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Chapter 1 : General introduction 

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater. 

Albert Einstein ( 1879-1955) 

If even Einstein had difficulties with mathematics, it is no surprise that so many people are 

slightly overwhelmed when presented with problems involving the manipulation of numbers. 

When thinking about mathematics we usually tend to think of the higher-level mathematics like 

calculus and trigonometry, which most of us would rather leave to the Einsteins among us. And 

yet, without realizing it, all of us are very efficient mathematicians in daily life. Going through a 

regular day we are constantly manipulating numbers and performing simple calculations without 

much difficulty. On a daily basis we use information that is expressed in the format of numbers 

like time, dates, ages, distances, and salary. In addition, often without being aware of it, we 

perform mathematical calculations, estimations, and numerical comparisons on this information, 

for example when paying for groceries, comparing prices of gas at different gas stations, 

handling our salary, determining how many days are left before the weekend, and counting the 

number of spoons of sugar in our coffee. Modem society seems to surround us with numbers and 

it is hard to imagine how one would function normally in it without a basic knowledge of 

numbers and how to handle them. 

In the past numerical abilities were often thought to be cultural inventions and uniquely 

human achievements. However, more current views acknowledge that, although the more 

complex numerical and mathematical abilities are cultural achievements and dependent upon 

language skills, not all numerical abilities are achievements specific to humans. It is generally 

thought that an elementary capacity to understand numbers and to manipulate them underlies the 

more elaborate and sophisticated mathematical abilities of humans. These basic numerical 

abilities are not unique to humans, but are thought to be part of our evolutionary heritage. The 

hypothesis that humans are endowed by evolution with a biologically determined system to 

process numbers is supported by evidence from multiple research disciplines. One line of 

evidence comes from behavioral studies showing that preverbal human infants already possess 

basic numerical abilities. Other evidence supporting the claim that the processing of numbers is 

inherent comes from studies demonstrating precursors of numerical abilities in non-human 

animals.' Animal studies also demonstrate that the ability to assess numerical information has 

ecological advantages, given that numerical judgments can be helpful in fight or flight decisions, 

1 For the sake ol brevity, 'non-human animals' will be referred to in the following simply as 'animals'. 
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in foraging, and in parenting As a final point, lesion and brain-imaging studies demonstrate 

evidence for the existence of a specific neural substrate involved in number processing (for 

reviews, see Dehaene, 1997, 2001, Dehaene, Dehaene-Lambertz, & Cohen, 1998, Dehaene, 

Piazza, Pinel, & Cohen, 2003, Galhstel & Gelman, 1992, Nieder, 2005) 

Since numbers are an integral part of our lives, it is not surprising that questions related to 

how the brain represents numerical information and how such information is processed have 

become a focus of interest to many researchers Since these issues constitute the focus of the 

present thesis, first an overview will be given of the relevant literature concerned with how 

numerical information is used and represented in human infants, animals, and human adults 

Numerical abilities in infants 

Over the last few decades, considerable evidence has been collected showing that human 

infants are able to perform numerosity discriminations and elementary arithmetic operations 

One of the first studies on numerical abilities in infants was done by Starkey and Cooper (1980), 

who used the habituation-recovery method of looking time to study infants' perception of 

numbers They presented 22-week-old infants with an array containing a certain number of dots 

(e g two dots) until the infants showed a decrease in looking times After this sign of habituation 

to the presented array, it was replaced by an array with a different number of dots (e g three 

dots) The presentation of this new array resulted in an increase in looking times, suggesting that 

infants were able to discriminate between arrays of two or three dots 

Results of a study by Wynn (1996) suggest that this ability to discriminate between small 

numerosities is not restricted to the perception of objects In this study, Wynn demonstrated that 

6-month-old infants can distinguish a puppet making two jumps from a puppet making three 

jumps, suggesting that infants can also detect differences in the number of physical actions 

Furthermore, a study by Starkey, Spelke, and Gelman (1983) implies that the ability of infants to 

detect numerical information is not limited to the visual system, but can be transferred between 

the visual and auditory modalities When 7-month-old infants were presented with two visual 

slides, one with two and one with three objects, and simultaneously heard either two or three 

drumbeats, they showed a preference for the slide whose number of objects corresponded to the 

number of beats heard More specifically, when the number ol beats was two, infants preferred 

the slide with two objects, whereas with three beats infants preferentially looked at the slide with 

three objects 

In addition to the ability to discriminate between numerosities, infants even seem to be able 

to perform simple arithmetic operations Wynn (1992) presented 5-month-old infants with either 
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simple addition (1 + 1) or subtraction (2-1) problems. In the addition condition, a single object 

was presented to the infant before it was hidden by placing a screen in front of the object. 

