Abstract of the lecture

NON - ARCHIMEDEAN DIFFERENTIATION

held on Tuesday, June 5, 1979 at the "VI Jornadas de Matemáticas Hispano-Lusas" organized by the University of SANTANDER,

by

W.H. Schikhof

§ 1. Introduction.

The subject is part of the so-called non-archimedean (or ultrametric) analysis. Roughly speaking, one may say that this is the analysis that one obtains when replacing in the "classical" analysis \mathbb{R} or \mathbb{C} by a non-archimedean valued field K.

A non-archimedean valued field is a (commutative) field K, together with a map $| | : K \rightarrow \mathbb{R}$ (the valuation) satisfying

- $|a| \geq 0$, $|a| = 0$ iff $a = 0$
- $|ab| = |a| |b|
- $|a+b| \leq \max(|a|, |b|)$ (the strong triangle inequality)

for all $a, b \in K$.

We have the following remarks.

(1) Apart from \mathbb{R} or \mathbb{C}, every complete valued field is non-archimedean.

(2) If K is a non-archimedean valued field and if $L \supseteq K$ is an overfield of K then the valuation on K can be extended to a non-archimedean valuation on L.

(3) If K is a (non-archimedean) valued field then its completion \tilde{K} (with respect to the metric $(x,y) \mapsto |x-y|$) can, in a natural
way, be given the structure of a non-archimedean valued field.
In the sequel we exclude the so-called trivial valuation given by

$$|x|^\cdot = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0. \end{cases}$$

The non-archimedean analysis has several branches, similar to the classical analysis. Thus we have non-archimedean functional analysis, harmonic analysis, theory of analytic functions in one or several variables, etc.

In this talk we consider a more elementary subject, namely infinitesimal calculus in K. More specifically, we want to see what remains of the so-called Fundamental Theorem of Calculus (in \mathbb{R}) that states that the operations of differentiation and integration are in some sense each others inverses.

§ 2. Differentiation in K. Let $X \subset K$ be a subset without isolated points. A function $f : X \to K$ is called differentiable if for all $a \in X$

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. The proof of the well known rules (sum-, product-, chain-rule) can formally be taken over from the classical theory. Thus, a rational function is differentiable if it has no poles on X. An analytic function $x + \sum a_n x^n$ is differentiable on

$$\{x : |x| < (\lim \sqrt[n]{|a_n|})^{-1}\}.$$

Deviations from the classical theory appear when we look at the functions whose derivative vanishes everywhere. For example,
let \(\varepsilon > 0, a \in K \). Then \(B(a, \varepsilon) := \{ x \in K : |x-a| < \varepsilon \} \) is an open-and-closed subset of \(K \), hence \(\ell_{B(a, \varepsilon)} \), defined by

\[
\ell_{B(a, \varepsilon)}(x) := \begin{cases}
1 & \text{if } x \in B(a, \varepsilon) \\
0 & \text{elsewhere}
\end{cases}
\]

is differentiable and \(\ell_{B(a, \varepsilon)}' = 0 \).

Locally constant functions all have derivative zero. On the other hand they form a uniformly dense subset of \(C(X) \), the space of all continuous functions: \(X \to K \).

Even worse: let \(\mathbb{Q}_p \) the field of the \(p \)-adic numbers and let

\(\mathbb{Z}_p := \{ x \in \mathbb{Q}_p : |x| \leq 1 \} \). Then the function \(f : \mathbb{Z}_p \to \mathbb{Q}_p \) defined by

\[
f(\Sigma a_n p^n) = \Sigma a_n p^{2n} \quad (\Sigma a_n p^n \in \mathbb{Z}_p)
\]

satisfies \(|f(x)-f(y)| = |x-y|^2 \) for all \(x, y \in \mathbb{Z}_p \). So \(f' = 0 \) but \(f \) is injective, hence not locally constant.

The above example shows also that a Mean Value Theorem is necessarily absent in our theory.

