
Timed Fast Exact Euclidean Distance (tFEED) Maps

Theo E. Schoutena, Harco Kuppensa and Egon L. van den Broekb

aNijmegen Institute for Computing and Information Science,
Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{T.Schouten,H.Kuppens}@cs.ru.nl

http://www.cs.ru.nl/˜{ths,harcok}/
bNijmegen Institute for Cognition and Information,

Radboud University Nijmegen,
P.O. Box 9104, 6500 HE Nijmegen, The Netherlands

e.vandenbroek@nici.ru.nl
http://eidetic.ai.ru.nl/egon/

ABSTRACT

In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background
pixels to the nearest object pixel. In a naive implementation, each object pixel feeds its (exact) ED to each background
pixel; then the minimum of these values denotes the ED to the closest object. Recently, the Fast Exact Euclidean Distance
(FEED) transformation was launched, which was up to 2x faster than the fastest algorithms available. In this paper,
first additional improvements to the original FEED algorithm are discussed. Next, a timed version of FEED (tFEED) is
presented, which generates distance maps for video sequences by merging partial maps. For each object in a video, a
partial map can be calculated for different frames, where the partial map for fixed objects is only calculated once. In a
newly developed, dynamic test-environment for robot navigation purposes, tFEED proved to be up to 7x faster than using
FEED on each frame separately. It is up to 4x faster than the fastest ED algorithm available for video sequences and even
40% faster than generating city-block or chamfer distance maps for frames. Hence, tFEED is the first real time algorithm
for generating exact ED maps of video sequences.

Keywords: Exact Euclidean distance, FEED, tFEED, distance maps/transforms, video processing, robot navigation

1. INTRODUCTION

In the areas of computer vision, image, and video processing, it is usually required to extract information about the shape
and the position of the foreground pixels relative to each other. Subsequently, many techniques evolved to accomplish this
task; one such technique is the distance transform (DT). TheDT converts a binary image to another image, such that each
pixel has a value that represents the distance to its nearestobject pixel. The new image is called the distance map of the
old image.

Rosenfeld and Pfaltz1, 2 introduced the first movements that could be utilized for thegeneration of distance maps for
digital images: the city-block and chessboard distance (d4 andd8). The city-block distance allows measuring only in
horizontal and vertical directions, while the chessboard distance takes diagonal directions also in consideration. So, the
d4 or d8 distance of two points is the number of steps required to reach either point from the other, where only city-block
or chessboard movements can be used, respectively. To obtain a better approximation for the Euclidean distance (ED),
Rosenfeld and Pfaltz recommended the alternate use of the city-block and chessboard steps, which defines the distance
doct. Geometrically, the corresponding “disks” are diamonds for the distanced4, squares ford8, and octagons fordoct.
Hence,doct provided the best approximation of the ED out of these three distances. However, there are many different DTs
available using different distance metrics.

Send correspondence to Theo E. Schouten, E-mail:T.Schouten@cs.ru.nl

1

In principle, one wants to determine the exact ED. Then, a ED map can be determined for all object points(i, j) in a
(binary) image. Such a map is determined by a ED transform (EDT), which can be computed as:

dij = min{((i − x)2 + (j − y)2)1/2}, i, j ∈ N, (1)

wherex andy are object pixels.

The EDT is a basic operation in computer vision, pattern recognition, and robotics. For instance, if the object pixels
represent obstacles, thendij tells us how far the point(i, j) is from these obstacles. This information is useful when one
tries to move a robot in the free space and to keep it away from the obstacles. However, finding the DT with respect to the
Euclidean metric is rather time consuming. In order to tackle the computational burden of EDT, two strategies have been
adopted: (i) parallel implementations and (ii) approximation of exact EDs.

Ten years after Rosenfeld and Pfaltz1 introduced their DTs, Borgefors3 extended them to chamfer DTs, where during
the scans different weights are given to neighboring pixelsto produce better approximations of the ED. In the 90s, several
other (parallel) implementations of EDTs have been proposed4–7. However, even among the parallel implementations,
mostly the EDs were approximated.

In 1998 Shih and Liu8 presented their method to obtain EDTs. They started with four scans on the image. Next, a
look-up table method was used to correct the wrong pixels. For a large majority of cases, they were able to determine
exact EDTs. Three years later, Costa9 presented such a method by using the concept of exact dilations. Again, after a
period of three years, Shih and Wu10 introduced their two scan method, with which they claimed tobe able to obtain
true exact EDTs. In the same year, Schouten and Van den Broek11 presented their Fast Exact Euclidean Distance (FEED)
transformation. With FEED they introduced an algorithm, which obtained an exact EDT in a computational cheap way.