Subsequently, an additional object was shown to the infant and, clearly visible for the infant, 

placed behind the screen. Then, the screen was dropped revealing either one or two object(s). 

The procedure in the subtraction condition was similar, except that two objects were presented at 

the start of a trial and an object was removed instead of added. In the addition condition, looking 

times were longer for the one object outcome than for the two objects outcome, whereas in the 

subtraction condition looking times were longer for two objects than for one object. In other 

words, in both conditions, infants looked significantly longer at the incorrect outcome than at the 

correct outcome. 

More recently, however, there has been some criticism of the above mentioned studies, 

arguing that these studies did not properly control for continuous variables that covaried with 

numerosity, like total filled area, brightness, contour length or amount of motion in the display, 

and that the results of these studies could be attributed to such confounding variables. Indeed, 

evidence has been collected that infants, when discriminating between small sets of items, do not 

so much detect changes in numerosity, but rather detect changes in the continuous variables 

correlated with these numerosity changes. For example, Clearfield and Mix (1999) demonstrated 

that infants were not able to discriminate on the basis of numerosities when displays were 

controlled for variations in contour length. More specifically, they observed that infants failed to 

discriminate between displays that varied in number of items but not in contour length, although 

the infants successfully discriminated between displays with different contour lengths but equal 

number of items. 

As a consequence, subsequent studies on infants' abilities to make numerosity 

discriminations controlled more carefully for possible confounding variables. Still, results of 

these studies suggest that infants possess numerical abilities, although these abilities seem to be 

restricted to large numerosity discrimination. For example, 6-month-old infants can successfully 

discriminate between 8 and 16 sounds (Lipton & Spelke, 2003), between 8 and 16 dots (Xu & 

Spelke, 2000), and between 16 and 32 dots (Xu, Spelke, & Goddard, 2005), indicating that 

infants can discriminate between large sets of numerosities. However, these studies also 

demonstrate that this discrimination of numerosities is still very imprecise, given that infants fail 

to distinguish 8 sounds from 12 sounds (Lipton & Spelke, 2003), 8 dots from 12 dots (Xu & 

Spelke, 2000), or 16 dots from 24 dots (Xu et al., 2005). More specifically, infants' ability to 

perform numerical discriminations seems to be subject to a ratio limit as is shown by the 

observation that, by the age of 6 months, infants are able to discriminate between numerosities 
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with a ratio of 1:2 (e.g. 8 vs. 16) but not between numerosities with a ratio of 2:3 (e.g. 8 vs. 12). 

However, the precision of numerosity discrimination improves over infancy, as indicated by the 

finding that, in contrast to 6-month-old infants, 9-month-old infants were able to discriminate 

between 8 versus 12 sounds (Lipton & Spelke, 2003). 

The studies reviewed above demonstrate that basic numerical abilities, although not yet fully 

matured, are already present in preverbal infants very soon after birth. The early emergence of 

these abilities suggests that an elementary knowledge of numbers and how to manipulate them is 

an innate and ontogenetically shared capacity. 

Numerical abilities in animals 

Another line of research on numerical cognition has concerned itself with determining 

whether numerical abilities are unique to humans or whether they are also present in animals. 

These studies demonstrate that animals, such as rats, pigeons, dolphins, monkeys, and apes, are 

able to discriminate numerosities and to solve simple arithmetic problems and that these abilities 

are comparable to the numerical abilities observed in human infants. 

One of the first studies on numerosity discrimination in animals was done by Mechner 

(1958) in which he demonstrated that rats can discriminate between the number of responses. 

Mechner trained rats to press a lever a fixed number of times before switching to another lever 

by reinforcing a press on the second lever only when it was preceded by 4, 8, 12 or 16 presses on 

the first lever. Mechner and Guevrekian (1962) replicated this setup with rats deprived of water 

to change the tempo in which the rats pressed the first lever. The rats pressed in a faster tempo, 

but still pressed the lever approximately the required number of times before switching to the 

other lever, indicating that they really distinguished the lever presses based on numerosity and 

not based on their duration. Other evidence that animals can discriminate between numerosities 

comes from experiments in which the animals had to discriminate between numbers of stimuli. 

