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In cognitive science, natural cognitive processes are generally conceptualized as computational pro-

cesses: they serve to transform sensory and mental inputs into mental and action outputs. At the

highest level of abstraction, computational models of cognitive processes aim at specifying the com-

putational problem computed by the process under study. Because computational problems are

realistic cognitive models only insofar as they can plausibly be computed by the human brain

given its limited resources for computation, computational tractability provides a useful constraint

on cognitive models. In this paper, we consider the particular benefits of the parameterized com-

plexity framework for identifying sources of intractability in cognitive models. We review existing

applications of the parameterized framework to this end in the domains of perception, action and

higher cognition. We further identify important opportunities and challenges for future research.

These include the development of new methods for complexity analyses specifically tailored to the

reverse engineering perspective underlying cognitive science.
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1. INTRODUCTION

Computational complexity theory finds application in many

different domains of scientific enquiry. Probably best known

are its uses for the analysis and design of algorithms for the

analysis and interpretation of scientific data. In this role, the

theory also finds application in sciences like biology, psychol-

ogy, sociology and economics. Much less known, however, is

an altogether different application of complexity theory in

science, viz., as a tool for the analysis and design of scientific

models of natural computing systems such as genes, cells,

neurons, brains, humans, social groups and markets. In this

paper, we take a closer look at one such domain of application:

the modeling of human cognitive processes.

Computational complexity analyses can aid the design of

cognitive models by identifying model aspects that are compu-

tationally unrealistic or implausible. Existing approaches,

based predominately on the theory of NP-completeness [1],

have come some way in achieving this modeling support,

but these approaches remain limited to date in their import

and utility for cognitive modelers. One reason for this is that

the classical framework is not sensitive to the relative

impact of different model aspects and parameters, as it aggre-

gates a computation’s complexity in one big parameter, viz.,

input size. The theory of parameterized complexity, developed

by Downey and Fellows [2], overcomes this problem by

allowing complexity analyses to be performed relative to

different model parameters.

In this paper, we highlight the inherent utility of parameter-

ized complexity analysis for modeling natural cognitive

systems. We review a set of existing applications in specific

cognitive subdomains and we identify a wealth of cognitive

subdomains which could similarly benefit from systematic

parameterized complexity analyses. Besides these opportu-

nities for parameterized complexity analyses, we also identify

some important methodological challenges that suggest

several new research directions within parameterized com-

plexity theory.

1.1. Overview

We start by explaining the modeling goals of cognitive science

and how computational complexity analyses of cognitive
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models can aid in the achievement of these goals (Section 2).

Section 3 details the analytic process underlying compu-

tational complexity analyses in cognitive science and contrasts

classical and parameterized approaches to implementing this

process. We will argue that the parameterized approach has

much to offer over and above the classical approach. In

Section 4, we review existing applications of parameterized

complexity theory in cognitive science, considering different

cognitive subdomains. In Section 5, we present a list of oppor-

tunities for new avenues of research. Finally, in Section 6, we

conclude with how the research program described in this

paper can benefit both cognitive and computer science.

2. COGNITIVE MODELING AND TRACTABILITY

Studying and modeling human cognitive processes is the

subject matter of cognitive science and psychology. To expli-

cate and situate explanatory practices in contemporary cogni-

tive science, we describe the widely adopted framework

for cognitive theory formation proposed by David Marr

(Section 2.1). We also explain how the notion of compu-

tational tractability can help in the process of designing cogni-

tive models (Section 2.2). As will become clear from our

discussion, cognitive science is engaged in a form of reverse

engineering, to be contrasted with the forward engineering

that typically occurs in computer science. Because tractability

plays a different role in reverse and forward engineering, we

devote Section 2.3 to laying out the main differences

between the two types of engineering.

2.1. The Marr hierarchy

Cognitive science aims at achieving a computational under-

standing of human cognitive capacities and their underlying

processes. Cognitive modelers often attempt to explain a cog-

nitive capacity (e.g. the ability to understand language) by

decomposing it into several sub-capacities (e.g. the capacity

to parse sentences, the capacity to recognize letters and

words, etc.). The coordinated manifestation of the sub-

capacities is then believed to amount to the realization of

the analyzed super-capacity [3]. Each hypothesized sub-

capacity again calls for its own computational understanding.

A common assumption is that the explanations of cognitive

(sub-)capacities can in principle be formulated at three differ-

ent levels, which Marr [4] called the computational level, the

algorithmic level and the implementational level (cf. [5]). At

the highest level of abstraction, the computational level, the

model specifies the input/output function assumed to be com-

puted by the processes under study. The human capacity for

vision may serve as an example: the visual system takes as

input a 2-D representation of a visual scene as it is projected

on the retina, and it gives as output, among other things, a

3-D interpretation of the visual scene as we experience it

before our mind’s eye. A computational-level model of this

process should provide a description of the input and the

output, and it should posit a functional mapping from input

to output that explains why our perception of 2-D projections

is the way it is. Although infinitely many mappings may exist,

the goal is to identify the input/output function that describes

the mapping realized by human vision.

In general, formulating a computational level theory of

capacity c consists of hypothesizing a domain of inputs on

which the capacity operates, IT ¼ fi1, i2, . . .g, a relevant

range of outputs, OT ¼ fo1, o2, . . .g and a function, cT: IT!

OT, mapping each input i [ IT to an output o ¼ cT(i) (see

also [6, p. 381]). The function cT instantiates a veridical com-

putational level description of capacity c: I!O if and only if

I ¼ IT and cT(i) ¼ c(i) for all i [ I. Assuming that cT is ver-

idical at the computational level, further attempts can be made

to understand the effective procedure by which cT ¼ c is com-

puted (i.e. the algorithmic level theory), as well as, to under-

stand how that procedure is physical implemented by neural,

or other bodily, processes (i.e. the implementational level

theory).

Marr’s typology serves as a useful scheme for classifying

different explanatory attempts in cognitive science. Contem-

porary cognitive theories are typically situated at the compu-

tational and algorithmic level, with few, if any, giving

concrete accounts of the implementational level. Of primary

interest in this paper are computational-level theories. These

theories should look very familiar to computer scientists as

they effectively instantiate computational problems. This

means that they lend themselves directly to computability

and complexity analyses. We will next explain how such ana-

lyses can help cognitive scientists in their attempt to explain

human cognition.

2.2. The tractability constraint

A first step toward determining which input/output functions

accurately model cognitive capacities is distinguishing func-

tions that are possible for natural cognitive systems to

compute from those that are impossible. Recall that with

every computational-level theory cT that a cognitive scientist

posits she is postulating that the modeled process c instanti-

ates an effective computation of the problem cT (viz. c has

an algorithmic-level explanation). Moreover, on the wide-

spread assumption that cognitive processes are physically

instantiated (e.g. in the human brain), she is also postulating

that the computation is being realized using a limited

amount of physical resources (viz. c has an implementational-

level explanation). But then, if cT is found not to be comput-

able using a realistic amount of computational resources (i.e.

the function is computationally intractable) then cT cannot

possibly be veridical. This is what we call the tractability con-

straint on computational-level theories (see Fig. 1).
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The study of computational (in)tractability is the subject

matter of computational complexity theory. Using the con-

cepts and methods of this mathematical theory, cognitive

scientists can assess the computational (in)tractability of

their computational-level theories. When formalizing the

tractability constraint, care must be taken to ensure that it

does not accidentally exclude possible cognitive functions.1

If intractability is properly defined, and complexity results

are interpreted with care, the tractability constraint can both

delimit the space of viable computational-level theories and

expose unrealistic accounts of human cognitive functioning,

allowing faster convergence on veridical models of human

cognitive capacities.

2.3. Cognitive modeling as reverse (not forward)

engineering

Computational cognitive modeling is often seen as a form of

reverse engineering [7], to be contrasted with traditional

(forward) engineering. It is our experience that confounding

the two types of engineering can lead to unproductive collab-

orations and miscommunication between cognitive modelers

and complexity theorists. To clarify the practice of cognitive

reverse engineering and its unique problems and issues, we

next explicate the most important differences between the

two types of engineering and their consequences for the use

and interpretation of intractability results (see Table 1).

2.3.1. User-specification vs. discovery

In the case of forward engineering, a user specifies which

input/output transformations he would like the software engin-

eer to implement in a to-be-designed system. In reverse engin-

eering, on the other hand, the input/output specifications of the

to-be-modeled system need to be discovered by systematically

observing the behavior of an already existing, naturally

evolved system. In this case, the modeler builds on her

intuitions about which input/output functions may capture

the behavior of the system under study. As an example, con-

sider again the problem of vision: based on observations

of how humans interpret 2-D visual images, a cognitive

modeler may come to form the hypothesis that vision inter-

prets images according to the simplest decomposition of that

image [8–10]. To further work out this hypothesis and build

it into a well-defined computational level theory, the

modeler would subsequently need to formally define what

she means by ‘simplest decomposition’.2

A pervasive problem faced by a reverse engineer is that her

hypotheses about a system’s input/output function may be

wrong without the observational data telling her so. This is

called the empirical underdetermination problem (see, e.g.

[14–16]). It arises in cognitive science for at least two

reasons. First, any finite set of observed input/output pairs is

consistent with infinitely many hypothesized input/output

functions. Second, the inputs and outputs of interest are typi-

cally not directly observable, because they occur ‘in the

head’ (we cannot directly observe thoughts, concepts, per-

cepts, plans, etc.). The empirical underdetermination

problem is unique to reverse engineering and makes it in

many respects harder than forward engineering. It is also the

reason that the tractability constraint is such a useful theoreti-

cal tool for cognitive reverse engineers (see Fig. 1), while it is

a mere nuisance for forward engineers.

2.3.2. Dealing with intractability

While the goal of the forward engineer is to compute as best as

possible the user-specified input/output function, the reverse

engineer aims at modeling as best as possible an existing

system capacity. Consequently, function intractability

signals something very different for forward and reverse

engineers: for forward engineers it may mean that they

should give up the hope of general exact procedures and

instead settle for weaker heuristic methods [1], whereas for

reverse engineers it means there must be something wrong

FIGURE 1. The tractability constraint provides a means of identify-

ing non-veridical models of cognitive capacities.

