n \neq a$) converging to a, the sequence $f(x_1^a), f(x_2^a), \ldots$ is bounded and has no convergent subsequence.

Let $g \in M_b(X)$. If $Y \subset X$ is spherically complete, then so is $g(Y)$.

Let $h \in M_s(X)$. If $Z \subset h(X)$ is spherically complete, then so is $h^{-1}(Z)$.

Proof (sketch). If $f \in M_b(X) \cup M_s(X)$, then:

$$|x - y| < |y - z| \text{ implies } |f(x) - f(y)| < |f(y) - f(z)|.$$

So f is locally bounded, and (ii) follows. Of (i), only the \leq part is interesting. Choose $z \neq a$. If $|x - a| < |z - a|$, then

$$|f(x) - f(z)| < |f(z) - f(a)| \text{ whence } \omega_f(a) \leq |f(z) - f(a)|.$$

Let $\lim x_n = a$ ($x_n \neq a$ for all n) and $\lim f(x_n) = \alpha$. Let $\lim y_n = a$. It suffices to show that $\lim f(y_n) = \alpha$. Indeed, let $\epsilon > 0$, and choose k such that $|f(x_k^a) - \alpha| < \epsilon$. Then $|y_n - a| < |x_k^a - a|$ for large n, so

$$|y_n - x_m| < |x_k^a - x_m|$$

for large n depending on m. Hence $|f(y_n) - f(x_n)| < \epsilon$, and we have (iii). The rest of the proof is straightforward.

Corollary 1.5. Let $f : X \to K$ be in $M_b(X) \cup M_s(X)$.

(i) If K is a local field, then f is continuous.

(ii) If $|K|$ is discrete, then $f \in M_b(X) \Rightarrow f$ is a homeomorphism $X \sim f(X)$,

and $f \in M_s(X) \Rightarrow f$ is a closed map.

(iii) The graph of f is closed in K^2.

(iv) If $f(X)$ has no isolated points, then f is continuous.
An M_b-function may be everywhere discontinuous on K (even when $|K|$ is discrete).

Theorem 1.6. Let B be the unit ball of K.

(i) If K is a local field and $f \in M_b(B) \cup M_s(B)$, then f has bounded difference quotients (i.e., there is $C > 0$ such that $|f(x) - f(y)| \leq C|x - y|$ for all $x, y \in B$). If, in addition, $f(B)$ is convex, then f is a similarity (i.e., a scalar multiple of an isometry).

(ii) If K has discrete valuation and $f \in M_b(B)$ is bounded, then f has bounded difference quotients. If $f \in M_{bs}(B)$ and if $f(B)$ is convex, then f is a similarity.

2. Monotone functions having a type.

In this section, we want to translate the usual classification of (strictly) monotone functions $\mathbb{R} \to \mathbb{R}$ into two types: the increasing and the decreasing functions. The equivalence relation in \mathbb{R}^r: $x \sim y$ if x and y are at the same side of 0, yields $(-\infty, 0)$ and $(0, \infty)$ as equivalence classes. The relation \sim is compatible with the canonical group homomorphism $\mathbb{R}^* \to \mathbb{R}^*/\mathbb{R}^+$, the latter group being $\{1, -1\}$. $\pi(x)$ (usually called $\text{sgn}(x)$) assigns $+1$ to every positive element and -1 to every negative element. A function $f: \mathbb{R} \to \mathbb{R}$ is strictly monotone if there exists $\sigma: \mathbb{R}^*/\mathbb{R}^+ \to \mathbb{R}^*/\mathbb{R}^+$ such that for all $x \neq y$,

$$
\pi(f(x) - f(y)) = \sigma(\pi(x - y)).
$$

If σ is the identity then f is called increasing; if $\sigma(1) = -1$, $\sigma(-1) = 1$, f is called decreasing. Other maps $\sigma: \{-1, 1\} \to \{-1, 1\}$ cannot occur (i.e., there is no f such that, for all $x \neq y$,

$$
\pi(f(x) - f(y)) = \sigma(\pi(x - y)).
$$

This rather weird description of real monotone functions can be used in the non-archimedean case.