For example, Femandes and Church (1982) showed that rats are capable of discriminating 

between number of sounds, when variables such as duration of each sound, total sound duration, 

interval between each sound, and total sequence duration are controlled for. Similarly, Roberts, 

Macuda, and Brodbeck (1995) showed that pigeons can distinguish between different numbers of 

light flashes. In addition, Mitchell, Yao, Sherman, and O'Regan (1985) showed that dolphins are 

even able to perform symbolic numerosity discriminations. They trained a dolphin to 

discriminate between objects based on the number offish the objects represented and observed 

that the dolphin had learned to choose the object that represented the largest number offish 

among simultaneous presentations of two to five objects. 
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However, just as human infants, animals are characteristically imprecise in numerosity 

discriminations. For instance, the results of Mechner (1958) showed that in the condition in 

which four presses were required, rats often pressed four times before switching to lever B, but 

in a considerable number of trials pressed five or six times before switching. In addition, his 

results demonstrated that this imprecision increased with the required number of presses, with 

lever presses up to 24 times in the condition in which 16 presses were required. 

Evidence that rats have some abstract concept of numerosity, independent of stimulus 

modality, comes from studies showing that rats are able to transfer a discrimination learned in 

one modality to another modality without additional training (Church & Meek, 1984; Meek & 

Church, 1983). Church and Meek (1984) trained rats to distinguish sequences of two sounds 

from sequences of four sounds by pressing respectively a right or a left lever. After the rats 

learned to perform this discrimination correctly, visual stimuli instead of auditory stimuli were 

presented. Without additional training, the rats then pressed the right lever following two lights 

and the left lever following four lights, indicating cross-modal transfer of numerosity. 

In addition to merely discriminating on the basis of numerosity, some animals seem to 

perform arithmetic operations. Hauser, MacNeilage, and Ware (1996) tested the ability to add 

and subtract in rhesus monkeys living in the wild by using a simplified version of Wynn's (1992) 

experiment. Just as the human infants, the monkeys looked significantly longer at incorrect 

outcomes than at correct outcomes of 1+1 and 2-1, suggesting that monkeys are able to solve 

simple addition and subtraction problems. However, the same criticism that was made of the 

original Wynn study is just as relevant here and it could likewise be that the monkeys' 

performance on this task was biased by confounding variables and might not reveal true 

arithmetic abilities. More conclusive evidence that animals can perform simple arithmetic 

problems comes from a study in which chimpanzees were allowed to pick one of two trays, each 

containing two piles of chocolates, as a treat. The piles contained different numbers of 

chocolates such that on each trial, while one tray contained more chocolates in total, the tray 

with the most chocolates did not necessarily have two piles that each had more chocolates than 

the piles on the other tray (e.g., one tray contained two piles of 3 chocolates and the other tray 

contained piles of 1 and 4 chocolates). In more than 90% of the trials, the chimpanzees chose the 

tray with the largest total amount of chocolates, indicating that they summed the number of 

chocolates on each tray before comparing the number of chocolates between trays (Rumbaugh, 

Savage-Rumbaugh, & Hegel, 1987). Similar results were found by Boysen and Bemtson (1989), 

who showed that chimpanzees can sum food items placed at different sites in a room. In 

addition, they showed that the chimpanzee, trained to use Arabic numbers to represent 
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numerosities, could add up Arabic numbers, when instead of food items, cards with Arabic 

numbers were placed at different sites in the room. 

Other evidence for numerical ability in monkeys was found by Brannon and Terrace (1998, 

2000), who taught monkeys to order pairs of exemplars of the numerosities one to four in an 

ascending order. After the monkeys had learned to perform this task correctly, monkeys were 

presented with pairs of exemplars of the numerosities one to nine. Without additional training, 

the monkeys ordered the novel numerosities five to nine correctly, suggesting that monkeys have 

a true understanding of numerosities and their ordinal relations. 

The studies on numerical abilities of animals, comparable to the numerical abilities observed 

in human infants, are taken as evidence that just as human infants, animals also possess basic 

numerical abilities. These findings seem to support the claim that the more elementary numerical 

abilities are not only ontogenetically but also phylogenetically shared abilities. Furthermore, both 

animal and infant studies suggest that an abstract, amodal representation of numerical quantity 

underlies these basic abilities. This magnitude representation in animals and infants is thought to 

be similar to the one underlying the numerical abilities human adults possess, even though some 

of the abilities in human adults are far more elaborate and sophisticated than those of animals 

and infants (Dehaene, 1997, 2001; Dehaene et al., 1998; Nieder, 2005). 