TABLE 1. Traditional forward vs. cognitive reverse engineering

Engineering-type

Characteristic Traditional Cognitive

Origin of input/

output function

Derived from user

specifications

Hypothesized on the basis

of observations and intuition

Goals of input/

output function

Should meet

user’s needs

Should be a veridical model

of cognitive capacity

Consequence of

intractability

Devise heuristic

methods

Revise hypothesized

function

1For this reason, the types of tractability discussed in this paper are less

restrictive than those implicit in certain areas of current research, e.g. the

focus on three-layer neural network architectures (see also discussion in

Section 3.2)

2See [11] for an approach based on Kolmogorov complexity theory and

[12, 13] for an approach based on structural information theory.
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with their model, so they had better get back to the drawing

board and revise it [6, 17].3

Model revision is complicated for the reverse engineer by

the fact that an intractable model can be wrong in many differ-

ent ways. For example, a model can be wrong in terms of the

initial, informal hypothesis (e.g. it may be false that vision

produces simplest interpretations of visual displays), in

terms of the particular formalization chosen to describe the

hypothesis (e.g. it may be false that an visual interpretation’s

simplicity is equal to its Kolmogorov complexity), or in terms

of the hypothesized domain of inputs on which the capacity

operates (e.g. not all logically possible 2-D images may be

possible projections of real-world objects).

Although it is impossible to assess the veridicality of infor-

mal hypotheses directly, it is possible to get an idea of their

viability by assessing the intractability (and hence non-

veridicality) of different formalizations and input restrictions.

For example, if the computation of ‘simplest decomposition’

remains intractable under all conceivable formalizations and

all reasonable input restrictions, this suggests the simplicity

hypothesis of human vision is on the wrong track. If a cogni-

tive scientist discovers, however, that the hypothesis can be

rendered tractable by making certain changes to the formaliza-

tion and/or by imposing certain input restrictions then this

information can be used to define a new, tractable model. To

ensure tractability, this new model will be making extra

assumptions that can lead to new and testable predictions. In

this way, the tractability-motivated revision process provides

yet another way—besides model exclusion (Fig. 1)—in

which cognitive scientists can reduce the empirical indetermi-

nacy of cognitive models.

3. COMPUTATIONAL COMPLEXITY ANALYSIS
OF COGNITIVE MODELS

In the previous section, we explained the goals of cognitive

modeling and how tractability analyses can help cognitive

scientists achieve those goals. We now discuss complexity

theoretic concepts and methods underlying the core analysis

process (Section 3.1) as well as the strengths and weaknesses

of classical and parameterized complexity approaches for

implementing this process (Section 3.2).

3.1. Core analysis process

We start by explaining why a standard measure of compu-

tational complexity suffices for our purposes of tractability

analysis (Section 3.1.1). We then lay out a formal description

of the process of designing tractable cognitive models (Section

3.1.2). Finally, we introduce the notion of Source of complex-

ity (SoC) and discuss the important role SoCs can play in the

revision of intractable cognitive models (Section 3.1.3)

3.1.1. Efficiency as time-complexity

Informally, a computation is said to be intractable if it requires

an unreasonable amount of computational resources. In this

paper, we will restrict ourselves to the resource time and

adopt asymptotic worst-case time complexity as our measure

of computational efficiency. The asymptotic worst-case time-

complexity O(f(n)) of an algorithm is expressed in terms of a

function f(n), which asymptotically upper-bounds the number

of basic operations required to run the algorithm on inputs of

size n when implemented on a Turing machine [1]. Using this

measure, an algorithm can be defined as efficient if and only if

that algorithm’s time complexity satisfies a certain criterion

(e.g. the time complexity function is a polynomial of the

input size). An input/output function is then said to be tract-

able if and only if there exists at least one efficient algorithm

for computing it.

Over the years, several criticisms have been raised against

this conception of cognitive tractability phrased in terms of

asymptotic worst-case time complexity (e.g. [21–24]). Chief

among them is the charge that the assumptions underlying

asymptotic worst-case time complexity are unrealistic for

human cognitive systems, e.g. because

† the neural hardware underlying cognitive computation is

fundamentally different from the Turing machine model

underlying asymptotic worst-case time complexity; and

† cognitive inputs that occur in practice are of bounded size

and need not even be those that trigger worst-case beha-

vior in an algorithm.

These criticisms are based on misunderstandings of the nature

of computational complexity analyses of cognitive models

(see also [25–30]). With respect to the first criticism, for the

purposes of tractability analysis, a measure of efficiency is jus-

tifiable provided that associated classifications of function

(in)tractability are not specific to the computational architec-

ture underlying that measure (e.g. Turing machines), but

instead reflect the function’s inherent complexity under a

wide variety of computational architectures that include

those of interest (e.g. neural systems). Courtesy of various

inter-architecture simulation results, this is known to be true

for certain types of asymptotic worst-case time tractability,

e.g. polynomial time [31, 32].

The second criticism highlights the need to properly apply

complexity frameworks. In this case, the fault is not so

much with the framework as with badly-formulated problems.

If the worst-case inputs to a proposed input/output function do

not occur in practice, then the function as specified is, at best,

an overgeneralization of the cognitive capacity that the func-

tion is supposed to be modeling (see also [33]). By properly

3We emphasize this point because some cognitive modelers have

responded to intractability results by devising heuristic methods as

algorithmic-level explanations [18, 19]. In our view, this approach confuses

the reverse and forward engineering perspectives and makes for incompatible

theories at the computational and algorithmic levels (see also [20]).
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introducing input constraints, a better fit between the model

and the actual capacity may be achieved.

3.1.2. The tractable-design cycle

Once the notions of efficiency and tractability are defined,

cognitive modelers can engage in what we call the tractable-

design cycle (analogous to the well-known empirical cycle

in which scientists revise hypotheses if they do not fit the

data), encoded in the following steps (see also [28, 33]).

Step 1: Formulate initial version of cognitive function.

Step 2: Analyze computational complexity of cognitive

function.

Step 3: If cognitive function is tractable, stop.

Step 4: Else, isolate SoCs in cognitive function, revise func-

tion in light of SoCs, and go to Step 2.

If in Step 3, the hypothesized function is found to be tractable,

the tractable-design cycle stops. This does not yet mean that

the model is veridical, but only that we do not yet have

reason to believe it is non-veridical. The model must still be

subjected to empirical tests. If the model fails one or more

empirical tests, then the empirical cycle generates a new

hypothesized function, and the tractable-design cycle starts

all over again.

If one cannot demonstrate tractability in Step 3, then one may

be able to demonstrate intractability by showing that the function

(or, more commonly, a decision problem associated with that

function) is hard or complete for some problem-class C enclos-

ing the class T of tractable problems relative to a tractability-

preserving reduction, assuming C = T. If intractability is

indeed established, then Step 4 is to identify one or more

SoCs in the function. We next explain what constitutes an SoC.

3.1.3. Sources of complexity

An SoC is composed of one or more aspects of an intractable

problem, that when restricted, or otherwise changed, yield a

new problem that is of lower complexity and possibly tract-

able. An SoC may characterize any part of the description of

the given problem or of the underlying structures invoked in

solving that problem. For example, consider the following

problem:

PARSE-G

Input: A grammar g of type G, a string x and positive inte-

gers d and n.

Output: A parse tree for x relative to g that has depth at most

d and at most n internal nodes.

Possible aspects of this problem include the grammar-type G,

the length of string x, the maximum parse-tree depth d or the

size of the set Tg
x of possible parse-trees for x relative to g. An

aspect can correspond to a member of a set of alternative

mechanisms (e.g. one of the grammar-types in the Chomsky

hierarchy) and such aspects are changed by swapping in

another (possibly simpler) member of that set (e.g. use

finite-state instead of context-sensitive grammars). On the

other hand, an aspect may be a variable describing a mechan-

ism (e.g. one of the variables vi of a function f(v1, v2, . . . , vl),

which computes the value of jTg
x
j) and such aspects are

restricted by fixing or placing bounds on the values of these

variables (e.g. valid parse trees can be of depth at most 5).

Given a set S of one or more aspects comprising a putative

SoC of a problem cT, any implementation of the tractable-

design cycle specified in Section 3.1.2 must be able to

assess the time complexity of the version of cT in which S is

restricted. This time complexity can then be used to determine

if S is an SoC for cT. Once an SoC in an intractable model has

been identified, it naturally suggests a possible model revision.

3.2. Implementing the core analysis process

To date, the generic cognitive model derivation process

described in Section 3.1 has been implemented relative to clas-

sical and parameterized complexity theory. The two resulting

approaches share many things—for instance, both use asymp-

totic worst-case complexity to measure efficiency (see Section

3.1.1) and classical hardness and completeness results to

establish the intractability of cognitive functions (see

Section 3.1.2). In this section, we will focus on where these

approaches differ—namely, their definitions of tractability

and the extents to which they support SoC identification.

3.2.1. Classical approach

Almost all analyses of cognitive models done to date have

been done relative to classical computational complexity. In

this approach, tractability is defined as polynomial-time solva-

bility (what van Rooij [17] termed the P-Cognition thesis; see

also [6, 33, 34]), and putative SoCs are evaluated using con-

ventional algorithmic techniques and hardness/completeness

for classes such as NP and PSPACE relative to polynomial-

time many-one reducibility.

A common criticism of polynomial-time computability is

that it is an overly generous definition of tractability (e.g.

[35, 36]), as it allows time complexities that grow unreason-

ably fast as a function of input size n (e.g. O(n100)). Oddly

enough, a more accurate criticism is that it is too strict! This

is particularly the case when tractability is used as a constraint

on cognitive models: the notion of tractability that cognitive

modelers adopt should delimit the whole set of possible cog-

nitive functions (see Fig. 1) and not classify any potentially

veridical functions as intractable, and thereby as non-

veridical. Do we have reason to believe that human cognizers

compute functions of non-polynomial complexity? Yes—

many time complexity functions that are exponential in

general become polynomial when certain aspects are

bounded in value (e.g. when k ¼ 5 and m ¼ O(log2 n),

O(nkm) )O(n5m) and O(2mk3n))O(k3n2)). As many real-

world cognitive inputs appear to be characterized by such
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bounded aspects, cognitive functions need not be restricted to

general polynomial-time computable functions.

