Abstract of the lecture

NON - ARCHIMEDEAN DIFFERENTIATION

held on Tuesday, June 5, 1979 at the "VI Jornadas de Matemáticas Hispano-Lusas" organized by the University of SANTANDER,

by

W.H. Schikhof

§ 1. Introduction.

The subject is part of the so-called non-archimedean (or ultrametric) analysis. Roughly speaking, one may say that this is the analysis that one obtains when replacing in the "classical" analysis IR or C by a non-archimedean valued field K.

A non-archimedean valued field is a (commutative) field K, together with a map \(| \cdot | : K \to \mathbb{R} \) (the valuation) satisfying

\[
|a| \geq 0 \quad , \quad |a| = 0 \text{ iff } a = 0 \\
|ab| = |a| |b| \\
|a+b| \leq \max(|a|, |b|) \quad \text{(the strong triangle inequality)}
\]

for all \(a, b \in K \).

We have the following remarks.

(1) Apart from IR or C, every complete valued field is non-archimedean.

(2) If \(K \) is a non-archimedean valued field and if \(L \supset K \) is an over-field of \(K \) then the valuation on \(K \) can be extended to a non-archimedean valuation on \(L \).

(3) If \(K \) is a (non-archimedean) valued field then its completion \(\hat{K} \) (with respect to the metric \((x,y) \mapsto |x-y| \)) can, in a natural
way, be given the structure of a non-archimedean valued field.

In the sequel we exclude the so-called **trivial** valuation given by

\[|x|' = \begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } x \neq 0.
\end{cases} \]

The non-archimedean analysis has several branches, similar to the classical analysis. Thus we have non-archimedean functional analysis, harmonic analysis, theory of analytic functions in one or several variables, etc.

In this talk we consider a more elementary subject, namely **infinitesimal calculus** in K. More specifically, we want to see what remains of the so-called **Fundamental Theorem of Calculus** (in \mathbb{R}) that states that the operations of differentiation and integration are in some sense each others inverses.

§ 2. **Differentiation in K**. Let $X \subset K$ be a subset without isolated points. A function $f : X \to K$ is called **differentiable** if for all $a \in X$

\[f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

exists. The proof of the well known rules (sum-, product-, chain-rule) can formally be taken over from the classical theory. Thus, a rational function is differentiable if it has no poles on X. An analytic function $x \mapsto \sum a_n x^n$ is differentiable on

\[\{ x : |x| < \left(\lim \sqrt[n]{|a_n|} \right)^{-1} \} . \]

Deviations from the classical theory appear when we look at the functions whose derivative vanishes everywhere. For example,
let $\epsilon > 0$, $a \in K$. Then $B(a,\epsilon) := \{x \in K : |x-a| < \epsilon\}$ is an open-
and-closed subset of K, hence $\xi_{B(a,\epsilon)}$, defined by

$$\xi_{B(a,\epsilon)}(x) := \begin{cases} 1 & \text{if } x \in B(a,\epsilon) \\ 0 & \text{elsewhere} \end{cases}$$

is differentiable and $\xi'_{B(a,\epsilon)} = 0$.

Locally constant functions all have derivative zero. On the other
hand they form a uniformly dense subset of $C(X)$, the space of all
continuous functions: $X \to K$.

Even worse: let \mathbb{Q}_p the field of the p-adic numbers and let
$\mathbb{Z}_p := \{x \in \mathbb{Q}_p : |x| \leq 1\}$. Then the function $f : \mathbb{Z}_p \to \mathbb{Q}_p$ defined by

$$f(\Sigma a_n p^n) = \Sigma a_n p^{2n} \quad (\Sigma a_n p^n \in \mathbb{Z}_p)$$

satisfies $|f(x)-f(y)| = |x-y|^2$ for all $x,y \in \mathbb{Z}_p$. So $f' = 0$ but f
is injective, hence not locally constant.

The above example shows also that a Mean Value Theorem is necessa-
ry absent in our theory.