Do animals, human infants, and adults process numerosity in a similar way? 

However, merely demonstrating that infants and animals possess numerical abilities is not 

sufficient to provide evidence for the idea that animals and humans share a common 

representation of numerical quantity. More conclusive evidence for this notion comes from 

studies showing profound similarities between human and animal numerical abilities, indicating 

that animals, infants, and adults process numerosities in a similar way. Washburn (1994) made a 

direct comparison between the numerical abilities of human adults and rhesus monkeys, 

previously trained to use Arabic digits to ordinally represent numerosities. In his experiment, two 

arrays, each with one to seven elements, were presented on the screen and participants had to 

choose the array with the most elements. In the baseline trials, the elements in the arrays were 

letters (A/B/C/D), but in the congruent and incongruent trials, the elements in the arrays were 

digits. In the congruent trials, the array with the most elements was composed of the numerically 

larger digit (e.g. seven χ 7 vs. two χ 2), whereas in the incongruent trials the array with the most 

elements was composed of the numerically smaller digit (e.g. seven χ 2 vs. two χ 7). Both 

humans and monkeys responded faster to congruent trials than to baseline trials and responded 
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slower to incongruent trials than to baseline trials, suggesting that humans and monkeys process 

the meaning of the digits, even though irrelevant for this task, in the same automatic manner. 

Additional evidence that humans and animals process numerosity in a similar way comes 

from studies observing that, for both animals and humans, the performance on numerosity 

discrimination reveals distance and size effects. The "distance effect" is the systematic increase 

in response times and number of errors as a consequence of a decrease in the numerical distance 

between two numerosities. The term "size effect" describes, for a given numerical distance, the 

systematic increase in response times and number of errors as the numerical size of the 

numerosities increase. These distance and size effects are observed in a number of studies in 

which animals perform numerosity discriminations (e.g., Mechner, 1958; Mitchell et al., 1985; 

Washburn & Rumbaugh, 1991). For example, Brannon and Terrace (1998, 2000) observed 

distance and size effects in the performance of monkeys asked to order pairs of exemplars of the 

numerosities one to nine in an ascending manner. Monkeys were faster and more accurate in 

ordering exemplars of numerosities when the numerical distance between the two numerosities 

was large (e.g. exemplars of three and nine) than when it was small (e.g. exemplars of seven and 

nine). Furthermore, they observed that, when the distance between the two numerosities was 

held constant, monkeys were faster and more accurate in ordering exemplars of small 

numerosities (e.g. exemplars of three and five) than in ordering exemplars of large numerosities 

(e.g. exemplars of seven and nine). 

Similar distance and size effects have been observed in humans when asked to discriminate 

between sets of dots based on numerosity (Buckley & Gillman, 1974; van Oeffelen & Vos, 

1982) and when asked to discriminate between the number of responses they make, without 

counting them (Whalen, Gallistel, & Gelman, 1999). 

The distance and size effects observed in both animals and human adults indicate that 

numerosity discriminations obey Weber's law, which states that the discriminability of two 

numerosities depends on their ratio (Dehaene, 2001; Gallistel & Gelman, 1992). Numerosities 

that are close together (such as two and three) have a smaller ratio than numerosities that are 

farther apart (such as two and four) and are, as a result, harder to distinguish (distance effect). 

Similarly, for equal distances between two numerosities, larger numerosities (such as eight and 

nine) have a smaller ratio than small numerosities (such as two and three), and are, therefore, 

harder to discriminate (size effect). This ratio dependence is also observed in human infants 

when they perform large numerosity discriminations (see the section on infant studies presented 

above). 
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To summarize, multiple studies indicate that animals and infants possess basic numerical 

abilities. Along with the observation of clear parallels between animals' and humans' numerical 

abilities these findings suggest that animals and humans share a universal system to represent 

numerical quantity that underlies these basic abilities. These studies thus provide supporting 

evidence for the view that both animals and humans are endowed by evolution with a capacity 

for the elementary understanding and manipulation of numerosities. This elementary capacity is 

thought to be the foundation of the uniquely higher-level numerical abilities, like counting, 

calculation algorithms, and mathematical abilities that humans acquire during life (Dehaene, 

1997, 2001; Dehaene et al., 1998; Gallistel & Gelman, 1992; Nieder, 2005). 