In the next Section (Section 2), we briefly discuss the principle of FEED and the original methods used to obtain a fast
execution time. This is followed by descriptions of improvements, increasing the speed by about 25%, and by visualization
methods which were used during the developements describedin this paper and which further can be used for tuning of
parameters to optimise the speed for new image sets. In Section 3, the improved version of FEED is compared with four
other DT methods. Next, in Section 4, we discuss applications for EDTs, in particular robot navigation, and introduce a
newly developed, dynamic test-environment for robot navigation purposes. It is explained how exact EDTs are generated
of video sequences. Next, timed FEED (tFEED) is introduced in Section 5, which uses FEED to generate exact ED
maps separately for fixed and moving objects and then combines them. In order to evaluate tFEED for video sequencing,
the algorithms used to evaluate FEED (Section 3) were adapted for video sequencing purposes. These adaptations are
discussed followed by the comparison of tFEED with the four adapted DT methods. We end this paper with a discussion 6
of the work presented as well as proposals for future research.

2. FAST EXACT EUCLIDEAN DISTANCE (FEED) TRANSFORMATION

The FEED algorithm11 calculates the EDT starting directly from the definition (see Equation 1), or rather its inverse: each
object pixelfeedsits ED to all pixels in the image, which in turn calculate the minimum of all received EDs. The naive
algorithm then becomes:

(1) initialize D(p) = if (p ∈ O) then 0, else ∞
(2) foreach q ∈ O
(3) foreach p
(4) update : D(p) = min{D(p) , ED(q, p)}

(2)

Compared to the originally presented algorithm, in algorithm 2 a small adaption is made. The third line of the original
algorithm wasforeach p /∈ O. However, the restriction/∈ O is not needed, removing it has no effect on the functionality
of the algorithm since its initialization is done in the firstline; it even increased the speed of the naive algorithm.

On the one hand, the disadvantage of this algorithm (still) is its computational expensiveness; on the other hand, it can
be easily proven to be correct using classical methods. Therefore, we executed the naive algorithm on a large set of test
images, which provided us with a reference set of distance maps. Subsequently, this reference set was used for testing the
functionality of the following speedup methods applied to it.

2

(a) (b)

Figure 1. Principle of limiting the number of background pixels to update. (a) Only pixels on and to the left of the bisection lineb
between a border pixelB and an object pixelq have to be updated. (b) An example showing that each background pixel has to be
updated only once. Each background pixel is labeled by the border pixel which updates it.

In line (2) only the “border” pixelsB of O have to be considered because the minimalED from any background pixel
to the setO, is the distance from that background pixel to a border pixelB of O. A border pixelB is defined here as an
object pixel with at least one of its four 4-connected pixelsin the background.

TheED in line (4) can be retrieved from a pre-computed matrixM with a size equal to the image size:

ED((xq, yq), (xp, yp)) = M(|xq − xp|, |yq − yp|)

Due to the definition ofD(p), the matrixM can be filled with any non-decreasing functionf of ED:

f(D(p)) = min(f(D(p)), f(ED(q, p))).

For instance, the square ofED allowing the use of an integer matrixM in the calculation to make it faster. Alternately,
one can truncate the ED to integer values inM when it is stored in such format in the finalD(p) to be used for further
image processing. Again this makes the method faster and avoids a conversion in the further processing chain.

Moreover, the number of pixels that have to be considered in line (3) can be limited to only those that have an equal or
smaller distance to the currentB than to any object pixelq (see Figure 2a). By taking all bisection lines into account,it
can be assured that each background pixel is updated only once (see Figure 2b). For that, background pixels on a bisection
line are only updated whenB is on a chosen side of the line.

However, searching for and bookkeeping of bisection lines takes time and that time should be smaller than the time
gained by updating less pixels, otherwise no speedup would be obtained but the algorithm would become slower. Bisection
lines closer to the originB have a larger effect than lines further away. Since in general a number of object points from the
same object are close toB, they are located first by scanning a small area aroundB.

The search for object pixelsq further away is done along a set of lines under certain anglesm starting from the current
border pixel (B). Not all the pixels on a line are checked for being an object pixel, but a certain stepping can be used
depending on the expected size of the objects in the image. Aq found then defines a bisection line, which can be written
in the formmay + mbx = mcqx, with ma, mb andmc being integers that depend only onm. Further searching along the
line can then be stopped.

To keep track of the update area, the maximum x and y values of each quadrant around the currentB are updated (see
Figure 2a). Only pixels inside the rectangles defined by the maximum values need to be updated, but not all of them as
bisection lines might define cuts in the rectangles. A new bisection linebnew in a quadrant might update these maximum

3

(a) (b)

Figure 2. Principle of the bookkeeping and updating. (a) Keeping track of the maximum x and y values per quadrant around a border
pixel. (b) Updating along scan lines: bisection lines determine start and endpoints on them.

values in that and the two neighboring quadrants. In Figure 2b this is indicated with the arrows along the axis, the closed
arrows perpendicular to the axis give the old position of themaximum values while the open arrows indicate the new
positions. Note that in this case there is no update onmaxy2.

