Introduction.

In the sequel, K is a non-archimedean, non-trivially valued field, that is complete under the metric induced by the valuation. The residue class field of K is denoted by k. X will always be a closed, non-empty subset of K without isolated points (except in 2.2, if you want).

Since K admits no ordering in the usual sense it is not possible to define monotone functions $X \to K$ just by taking over the classical definitions. Thus, our procedure will be to try and find statements for functions $\mathbb{R} \to \mathbb{R}$ equivalent to monotony, and formulated in terms that are translatable to K. This way we will obtain several definitions of "$f : X \to K$ is monotone", that are, although not equivalent, closely related.

The connections between these various definitions and the properties of the non-archimedean monotone functions can be put together to form a little theory which is interesting in its own right, but of which the relations to the other parts of p-adic analysis are yet not very tight.

1. Monotone functions.

For a function $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent:

(a) f is monotone (in the non-strict sense),

(b) If $C \subset \mathbb{R}$ is convex then $f^{-1}(C)$ is convex,

(c) If x is between y, z then $f(x)$ is between $f(y)$ and $f(z)$.

Also, the following conditions are equivalent:

(a) f is strictly monotone,

(b) f is injective. If $C \subset \mathbb{R}$ is convex then $f(C)$ is relatively convex in $f(\mathbb{R})$,

(c) If $f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z.

Let $x, y \in K$. Then the smallest ball that contains x, y is denoted by $[x, y]$. $z \in K$ is between x and y if $z \in [x, y]$. (If $z \notin [x, y]$, we
call x, y at the same side of z). A subset $C \subset K$ is called convex if $x, y \in C$, $z \in [x, y]$ implies $z \in C$. Each convex subset of K can be written in at least one of the following forms

$$\{x : |x - a| < r\}, \{x : |x - a| \leq r\}$$

for some $a \in K$, $r \in (0, \infty)$.

Let $Z \subset Y \subset K$. Then Z is called convex in Y if $Z = C \cap Y$, where C is convex.

With all these definitions we have the following theorem.

Theorem 1.1. Let $f : X \to K$. Then the following conditions are equivalent:

1. If $x, y, z \in X$, x is between y and z then $f(x)$ is between $f(y)$ and $f(z)$,
2. If $C \subset K$ is convex, then $f^{-1}(C)$ is convex in X.

We denote the collection of those $f : X \to K$ satisfying (1) or (2) by $\mathcal{M}_b(X)$, i.e., $f \in \mathcal{M}_b(X)$ if, and only if, for each $x, y, z \in X$,

$$|x - y| \leq |y - z| \text{ implies } |f(x) - f(y)| \leq |f(y) - f(z)|.$$

Isometries are in \mathcal{M}_b (viz. exp), but also non trivial locally constant functions (e.g., choose a center in each ball of radius $r > 0$, and let f be the map assigning to $x \in X$ the center of the ball of radius r to which x belongs. Then $f \in \mathcal{M}_b(X)$).

Theorem 1.2. Let $f : X \to K$. Then the following conditions are equivalent:

1'. If $x, y, z \in X$, $f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z,
2'. If $C \subset X$ is convex in X then $f(C)$ is convex in $f(X)$. f is injective.

We denote the collection of those $f : X \to K$ satisfying (1') or (2') by $\mathcal{M}_s(X)$, i.e., $f \in \mathcal{M}_s(X)$ if, and only if, for each $x, y, z \in X$,

$$|x - y| < |y - z| \text{ implies } |f(x) - f(y)| < |f(y) - f(z)|.$$

The classical situations suggests the question as to wether $\mathcal{M}_s(X) \subset \mathcal{M}_b(X)$ and also wether $f \in \mathcal{M}_b(X)$, f injective implies $f \in \mathcal{M}_s(X)$. In general, both statements are false, but we do have the following:

Theorem 1.3. $f \in \mathcal{M}_s(X)$ implies $f^{-1} \in \mathcal{M}_b(f(X))$. $f \in \mathcal{M}_b(X)$, f injective implies $f^{-1} \in \mathcal{M}_s(f(X))$. If k is finite and X is convex, then an injective \mathcal{M}_b-function is in $\mathcal{M}_s(X)$.
So we are led to define $M_b(X) := M_b(X) \cap M_s(X)$ as being the more or less natural translation of "the space of the strictly monotone functions".