Two systems for processing numerosity 

Recently it has been proposed that animals, infants, and human adults might have access to 

two different systems to assess numerosity: One system for the exact representation of small 

numbers of individual objects and another system for representing approximate numerical 

magnitudes (Carey, 2001 ; Feigenson, Dehaene, & Spelke, 2004; Nieder, 2005; Xu, 2003). The 

object-tracking system is thought to be an exact system that is able to keep track of a small 

number of objects (three to four) and to represent information about the continuous quantitative 

properties of these objects. This system is thought to have a size limit, because it can only 

represent a limited number of items and fails beyond this limit. In addition, the system is not 

explicitly equipped to enumerate objects (e.g., Simon, 1997; Trick & Pylyshyn, 1994). The 

performance of infants on small numerosity discrimination tasks (e.g., Starkey & Cooper, 1980) 

is, for example, thought to depend on this object-tracking system (Dehaene, Molko, Cohen, & 

Wilson, 2004). 

The second system is the analogue magnitude system that represents numerosities internally 

as continuous magnitudes." In contrast with the first system, this system has no upper limit of 

the number of objects it can represent, but becomes systematically less precise with increasing 

numerosity. It is thought to form the basis of large numerosity discrimination in animals (e.g. 

Mechner, 1958), infants (e.g. Xu et al., 2005), and human adults (e.g. Whalen et al., 1999) and to 

underlie the observed distance and size effects in these discriminations (e.g. Dehaene, 1997). 

Symbolic number processing in humans 

The numerical abilities of human adults are not limited to the elementary, approximate, and 

non-symbolic numerical abilities that humans seem to have in common with animals. Using 

" The word magnitude refers to the analogue mental representation of a numerical quantity. 
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symbols for numbers, such as Arabic digits and number words, humans are able to perform more 

precise, complex, and complicated numerical and mathematical operations At present, it is not 

clear whether the object-tracking system can be activated when human adults perform tasks in 

which numerosities are presented in symbolic notation (Feigenson et al, 2004) In contrast, there 

are numerous studies indicating that the analogue magnitude system is accessed even when 

symbolic numbers are presented For example, the previously mentioned distance effect is not 

only found when (human) participants have to discriminate between sets of objects based on 

numerosity, but even when participants have to compare numbers presented in symbolic 

notation, like Arabic digits and number words A first demonstration of the distance effect with 

Arabic digits was given by Moyer and Landauer (1967), who presented participants with pairs of 

digits (1-9) and asked them to decide which digit was larger They observed that decision times 

were longer and more errors were made when the numerical distance between the two digits was 

small (eg 7 vs 9) than when the numerical distance was larger (eg 2 vs 9) Following this 

original observation, subsequent studies extended the distance effect to two-digit numbers 

(Dehaene, Dupoux, & Mehler, 1990, Hinnchs, Yurko, & Hu, 1981 ) and number words 

(Dehaene, 1996) In addition to the distance effect, the size effect can also be observed when 

participants discriminate numerically between Arabic digits For example. Banks, Fujn, and 

Kayra-Stuart ( 1976) demonstrated that, when the distance between the digits was held constant, 

response times in a numerical discrimination task were faster for small pairs (eg 1 vs 2) than 

for large pairs (eg 8 vs 9) 

The distance and size effects with numbers in symbolic notation are generally taken as 

evidence that digits and number words are internally transformed onto an analogical 

representation of numerical magnitude, which becomes less precise as numbers get larger 

(Dehaene, 2001, Gallistel & Gelman, 1992, Moyer & Landauer, 1967, Restie, 1970) This 

magnitude representation seems to be automatically activated whenever a digit is presented to 

participants For example, Dehaene and Akhavein (1995) asked participants whether two 

numbers were physically the same or different Even though this judgment could be based 

completely on nonnumencal information, a distance effect was observed in response times, 

indicating that the mental representations of the numbers were nevertheless activated Other 

support for this assumption comes from a study by Hemk and Tzelgov (1982), who presented 

participants with pairs of digits, varying both in physical and numerical size, and asked them to 

judge which of the two digits was larger in physical size In congruent trials, the physically 

larger digit was also numerically larger (e g 6 4), while in incongruent trials, the physically 

larger digit was numerically smaller (eg 6 4) Hemk and Tzelgov observed that response times 
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were faster on congruent trials than on incongruent trials. In addition, this size congruency effect 

was modulated by numerical distance; on incongruent trials, response times were slower when 

the numerical distance between the two digits was large than when it was close. 