The intersection point of two bisection lines in different quadrants might also give a new maximum value. This is
shown in the figure where the intersection point ofbnew andbold decreasesmaxy1 to the position indicated by the double
arrow. Again, this takes time and doing it for all possible intersections might reduce the speed.

The maximum values also determine the maximum distance to search along a new search line, because a found new
bisection line should cut into the rectangular area’s to have an effect. Further if the area that they define is small enough,
searching is stopped because no further time gain can be expected.

The final selection of pixels to update is made in the update process. For each scan line in a quadrant, the maximum
x and y values of the quadrant and the found bisection lines inthat and neighboring quadrants, determine start and end
points, as is indicated with the arrowed lines in Figure 2b.

In addition, some further speedups are implemented, using information saved from a border point for next border
points. By searching for border pixels along horizontal scan lines, the search for object pixels along them = 0 line can
be combined with it. For searching in the vertical direction, a binning of the image in the vertical direction is used, which
is done combined with the initialization ofD(p). Pixels exactly on a bisection line, have only to be updated once. This is
done in quadrants 1 and 2, by simply decreasingmcqx by 1 for quadrants 3 and 4.

2.1. Speedup of FEED

We will now discuss a set of changes and additions that have been applied to FEED. The three most important changes are:

1. The decision to stop searching because the remaining areais small enough, is now based on an estimation of that
area, which also takes bisection lines under45◦ into account.

2. The maximum values in a quadrant can be at several locations, depending on whether crossings of bisection lines
were always calculated during the search process. In Figure2b this is shown formaxy1, which might be at locations

4

a or b. In order to find the crossing of a bisection line in a quadrantwith a bisection line in the next quadrant, it is
now checked whether the minimum value of a scan line is largerthan the maximum value. In that case no further
scan lines in that quadrant are considered. This also means that the effect on the execution time of the determination
of crossing of bisections directly during the search process is less. Subsequently, this is only done for bisection lines
of the same anglem.

3. The update process is speeded up by distinguishing special cases:

• Whenmaxx is smaller than a certain value, begin and end points are not determined for each scan line but the
whole rectangular area is updated.

• Pixels along the horizontal and vertical axis are updated separately from the inside quadrant area’s. A further
speedup is achieved here by not taking the EDs from the matrixM but by recalculating them as they are simply
equal to the coordinate along the axis.

• Quadrants for which only pixels along the45◦ line (and possible a line parallel to it, shifted by 1 pixel) have to
be updated, are also handled separately by stepping along the lines.

4. Finally, the binning of the image in the vertical direction is replaced by a combination of updating top values during
the scan over the image and by more searching in the forward vertical direction.

The consequences of all changes were carefully considered and thoroughly tested before they were incorporated. To-
gether they resulted in an average speedup of 25%, compared to the first release of FEED, as introduced by Schouten and
Van den Broek.11

2.2. VISUALIZATION OF PARAMETER EFFECT

To get a grip on the consequences of tuning, we have developedtwo visualization methods. One shows the changes in the
maximum x and y values in the quadrants and the bisection lines during the search process separately for each border pixel.
The other shows constantly during the execution of the program how often pixels have been updated. The final result of
this is shown in Figure 3 for three settings of the parameters, accompanied by the original input image.

Figure 3 shows the effect of the search effort on the number ofupdates and on the execution times. The input image
(Figure 3a) consists of 76800 pixels of which there are 13942object (non-white) pixels, with 1725 of them being border
pixels. The other images show the number of updates per pixelwith black indicating 0 updates and white indicating 4 or
more updates. Pixels with 1,2 or 3 updates get an intermediate gray level of respectively 64, 128, and 192. Figure 3b shows
too little searching, resulting in the large number of 290771 updates (where 62858 is the minimum number of updates)
and subsequently in a large execution time (5.7 ms). In contrast, Figure 3c shows too much searching with its 86487
updates, close to the minimum. The execution time is very large with 8.4 ms. Figure 3d shows the optimal settings of the
parameters, which produces 179373 updates and the minimal execution time of only 4.5 ms.

The execution times were determined on a standard PC with an AMD Athlon XP R©1666 MHz processor (64kB L1
cache, 256kB L2 cache) and 512 MB memory and using the Microsoft R©Visual C++ 6.0 programming environment in
the standard release setting. Please note that no effort wasspend on reducing the execution time by varying compiler
optimization parameters, by using pointers instead of indices or by exploiting the particular characteristics of the machine.