For $x, y \in K^*$ define $x \sim y$ if x, y are at the same side of 0. This means: $0 \notin [x, y]$, or $|x - y| > |y|$, or $|xy^{-1} - 1| < 1$. Thus $x \sim y$ if, and only if, $xy^{-1} \in K^+$ where

$$
K^+ := \{x \in K : |1 - x| < 1\}.
$$

We call the elements of K^+ the positive element of K.

The relation \sim is compatible with the canonical homomorphism of (multiplicative) groups

$$
\pi: K^* \to K^*/K^+ =: \Sigma.
$$

We call Σ the group of signs and $\pi(x)$ the sign of an element $x \in K^*$ (x is
If \(K \) is a local field, we can make a group embedding \(\rho : \Sigma \rightarrow K^\times \) such that \(\pi \circ \rho \) is the identity on \(\Sigma \). For example, if \(K = \mathbb{Q}_p \), \(\delta \) is a primitive \((p - 1)\)th root of unity, then

\[
\pi\left(\sum_{n \geq k} a_n p^n\right) = a_k p^k \quad (k \in \mathbb{Z}, \ a_k \neq 0)
\]

(Here \(a_n \in \{0, 1, \delta, \ldots, \delta^{p-2}\} \) for each \(n \)).

Definition 2.1. Let \(\sigma : \Sigma \rightarrow \Sigma \) be any map. A function \(f : X \rightarrow K \) is monotone of type \(\sigma \) if, for all \(x, y \in X,~x \neq y \),

\[
\pi(f(x) - f(y)) = \sigma(\pi(x - y))
\]

(i.e., if \(x - y \in \alpha \in \Sigma \) then \(f(x) - f(y) \in \sigma(\alpha) \)).

We call \(f \) of type \(\beta \in \Sigma \) if \(f \) is of type \(\sigma \) where \(\sigma \) is the multiplication with \(\beta \), i.e.,

\[
\frac{f(x) - f(y)}{x - y} \in \beta \quad (x, y \in X, \ x \neq y).
\]

We call \(f \) increasing if \(f \) is of type \(\sigma \) where \(\sigma \) is the identity, i.e.,

\[
\frac{f(x) - f(y)}{x - y} \text{ is positive} \quad (x \neq y).
\]

Clearly, if \(f \) is of type \(\beta \), and if \(b \in \beta \), then \(b^{-1} f \) is increasing.

First, we look at increasing functions, then we discuss more general types \(\sigma \).

Notice that increasing functions are isometries hence are in \(M^+ (X) \). If \(f \) is increasing then \(f(x) = x + h(x) \), where \(|h(x) - h(y)| < |x - y| \) \((x, y \in X, x \neq y)\).

Such \(h \) we call pseudo-contractions.

Lemma 2.2. Let \(X \) be an ultrametric space. Then the following are equivalent

(a) \(X \) is spherically complete,

(b) Each pseudocontraction \(X \rightarrow X \) has a (unique) fixed point.

Proof (sketch). (a) \(\rightarrow \) (b). Let \(\sigma : X \rightarrow X \) be a pseudocontraction. A convex set \(C \subseteq X \) is called invariant if \(\sigma(C) \subseteq C \). It is easily proved that the invariant convex subsets of \(X \) form a nest. Let \(C_0 \) be the smallest invariant convex set. If \(a \in C_0 \) and \(\sigma(a) \neq a \) then

\[
B_0 := \{x \in X ; \ d(x, \sigma(a)) < d(a, \sigma(a))\}
\]

is invariant, convex, and does not contain \(a \). Hence \(\sigma(a) = a \) for all \(a \in C_0 \), and \(C_0 \) is a singleton. (b) \(\rightarrow \) (a). If \(B_1 \neq B_2 \neq \ldots \) are balls in \(X \) with \(\bigcap B_n = \emptyset \) then choose \(x_n \in B_n \setminus B_{n+1} \) \((n \in \mathbb{N})\). The map \(\sigma : X \rightarrow X \) defined by

\[
\sigma(x) = x_{n+1} \quad (x \in B_n \setminus B_{n+1})
\]

is a pseudocontraction without a fixed point.
COROLLARY 2.3. - Let \(X \) be convex, let \(K \) be spherically complete, and let \(f : X \to K \) be increasing. Then \(f(X) \) is convex. If \(f(X) \subseteq X \), then \(f \) is surjective.