A mental number line as internal representation of numerical magnitude 

The internal representation of numerical magnitude can be thought of as a mental number 

line, onto which numbers are mapped by activating the corresponding part of the mental number 

line (Dehaene, 1992, 2001; Gallistel & Gelman, 1992; Restie, 1970). Currently, there are two 

opposing models of the mental number line, which can both account equally well for the distance 

and size effects observed in numerical comparison tasks. The first model, hereafter referred to as 

the linear model, asserts that the mental number line has a linear scale and, consequently, equal 

distances between numbers are represented by equal distances between their corresponding 

mental magnitudes. The linear model also states that the spread of the magnitude distribution 

increases with the size of the number, resulting in larger variability in the mental representations 

of large numbers (Gallistel & Gelman, 1992). In contrast, the second model, hereafter referred to 

as the compressed model, assumes that the variability in the mental magnitude representation is 

the same for each number. This second model further proposes a compressed (e.g. logarithmic) 

rather than a linear number line, with larger numbers mapped closer together than smaller 

numbers (Dehaene & Mehler, 1992). In both models, numerically close numbers have more 

overlapping distributions than numbers that are numerically farther apart. As a consequence, 

numerically close numbers are harder to distinguish, resulting in the occurrence of the distance 

effect. The size effect is explained by the fact that large numbers have more overlapping 

distributions than small numbers. In the linear model, this larger overlap is attributed to the 

larger variability in the representations of large numbers. In the compressed model, there is more 

overlap for large numbers, because these numbers are closer together on the mental number line. 

However, the models differ with respect to the subjective difference between two numbers (i.e. 

the difference between the mental magnitudes onto which the numbers are mapped). In the 

compressed model, for a given distance between two numbers, the subjective difference 

decreases when the numerical size of the numbers increases (e.g. the difference between eight 

and six is subjectively smaller than the difference between four and two). In contrast, in the 

linear model, for a given distance between two numbers, the subjective difference between two 

numbers does not depend on their numerical sizes (and thus the subjective difference between 

eight and six is similar to that between four and two). Put differently, for two equally 

discriminable number pairs (e.g. two-four and four-eight), in the compressed model the 
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subjective difference between the numbers is the same for both pairs, whereas in the linear 

model the subjective difference between the numbers is larger for the pair with the larger 

numbers (Dehaene, 1997, Gallistel & Gelman, 1992, Kaufmann & Nuerk, 2005) 

With the available behavioral paradigms it is hard to disentangle the two models, since they 

make similar predictions with respect to the distance and size effects Another line of numerical 

cognition research, however, has been shown to be helpful in shedding light on this issue Using 

single-cell recordings in animals, Nieder, Freedman, and Miller (2002, Nieder & Miller, 2003) 

observed that neurons in the lateral prefrontal cortex of monkeys were tuned to specific 

numerosities In other words, neurons fired optimally to a specific numerosity and were less 

active in response to numerosities close to this specific numerosity Moreover, they 

demonstrated that neural tuning curves were better described by a logarithmic scale than by a 

linear scale, supporting the idea of a compressed (e g logarithmic) rather than a linear mental 

number line (Dehaene, 2002, 2003, Verguts & Fias, 2004) 

Brain areas involved in number processing 

Evidence from both brain-imaging and lesion studies in humans suggests that areas in the 

parietal cortex of the brain are involved in number processing (for an excellent review, see 

Dehaene et al, 2003) More specifically, results from these studies indicate that the horizontal 

segment of the intrapanetal sulcus in both hemispheres plays a central role in the formation of an 

analogue representation of numerical magnitude, independent of the notation (symbolic or non-

symbolic) and modality (e g visual or auditory) in which the numbers are presented Dehaene et 

al (2003) review evidence that the horizontal segment of the intrapanetal sulcus is 

systematically activated when participants perform tasks that require the access to a semantic 

representation of magnitude, such as certain arithmetic operations (e g estimation or subtraction) 

or numerosity comparisons (cf Chochon, Cohen, van de Moortele, & Dehaene, 1999, Dehaene, 

Spelke, Pinel, Stanescu, & Tsivkin, 1999, Pinel, Dehaene, Riviere, & LeBihan, 2001) 

Furthermore, they refer to studies that show the activation of this area to be modulated by the 

numerical size of numbers used in tasks and by the numerical distance between two numbers in a 

comparison task (cf Pinel et al, 2001) A recent study demonstrated that the horizontal segment 

of the intraparietal sulcus is activated even in a nonnumencal task in which the participants were 

merely presented with numbers (Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003) It is 

suggested that the horizontal segment of the intraparietal sulcus in both hemispheres might be a 
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