3. COMPARISON

We are interested in obtaining an exact EDT in a limited amount of time, such that it can be used for real time image
processing purposes. Therefore, we compared FEED with two fast approximations of the ED and with two state-of-the-art
algorithms, which produce (almost) exact EDs. So, in total FEED is evaluated against four other methods for obtaining
EDTs, with respect to both accuracy and speed. These four other methods are:

1. The city-block distance (CH1,1), as introduced by Rosenfeld and Pfaltz1, 2, which gives the crudest but fastest
approximation of the ED.

2. The Chamfer 3,4 distance (CH3,4) from Borgefors3, which gives a more accurate approximation of the ED.

5

(a) (b)

(c) (d)

Figure 3. The number of updates used for several settings of the search parameters. Pixels with 0 updates are indicated in black, pixels
with 4 or more updates in white. (a) An input image with 76800 pixels, 13942 object pixels and 1725 border pixels. (b) Too little
searching resulting in 290771 updates and an execution time of 5.7 ms. (c) Too much searching resulting in 86487 updates and 8.4 ms
execution time. (d) Optimal searching resulting in 179373 updates and 4.5ms execution time.

3. EDT4, the EDT of Shih and Liu8, which uses 4 scans with a 3x3 neighborhood over the image. The scans alone
produce an approximated ED in the sense that for most pixels the obtained distance is correct but sometimes it is a
bit to high. This is due to the fact12 that the tiles of the Voronoi diagram are not always connected sets on a discrete
lattice. This is shown in Figure 5, the pixel above the arrow is closer to object 2 than to objects 1 and 3, but all its
8-connected neighbors are closer to objects 1 or 3. Shih and Liu8 provide a method to detect these situations and to
correct the distance. We did not implement this correction as FEED is already faster.

4. EDT2, the EDT from Shih and Wu10, which uses 2 scans with a 3x3 neighborhood over the image. The authors
claim that this produces the exact ED, however this was not reproduced by our implementation of their method.

As described in the previous section, FEED can produce an exact representation of the ED by using the square of
the ED in its matrixM . But it can also use less exact representations, like floating point or truncated integer, inM and
its final result. As these representations are often used in the further processing chain, using them in FEED avoids a
format conversion, which is costly because of the square root operation. Therefore, for this comparison, two different
output formats were chosen: EDs as single precision (32 bit)floating point values and EDs truncated to 32 bit integer
values. Moreover, the methods used to compare FEED with, were adapted to obtain these output formats and internal and

6

intermediate formats were chosen to obtain the fastest execution time while reaching the required accuracy.

Two sets of 10 images each were used for this comparison. One set with a size of 320x240 pixels as shown in Figure 3(a)
with the triangular object on the left translated and rotated over the image. The other set had a size of 640x480 pixels also
with a triangular object translated and rotated over the image; an example is shown in Figure 4. In these images white
denotes a background pixel and non-white denotes an object pixel.

Figure 4. A large input image of size 640x480 with 47811
objects pixels of which 2654 are border pixels.

Figure 5. A test image with 3 objects. The set of pixels which
are closer to object 2 than to the other objects is a discon-
nected set. Hence the ED can not exactly be determined using
a scan which uses only local information.

format truncated integer floating point
images 320 x 240 640 x 480 320 x 240 640 x 480
method time errors time errors time errors time errors

(ms) max.# % (ms) max.# % (ms) max.# % (ms) max.# %
FEED 4.5 0 0.0 17.3 0 0.0 5.2 0.0 0.0 18.5 1.0 0.0
EDT2 8.4 2 0.5 36.5 5 3.1 8.9 2.0 1.2 37.3 4.2 5.2
EDT4 14.5 2 0.3 62.1 3 1.3 14.3 1.5 0.6 61.6 2.9 2.6
CH3,4 2.2 3 22.2 11.3 6 36.6 3.4 2.5 41.4 16.3 6.3 44.6
CH1,1 1.3 14 42.0 7.2 45 44.7 2.1 13.9 42.0 10.2 44.8 44.7

Table 1. Timing (in ms) and accuracy results. The maximum error in units of pixels (max.#) and in percentage of pixels (%), which have
received a different distance than the ED.

In Table 1 timing and accuracy results are presented using the hardware and software configuration as described in
Section 2.2. Timings are given in ms. The maximum error is provided in units of pixels (max.#). In addition, the percentage
of pixels, which have received a different distance than theED (%) is provided. The values are averages over the images
in each image set. For reliable timing results, each method was repeated a number of times for each image, such that the
time per image per method was about 4 seconds. The reproducibility of the given time due to other processes running on
the computer is better than 0.1 ms.