Such a relaxed criterion of tractability, in which only speci-

fied aspects of small value can participate in non-polynomial

terms in time complexities, can be handled within the classical

approach to a degree: one verifies such tractability by giving

an algorithm whose time complexity has the desired form,

and proves intractability relative to versions of the problem

in which the aspects of interest are of constant value (e.g.

k-COLORABILITY is NP-complete when k ¼ 3 [1, Problem

GT4]). Unfortunately, such intractability results are frequently

hard to prove, leaving the tractability of problems relative to

certain sets of aspects in limbo. Also, even if such results

are derivable, they cannot distinguish between cases in

which the aspects of interest are responsible for non-

polynomial terms singly (e.g. O(2kn)), or in collaboration

(e.g. O(nkm)) and hence cannot assess tractability when

bounds are not constants (e.g. k ¼ O(log2 n)).

3.2.2. Parameterized approach

The difficulties with the classical approach to cognitive model

analysis noted above can be traced back to the fact that in clas-

sical theories of computational complexity the input size is

treated as a single monolithic parameter. As a result, it is

very difficult to isolate the contribution of an individual

aspect of an intractable problem to the running times of algor-

ithms for that problem, let alone prove that there is no algor-

ithm for that problem whose non-polynomial behavior is

expressed purely in terms of that aspect.

These difficulties disappear if the theory of parameterized

complexity is used. In this theory, each problem has an expli-

citly two-part input kk, x l, where k is called the parameter and

x is called the main part. This leads to the following notion of

tractability:

DEFINITION 3.1. A parameterized problem c with inputs of

the form kk, xl is fixed-parameter tractable (FPT) if there is an

algorithm for c that runs in time f(k)na for some function f and

constant a. Let FPT be the class consisting of all parameter-

ized problems that are FPT.

Note that this directly encodes the desired notion of cognitive

tractability described in the previous section (what van Rooij

[17] termed the FPT-cognition thesis). In the remainder of

this paper, let the parameterized problem generated by parame-

terizing problem c relative to aspect-set S be denoted by kSl-c.

A putative SoC for a problem c based on aspect-set S of that

problem can now be assessed by proving whether or not para-

meterized problem kSl-c is in FPT. Fixed-parameter (fp) tract-

ability can be proved using various fp-tractable algorithm

design techniques, and fp-intractability can be proved using

either (i) hardness or completeness results for members of

the W-hierarchy ¼fW[1], W[2], . . . , W[P], W[SAT], . . . , XPg

(see [2] for definitions of these classes and parameterized

reducibilities) or (ii) proofs of non-inclusion in a class in the

W-hierarchy. The latter is of particular interest in light of the

following lemma.

LEMMA 3.1 [30, Lemma 2.1.35]. Given a set S of aspects of

a problem c, if c is C-hard for some complexity class C when

the value of every aspect s [ S is fixed, then the parameterized

problem kSl-c is not in XP unless P ¼ C.

Note that as we are typically only interested in ruling out

fp-tractability, hardness and non-inclusion results suffice, i.e.

it is not necessary to prove completeness results. The latter

such results, enabled by Lemma 3.1, are particularly powerful

as many cognitive functions are NP-hard when various aspects

are constants (see Section 4).

As noted above, parameterized complexity is particularly

suited to the assessment of potential SoCs for a problem.

While such results can be derived individually, it is sometimes

useful to derive such results systematically. Such a systematic

parameterized analysis [30], in which parameterized results

for a problem are derived relative to all 2jSj2 1 non-trivial

subsets of a specified set S of problem aspects, can expose

the range of potential SoCs for a given aspect-set, and is

also to a degree helpful in assessing the minimality of a

given SoC. Such minimal SoCs may be representative of par-

ticular mechanisms responsible for problem intractability (see

also [37]). Performing such systematic analyses is made easier

by the following lemmas (see also [30] Section 2.2.3]).

LEMMA 3.2. Given sets S # S0 of aspects of a problem c, if

parameterized problem kSl-c [ FPT then parameterized

problem kS0l-c [ FPT.

LEMMA 3.3. Given sets S#S0 of aspects of a problem c, if

parameterized problem kS0l-c � FPT unless X for some con-

jecture X, e.g. P ¼ NP, then parameterized problem kSl-c �
FPT unless X.

These lemmas mean that a full systematic analysis can often

be performed by deriving a fairly small core of results. The

collection of results from a systematic parameterized analysis

is often most profitably viewed in a table in which each aspect-

set in the analysis has its own entry; by appropriately organiz-

ing such parameterized intractability maps [30], the regions of

tractability and intractability as well as regions of aspect-sets

whose complexity is still open are easily seen, making for

good summaries of current results as well as directions for

future research. Examples of such intractability maps can be

found in Tables 2–6.

There is currently one drawback to using parameterized com-

plexity for cognitive model analysis: parameterized complexity

is still a relatively young theory and thus has a much smaller base

of results for practitioners in cognitive science to draw on than

more mature classical theories of computational complexity

like NP-completeness. Given the evident benefits of the parame-

terized approach it will be worthwhile to try and overcome this

problem. This may be achieved, among other things, by
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stimulating interest in the computer science community for ana-

lyzing the parameterized complexity of problems arising in cog-

nitive science, and by making the insights that such analyses

generate more widely-known in the cognitive science commu-

nity. To this effect the remainder of this paper considers a set

of current applications of parameterized complexity in cognitive

science, as well as future opportunities.

4. APPLICATIONS

We consider applications in three general domains: percep-

tion, action planning and higher cognition. While perception

serves to transform sensory stimulation (e.g. of the eyes,

ears, nose, etc.) into internal representations (e.g. percepts),

action planning serves to transform internal representations

(e.g. goals, constraints, percepts) into motor actions (e.g. loco-

motion, reaching, grasping). Possibly intervening between

these peripheral processes are the more central, so-called

higher-cognitive, processes that serve to transform internal

representations (e.g. percepts, concepts, assumptions, goals,

values) into other internal representations (e.g. judgments,

arguments, conclusions, plans, decisions).

4.1. Perception

As the biological wetware underlying the classical senses such

as sight, hearing, smell, taste and touch are readily accessible

for experiments and have been extensively investigated since

the dawn of psychological science, perception problems are

arguably some of the most constrained computational pro-

blems in cognitive science. Despite the variety of opportu-

nities, parameterized work on perception to date has focused

on a single area—language processing.

Language processing essentially relates observable surface

forms to underlying lexical forms. Surface forms can be

expressed in a variety of sensory modalities; though most

languages use sound, some use vision (sign languages for

the deaf) and touch (adapted sign languages for the blind

and deaf). Lexical forms are the abstract representations of

surface forms to which meaning is added typically by higher

levels of language processing. For example, a particular audi-

tory signal, instead of denoting the ringing of an alarm clock or

a door closing, is given the internal representation /khaet/

associated with small semi-domesticated felines that are typi-

cally harbingers of mischief.

Language processing encompasses both generation (of

surface forms from given lexical forms) and recognition (of

underlying lexical forms from given surface forms). Ristad

[38] suggests that these processes be analyzed in terms of

the following templates.

T-ENCODING

Input: Lexical form u, lexical-surface form relation mech-

anism M of type T.

Output: Surface form s created by applying M to u.

T-DECODING

Input: Surface form s, lexicon D, lexical-surface form

relation mechanism M of type T.

Output: Set of lexical forms U generated by D from which

M can create s.

These templates can in turn be made into computational pro-

blems by specifying s, u, M, and D relative to the represen-

tations and mechanisms underlying a particular linguistic

theory T.

Many classical complexity analyses of these problems have

been carried out over the last 20 years relative to a variety of

linguistic theories: e.g. two-level morphology [25], simplified

segmental grammars (SSG) [27, 38] and optimality theory

[39]. Parameterized analyses have been done by Wareham

[29, 30, 40, 41] relative to these theories as well as finite-state

transducer (FST) rule systems and declarative phonology.

These theories fall into two groups, based on the nature of

the form relation mechanism.

(1) Rule-based: Lexical form related to surface form by a

sequence of rules and intermediate forms.

(2) Constraint-based: Lexical and surface forms related by

a set of constraints on valid lexical-surface form

pairings.

The encoding and decoding problems for all theories analyzed

by Wareham except SSG are formalized in terms of finite-state

mechanisms—that is, lexical and surface forms are strings,

lexicons are encoded as deterministic finite-state automata

(DFA), constraints are encoded by DFA and FST rules are

encoded by FST and the rule- and constraint-based form

relation mechanisms are encoded as the intersection and com-

position of given sets of DFA and/or FST.4

Decision versions of all of the encoding and decoding pro-

blems in the five theories examined by Wareham are

NP-complete [25, 30, 38]. This is not suprising as the best

known algorithms for intersection and composition of n

finite-state automata, each of which has at most m states,

iterate the classical state Cartesian-product pairwise intersec-

tion and composition algorithms and thus require O(mn)

time and space (see [30, Section 2.2.3] and references).

However, there yet remains a widely held belief within the

4The intersection of two DFA (FST) A1 and A2 is the language (relation)

consisting of all strings (string-pairs) accepted by A1 and A2, and the compo-

sition of two FST A1 and A2 is the relation consisting of all string-pairs (x, y)

such that there exists a string z such that (x, z) is accepted by A1 and (z, y) is

accepted by A2. Intersections of n . 2 DFA or FST is defined in terms of

acceptance by all n given automata; composition of n . 2 FST assumes a

specified order of the given FST and a corresponding sequence z1, z2, . . . ,

z(n21) of intermediate forms. Intersection over DFA and composition over

FST are closed, i.e. can be accepted by DFA and FST, respectively;

however, intersection over FST is closed only for certain restricted types of

FST (see [42] for details).
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computational linguistics community that the simplicity of

finite-state mechanisms renders any finite-state system tract-

able (‘the lure of the finite-state’ [25]).

The resulting debate over the SoCs in finite-state natural

language processing problems (see [21, 25] and references)

can be summarized by considering grammar derivation, i.e.

is a given string x in the language generated by a given

grammar g? Observe that grammar derivation is effectively

a decoding problem in which M consists of the single automa-

ton corresponding to g, s corresponds to x, and the only poss-

ible lexical-form in D is of length 1, i.e. the grammar

start-symbol. The fact that this problem is solvable in poly-

nomial time relative to finite-state and context-free grammars

[43] suggests that the number of automata in M and/or the

length of the lexical and surface forms may be SoCs for the

encoding and decoding problems. This in turn suggests para-

meterized analyses in terms of the following aspects.

† The size of the alphabet (jSj).

† Length of lexical form (juj).

† Length of surface form (jsj).