Proof. - Let \(f(X) \subseteq X \). Choose \(\alpha \in X \). Then \(x \mapsto f(x) + x + \alpha \) is a pseudo-contraction mapping \(X \) into \(X \), hence has a fixed point. So \(f(x) = \alpha \) for some \(x \in X \).

If \(K \) is not spherically complete, we have always increasing \(f : K \to K \) that are not surjective. (Let \(h : K \to K \) be a pseudo-contraction without a fixed point. Let \(f(x) = x - h(x) \) \((x \in K)\), then \(0 \notin \text{im } f \). The inverse \(f^{-1} : f(K) \to K \) can, of course, not be extended to an increasing function \(K \to K \).

THEOREM 2.4. - Let \(K \) be spherically complete, and let \(f : X \to K \) be increasing. Then \(f \) can be extended to an increasing function \(K \to K \).

Proof. - By Zorn's Lemma, it suffices to extend \(f \) to an increasing function on \(X \cup \{a\} \), where \(a \notin X \). We are done if we can find \(\alpha \in K \) such that, for all \(x \in X \),

\[
\left| \frac{\alpha - f(x)}{a - x} - 1 \right| < 1
\]

i.e. \(\alpha \in B_{f(x)}-(a-x)|a-x|^{-1} \) for all \(x \in X \). These balls form a nest.

Let us call a function \(f : X \to K \) positive if \(f(X) \subseteq K^+ \).

THEOREM 2.5.

(i) If \(f : X \to K \) is increasing then \(f' \) is positive,

(ii) If \(g : X \to K \) is a positive Baire class one function, then \(g \) has an increasing antiderivative,

(iii) If \(g : X \to K \) is continuous and positive, then \(g \) has a \(C^1 \)-antiderivative,

(iv) If \(f \in C^1(X) \) and \(f' \) is positive then \(f = j + h \) where \(j \) is increasing, and \(h \) is locally constant.

EXAMPLES.

1° The exponential function (defined on its natural convergence region) is increasing.

2° Let \(f \in C(\mathbb{Z}_p) \), and let \(e_0 = \xi_{\mathbb{Z}_p} \), for \(n \in \mathbb{N} \),

\[
e_n(x) = \begin{cases} 1 & \text{if } |x - n| < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases} \quad (x \in \mathbb{Z}_p).
\]

Then \(e_0, e_1, \ldots \) form an orthonormal base of \(C(\mathbb{Z}_p) \), so there exist \(\lambda_0, \lambda_1, \ldots \in \mathbb{Q}_p \) such that \(f = \sum_{n=0}^{\infty} \lambda_n e_n \), uniformly.
f is increasing if, and only if, for all \(n \in \mathbb{N} \),

\[
|\lambda_n - \{n\}| < \{n\}
\]

(where, if \(n = a_0 + a_1 p + \ldots + a_k p^k \) (\(a_i \in \{0, 1, \ldots, p - 1\} \) for each \(i \), \(a_k \neq 0 \)), then \(\{n\} = a_k p^k \)).

In other words, \(f = \sum \lambda_n \in \mathcal{C}(\mathbb{Z}_p) \) is increasing if, and only if, \(\lambda_n/\{n\} \) is positive for all \(n \in \mathbb{N} \).

Let \(\alpha, \beta \in \Sigma \). If the set theoretic sum \(\alpha + \beta := \{x + y : x \in \alpha, y \in \beta\} \) does not contain 0 then \(\alpha + \beta \in \Sigma \), notation \(\alpha \oplus \beta \). It follows that \(\alpha \oplus \beta \) is defined if, and only if, \(\alpha \neq - \beta \).