Notice that the difficulties encountered above also appear when we study differentiability of functions \(f : \mathbb{D} \to \mathbb{R} \), where \(\mathbb{D} \subset [0,1] \) is the Cantor set. So it is the domain of \(f \) that is responsible for the troubles rather than its range.

§ 3. Continuously differentiable functions.

If we follow naively the path of the classical analysis and define

\[
C^1(X) := \{ f : X \to K, f \text{ is differentiable, } f' \text{ is continuous} \}
\]

then we run up against difficulties.

First of all, one can prove that \(C^1(\mathbb{Z}_p) \) (with the norm
f → \max(\|f\|_{\infty}, \|f'\|_{\infty}) is not a Banach space. In fact one shows that for every pair of continuous functions \(f, g : \mathbb{Z}_p \to \mathbb{Q}_p \) there exists a sequence \(f_1, f_2, \ldots \) in \(C^1(\mathbb{Z}_p) \) for which both \(f_n \to f \) and \(f'_n \to g \) uniformly.

What is worse, we have no local invertibility theorem for such \(C^1 \)-functions.

In fact, let \(f : \mathbb{Z}_p \to \mathbb{Q}_p \) be defined by

\[
f(x) = \begin{cases}
 x-p^{2n} & \text{if } |x-p^n| < p^{-2n} \\
 x & \text{elsewhere}
\end{cases} \quad (n \in \mathbb{N})
\]

Then \(f'(x) = 1 \) for all \(x \in \mathbb{Z}_p \). But \(f(p^n) = f(p^n - p^{-2n}) \) for all \(n \in \mathbb{N} \), so \(f \) is not even locally injective at 0.

Therefore we are led to define:

Let \(f : X \to K. \) Put

\[
\Phi f(x,y) := \frac{f(x)-f(y)}{x-y} \quad (x,y \in X, x \neq y).
\]

We say that \(f \in C^1(X) \) if \(\Phi f \) can continuously be extended to a function \(\overline{\Phi f} : X \times X \to K. \)

Then \(BC^1(X) := \{ f \in C^1(X) : f \text{ and } \Phi f \text{ are bounded} \} \) is a Banach space under \(f \mapsto \|f\|_1 := \max(\|f\|_{\infty}, \|\Phi f\|_{\infty}). \)

Further, if \(f \in C^1(X), \) \(f'(a) \neq 0 \) for some \(a \in X, \) then \(f \) has a \(C^1 \)-inverse, locally at \(a. \)

Theorem. Differentiation is a continuous surjection \(BC^1(X) \xrightarrow{D} BC(X). \)

(here \(BC(X) \) is the space of all bounded continuous functions with the supremum norm)

§ 4. "Integration".

Next, we want to define an "indefinite integral" \(\int : BC(X) \to BC^1(X) \)
(an analogue of \((Pf)(x) := \int_{0}^{X} f(t)dt\) for real functions) such that \(DP\) is the identity on \(BC(X)\).

A natural try is first to find an analogue of the Lebesgue measure in \(K\). But this turns out to be a dead end road. For example if \(K = \mathbb{Q}_p\) there does not exist a nonzero translation invariant bounded additive \(\mathbb{Q}_p\)-valued function \(m\) defined on the compact open subsets of \(\mathbb{Z}_p\). (By translation invariance \(|m(p^n\mathbb{Z}_p)| = p^n|m(\mathbb{Z}_p)| \to \infty\) if \(m(\mathbb{Z}_p) \neq 0\). For similar reasons it goes wrong for every local field \(K\).

Following the ideas of Dieudonné, Treiber, we define for \(f \in BC(X)\)
\[
(Pf)(x) := \sum_{n=1}^{\infty} f(x_n)(x_{n+1} - x_n) \quad (x \in X)
\]
Here the \(x_n\) are defined as follows. For each \(n \in \mathbb{N}\) the equivalence relation \(\sim_n\) defined by \(x \sim_n y\) if \(|x-y| < \frac{1}{n}\) yields a partition of \(X\) into balls. Choose a center in each ball and let \(R_n\) be the set of these centers.