† Number of automata in the form-relation mechanisms

(jMj).

† Maximum number of states in an automaton in M (M

includes lexicon D where appropriate) (jQj).

Results for these and other theory-specific aspects have

been laid out in a number of intractability maps [30, 41].

A representative map from this set is shown in Table 2 for

the following problem.

FST-ENCODING

Instance: A set M of FST, all of whose input and output

alphabets are S, a composition-order O on these FST, and

a string u [ Sþ.

Question: Is there a string-sequence fs0, s1, . . . , sjMjg with

s0 ¼ u and si [ Sjuj for 1 � i � jMj such that for the order-

ing fm1, m2, . . . , mjMjg of M under O and 1 � i � jMj, si21/si

is accepted by mi?

These maps show that parameterized problems based on

almost all aspect combinations that are not supersets of

those invoked by the classical automaton composition- and

intersection-based algorithms (fjMj, jQjg) or the trivial algor-

ithm that enumerates and checks all possible solutions (fjSj,

juj, jsjg) are W-hard. This means that none of the previously

proposed SoCs in the literature (jMj, juj, jsj) are in fact

SoCs. Moreover, by virtue of systematically delimiting poss-

ible SoCs relative to all sets of aspects characterizing the

‘coarse’ structure of finite-state form-relation mechanisms,

these maps suggest that further searches for SoCs for these

problems should focus on aspects encoding the ‘fine-grain’

structure of these mechanisms, such as restrictions of the

forms of the automata underlying the rules and constraints

themselves.

4.2. Action planning

Action planning problems relate the specifications of initial

and final states of a system to sequences of valid actions by

which the system can progress from the initial to the final

state. There are many levels of action planning in cognitive

systems, from low-level planning of body motions in different

types of 2- and 3-D spaces all the way up to high-level plan-

ning of action-sequences linking abstract states. Parameterized

results are currently known for both of these extremes.

4.2.1. Motion planning

Given a known obstacle-filled environment and start and goal

positions in such an environment, motion planning denotes the

task of finding a path from the start to the goal position that

does not collide with any obstacles. The agent attempting

these moves may have a particular body structure (e.g. head,

torso and limbs), which may be augmented by extra attach-

ments (e.g. suitcases being carried or a box-loaded trolley

being pushed). This agent-structure has various points at

which movement is possible in some known directions with

some fixed degrees of freedom (e.g. joints in limbs and

handles on suitcases). Movements in certain environments

may involve several re-orientations of this structure (e.g. the

contortions required for a baggage-laden traveler to pass

through a series of subway turnstiles), complicating motion

planning still further.

Motion planning of an arbitrarily shaped agent-structure

within an arbitrarily shaped 2- or 3-D environment can be

modeled by the following problem.

d-DIMENSIONAL GENERALIZED MOVER

(dD-GM, d [ f2, 3g)

Instance: A set O of obstacle polyhedra, a set P of polyhe-

dra which are freely linked together at a set of linkage ver-

tices V such that P has k degrees of freedom of movement,

and initial and final positions pI and pF of P in

d-dimensional Euclidean space.

TABLE 2. The parameterized complexity of FST-ENCODING

(adapted from [41, Table 1(b)])

Alphabet size jSj

Parameter Unbounded Parameter

NP-complete �XP

jMj W[t]-hard W[t]-hard

juj W[2]-hard FPT

jQj W[2]-hard ???

jMj, juj W[1]-hard FPT

jMj, jQj FPT FPT

juj, jQj W[2]-hard FPT

jMj, juj, jQj FPT FPT

Note: ‘�XP’ should be read as ‘�XP unless P ¼ NP’
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Question: Is there a legal movement of P from pI to pF, i.e. is

there a continuous sequence of translation and rotations of

the polyhedra in P such that at each point in time, no polyhe-

dron in P intersects any polyhedron in O and the polyhedra in

P intersect themselves only at the linkage vertices in V?

Although this problem is solvable in polynomial time if the

agent is modeled as a single rigid polyhedron [44], the

general version is PSPACE-hard in both two [45] and three

[44] dimensional environments. Quite aside from the fact

that no actual environments are cluttered to arbitrary

degrees, agents (even when augmented by attachments) typi-

cally have very restricted structures. For example, the move-

ments of all joints in a hand can be approximated by on the

order of 20 degrees of freedom and the human body can be

approximated by 43 linked parts. It would be interesting to

know if and in what manners motion planning becomes tract-

able relative to these and other restrictions.

The parameterized analysis of 3D-GM carried out by Cesati

and Wareham [46] models these restrictions as follows. Let a

maximally linked group of polyhedra in P be a component, and

each polyhedron in P be a part. Define the following aspects

for GM:

† the number of components of P (c);

† the maximum number of parts in any component in P (pc)

and the total number of parts in P (pt);

† the maximum number of algebraic inequalities, i.e.

planar surfaces, lines, curves, needed to define any part

(sp) or component (sc) of P, or the total number of such

inequalities needed to define P (st);

† the maximum number of linkage vertices on any part (vp)

or component (vc) of P, or the total number of linkage

vertices in P (vt); and

† the maximum number of degrees of freedom of any part

(kp) or component (kc) of P, or the total number of

degrees of freedom of P (kt ¼ k).

It is known that kkt, pt, stl-3D-GM is W[SAT]-hard [46] and as

many other versions remain PSPACE- and NP-hard when

various parameters are constants [44, 45, 47], their associated

parameterized versions are even harder still. All of these results

are summarized in the intractability map given in Table 3.

Despite the above, hope yet remains for tractability of

motion planning in restricted 2-D and 3-D environments.

Promising results have recently been derived for the Rush

Hour puzzle, which asks if the members of a given set of axis-

parallel rectangles in the integer 2-D grid can be moved either

horizontally or vertically to assume specified final positions

without colliding. This problem is PSPACE-complete, but ver-

sions in which the number of rectangles and the total number

of moves are parameters are both in FPT [48]; this in turn

offers hope that more psychologically realistic formulations

of 2-D motion planning may themselves be tractable.

4.2.2. General action-sequence planning

Many everyday tasks can be viewed as instances of a general

action-sequence planning problem. In this framework, given

initial and desired states s and g and a set of possible

state-to-state transformation operators, the goal is find a

sequence of operators that transform s into g. For example,

suppose one has a particular set of ingredients (the initial

state) and wants to prepare a three-layer white chocolate

cake (the desired state); given a fully equipped kitchen and

knowledge of basic cooking processes such as mixing, chop-

ping, stirring and turning on the oven (the set of possible

state-to-state transformation operators), the goal is to find a

recipe (a sequence of operators) for baking the wanted cake

using a subset of the given ingredients. Note that, as in

motion planning, such an operator-sequence may not exist

for certain (s, g) pairs (e.g. try making chocolate cake from

ground beef and peppers or silk purses from sow ears).

One possible way of representing states is as conjunctions

of true or negated assertions (e.g. heated(oven) ^ mixed(flour,

sugar)^ puree(watermelon)), where the assertions comprising

a state are a subset of a base assertion-set. State-transformation

operators can then be represented as precondition/postcondition

pairs, where preconditions and postconditions are conjunc-

tions of true or negated assertions (e.g. measured(flour) ^

measured(sugar) ^ empty(bowl)) empty(bowl) ^ mixed(flour,

sugar)). An operator pre) post is applicable to a state x if all

assertions in pre are in x and have the same values; the appli-

cation of such an operator adds and/or modifies the assertions

in post to x to create state x0.

The scheme described above is propositional STRIPS [49],

a simplified version of the original STRIPS formalism pro-

posed by Fikes and Nilsson in 1971 [50]. The propositional

STRIPS planning problem can equivalently be stated [51]

TABLE 3. The parameterized complexity of kD-GM (adapted

from [46, Table 1])

Parameter 3D-GM 2D-GM

Components

c �XP �XP

Parts

pc �XP �XP

pt W[SAT]-hard ???

Surfaces

sp �XP �XP

sc �XP �XP

st W[SAT]-hard ???

Degrees of freedom

kp �XP �XP

kc �XP �XP

kt W[SAT]-hard ???

Note: ‘�XP’ should be read as ‘�XP unless P ¼ PSPACE’
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as follows in terms of vectors whose positions correspond to

individual assertions in the base assertion-set:

k-STEP PROPOSITIONAL STRIPS PLANNING (kPSP)

Input: A positive integer n, an initial state vector s [ f0, 1gn,

a goal vector g [ f0, 1, *gn, a collection O ¼ fo1,. . ., omg of

operators of the form oo ¼ (P, Q), P, Q [ f0, 1,*gn and a

positive integer k.

Question: Is there a sequence of operators of length at most

k that, when applied in order to s, produce g?

In this version, n is the number of assertions, a vector cor-

responds to a subset of assertions and 1 (0) at position i in

that vector corresponds to assertion i being true (negated). In

an operator o ¼ (P, Q), vectors P and Q are called the precon-

ditions and postconditions of the operator. An operator o can

be applied to a state vector s [ f0, 1gn if for all i, 1 � i � n,

P[i] [ f0, 1g implies that s[i] ¼ P[i]. The application of o to

s yields a state-vector s0 such that for all i, 1 � i � n, s0[i] ¼

s[i] if Q[i] ¼ * and s0[i] ¼ Q[i] otherwise. A state vector s0 is

equivalent to the goal vector g if for all i, 1 � i � n, g[i] [
f0, 1g implies s0[i] ¼ g[i].

This problem is PSPACE-complete even when the number

of true and negated assertions in the precondition and postcon-

dition set of each operator is at most 2 [49]. However, state-

transformation operator-sets are not of arbitrary size and

operator-sequences cannot be too long if they are to be

useful in practice (e.g. almost all recipes are explainable

within a 30 min cooking show format). Does restricting com-

binations of aspects render kPSP tractable? Let jprej and jpostj

be the maximum number of pre- and post-conditions in any

operator in O, i.e. the maximum number of non-star entries

in the P and Q sets of any operator in O. It is known that

kk, jprej, jpostjl-kPSP is W[1]-hard when jprej ¼ 4 and

jpostj ¼ 7 [51] and that kk, ml-kPSP is in FPT (see if the appli-

cation of any of the O(mk) possible application-sequences of

operators to s produces g).

All of these results are summarized in the intractability map

given in Table 4. At present, one SoC (fm, kg) has been iso-

lated; others may be derivable with further investigations of

open questions relative to the aspects examined to date or by

generalizing those versions of kPSP known to be solvable in

polynomial time [49].