If \(x, y \in \alpha \in \Sigma \) then \(|x| = |y| \). This defines \(|\alpha| \) in a natural way.

We have the following results.

THEOREM 2.6. Let \(f : K \to K \) be monotone of type \(\sigma : \Sigma \to \Sigma \). Let \(\alpha, \beta \in \Sigma \),

(i) \(\sigma(-\alpha) = -\sigma(\alpha) \),

(ii) If \(\sigma(\alpha) \oplus \sigma(\beta) \) is defined then so is \(\alpha \oplus \beta \) and \(\sigma(\alpha \oplus \beta) = \sigma(\alpha) \oplus \sigma(\beta) \),

(iii) \(|\alpha| < |\beta| \) implies \(|\sigma(\alpha)| < |\sigma(\beta)| \),

(iv) If \(|\beta| = 1 \), \(\beta \) contains an element of the prime field of \(K \) then \(\sigma(\beta) = \beta \sigma(\alpha) \),

(v) \(\sigma \in \mathcal{M}_a(K) \),

(vi) \(f \) is either nowhere continuous or uniformly continuous.

THEOREM 2.7. Let \(f : K \to K \) be monotone of type \(\sigma : \Sigma \to \Sigma \). Then the following conditions are equivalent,

(a) \(\sigma \) is injective,

(b) \(f \in \mathcal{K}_b(\Sigma) \),

(c) If for some \(\alpha, \beta \in \Sigma \), \(\alpha \oplus \beta \) is defined, then so is \(\sigma(\alpha) \oplus \sigma(\beta) \),

(d) \(|\sigma(\alpha)| < |\sigma(\beta)| \) implies \(|\alpha| < |\beta| \) (\(\alpha, \beta \in \Sigma \)).

COROLLARY 2.8. Let \(k \) be a prime field, and let \(f : K \to K \) be monotone of type \(\sigma : \Sigma \to \Sigma \). Then \(\sigma \) is injective.

(If \(K = \mathbb{Q}_p(\sqrt{-1}) \), \(p = 3 \mod 4 \), we can find an example of an \(f : K \to K \) monotone of type \(\sigma \), where \(\sigma \) is not injective).

EXAMPLE 2.9. Let \(K = \mathbb{Q}_p \). Then

\(\{\sigma : \Sigma \to \Sigma : \text{there is } f : \mathbb{Q}_p \to \mathbb{Q}_p, f \text{ monotone of type } \sigma\} \)
consists of all \(\sigma : \Sigma \rightarrow \Sigma \) of the form
\[
\delta^i_p \rightarrow s^i \delta^{s(n)}_p \lambda(n)
\]
where \(s : \mathbb{Z} \rightarrow \{0, 1, 2, \ldots, p - 2\} \) and \(\lambda : \mathbb{Z} \rightarrow \mathbb{Z} \) is strictly increasing.

3. Functions of bounded variation.

Lemma 3.1. - Let \(f : X \rightarrow K \) have bounded difference quotients. Then \(f \) is a linear combination of two increasing functions.

Proof. - Choose \(\lambda \in K \),
\[
|\lambda| > \sup \left\{ \frac{f(x) - f(y)}{x - y}; x \neq y \right\}.
\]
Then \(\lambda^{-1} f \) is a (pseudo-) contraction, so \(g(x) := -x + \lambda^{-1} f(x) \) \((x \in X)\) is increasing. If \(h(x) := x \) \((x \in X)\), then \(\lambda h + \lambda g = f \).

Corollary 3.2. - Let \(X \) be the unit ball of a local field \(K \) and let \(f : X \rightarrow K \). Then the following are equivalent

(a) \(f \in BA(X) \) (i.e., \(\sup \{\frac{f(x) - f(y)}{x - y}; x \neq y\} < \infty \)),

(b) \(f \) is a linear combination of two increasing functions,

(\(\gamma \)) \(f \in \mathbb{M}_s(X) \),

(\(\delta \)) \(f \in \mathbb{M}_b(X) \).

Proof. - Use 1.6.

References