The following theorem concerns continuity of monotone functions. For a function $f : X \to K$, we define its oscillation function, ω_f, in the usual way:

$$\omega_f(a) := \lim_{n \to \infty} \sup \{|f(x) - f(y)| ; |x - a| \leq \frac{1}{n}; |y - a| \leq \frac{1}{n}\}$$

$$= \lim_{n \to \infty} \sup \{|f(x) - f(a)| ; |x - a| \leq \frac{1}{n}\} \quad (a \in X).$$

f is continuous at a if, and only if, $\omega_f(a) = 0$.

Theorem 1.4. Let f be either in $M_b(X)$ or in $M_s(X)$. Then

(i) $\omega_f(a) = \inf_{a \neq z} |f(z) - f(a)| \quad (a \in X)$

(ii) f is bounded on compact subsets of X,

(iii) For each $a \in X$ we have the following alternative. Either f is continuous at a, or for each sequence x_1, x_2, \ldots ($x_n \neq a$) converging to a, the sequence $f(x_1), f(x_2), \ldots$ is bounded and has no convergent subsequence.

Let $g \in M_b(X)$. If $Y \subseteq X$ is spherically complete, then so is $g(Y)$.

Let $h \in M_s(X)$. If $Z \subseteq h(X)$ is spherically complete, then so is $h^{-1}(Z)$.

Proof (sketch). If $f \in M_b(X) \cup M_s(X)$, then:

$$|x - y| < |y - z| \text{ implies } |f(x) - f(y)| \leq |f(y) - f(z)|.$$

So f is locally bounded, and (ii) follows. Of (i), only the \leq part is interesting. Choose $z \neq a$. If $|x - a| < |z - a|$, then

$$|f(x) - f(a)| \leq |f(z) - f(a)| \quad \text{whence } \omega_f(a) \leq |f(z) - f(a)|.$$

Let $\lim x_n = a \quad (x_n \neq a \text{ for all } n)$ and $\lim f(x_n) = \alpha$. Let $\lim y_n = a$. It suffices to show that $\lim f(y_n) = \alpha$. Indeed, let $\varepsilon > 0$, and choose k such that $|f(x_k) - \alpha| < \varepsilon$. Then $|y_n - a| < |x_k - a|$ for large n, so

$$|y_n - x_m| < |x_k - x_m|$$

for large n depending on m. Hence $|f(y_n) - f(x_n)| \leq |f(x_k) - f(x_m)|$, so

$$|f(y_n) - \alpha| \leq |f(x_k) - \alpha| < \varepsilon,$$

and we have (iii). The rest of the proof is straightforward.

Corollary 1.5. Let $f : X \to K$ be in $M_b(X) \cup M_s(X)$.

(i) If K is a local field, then f is continuous.

(ii) If $|K|$ is discrete, then $f \in M_b(X) \Rightarrow f$ is a homeomorphism $X \to f(X)$, and $f \in M_s(X) \Rightarrow f$ is a closed map.

(iii) The graph of f is closed in K^2.

(iv) If $f(X)$ has no isolated points, then f is continuous.
An M^*_b-function may be everywhere discontinuous on K (even when $|K|$ is discrete).

THEOREM 1.6. - Let B be the unit ball of K,

(i) If K is a local field and $f \in M^*_b(B) \cup M^*_s(B)$, then f has bounded difference quotients (i.e. there is $C > 0$ such that $|f(x) - f(y)| \leq C|x - y|$ for all $x \in B$). If, in addition, $f(B)$ is convex, then f is a similarity (i.e., a scalar multiple of an isometry).

(ii) If K has discrete valuation and $f \in M^*_b(B)$ is bounded, then f has bounded difference quotients. If $f \in M^*_b(B)$ and if $f(B)$ is convex, then f is a similarity.