4.3. Higher cognition

Because, by their very nature, the inputs and outputs of central

cognitive processes are not directly observable by scientists

(and often not even by cognizers themselves), models of

higher cognition are even more susceptible to the empirical

underdetermination problem discussed in Section 2.3.1. It

seems then that the tractability constraint can really benefit

models of higher cognition. Although many NP-hardness

results for models of higher cognition have accumulated

over time (e.g. [19, 35, 36, 52–57]), few researchers have

taken up the opportunity to systematically investigate SoCs

in these models using parameterized complexity theory.

Notable exceptions can be found in the domains of decision

making (in particular, Subset Choice [37]) and non-deductive

reasoning (Coherence [17]). We discuss these applications

below.

4.3.1. Subset choice

Subset choice denotes the task of choosing a subset of items A

from a set of available items V. A common assumption in the

psychology of decision making is that when a decision-maker

is presented with the option of choosing a subset from V she

will choose a subset A#V with satisfactory (e.g. maximum)

value. But this means that the decision-maker can determine

a satisfactory valued subset for a given choice set, i.e. she can

compute instances of the following computational problem:

GENERALIZED SUBSET CHOICE

Input: A set V ¼ fx1, x2, . . ., xng of n available items, a value

function u: 2V
! Z assigning an integer value to every

subset in V, and an integer p.

Question: Does there exist a subset A#V such that

u(A) � p?

Clearly, GENERALIZED SUBSET CHOICE is an implausible model

of human subset choice for all but very small n, because the

number of subsets that need to be considered grows exponen-

tially with n. This problem can be overcome by assuming that

the value of a subset u(A) can be decomposed into the values

of individual elements and their combinations. A first simple

model of subset value u(A) is given by the additive model

uðAÞ ¼
X
x[A

uðxÞ; ð1Þ

where u(x) denotes the value of an item x [ A#V. If we restrict

the GENERALIZED SUBSET CHOICE to value structures that satisfy

equation (1), then the problem is linear-time computable, which

TABLE 4. The parameterized complexity of k-STEP PROPOSITIONAL

STRIPS

Operation-set size m

Parameter Unbounded Parameter

– PSPACE-complete ???

jprej �XP ???

jpostj �XP ???

k W[1]-hard FPT

jprej, jpostj �XP ???

jprej, k W[1]-hard FPT

jpostj, k W[1]-hard FPT

jprej, jpostj k W[1]-hard FPT

Note: ‘�XP’ should be read as ‘�XP unless P ¼ PSPACE’
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surely meets the tractability constraint. The problem with the

additive model, however, is that it does not take into account

the possibility that items can interact so as to increase or

decrease subset value. Therefore, Fishburn and LaValle [54,

58] proposed the binary model of subset value

uðAÞ ¼
X
x[A

uðxÞ þ
X
ðx;yÞ[A2

Dðx; yÞ; ð2Þ

where D(x, y) ¼ u(x, y) 2 u(x) 2 u(y). Although the binary

model improves on the additive model it still assumes the

absence of higher-order value interactions, an assumption that

seems to be violated by human decision-makers. Therefore,

van Rooij et al. [37] proposed a generalization of the binary

model, called the h-ary model of subset value,

uðAÞ ¼
X
x[A

uðxÞ þ
X

ðeÞ[A2<A3<���<An

DðeÞ; ð3Þ

where for each h-tuple (x1, x2, . . . , xh) [ Ah, with 2 � h � n,

D(x1,x2, . . . , xh)¼ u(A) 2
P

x[Au(x) 2
P

e[A2<A3< � � �<Ah21D(e).

2<A3< � � �<Ah21D(e). Since every possible value function u

obeys equation (3), the h-ary model of subset choice is in its

generality as intractable, and hence as implausible, as GENER-

ALIZED SUBSET CHOICE. It is conceivable, however, that

human value structures have special properties that render

subset choice under the h-ary model tractable.

† Humans may have limited sensitivity for value differ-

ences: this poses lowerbounds and upperbounds on the

different value levels. This constraint is modeled by

four parameters umin, umax, Dmin and Dmax, where

umin � u(x) � umax for all x [ V, and Dmin � D(e) �

Dmax for all e [ A2 < A3 < . . . < An.

† Humans may have limited sensitivity to higher order

value-interactions: this poses an upperbound e on the

degree of non-zero interactions and is modeled by

setting D(x1, x2,. . ., xh) ¼ 0 for all h . e.

† Humans may have low aspiration levels p or q ¼

p 2 u(V).

Fishburn and LaValle [54] proved that SUBSET CHOICE is

NP-hard for e ¼ 2 (i.e. the binary model). Van Rooij et al.

[37] furthermore showed that NP-hardness remains even if

e ¼ 2, umin ¼ 0, umax ¼ 1, Dmin ¼ 2 1 and Dmax ¼ 0. With

the same restriction the problem is W[1]-hard when parameter-

ized by p, but in FPT when parameterized by q. The FPT result

generalizes if we relax Dmin � 2 1. If we instead relax umax �

1 the problem is W[1]-hard for q, but it is in FPT when para-

meterized by q and umax. More general, SUBSET CHOICE is in

FPT for e � 2, umin ¼ 0, umax � 1, Dmin ¼ 2 1 and Dmax ¼

0, when parameterized by q, umax and e.

These results are summarized in the intractability map given

in Table 5. Note that the results imply, among other things,

that subset choice under the h-ary model is intractable even

if people can distinguish at most two value levels for elements

and interactions, can detect at most second-order interactions,

and have a low aspiration level for the value of u(A).

4.3.2. Coherence

Humans possess an impressive capacity for making plausible

non-deductive inferences, both in the common sense and

scientific domain—a capacity with which artificial intelli-

gence struggles to date [59–61]. For example, people can

infer in a split second a person’s intentions and desires from

ambiguous utterances, behaviors and context variables5 and

scientists have proven ability to generate hypothetical con-

structs that help explain natural phenomena. It has been

proposed in [18] that humans make such non-deductive infer-

ences by means of maximizing the coherence of their beliefs

with the available information. A first formalization of this

intuition was provided by Thagard and Verbeugt [19] in a

computational-level model called COHERENCE.

COHERENCE

Input: A graph N ¼ (P, C), with C ¼ C2 < Cþ and C2 >
Cþ ¼ Ø, and positive weight w(p, q) . 0 for each (p, q)

[ C.

Output: A partition of P into accepted A and rejected R

vertices such that the total weight of satisfied constraintsP
(p, q)[S(p, q) w(p, q) is maximized. Here the set of satisfied

constraints is defined by S(p, q) ¼ f(p, q) [ Cþjp, q[ A or

p, q [ Rg < f(p, q) [ C2
jp [ A and q [ Rg.

In this model, P denotes the set of representational elements

(e.g. propositions) that can be accepted (e.g. believed to be

true) or rejected (e.g. believed to be false) by the coherence-

based inferential process. If two elements p, q [ P fit together

they are said to cohere (e.g. the belief that God exists coheres

with the belief that there is life after death), which is modeled

TABLE 5. The parameterized complexity of SUBSET CHOICE

Aspiration level parameter

Parameter set p q

– NP-hard W[1]-hard W[1]-hard

e �XP W[1]-hard W[1]-hard

umin, Dmin, Dmax �XP W[1]-hard W[1]-hard

e , umin, Dmin, Dmax �XP W[1]-hard ???

umin, umax, Dmin, Dmax �XP W[1]-hard ???

e , umin, umax, Dmin, Dmax �XP W[1]-hard ???

Note: ‘�XP’ should be read as ‘�XP unless P ¼ NP’

5Consider, for example, the scenario where the bill arrives after a restau-

rant dinner and the person sitting in front of you says ‘This is on me’, while she

moves her hand into her pocket.
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by a positive constraint (p, q) [ Cþ; if, on the other hand, p

and q resist fitting together they are said to incohere (e.g.

the belief in Darwinian evolution incoheres with the belief

in God), which is modeled by a negative constraint (p, q) [
C2.6 A non-deductive inference (A, R) has maximum coher-

ence if it maximally satisfies the given constraints.

Note how COHERENCE assumes that all elements in P have

equal (viz., zero) a priori plausibility. This does not seem to

fit with how humans think about the world. For example, prop-

ositions describing direct observations typically have an

acceptability of their own (e.g. if one sees that it is raining,

then one’s belief that it is raining gains support directly from

one’s perception). Thagard [18] coined this the data priority

principle. To incorporate this principle in the COHERENCE

model, we may define a special set of data elements D#P

that are ‘favored’ to be accepted. Data priority could then

operate in at least two different ways: either loosely, by weight-

ing elements in D and counting the weight of a d [ D toward

the total coherence if d [ A; or strictly, by requiring that all d

[ D be assigned to A. The first option is called DISCRIMINATING

COHERENCE and the second FOUNDATIONAL COHERENCE [17].

DISCRIMINATING COHERENCE

Input: A graph N ¼ (P, C). Here P ¼ D < H with D > H ¼

Ø and C ¼ C2 < Cþ with C2 > Cþ ¼ Ø. Each d [ D

has a weight wD(d) � 0 and each (p, q) [ C has a weight

wC(p, q) . 0.

Output: A partition of P into A and R such that
P

(p, q)[S(p, q)

wC(p, q) þ
P

d[D>A wD(d) is maximized.

FOUNDATIONAL COHERENCE

Input: A graph N ¼ (P, C). Here P ¼ D < H with D > H ¼

Ø and C ¼ C2 < Cþ with C2 > Cþ ¼ Ø. Each (p, q) [ C

has a weight w(p, q) . 0.

Output: A partition of P into A and R such that D#A andP
(p, q)[S(p, q) w(p, q) is maximized.

It is known that COHERENCE is NP-hard [19]. Since COHERENCE

is a special case of both DISCRIMINATING COHERENCE and

FOUNDATIONAL COHERENCE, the hardness result propagates to

these generalizations as well. This means that, in their general

form, all three models are unrealistic as models of human

inference.

In search of tractable special cases of these models, we

consider a set of natural parameters.

† The number of positive constraints, jCþj, and the number

of negative constraints, jC2
j.

† The maximum weight on constraints, wCmax, and on data

elements wDmax.

† The size of the set of data elements jDj and the set of

hypothetical elements jHj.