FEED is about a factor 2 faster than EDT2, which in turn is a factor 1.6 faster than EDT4. For EDT2 and EDT2 a few
percent of the pixels have the wrong value after the scans, but this could be corrected by the method described by Shih
and Liu8. These results confirm the earlier results presented by Schouten and Van den Broek11. More than for EDT2 and
EDT4, the execution time of FEED depends on the content of theimage. For instance, on random dot images there will
be a lot of border pixels usually with no adjacent object pixels to provide a large cut on the number op pixels to update.
Hence, FEED will be slower than EDT2 under certain filling conditions of the random dots. But we can state that FEED is
the fastest exact EDT method for object like images on a sequential machine.

7

FEED compares favorable with the chamfer methods. It is onlya factor 2 to 3 slower than the city-block distance and
a factor 1 to 2 than the chamfer 3,4 distance. Regarding spacerequirements in addition to the output matrix, FEED uses
a pre calculated matrix for EDs having the size of the image. EDT2 and EDT4 use during their operation two auxiliary
matrices having the size of the image to store pixel coordinates. Hence, FEED uses much less memory capacity than EDT2
and EDT4.

4. ROBOT NAVIGATION

Distance maps, such as generated by FEED, can be applied in a range of settings, either by itself or as an important in-
termediate or auxiliary method in applications; e.g., robot navigation13, trajectory planning14, skeletonization15, Voronoi
tessellations16, fMRI data analysis17, neuromorphometry18, volume rendering, reconstruction of surface normals, andpen-
etration of distances for applications in haptics and physics-based modeling19, Bouligand-Minkowsky fractal dimension20,
and Watershed algorithms21.

Where EDTs can be applied in a range of settings, our primary focus lays in a general applicable algorithm, not in a
specific application. However, a field of application neededto be chosen to illustrate and test EDTs working in a varying,
preferably controlled, environment. As field of application we have chosen robot navigation, since it requires analysis of
video sequencing.

Searching for shortest paths on surfaces with stationary obstacles is a classical problem in robot navigation. Solutions
to the problems are based on computational geometry methods22, differential geometry and hybrid techniques23, 24, as
well as graph search based algorithms25. In practice, most approaches are based on heuristic approaches and provide ‘a’
path rather than an optimal one. In contrast, DT can be used infinding the optimal path of a robot in the presence of both
stationary and moving obstacles.

In order to experiment with such settings, we developed a virtual, dynamic robot navigation environment. Initially we
wanted to make video-streams of a real robot moving in a certain environment. However, to tackle the potential problems
with real world video sequencing, we decided to create a binary stream directly by animation using MacromediaR©Flash.
This provides us with a fully controlled environment and itsvideo sequences. Moreover, using animation has the following
advantages:

• By using layers one can separate the background from the moving objects.

• The ease of creating moving objects: drawing a line in a layer. Given a number of frames, Flash will generate the
different frames with the object shifted along the path (e.g., see the path drawn in Figure 6). In addition, rotation of
the object can be specified.

• Flash uses vector graphics. Therefore, it is relatively easy to change the animations.

• Most animation programs interpolate color values at edges of objects, with the export of bitmap images. This
results in a loss of object indexation. In contrast, Flash has the ability to preserve the color map and thus the object
indexation, with the export of its animations to a set of gif images.

To put it in a nutshell, the utilization of an animation environment is preferred since it can be used to generate a
controlled experimentation environment and Flash, in particular, was chosen for its ease in use and its advantages of
a more technical nature. Therefore, MacromediaR©Flash was used to rapidly generate binary video streams of moving
objects between stationary objects in a controlled manner.

For this paper two sets of generated video sequences are used. One is a sequence of 60 frames of 320x240 pixels, one
of them is shown in Figure 3(a). There are 12 fixed objects inside a field whose border had two openings. Note that in the
FEED algorithm the border pixels are also object pixels. Themoving object is a triangle which rotated such that one of the
corners always points to the direction of movement. Of the 76800 pixels there are about (because of the rotation) 13942
object pixels of which 1725 are border pixels. The other sequence consists of 120 frames of 640x480 pixels with 7 fixed
objects in the field and with the moving object also being a triangle. An example is shown in Figure 4. Of the 307200
pixels there are about 47811 object pixels of which 2654 are border pixels.

8

Slider at frame 8 on the

The calcutated position of
the moving object on the
path of motion at frame 8.

The ’invisible’ path along which
the triangle object trajectory will
be animated.

3 layers : background layer timeline. Note that each.
layer has its own timeline.moving object layer, and

a guide layer containing
the drawn motion path.

Figure 6. The dynamic test environment for robot navigation purposes with its most important compounds are labeled. The line drawn
from left to right denotes the robot’s trajectory.