2. Monotone functions having a type.

In this section, we want to translate the usual classification of (strictly) monotone functions $\mathbb{R} \to \mathbb{R}$ into two types: the increasing and the decreasing functions. The equivalence relation in \mathbb{R}_r: $x \sim y$ if x and y are at the same side of 0, yields $(-\infty, 0)$ and $(0, \infty)$ as equivalence classes. The relation \sim is compatible with the canonical group homomorphism $\mathbb{R}_r \to \mathbb{R}_r^*/\mathbb{R}_r^+$, the latter group being $\{1, -1\}$. $\pi(x)$ (usually called $\text{sgn}(x)$) assigns +1 to every positive element and −1 to every negative element. A function $f : \mathbb{R} \to \mathbb{R}$ is strictly monotone if there exists $\sigma : \mathbb{R}_r^*/\mathbb{R}_r^+ \to \mathbb{R}_r^*/\mathbb{R}_r^+$ such that for all $x \neq y$

$$\pi(f(x) - f(y)) = \sigma(\pi(x - y)).$$

If σ is the identity then f is called increasing; if $\sigma(1) = -1$, $\sigma(-1) = 1$, f is called decreasing. Other maps $\sigma : [-1, 1] \to [-1, 1]$ cannot occur (i.e., there is no f such that, for all $x \neq y$,

$$\pi(f(x) - f(y)) = \sigma(\pi(x - y)).$$

This rather weird description of real monotone functions can be used in the non-archimedian case.

For $x, y \in K^*$ define $x \sim y$ if x, y are at the same side of 0. This means: $0 \not\in [x, y]$, or $|x - y| > |y|$, or $|xy^{-1} - 1| < 1$. Thus $x \sim y$ if, and only if, $xy^{-1} \in K^+$ where

$$K^+ := \{x \in K; |1 - x| < 1\}.$$

We call the elements of K^+ the positive element of K.

The relation \sim is compatible with the canonical homomorphism of (multiplicative) groups

$$\pi : K^* \to K^*/K^+ =: \Sigma.$$

We call Σ the group of signs and $\pi(x)$ the sign of an element $x \in K^*$ (x is
positive if, and only if, \(n(x) = 1 \).

If \(K \) is a local field, we can make a group embedding \(\rho : \Sigma \rightarrow K^* \) such that \(\pi \circ \rho \) is the identity on \(\Sigma \). For example, if \(K = \mathbb{Q}_p \), \(\delta \) is a primitive \((p - 1)\)th root of unity, then

\[
\pi(\sum_{n \geq 0} a_n p^n) = a_k p^k \quad (k \in \mathbb{Z}, \quad a_k \neq 0)
\]

(Here \(a_n \in \{0, 1, \delta, \ldots, \delta^{p-2}\} \) for each \(n \)).

Definition 2.1. Let \(\sigma : \Sigma \rightarrow \Sigma \) be any map. A function \(f : X \rightarrow K \) is monotone of type \(\sigma \) if, for all \(x, y \in X \), \(x \neq y \),

\[
\pi(f(x) - f(y)) = \sigma(\pi(x - y))
\]

(i.e., if \(x - y \in \alpha \in \Sigma \) then \(f(x) - f(y) \in \sigma(\alpha) \)).

We call \(f \) of type \(\beta \in \Sigma \) if \(f \) is of type \(\sigma \) where \(\sigma \) is the multiplication with \(\beta \), i.e.,

\[
\frac{f(x) - f(y)}{x - y} \in \beta \quad \text{for} \quad (x, y \in X, \ x \neq y).
\]

We call \(f \) increasing if \(f \) is of type \(\sigma \) where \(\sigma \) is the identity, i.e.,

\[
\frac{f(x) - f(y)}{x - y} \text{ is positive} \quad (x \neq y).
\]

Clearly, if \(f \) is of type \(\beta \), and if \(b \in \beta \), then \(b^{-1} f \) is increasing.

First, we look at increasing functions, then we discuss more general types \(\sigma \).

Notice that increasing functions are isometries hence are in \(K_{bs}(X) \). If \(f \) is increasing then \(f(x) = x + h(x) \), where \(|h(x) - h(y)| < |x - y| \) \((x, y \in X, \ x \neq y)\).

Such \(h \) we call pseudo-contractions.

Lemma 2.2. Let \(X \) be an ultrametric space. Then the following are equivalent

(a) \(X \) is spherically complete,

(b) Each pseudocontraction \(X \rightarrow X \) has a (unique) fixed point.