Because a cognizer may be content with making inferences of

satisfactory—not necessarily maximum—coherence, we

further consider the model variant that assumes the output is

a partition for which the weight of satisfied constraints is at

least c, and the model variant that assumes the weight of unsa-

tisfied constraints is at most i. This leaves us with two further

parameters.

† The positive integers c and i.

Are any combinations of the listed parameters SoCs for the

coherence models? Van Rooij [17] reports results pertinent

to this question: DISCRIMINATING COHERENCE and FOUNDA-

TIONAL COHERENCE are found to be NP-hard even if

wCmax ¼ 1, jDj ¼ 0 (or, equivalently, wDmax ¼ 0) and

jCþj ¼ 0. When jDj ¼ 0, the models are in FPT when parame-

terized by jC2
j, jHj, c or i [17, 62]. These results are summar-

ized in the intractability map given in Table 6.

5. OPPORTUNITIES

The most obvious opportunities for future research are to con-

tinue the analyses described in Section 4. Other opportunities

exist as well, both in analyzing new problems and in develop-

ing new techniques within the parameterized framework to

assist with these analyses. We discuss concrete examples of

such opportunities in Sections 5.1 and 5.2.

5.1. New application areas

We identify several interesting open problems for cognitive

models in the areas of perception (Section 5.1.1), action plan-

ning (Section 5.1.2) and higher cognition (Section 5.1.3). All

models were previously examined within the classical com-

plexity framework (and typically found to be NP-hard or

worse), but may benefit from systematic SoC analysis

supported by the parameterized complexity framework.

TABLE 6. The parameterized complexity of COHERENCE and

DISCRIMINATING/FOUNDATIONAL COHERENCE

Parameter COHERENCE

DISCRIMINATING /

FOUNDATIONAL COHERENCE

– NP-hard NP-hard

jHj – ???

jDj – �XP

jCþj �XP �XP

jC2j FPT ???

wDmax �XP �XP

wCmax �XP �XP

c FPT ???

i FPT ???

Note: ‘�XP’ should be read as ‘�XP unless P ¼ NP’

6Elements can cohere or incohere for many different reasons. For example,

p and q cohere if p implies q, p is associated with q, or p and q together explain

r, and incohere if p and q are inconsistent, if p is associated with :q, p and q

are competing explanations of r.

396 I. VAN ROOIJ AND T. WAREHAM

THE COMPUTER JOURNAL, Vol. 51 No. 3, 2008

 at R
adboud U

niversity on July 9, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


5.1.1. Perception

A prime candidate for a new application area is vision.

Although many lower-level visual tasks have been rendered

tractable (e.g. line/surface recognition [4]), there are higher-

level visual tasks for which the best known cognitive models

are intractable.

We already considered the problem of form perception as a

running example in Section 2. Two classes of models have

been put forth to explain form perception: those based on

the likelihood principle and those based on the simplicity prin-

ciple [9].7 Although both types of models have been plagued

by intractability results, we here consider only a specific

model of the latter type:

GENERALIZED MINIMUM ENCODING

Input: A string s and an encoding relation E : S! C

mapping strings to sets of codes.

Output: A code c [ E(s) such that jcj is minimized.

Here s is a structural encoding of a retinal image and c models

the interpretation of the image. If the relation E maps s to

Turing machines that, when run on the empty string,

produce s, then GENERALIZED MINIMUM ENCODING is equival-

ent to the computation of Kolmogorov complexity and there-

fore uncomputable [63]. Arguably, the visual system poses

limits on E that may render GENERALIZED MINIMUM ENCODING

tractable. Leeuwenberg and van der Helm [12, 13, 64], for

example, argued that the visual system may encode visual

images using a combination of ISA-rules (i.e. where ISA

stands for Iteration, Symmetry, Alternation). Under this

encoding scheme, the problem has been shown to be comput-

able in subexponential time [13]. It is of interest to consider

also other encoding relations and investigate the relative

contributions of natural parameters such as jsj, jcj, jEj and

parameters specific to the adopted E, to the problem’s

complexity.

Another ubiquitous visual problem is that of finding a target

object in a visual scene (e.g. finding your own car in the

parking lot, or finding a familiar face in a crowd), called

visual search [65, 66]. Successful execution of the visual

search task requires vision to solve a subtask called visual

matching, which is the task of recognizing that a given part

of the visual field corresponds to the sought after target.

A computational-level model of this subtask was proposed

by Tsotsos [33, 67–69].

BOTTOM-UP VISUAL MATCHING

Input: An image I, a target T and positive integers u and f.

Each pixel p [ I has associated values diff (p) and corr (p)

(values have fixed precision e).

Question: Does there exist a subset of pixels I0 # I such thatP
p[I0diff (p) � u and

P
p[I0corr(p) � f?

Here the functions diff (p) and corr (p) are defined as

diffð pÞ ¼
X
p[I 0

X
j[Mi

jtx;y;j � ix;y;jj

 !
ð4Þ

and

corrð pÞ ¼
X
p[I 0

X
j[Mt

jtx;y;j � ix;y;jj

 !
; ð5Þ

where Mi and Mt denote the sets of measurement types in the

image and target, respectively (e.g. color, brightness, motion,

depth), ix,y,j denotes the value of pixel p [ I with coordinates x

and y for measurement type j [ Mi, and tx,y,j denotes the value

of pixel p [ T for measurement type j [ Mt. Note that the

model does not require pixels in I0 to be spatially contiguous,

which may serve to ensure targets can still be detected when

partially occluded by other objects.

In its general form, BOTTOM-UP VISUAL MATCHING is

known to be NP-hard [33, 68], but it has a pseudopolynomial-

time algorithm [70, 71], which implies the problem is in FPT

when parameterized by u or l (where l is the smallest integer

such that ix,y,j � l) [17]. It is not known, however, how other

parameters—such as jTj, f, jMij and jMtj—contribute to the

problem’s complexity. Also, equations (4) and (5) seem to

impose strong constraints on the values that diff(p) and

corr(p) can take (see also [17, p. 172]), constraints that may

be utilized in the efficient computation of bottom-up visual

matching.

5.1.2. Action planning

Although the planning problems examined in Section 4.2 are

intractable, it is sobering to realize that they are actually simp-

lified versions of problems which occur in practice. As these

more realistic problems are known to be intractable under

even more restricted circumstances than those in Section

4.2, they both offer more scope for and have greater need of

parameterized analysis.

Consider first the case of motion planning. The kD-GM

problem examined in Section 4.2.1 is an example of a static

movers problem, in which the obstacles in the environment

are stationary. However, motion planning in practice requires

an agent to take into account obstacles that themselves move.

For example, our baggage-laden traveler must deal not only

with fixed walls and subway barricades, but also revolving

doors, regularly scheduled buses and taxis and (perhaps

worst of all) other similarly harried travelers. To date, work

on such dynamic movers problems has focused on those

cases in which all obstacle trajectories are both regular and

known as part of the input, and the goal is now to find a

7The likelihood principle states that the visual interpretation of the retinal

image is one that maximizes the probability of veridicality; the simplicity prin-

ciple states that the visual interpretation of the retinal image is one that mini-

mizes descriptive complexity [9].
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path for the agent from pI to pF that does not collide with any

of the (now moving) obstacles.

Let us denote the problem described above as k-DIMENSIONAL

DYNAMIC GENERALIZED MOVER (kD-DGM). Two major

intractability results are known for kD-DGM [72]—namely, if

objects are allowed to rotate as they move, 3D-DGM is

PSPACE-hard when the agent is modeled by a single disk

that has restrictions on how quickly it can change velocity

and direction and NP-hard when the agent is modeled as a

cylinder with no such velocity/direction-change restrictions.

Reif and Sharir [72] also give a number of algorithms. Of par-

ticular interest are those versions of kD-DGM in which objects

are not allowed to rotate as they move (the so-called Asteroid

Avoidance Problems [72]), because the 2-D version of this

problem is solvable in polynomial time when the agent is

modeled by a polygon and there are a constant number of

obstacles. Given that kD-DGM is intractable for arbitrary

obstacle-environments and polynomial-time for severely

restricted obstacle-environments, aspects encoding the

obstacle-environment (as in Section 4.2.1) are prime candidates

for further research. It would also be interesting to further

examine the interaction of aspects encoding agent-structure

and the obstacle-environment to see if there are tractable

cases of kD-DGM relative to non-trivial agent-structures.

Consider now the case of general action-sequence planning.

The k-PSP problem examined in Section 4.2.2 assumed that

(i) all assertions comprising a state are known and accessible

and (ii) all actions are deterministic; i.e. the application of

an operator to a state yields exactly one other state.

However, either (and sometimes both) of these conditions

may be violated in practice. For example, the

availability-status of all possible cooking ingredients may

not be known to a cook when cooking starts, and when an

oven is heated, a cook may only know that a temperature is

in a certain range. Moreover, at any point, the result of apply-

ing an operator may depend not only on the current state, but

on the entire previous operator-application history (e.g. loan

officers consider not only current bank balance but also

credit history when a loan application is made). Versions of

STRIPS planning have been introduced to model both of

these contingencies (called conformant planning and con-

ditional planning, respectively). It is known that conformant

planning for plans of length 1 and conditional planning for

plans of length k . 0 are hard for levels of the polynomial

hierarchy above NP [73–75]. It would be interesting to

know how the aspect-sets underlying SoCs derived relative

to k-PSP can be extended to derive SoCs for these problems.

5.1.3. Higher cognition

Intractability results abound for models of higher cognition

(e.g. [19, 35, 36, 52–57]), presenting ample opportunities

for parameterized complexity analysis. We have selected

three subdomains of higher cognition for exposition here:

similarity judgment, categorization and defeasible reasoning.

The notion of similarity is foundational to many theories of

higher cognition. It is often assumed to be part of the input for

processes that compute conceptual coherence, metaphors and

analogies [18, 57, 76], and also for object recognition and cat-

egorization [77–79]. We already saw a model of visual simi-

larity in the form of BOTTOM-UP VISUAL MATCHING. Hahn

et al. [80] proposed a generalized computational-level model

of human similarity judgments for any two mental represen-

tations (not only images) (see also [11]).

GENERALIZED TRANSFORMATIONAL SIMILARITY

Input: Two strings s and t and a set of transformation

rules R.

Output: An ordered sequence of transformation rules r1,

r2, . . . , rk [ R that when applied to s yields t such that k

is minimized.