The size were chosen because they are common sizes in camera’s. The position of fixed objects were chosen to provide
an average difficulty for FEED to find bisection lines (see Section 2). Note that these video sequences are used to compare
performances, many more images were used to check the correct functioning of all the implementations.

The frames of the sequence were R,G,B images with white representing a background pixel, black a fixed object pixel,
and red a moving object pixel. Additional moving objects canthen be given other colors. The used test programs convert
the frame to a byte image with white representing a background pixel and black a fixed object pixel while certain gray
levels are used to denote moving object pixels. Note that thetwo sets of 10 images used in the previous section, were
equidistant samples from the two video sequences. The sequences themselves are used in the next section.

5. TFEED FOR VIDEO

For tFEED we look to the situation of a sequence of frames (or images) showing fixed objects and one moving objects.
Please not that methods for more moving objects can be developed based on the methods for one moving object. A simple
possibility is to run the method for the moving object twice with different tests for determining the various kind of pixels.
Further certain operations can then be combined or interleaved to gain some speed.

According to the definition of the DT, the distance maps (see Equation 1), for the fixed objects (Dfixed) and for the
moving object (Dmoving) can be calculated separately and then be combined using theminimum operator to obtain the
distance map for the total frame:

Dfixed+moving(p) = min{Dfixed(p) , Dmoving(p)} (3)

To speedup the method, themin operator is applied during the process (instead of afterward) and so takes the influence
of the moving objects into account. Subsequently, the following algorithm can be applied for the calculation of the exact

9

ED for a sequence of frames (tFEED):

fixedFEED : Dfixed(p) = FEED with Ofixed

movingFEED :
initialize Dfixed+moving(p) = Dfixed(p)
foreach q ∈ Omoving

foreach p
update : Dfixed+moving(p) = min{Dfixed+moving(p) , ED(q, p)},

(4)

whereOfixed andOmoving denote the object pixels of respectively the fixed and the moving objects.

Here FEED is the method as described in Sections 2. The same speedups are applied to movingFEED as were to FEED.
In addition, the maximum distancedmax in Dfixed(p) is determined because each border pixel inOmoving needs to feed
its ED only up to a distancedmax. This is implemented by usingdmax in the initialization of the maximum x and y values
per quadrant, as defined in Section 2.

Note that this optimization can also be applied to FEED directly when the maximum distance in the image is somehow
known a priori or when one is only interested in distances up to a certain maximum. For example, in a robot navigation
problem where only smaller distances give navigation limitations.

The four methods to which we want to compare tFEED with and which are indicated in Section 3, were also adapted
to the situation of frames with fixed objects and a moving object. First the original method is applied to an image with
only the fixed objects producingDfixed. Then, for each frame the bounding box of the moving object isdetermined. As
we can assume an 8-connected moving object, otherwise it would be two objects, this can be done by searching for a
pixel of the moving object using a refining sequence of coarsescans over the image. When a pixel is found, neighborhood
scans are used to locate the bounding box. Next, the boundingbox is extended in all directions by the maximum distance
dmax occurring inDfixed in order to define a rectangular area of the frame to which the original method is applied. This
produces a localDfixed+moving of the rectangular area. Since the moving object has no influence outside this rectangular
area, copying the localDfixed+moving into Dfixed results inDfixed+moving of the full frame.

As input video sequences, two sets of images were used, as described in Section 3. The input image was split in two
images. One for the program parts handling the fixed objects with 0 indicating a fixed object pixels and 255 the background.
The other for the program parts handling the moving object with 0 indicating a fixed object pixel, 127 indicating a pixel
from the moving object, and 255 for the background.

format truncated integer floating point
images 320 x 240 640 x 480 320 x 240 640 x 480
method full partial full partial full partial full partial
(t)FEED 4.5 0.7 17.3 3.2 5.2 0.7 18.5 3.3
(t)EDT2 8.5 2.6 36.5 10.2 8.9 2.9 37.3 10.8
(t)EDT4 14.5 4.4 62.0 17.0 14.3 4.2 61.6 16.4
(t)CH3,4 2.2 1.0 11.3 4.0 3.4 1.5 16.3 5.3
(t)CH1,1 1.3 1.0 7.2 5.0 2.1 1.2 10.2 5.9

Table 2. Timing results in ms. ”full” gives the time when applying the original DT methods on the full image. ”partial” gives the time
for the distance map per image using the adapted methods per frame.