Proof (sketch). - (a) \(\rightarrow \) (b). Let \(\sigma : X \rightarrow X \) be a pseudocontraction. A convex set \(C \subseteq X \) is called invariant if \(\sigma(C) \subseteq C \). It is easily proved that the invariant convex subsets of \(X \) form a nest. Let \(C_0 \) be the smallest invariant convex set. If \(a \in C_0 \) and \(\sigma(a) \neq a \) then

\[
B_0 := \{x \in X; \ d(x, \sigma(a)) < d(a, \sigma(a))\}
\]

is invariant, convex, and does not contain \(a \). Hence \(\sigma(a) = a \) for all \(a \in C_0 \), and \(C_0 \) is a singleton. (b) \(\rightarrow \) (a). If \(B_1 \neq B_2 \neq \ldots \) are balls in \(X \) with \(\cap B_n = \emptyset \) then choose \(x_n \in B_n \setminus B_{n+1} \) \((n \in \mathbb{N})\). The map \(\sigma : X \rightarrow X \) defined by

\[
\sigma(x) = x_{n+1} \quad (x \in B_n \setminus B_{n+1})
\]

is a pseudocontraction without a fixed point.
COROLLARY 2.3. - Let X be convex, let K be spherically complete, and let $f : X \to K$ be increasing. Then $f(X)$ is convex. If $f(X) \subset X$, then f is surjective.

Proof. - Let $f(x) \subset X$. Choose $\alpha \in X$. Then $x \mapsto f(x) + x + \alpha$ is a pseudocontraction mapping X into X, hence has a fixed point. So $f(x) = \alpha$ for some $x \in X$.

If K is not spherically complete, we have always increasing $f : K \to K$ that are not surjective. (Let $h : K \to K$ be a pseudocontraction without a fixed point. Let $f(x) = x - h(x)$ $(x \in K)$, then $0 \not\in f'$. The inverse $f^{-1} : f(K) \to K$ can, of course, not be extended to an increasing function $K \to K$.

THEOREM 2.4. - Let K be spherically complete, and let $f : X \to K$ be increasing. Then f can be extended to an increasing function $K \to K$.

Proof. - By Zorn's Lemma, it suffices to extend f to an increasing function on $X \cup \{a\}$, where $a \not\in X$. We are done if we can find $\alpha \in K$ such that, for all $x \in X$,

$$|\alpha - f(x) - 1| < 1$$

i.e. $\alpha \in B_{f(x)}(a-x)(|a-x|)$ for all $x \in X$. These balls form a nest.

Let us call a function $f : X \to K$ positive if $f(X) \subset K^+$.

THEOREM 2.5.

(i) If $f : X \to K$ is increasing then f' is positive,

(ii) If $g : X \to K$ is a positive Baire class one function, then g has an increasing antiderivative,

(iii) If $g : X \to K$ is continuous and positive, then g has a C^1-antiderivative,

(iv) If $f \in C^1(X)$ and f' is positive then $f = j + h$ where j is increasing, and h is locally constant.

EXAMPLES.

1° The exponential function (defined on its natural convergence region) is increasing.

2° Let $f \in C(\mathbb{Z}_p)$, and let $e_0 = \xi_{\mathbb{Z}_p}$, for $n \in \mathbb{N}$,

$$e_n(x) = \begin{cases} 1 & \text{if } |x - n| < \frac{1}{n} \\ 0 & \text{elsewhere} \end{cases} \quad (x \in \mathbb{Z}_p).$$

Then e_0, e_1, \ldots form an orthonormal base of $C(\mathbb{Z}_p)$, so there exist $\lambda_0, \lambda_1, \ldots \in \mathbb{Q}_p$ such that $f = \sum_{n=0}^{\infty} \lambda_n e_n$, uniformly.
The function f is increasing if, and only if, for all $n \in \mathbb{N}$,
$$|\lambda_n - \{n\}| < \{n\}$$
(where, if $n = a_0 + a_1 p + \cdots + a_k p^k$ ($a_i \in \{0, 1, \ldots, p-1\}$ for each i, $a_k \neq 0$), then $\{n\}_I = a_k p^k$).