The judged similarity of s and t is assumed to be a monotoni-

cally decreasing function of k. When the model is applied to

visual object similarity, s and t may be assumed to be codes

as computed by the MINIMUM ENCODING function (see

Section 5.1.1).

If no constraint on the set of rules R is imposed, e.g. if R

could encode any Turing machine [52], then GENERALIZED

TRANSFORMATIONAL SIMILARITY is uncomputable [63]. Hahn

et al. considered a five-tuple of rules: R ¼ finsertion, deletion,

mirroring, shifting, reversalg to model how humans judge the

similarity of sequences of black and white dots. As far as we

know, no computational complexity results are known for

this restricted version of the problem, but possibly results

may be derivable from results for related sequence-similarity

problems in computational biology (see [81, 82] and refer-

ences). Because the set of rules considered by Hahn et al.

need not generalize to more abstract and conceptual similarity

judgments (e.g. which concept is more similar to ‘game’? The

concept ‘fight’ or ‘play’?), it is of importance to also investi-

gate alternative restrictions on the set R.

The problem of categorization is to form groups of rep-

resentations (e.g. objects, words, concepts) that are judged to

belong together (e.g. humans group canines in the category

‘dogs’ and felines in the category ‘cats’; they may further

group dogs and cats together in the category ‘mammal’ and

together with birds in the category ‘animals’). An established

hypothesis in psychology is that basic-level categories—such

as ‘dogs’, ‘cats’, ‘apples’, ‘cars’, etc., but not necessarily

superordinate categories such as ‘mammals’, ‘animals’,

‘fruit’ and ‘vehicles’—are formed so as to maximize within-

category similarity and between-category dissimilarity (see,

e.g. [77, 78]). Here is one possible way to formalize this idea:

OBJECT CATEGORIZATION

Input: A set of objects A, with for each pair of objects a, b [
A � A an associated similarity weight s(a, b) and dissimilar-

ity weight d(a, b).
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Output: A partition of A into disjoint sets A1, A2, . . . , Am

such that
P

i

P
a,b[Ai

s(a, b) þ
P

i,j,i=j

P
a[Ai,b[ Aj

d(a, b),

with i, j [ f1, 2, . . . , mg, is maximized.

If s(a, b) ¼ 0 for all a, b [ A � A, the problem is equivalent

to clustering, and hence NP-hard [1]. When the problem is

further restricted such that m ¼ 2 and d(a, b) [ f0, 1g for all

a, b [ A � A, it is equivalent to the NP-hard problem MAX

CUT [1, Problem ND16], and hence the problem is not in XP

for parameter m unless P ¼ NP.8 Other restrictions or parame-

terizations, however, may render the problem tractable. Note,

for example, that in OBJECT CATEGORIZATION s(a, b) and

d(a, b) are completely independent measures. It may be that,

for purposes of object categorization, humans mentally rep-

resent similarity as the inverse of dissimilarity (though likely

not for all similarity judgments, see [83]). Also, other objec-

tive functions may be more descriptive of human categoriza-

tion. Consider, for example, the following variant of OBJECT

CATEGORIZATION (which yields two new parameters p and q):

OBJECT CATEGORIZATION*

Input: A set of objects A, with for each pair of objects a, b [
A � A an associated similarity weight s(a, b) and dissimilar-

ity weight d(a, b). Positive integers p and q.

Output: A partition of A into disjoint sets A1, A2, . . ., Am such

that
P

i

P
a,b[Ai

s(a, b) � p and
P

i,j,i=j

P
a[Ai,b[Aj

d(a, b) � q.

An altogether different formalization of object categoriz-

ation, based solely on relative similarities (e.g. s(a, b) . s(c,

d), s(a, b) , s(d, e), etc.), has been put forth by Pothos and

Chater [84, 85]. Their model is based on the idea that cat-

egories serve as a compressed description of a set of relative

similarity relations. In the model, an inequality s(a, b) .

s(c, d) is said to be correctly ‘described’ by the partition

A1, A2, . . . , Am if and only if a, b [ Ai, c [ Aj, d [ Ak, with

i = j = k. The output of the categorization process is

assumed to be one that minimizes both description length

(i.e. the size of m) and the errors in description (we refer

the reader to [85] for details). The model seems to be of

high complexity (likely NP-hard, though no result is known

to date) and lends itself to interesting analyses from a parame-

terized perspective.

Lastly, we consider models of reasoning, in particular non-

monotonic or defeasible reasoning [86]. An inference is said to

be defeasible if its conclusions may be changed upon encoun-

tering new information; in other words, all non-deductive

inferences are defeasible. Most everyday inferences made by

humans are defeasible (e.g. when told that John is married,

you infer he has a wife; if later you find out that the

spouse’s name is Bill, you may conclude otherwise). Defeasi-

bility is also a characteristic of inferences in many pro-

fessional settings, e.g. when doctors infer diseases from

symptoms and when judges/juries infer a defendant’s guilt

or innocence from the available evidence. We already encoun-

tered a model of defeasible inference in Section 4.3.2, viz. the

Coherence model of Thagard and Verbeurgt [18, 19]. Its two

main competitors are the Logicist model and the Bayesian

model. We will sketch each in turn.

The Logicist model proposes that humans make defeasible

inferences that follow from default rules (e.g. if p and q are

married, then p is a man and q is a woman, or vice versa)

derived from generalized beliefs (most married couples are

of opposite sex). A common assumption is that a (default)

belief is held provided it is consistent with the current state

of a person’s knowledge [87, 88]. This amounts to the compu-

tation of an instance of the following generalized problem.

GENERALIZED DEFAULT LOGIC

Input: A knowledge base K and a set of default rules R.

Question: Is there a proposition p derivable from K using R,

such that p and K are consistent?

In contrast, the Bayesian model assumes that people make

defeasible inferences so as to maximize the conditional prob-

ability of their beliefs in light of the statistical knowledge they

have of the world (e.g. all else being equal, P(John’s spouse is

a woman) . P(John’s spouse is a man), but given the fact that

the spouse’s name is Bill, the reverse is true). This intuition

leads to the following generalized model.

GENERALIZED BAYESIAN INFERENCE

Input: A knowledge base K and a set of competing hypo-

theses H.

Output: A hypothesis h [ H that maximizes the conditional

probability P(hjK).

It seems fair to say that the Bayesian model is gaining in popu-

larity in the cognitive science community [89], in part because

of its purported descriptive accuracy [86, 90, 91], and also

because the Logicist model has fallen into discredit ever

since the first intractability results became known [61, 87,

92, 93]. It has become clear, however, that the Bayesian

model is no less subject to intractability concerns [53, 56,

94]. These negative results have led some cognitive scientists

to resort to heuristics as algorithmic-level explanations [95,

96], but we believe cognitive science could benefit more

from systematic SoC analyses aimed at identifying model

aspects that make defeasible inference under these models

computationally so demanding (see also Section 3.1.2).

5.2. New parameterized techniques

Historically, the development of computational complexity

theory has been motivated in large part by forward-

engineering applications like software and algorithm develop-

ment. As a result, there are relatively few complexity-theoretic

techniques specifically tailored to the reverse engineering

approach underlying cognitive science. In this section, we

describe two types of parameterized techniques that would,

if developed, be of direct use to cognitive science—namely,8We thank an anonymous reviewer for pointing this out.
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techniques for analyzing cognitive computational architec-

tures (Section 5.2.1) and guiding the search for SoCs

(Section 5.2.2).

5.2.1. Analyzing cognitive architectures

At present, computational-level cognitive analyses typically

do not incorporate processing constraints imposed by biologi-

cal neural architectures. As was pointed out in Section 3.1.1,

given the equivalence of Turing machines and the most

general abstract formulations of these architectures relative

to commonly-adopted standards of tractability, this is not

necessary in computational-level analyses. However, as

knowledge of the nature of biological neural architectures

increases, it may be useful to be able to incorporate such con-

straints to both speed convergence on and decrease the size of

the set of possible cognitive functions.

One way of imposing such architectural constraints in

computational-level analyses is to perform complexity analy-

sis relative to a particular computational architecture. In the

context of the research described in this paper, this would

require the development of new theories of parameterized

complexity based on computational architectures such as cir-

cuits or neural nets that are closer to those that exist in

actual cognitive systems. Parameterized tractability might

then be restated in terms not only of processing time of

an algorithm, but also its underlying neural structure

(e.g. required circuit-algorithm depth/fanin/fanout, required

number of feedback-loop traversals to achieve stability of

output). Once such theories are available, it would be possible

to further integrate such constraints into the problem-

definition themselves, as aspects constraining operations

within these architectures (e.g. maximum allowable circuit-

algorithm depth or gate width). Work has been done on

complexity theories based on such architectures within the

classical complexity framework, both in the context of parallel

and neural computation (e.g. [31, 97]), and it may be relatively

easy (once an impetus is provided) to accelerate the extensions

of this work within the parameterized framework that have

been done to date (e.g. [98, 99]).

5.2.2. Guiding SoC search

In order to efficiently implement the tractable-design cycle in

cognitive scientific practice, it would be desirable to develop

general techniques that can guide the search for SoCs in cog-

nitive models. Here, we distinguish between two types of

SoCs, those that reside in the (lack of) constraints on the

input domains and those that arise from the functional form

of the chosen input/output mapping.

5.2.2.1. SoCs in the input domain. As described in Section

3.2.2, systematic parameterized analysis is useful in making

sure that no SoC relative to the set S of aspects considered

in the analysis is missed and that proposed SoCs are in fact

minimal relative to S. However, such an analysis assumes

that the cognitive scientist has already identified the relevant

set of aspects. Although some potential SoCs may be

evident from parameters stated explicitly in the problem defi-

nition, implicit parameters are typically harder to identify

because they lay hidden in assumptions about the processes

that produced the inputs.

The complexity of the web of interlinked cognitive pro-

cesses, akin to the ecological web of relationships among

various animals and plants co-existing in a particular environ-

ment, renders the total set of such assumptions (and hence the

total set of implicit SoCs) inaccessible in practice—however,

the fact that such interlinking exists may provide a way of

deriving assumptions relative to specific processes (and

hence untangle this web a piece at a time). Just as an animal

population is constrained in practice by the ecological

relationships in which that animal participates, the space of

possible inputs of a cognitive process is ecologically con-

strained by the cognitive processes with which that process

interacts. As an illustration, consider again the models of simi-

larity and categorization discussed in Section 5.1.3. The input

of CATEGORIZATION consists of pairs of objects with assigned

similarity values, which implicitly assumes that there is some

preceding process that computes these values. Depending on

one’s model of similarity, those similarity values may have

different properties and interdependencies, all of which may

be SoCs in the computation of categorization.