For each \(x \in X\) and \(n \in \mathbb{N}\), \(x_n\) is defined by \(x_n \in R_n\), \(|x_n - x| < \frac{1}{n}\).

Theorem. (A NON-ARCHIMEDEAN FORM OF THE FUNDAMENTAL THEOREM).

\(P\) is a linear isometry of \(BC(X)\) into \(BC^1(X)\). \(DP\) is the identity on \(BC(X)\), whereas \(PD\) is a projection of \(BC^1(X)\) onto a complement of \(\{f \in BC^1(X) : f' = 0\}\).

§ 5. Generalizations of the Fundamental Theorem.

We may ask whether there exists some form of the Fundamental Theorem for functions belonging to spaces, larger than \(BC(X)\), \(BC^1(X)\).
respectively. (For example, compare the classical theorem on \(L^1 \)-functions versus absolutely continuous functions).

We have the following striking fact that has no counterpart in classical analysis. We say that \(g : X \to K \) is of the first class of Baire if there exists a sequence \(g_1, g_2, \ldots \) of continuous functions \(X \to K \) such that \(\lim g_n = g \) pointwise.

THEOREM. (a) Let \(f : X \to K \) be differentiable. Then \(f' \) is of the first class of Baire.

(b) Let \(g : X \to K \) be of the first class of Baire. Then \(g \) has an antiderivative.

Let \(B^1(X) \) be the Banach space consisting of all bounded functions \(X \to K \) of the first class of Baire with respect to the supremum norm.

Let \(BD(X) \) be the Banach space of all differentiable \(f : X \to K \) for which both \(f \) and \(\Phi f \) are bounded, with respect to the norm

\[f + \| f \|_\infty \vee \| \Phi f \|_\infty. \]

Then we have

THEOREM. Differentiation is a quotient map \(BD(X) \xrightarrow{D} B^1(X) \).

If \(K \) has discrete valuation then there exists a continuous linear \(P : B^1(X) \to BD(X) \) for which \(DP \) is the identity on \(B^1(X) \).

Notes.

1. The construction of the above \(P \) is awful and, contrary to § 4, \(P \) does not resemble an indefinite integral in any way.

2. If the valuation of \(K \) is dense the existence of such a \(P \) is still an open question.
5 6. **Restriction of the Fundamental Theorem.**

In classical analysis, we have that if $f \in C^n$ then $\int_0^x f(t) dt$ is in C^{n+1}. In our situation we define for $f : X \to K: f \in C^2(X)$ if the function $\Phi_2 f$, defined by

$$f(x,y,z) = \frac{\Phi_1 f(x,z) - \Phi_1 f(y,z)}{x-y} \quad (x,y,z \in X, x \neq y, y \neq z, x \neq z)$$

can continuously be extended to $\Phi_2 f : X^3 \to K$. Similarly, we define $C^3(X), C^4(X), \ldots$. Let $C^\infty(X) := \bigcap_{n=1}^{\infty} C^n(X)$.

The map P, defined in § 4, does not always map C^1-functions into C^2-functions. But we have (notations as in § 4)

THEOREM. Let the characteristic of K be unequal to 2. Then the map P_2 defined via

$$(P_2 f)(x) := \Sigma f(x_n)(x_{n+1} - x_n) + \frac{1}{2}\Sigma f'(x_n)(x_{n+1} - x_n)^2 \quad (x \in X)$$

maps $C^1(X)$ into $C^2(X)$ and $(Pf)' = f$ for all $f \in C^1(X)$.

Similarly, one can define antiderivation maps $P_n : C^{n-1}(X) \to C^n(X)$ (in case the characteristic of K is unequal to $2, 3, \ldots, n$).

OPEN QUESTION. Let K have characteristic 0. Does every $f \in C^\infty(X)$ have a C^∞-antiderivative?

W. Schikhof

Reference