Notice that the difficulties encountered above also appear when we
study differentiability of functions $f : \mathbb{D} \to \mathbb{R}$, where $\mathbb{D} \subset [0,1]$
is the Cantor set. So it is the domain of f that is responsible
for the troubles rather than its range.

§ 3. Continuously differentiable functions.

If we follow naively the path of the classical analysis and define

$$C^1(X) := \{f : X \to K, f \text{ is differentiable, } f' \text{ is continuous}\}$$

then we run up against difficulties.

First of all, one can prove that $C^1(\mathbb{Z}_p)$ (with the norm
$f \mapsto \max(|f|_\infty, |f'|_\infty)$ is not a Banach space. In fact one shows that for every pair of continuous functions $f, g : \mathbb{Z}_p \to \mathbb{Q}_p$ there exists a sequence f_1, f_2, \ldots in $C^1(\mathbb{Z}_p)$ for which both $f_n \to f$ and $f'_n \to g$ uniformly.

What is worse, we have no local invertibility theorem for such C^1-functions.

In fact, let $f : \mathbb{Z}_p \to \mathbb{Q}_p$ be defined by

$$f(x) = \begin{cases} x-p^{-2n} & \text{if } |x-p^n| < p^{-2n} \quad (n \in \mathbb{N}) \\ x & \text{elsewhere} \end{cases}$$

Then $f'(x) = 1$ for all $x \in \mathbb{Z}_p$. But $f(p^n) = f(p^n - p^{2n})$ for all $n \in \mathbb{N}$, so f is not even locally injective at 0.

Therefore we are led to define:

Let $f : X \to K$. Put

$$\Phi f(x,y) := \frac{f(x)-f(y)}{x-y} \quad (x,y \in X, x \neq y).$$

We say that $f \in C^1(X)$ if Φf can continuously be extended to a function $\bar{\Phi} f : X \times X \to K$.

Then $BC^1(X) := \{f \in C^1(X) : f$ and Φf are bounded$\}$ is a Banach space under $f \mapsto \|f\|_1 := \max(\|f\|_\infty, \|\Phi f\|_\infty)$.

Further, if $f \in C^1(X)$, $f'(a) \neq 0$ for some $a \in X$, then f has a C^1-inverse, locally at a.

Theorem. Differentiation is a continuous surjection $BC^1(X) \overset{D}{\to} BC(X)$.

(here $BC(X)$ is the space of all bounded continuous functions with the supremum norm)

§ 4. "Integration".

Next, we want to define an "indefinite integral" $P : BC(X) \to BC^1(X)$.
(an analogue of \((Pf)(x) := \int_0^X f(t)dt\) for real functions) such that \(DP\) is the identity on \(BC(X)\).

A natural try is first to find an analogue of the Lebesgue measure in \(K\). But this turns out to be a dead end road. For example if \(K = \mathbb{Q}_p\) there does not exist a nonzero translation invariant bounded additive \(\mathbb{Q}_p\)-valued function \(m\) defined on the compact open subsets of \(\mathcal{D}\). (By translation invariance
\[|m(p^n\mathcal{D})| = p^n |m(\mathcal{D})| \to \infty \text{ if } m(\mathcal{D}) \neq 0.\] For similar reasons it goes wrong for every local field \(K\).

Following the ideas of Dieudonné, Treiber, we define for
\[f \in BC(X) \]
\[(Pf)(x) := \sum_{n=1}^{\infty} f(x_n)(x_{n+1} - x_n) \quad (x \in X) \]
Here the \(x_n\) are defined as follows. For each \(n \in \mathbb{N}\) the equivalence relation \(\sim_n\) defined by \(x \sim_n y\) if \(|x-y| < \frac{1}{n}\) yields a partition of \(X\) into balls. Choose a center in each ball and let \(R_n\) be the set of these centers.
For each \(x \in X\) and \(n \in \mathbb{N}\), \(x_n\) is defined by \(x_n \in R_n, |x_n - x| < \frac{1}{n}\).