In light of this observation, the development of techniques

for identifying implicit SoCs may capitalize on insights

gained from the study of the ‘ecologies of hidden parameters

of feasibility’ [100]; e.g. by considering different problems

c1 and c2, and analyzing the complexity of c1 assuming its

inputs are the output of c2 (see also [51]). Furthermore, the

potential input producing systems c11, c12, . . . are all con-

strained by the requirement of tractability, and the same

holds for processes that provide their inputs, c111, c112, . . . ,

and so on. Perhaps techniques can be developed to propagate

and exploit tractability constraints on whole chains of models,

ca(cb(cc(. . .))), in a way that allows cognitive modelers to

faster converge on feasible alternatives for any individual

model in the chain.

5.2.2.2. SoCs in the functional form. As explained in

Section 2.3, cognitive models do not start off as well-defined

input/output mappings; instead the cognitive scientist starts

with some basic intuitions about the nature of the inputs and

outputs and a first informal hypothesis about how inputs

map onto outputs. In going from these informal ideas to a

formal, well-defined input/output mapping many seemingly

arbitrary choices need to be made. Any one of those choices

is a potential SoC and it would be useful if cognitive scientists

would have at their disposal some methods for recognizing the

ones that are.

Consider, for example, the two model variants of COHERENCE

considered in Section 4.3.2: one assumes humans compute
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maximum coherence and the other assumes humans compute

at least c coherence for some aspiration level c (the latter being

what Herbert Simon [101] called ‘satisficing’). It is general

knowledge in computer science (but not in cognitive

science) that the change from maximizing to satisficing

alone (e.g. without imposing a bound on c) has negligible

effect on computational complexity, because maximum coher-

ence can be determined by computing the decision version for

the lowest c that yields a Yes answer. For other types of

changes the effects on computational complexity are not as

obvious, but often equivalence can still be proved by quite

simple arguments (compare, for example, OBJECT CATEGORIZ-

ATION and OBJECT CATEGORIZATION* in Section 5.1.3). Poss-

ibly using a base-set of such transparent problem relations,

we can develop methods for systematically mapping out

relations between different cognitive models in a way that

helps elucidate which functional properties introduce com-

plexity and which reduce them.

To take this even one step further: Can we develop methods

for comparing competing cognitive model classes in terms of

the SoCs that they introduce? Recall that the three model

classes, COHERENCE, (Section 4.3.2), DEFAULT LOGIC and

BAYESIAN INFERENCE (Section 5.1.3) all aim at modeling the

same human cognitive capacity, viz. defeasible reasoning. It

would be useful if we could somehow evaluate what is gained

or lost in terms of computational efficiency when moving

from one model class to another. Not only can this save cogni-

tive scientists a lot of time by not having to prove (in)tractability

results for the new model class from scratch, but it will also

allow the direct identification of conditions under which the

frameworks do not differ in terms of (in)tractability, which

gives a better handle on assessing the relative strengths and

weaknesses of competing explanatory frameworks.

6. CONCLUSION

In this paper, we have made the case for a natural application

of parameterized complexity in cognitive modeling. We have

clarified the conceptual foundations of parameterized cogni-

tive analysis, reviewed existing applications and provided a

rich list of future opportunities for research. It is our hope

that the work presented here will provide an impetus for

others to contribute results and methods to this new fusion

of cognitive and computer science. We further believe that

doing so will provide benefits for both fields.

† Cognitive science gains by bringing in powerful analytic

tools for identifying and isolating SoC in cognitive

models. These tools will not only help to converge on

model veridicality faster, but also to achieve a deeper

insight into the subtle relationships among the form of

the functions computed by cognitive processes, the

ecology of cognitive inputs and cognitive efficiency.

† Computer science gains by the opening up of a whole

field of unexplored problems raised by the reverse engin-

eering perspective of cognitive science. Work on these

problems is of interest in itself; moreover, the analytic

methods and techniques derived along the way may

also find application in other sciences studying natural

computing processes such as biology and economics.
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[63] Li, M. and Vitányi, P. (1997) An Introduction to Kolmogorov

Complexity and its Applications (2nd edn). Springer-Verlag,

Berlin.

[64] van der Helm, P.A. and Leeuwenberg, E.L.J. (1986) Avoiding

explosive search in automatic selection of simplest pattern

codes. Pattern Recognit., 19, 181–191.

[65] Treisman, A. (1982) Perceptual grouping and attention in

visual search for features and for objects. J. Exp. Psychol.:

Hum. Percept. Perform., 8, 194–214.

[66] Wolfe, J. M. (2003) Moving towards solutions to some

enduring controversies in visual search. Trends Cogn. Sci, 7,

70–76.

[67] Tsotsos, J.K. (1988) A complexity level analysis of immediate

vision. Int. J. Comput. Vis., 2, 303–320.

[68] Tsotsos, J.K. (1989) The complexity of perceptual search

tasks. In Sridharan, N.S. (ed), Proc. Int. Joint Conf. Artificial

Intelligence, pp. 1571–1577. Morgan Kaufmann Publishers,

San Francisco.

[69] Tsotsos, J.K. (1991) Is complexity theory appropriate for

analyzing cognitive systems? Behav. Brain Sci., 14, 770–773.

[70] Kube, P.R. (1990) Complexity is complicated. Behav. Brain

Sci., 13, 450–451.

[71] Kube, P.R. (1991) Unbounded visual search is not both

biologically plausible and NP-complete. Behav. Brain Sci.,

14, 768–773.

[72] Reif, J.H. and Sharir, M. (1994) Motion planning in the

presence of moving obstacles. J. ACM, 41, 764–790.

[73] Baral, C., Kreinovich, V. and Trejo, R. (2000) Computational

complexity of planning and approximate planning in presence

of incompleteness. Artif. Intell., 122, 241–267.

[74] Eiter, T., Faber, W., Leone, N., Pfeiffer, G. and Polleres, A.

(2000) Planning under Incomplete Knowledge. Proc. First

Int. Conf. Computational Logic, pp. 807–821. Lecture

Notes in Computer Science, vol. 1861, pp. 807–821.

Springer-Verlag, Berlin.

[75] Turner, H. (2002) Polynomial-length planning spans the

polynomial hierarchy. Proc. Eighth European Conf. Logics

in Computer Science (JELIA 2002), pp. 111–124. Lecture

Notes in Artificial Intelligence, Vol. 2424. Springer-Verlag,

Berlin.

[76] Holyoak, K.J. and Thagard, P. (1997) The analogical mind.

Am. Psychol., 52, 35–44.

[77] Rosch, E. (1973) On the internal structure of perceptual and

semantic categories. In Moore, T.E. (ed), Cognitive

Development and the Acquisition of Language. Academic

Press, New York.

[78] Rosch, E. and Mervis, C.B. (1975) Family resemblances:

studies in the internal structure of categories. Cogn.

Psychol., 7, 573–605.

[79] Smith, E.E. (1995) Concepts and categorization. In Osherson,

D.N. and Smith, E.E. (eds), Thinking: An Invitation to

Cognitive Science. MIT Press, Cambridge, MA.

PARAMETERIZED COMPLEXITY IN COGNITIVE MODELLING 403

THE COMPUTER JOURNAL, Vol. 51 No. 3, 2008

 at R
adboud U

niversity on July 9, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


[80] Hahn, U., Chater, N. and Richardson, L.B. (2003) Similarity as

transformation. Cognition, 87, 1–32.

[81] Jones, N.C. and Pevzner, P.A. (2004) An Introduction to

Bioinformatics Algorithms. MIT Press, Cambridge, MA.

[82] Pevzner, P.A. (2000) Computational Molecular Biology: An

Algorithmic Approach. MIT Press, Cambridge, MA.

[83] Tversky, A. (1977) Features of similarity. Psychol. Rev., 84,

327–352.

[84] Pothos, E.M. and Chater, N. (2001) Category learning without

labels — A simplicity approach. Proc. 23rd Annual Conf.

Cognitive Science Society, pp. 774–779. Lawrence Erlbaum

Associates, Hillsdale, NJ.

[85] Pothos, E.M. and Chater, N. (2002) A simplicity principle in

unsupervised human categorization. Cogn. Sci., 26, 303–343.

[86] Oaksford, M.R. and Chater, N. (1998) Rationality in an

Uncertain World: Essays on Cognitive Science of Human

Reasoning. Psychology Press Ltd, Publishers, East Sussex, UK.

[87] Oaksford, M.R. and Chater, N. (1993) Reasoning theories and

bounded rationality. In Manktelow, K.I. and Over, D.E. (eds),

Rationality: Psychological and philosophical perspectives.

Routledge, London.

[88] Reiter, R. (1980) A logic for default reasoning. Artif. Intell.,

13, 81–132.

[89] Chater, N., Tenebaum, J.B. and Yuille, A. (eds) (2006) Special

issue: probabilistic models in cognition. Trends Cogn. Sci., 10,

287–344.

[90] Griffiths, T.L. and Tenenbaum, J.B. (2006) Optimal

predictions in everyday cognition. Psychol. Sci., 17, 767–773.

[91] Krynski, T.R. and Tenenbaum, J.B. (2003) The role of causal

models in reasoning under uncertainty. Proc. Twenty-Fifth

Annual Conf. Cognitive Science Society, pp. 692–697.

Lawrence Erlbaum Associates, Hillsdale, NJ.

[92] Dreyfus, H. L. (1979) What Computers Can’t Do. Harper

Colophon Books, New York.

[93] Dreyfus, H.L. (1992) What Computers Still Can’t Do. MIT

Press, Cambridge, MA.

[94] Abdelbar, A. and Hedetniemi, S.M. (1998) Approximation

MAPs for belief networks is NP-hard and other theorems.

Artif. Intell., 102, 21–38.

[95] Gigerenzer, G. and Goldstein, D.G. (1996) Reasoning the fast

and frugal way: models of bounded rationality. Psychol. Rev.,

103, 650–669.

[96] Todd, P.M. and Gigerenzer, G. (2000) Précis of simple
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