In other words, $f = \sum \lambda_n e_n \in C(\mathbb{Z}_p)$ is increasing if, and only if, $\lambda_n/[n]$ is positive for all $n \in \mathbb{N}$.

Let $\alpha, \beta \in \Sigma$. If the set theoretic sum $\alpha + \beta := \{x + y ; x \in \alpha, y \in \beta\}$ does not contain 0 then $\alpha + \beta \in \Sigma$, notation $\alpha \oplus \beta$. It follows that $\alpha \oplus \beta$ is defined if, and only if, $\alpha \neq -\beta$.

If $x, y \in \alpha \in \Sigma$ then $|x| = |y|$. This defines $|\alpha|$ in a natural way.

We have the following results.

Theorem 2.6. Let $f : K \rightarrow K$ be monotone of type $\sigma : \Sigma \rightarrow \Sigma$. Let $\alpha, \beta \in \Sigma$,

(i) $\sigma(-\alpha) = -\sigma(\alpha)$,

(ii) If $\sigma(\alpha) \oplus \sigma(\beta)$ is defined then so is $\alpha \oplus \beta$ and $\sigma(\alpha \oplus \beta) = \sigma(\alpha) \oplus \sigma(\beta)$,

(iii) $|\alpha| < |\beta|$ implies $|\sigma(\alpha)| < |\sigma(\beta)|$,

(iv) If $|\beta| = 1$, β contains an element of the prime field of K then $\sigma(\beta \alpha) = \beta \alpha$.

(v) $f \in M_b(K)$,

(vi) f is either nowhere continuous or uniformly continuous.

Theorem 2.7. Let $f : K \rightarrow K$ be monotone of type $\sigma : \Sigma \rightarrow \Sigma$. Then the following conditions are equivalent,

(a) σ is injective,

(b) $f \in M_b(x)$,

(c) If for some $\alpha, \beta \in \Sigma$ and $\alpha \oplus \beta$ is defined, then so is $\sigma(\alpha) \oplus \sigma(\beta)$,

(d) $|\sigma(\alpha)| < |\sigma(\beta)|$ implies $|\alpha| < |\beta|$ ($\alpha, \beta \in \Sigma$).

Corollary 2.8. Let K be a prime field, and let $f : K \rightarrow K$ be monotone of type $\sigma : \Sigma \rightarrow \Sigma$. Then σ is injective.

(If $K = Q_p(\sqrt{-1})$, $p = 3 \mod 4$, we can find an example of an $f : K \rightarrow K$ monotone of type σ, where σ is not injective).

Example 2.9. Let $K = Q_p$. Then

$$\{\sigma : \Sigma \rightarrow \Sigma : \text{there is } f : Q_p \rightarrow Q_p, f \text{ monotone of type } \sigma\}$$
consists of all \(\sigma : \Sigma \to \Sigma \) of the form
\[
\delta^i \delta^p \to \delta^i \delta^p \lambda(n)
\]
where \(s : \mathbb{Z} \to \{0, 1, 2, \ldots, p-2\} \) and \(\lambda : \mathbb{Z} \to \mathbb{Z} \) is strictly increasing.

3. Functions of bounded variation.

Lemma 3.1. Let \(f : X \to K \) have bounded difference quotients. Then \(f \) is a linear combination of two increasing functions.

Proof. Choose \(\lambda \in K \),
\[
|\lambda| > \sup \{|f(x) - f(y)| / (x - y) ; \ x \neq y\}.
\]
Then \(\lambda^{-1} f \) is a (pseudo-) contraction, so \(g(x) := -x + \lambda^{-1} f(x) \) \((x \in X) \) is increasing. If \(h(x) := x \) \((x \in X) \), then \(\lambda h + \lambda g = f \).

Corollary 3.2. Let \(X \) be the unit ball of a local field \(K \) and let \(f : X \to K \). Then the following are equivalent

(a) \(f \in \text{BA}(X) \) \((i.e., \ \sup \{|f(x) - f(y)| / (x - y) ; \ x \neq y\} < \infty) \),

(\(\beta \)) \(f \) is a linear combination of two increasing functions,

(\(\gamma \)) \(f \in \text{B}_{g}(X) \),

(\(\delta \)) \(f \in \text{B}_{g}(X) \).

Proof. Use 1.6.

References