Theorem. (A NON-ARCHIMEDEAN FORM OF THE FUNDAMENTAL THEOREM).
\(P\) is a linear isometry of \(BC(X)\) into \(BC^1(X)\). \(DP\) is the identity on \(BC(X)\), whereas \(PD\) is a projection of \(BC^1(X)\) onto a complement of \(\{f \in BC^1(X) : f' = 0\}\).

§ 5. Generalizations of the Fundamental Theorem.

We may ask whether there exists some form of the Fundamental Theorem for functions belonging to spaces, larger than \(BC(X), BC^1(X)\).
respectively. (For example, compare the classical theorem on L^1-functions versus absolutely continuous functions).

We have the following striking fact that has no counterpart in classical analysis. We say that $g : X \to \mathbb{K}$ is of the first class of Baire if there exists a sequence g_1, g_2, \ldots of continuous functions $X \to \mathbb{K}$ such that $\lim g_n = g$ pointwise.

THEOREM. (a) Let $f : X \to \mathbb{K}$ be differentiable. Then f' is of the first class of Baire.

(b) Let $g : X \to \mathbb{K}$ be of the first class of Baire. Then g has an antiderivative.

Let $B^1(X)$ be the Banach space consisting of all bounded functions $X \to \mathbb{K}$ of the first class of Baire with respect to the supremum norm.

Let $BD(X)$ be the Banach space of all differentiable $f : X \to \mathbb{K}$ for which both f and ϕf are bounded, with respect to the norm $f + \|f\|_\infty \vee \|\phi f\|_\infty$. Then we have

THEOREM. Differentiation is a quotient map $BD(X) \overset{D}{\to} B^1(X)$. If X has discrete valuation then there exists a continuous linear $P : B^1(X) \to BD(X)$ for which DP is the identity on $B^1(X)$.

Notes.

1. The construction of the above P is awful and, contrary to § 4, P does not resemble an indefinite integral in any way.

2. If the valuation of X is dense the existence of such a P is still an open question.
5.6. **Restriction of the Fundamental Theorem.**

In classical analysis, we have that if \(f \in C^n \) then
\[
x \mapsto \int_0^x f(t) \, dt
\]
is in \(C^{n+1} \). In our situation we define for \(f : X \to K \):
\(f \in C^2(X) \) if the function \(\Phi_2 f \), defined by
\[
\Phi_2 f(x,y,z) = \frac{\Phi_1 f(x,z) - \Phi_1 f(y,z)}{x-y}
\]

\((x,y,z) \in X, x \neq y, y \neq z, x \neq z)\)
can continuously be extended to \(\Phi_2 f : X^3 \to K \). Similarly, we define \(C^3(X), C^4(X), \ldots \). Let \(C^\infty(X) := \bigcap_{n=1}^{\infty} C^n(X) \).

The map \(P_2 \), defined in §4, does not always map \(C^1 \)-functions into \(C^2 \)-functions. But we have (notations as in §4)

THEOREM. Let the characteristic of \(K \) be unequal to 2. Then the map \(P_2 \) defined via
\[
(P_2 f)(x) := \sum_{n \in \mathbb{N}} f_{n+1} (x-n_n) + \frac{1}{2} \sum_{n \in \mathbb{N}} f_{n+1} (x-n_n)^2
\]
maps \(C^1(X) \) into \(C^2(X) \) and \((Pf)' = f\) for all \(f \in C^1(X) \).

Similarly, one can define antiderivation maps \(P_n : C^{n-1}(X) \to C^n(X) \)
in case the characteristic of \(K \) is unequal to \(2, 3, \ldots, n \).

OPEN QUESTION. Let \(K \) have characteristic 0. Does every \(f \in C^\infty(X) \)
have a \(C^\infty \)-antiderivative?

W. Schikhof

Reference

49