Table 2 shows the obtained timing results using the same hardware and software configuration as described in Sec-
tion 2.2 and the same measurement condition as given in Section 3. “full” provides the processing time (in ms), when
applying the original DT methods on the full images, considering pixels from fixed and moving objects as the object pixels
to which the distance of the other pixels are calculated. They should be equal to the times given in Table 1 within the stated
repeatability of 0.1 ms and within a small variation caused by the fact that the measurements are over a different number
of images. The times are indeed equal to within 0.1 ms. “partial” denotes the processing time (in ms) for obtaining the full
distance map by generating a partial map for the moving object and combining that with the map for the fixed object. The
timings (in ms) are the averages over the 60 images in the 320 x240 sequence and the 120 images of the 640x480 sequence.

10

The time needed to calculateDfixed(p) once per sequence is not shown, but is equal to the “full” timewithin a few tenths
of a ms.

As shown in Table 2, tFEED is about a factor 6 faster than FEED.However, also for the other adapted methods a
considerable speedup is observed but to a lesser extend thanfor tFEED. This results in tFEED being a factor 3 to 4 faster
than the adapted EDT2 (tEDT2) method, for obtaining ED maps for a moving object between fixed objects. This holds even
without taking the time needed for correcting the results ofthe latter into account. Hence, tFEED is the fastest available
method for obtaining ED maps for video sequences.

Note that tFEED is even 20% to 50% faster than the adapted chamfer 3,4 (tCH3,4) and the adapted city-block distance
(tCH1,1). In case that one wants these distances, tFEED can be adapted to provide them. This means that the bisection
lines can only be used for the horizontal and vertical directions and that the matrixM (see Section 2) must be calculated
to give the appropriate distance, or that the distance is directly calculated for each update as that might be faster. We did
this for the city-block distance, obtaining 0.7 and 3.4 ms for the small and large images in the integer output format. Here
we recalculated the distances as that was faster. ¿From Table 2 it can be seen that using tFEED to obtain the city-block
distance is thus substantially faster than doing it directly.

Note that the chamfer 3,4 distance is often faster than the city-block distance. This can be explained by the fact that
the city-block distance largely overestimates distances toward the45◦ directions. This makes the needed rectangular area
around the moving object larger for the city-block distancethan for the chamfer 3,4 distance.

6. DISCUSSION

Schouten and Van den Broek11 have developed a Fast Exact Euclidean Distance (FEED) transformation, starting from the
inverse of the DT: each object pixel feeds its distance to allbackground pixels. The prohibitive computational cost of this
naive implementation of traditional ED transformations, was tackled by three operations: restriction of both the number of
object pixels and the number of background pixels taken intoconsideration as well as the pre-computation of the ED. In
the first part of this paper, the original FEED algorithm is briefly discussed as well as additional speedups. In Section 3,
FEED was compared with two other fast EDTs, showing that FEEDis about a factor 2 faster than the fastest of them. It
also shows than FEED compares favorable with chamfer distances, which provide an approximation of the ED.

In Schouten and Van den Broek11 it was stated that it would be feasible to adapt FEED so that EDmaps could be
obtained of video sequences. With the introduction of timedFEED (tFEED) (in Section 5) this claim proved to be justified.
In Section 5, the algorithms tested in Section 3 were also adapted to handle video sequences and compared with tFEED.
The obtained speedup is larger for tFEED than for the other methods. This makes tFEED by a factor 3 to 4 the fastest
method for obtaining ED maps for video sequences. It is then even 20% to 50% faster than the adapted chamfer 3,4 and
the city-block distances.

Note that there are some further possibilities to increase the speed of tFEED and the adaptations of the other methods.
The fixed objects could be encoded in a suitable form, for instance by run length encoding, to speed up the searching
in movingFEED (see Equation 4) and the location of the moving object in all methods. It can be expected that this
speedups tFEED more than the other methods. Further, the position of the moving object can be predicted from previous
frame, resulting in a faster location of it in average sense.

Last, note that FEED is essentially parallel so that parallel implementations can be developed if the need arises. Parallel
implementations of the EDT are in particular required for real world applications involving large amounts of data and/or
real-time execution. The use of parallel methods for DT was previously addressed in4, 7, where a Single Instruction
Multiple Data (SIMD) system was adopted. Alternatively, Multiple Instruction Multiple Data (MIMD) systems can be
used, which have a superior performance when compared to SIMD counterparts.

The dynamic test environment (see Section 4) provides the means to generate, in principle every possible test environ-
ment for EDT methods. So, future releases of FEED and tFEED can be thoroughly tested varying several parameters (e.g.,
number, size, position of static and/or moving objects). Moreover, we aim in narrowing the gap between the conditions
generated in the test environment and those in real world robot navigation. For example, slightly changing background can
be included in the test environment, the effects of a light source can be mimicked (e.g., shadows can be generated), and the
shape of objects can be manipulated through time.

11

So, with tFEED no approximations of ED transformations are needed due to its computational burden, but both Fast and
Exact ED transformations can be done on video sequences containing objects. With that a new real time video processing
algorithm is launched, important for many applications in image and video analysis.

REFERENCES
1. A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture processing,”Journal of the ACM13(4),

pp. 471–494, 1966.
2. A. Rosenfeld and J. L. Pfaltz, “Distance functions on digital pictures,”Pattern Recognition1, pp. 33–61, 1968.
3. G. Borgefors, “Distance transformations in digital images,” Computer Vision, Graphics, and Image Processing: an

international journal34, pp. 344–371, 1986.
4. L. Chen and H. Y. H. Chuang, “An efficient algorithm for complete Euclidean distance transform on mesh-connected

SIMD,” Parallel Computing21, pp. 841–852, 1995.
5. D. Crookes and J. Brown, “I-BOL: A tool for image processing on transputers,”Transputer Applications and Systems

93, pp. 712–727, 1993.
6. Y. Lee, S. Horng, T. Kao, and Y. Chen, “Parallel computation of the Euclidean distance transform on themesh of trees

and the hypercube computer,”Computer Vision and Image Understanding68(1), pp. 109–119, 1997.
7. J. H. Takala and J. O. Viitanen, “Distance transform algorithm for Bit-Serial SIMD architectures,”Computer Vision

and Image Understanding74(2), pp. 150–161, 1999.
8. F. Y. Shih and J. J. Liu, “Size-invariant four-scan euclidean distance transformation,”Pattern Recognition31(11),

pp. 1761–1766, 1998.
9. L. F. Costa, “Multidimensional scale-space shape analysis,” in Proceedings of the International Workshop on

Synthetic-Natural Hybrid Coding and Three Dimensional Imaging, pp. 214–217, 2001.
10. F. Y. Shih and Y.-T. Wu, “Fast euclidean distance transformation in two scans using a 3 3 neighborhood,”Computer

Vision and Image Understanding93(2), pp. 195–205, 2004.
11. T. E. Schouten and E. L. van den Broek, “Fast Exact Euclidean Distance (FEED) Transformation,” inProceedings of

the 17th International Conference on Pattern Recognition (ICPR 2004), J. Kittler, M. Petrou, and M. Nixon, eds.,3,
pp. 594–597, IEEE Computer Society, (Cambridge, United Kingdom), 2004.

12. O. Cuisenaire and B. Macq, “Fast euclidean transformation by propagation using multiple neighborhoods,”Computer
Vision and Image Understanding76(2), pp. 163–172, 1999.

13. R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Multivalued distance maps for motion planning on surfaces with
moving obstacles,”IEEE Transactions on Robotics and Automation14(3), pp. 427–436, 1998.

14. A. Zelinsky, “A mobile robot navigation exploration algorithm,” IEEE Transactions of Robotics and Automation8(6),
pp. 707–717, 1992.

15. R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein, “Skeletonization via distance maps and level sets,”Com-
puter Vision and Image Understanding62(3), pp. 382–391, 1995.

16. W. Guan and S. Ma, “A list-processing approach to computeVoronoi diagrams and the Euclidean distance transform,”
IEEE Transactions on Pattern Analysis and Machine Intelligence20(7), pp. 757–761, 1998.

17. Y. Lu, T. Jiang, and Y. Zang, “Region growing method for the analysis of functional mri data,”NeuroImage20(1),
pp. 455–465, 2003.

18. L. F. Costa, E. T. M. Manoel, F. Faucereau, J. van Pelt, andG. Ramakers, “A shape analysis framework for neuro-
morphometry,”Network: Computation in Neural Systems13(3), pp. 283–310, 2002.

19. S. F. F. Gibson, “Calculating the distance map for binarysampled data,” Tech. Rep. TR99-26, Mitsubishi Electric
Research Laboratories, 1999.

20. L. F. Costa and R. M. C. Jr.,Shape Analysis and Classification, CRC Press, 2001.
21. F. Meyer, “Topographic distance and watershed lines,”Signal Processing38, pp. 113–125, 1994.
22. E. Wolfson and E. L. Schwartz, “Computing minimal distances on polyhedral surfaces,”IEEE Transactions on Pattern

Analysis and Machine Intelligence11, pp. 1001–1005, 1989.
23. E. Adin and A. M. Bruckstein, “Navigation in a dynamic environment,” cis #9101, Center of Intelligent Systems,

Technion, Haifa, Israel, January 1991.
24. N. Kiryati and G. Sźekely, “Estimating shortest paths and minimal distances ondigitized three dimensional surfaces,”

Pattern Recognition26(11), pp. 1623–1637, 1993.
25. J. C. Latombe,Robot Motion Planning, Boston, M.A.: Kluwer, 1991.

12

