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ABSTRACT

Inimage and video analysis, distance maps are frequergty. dshey provide the (Euclidean) distance (ED) of backgdoun
pixels to the nearest object pixel. In a naive implementateach object pixel feeds its (exact) ED to each background
pixel; then the minimum of these values denotes the ED toltisest object. Recently, the Fast Exact Euclidean Distance
(FEED) transformation was launched, which was up to 2x faten the fastest algorithms available. In this paper,
first additional improvements to the original FEED alganitlare discussed. Next, a timed version of FEED (tFEED) is
presented, which generates distance maps for video sezgibgcmerging partial maps. For each object in a video, a
partial map can be calculated for different frames, wheeeptéirtial map for fixed objects is only calculated once. In a
newly developed, dynamic test-environment for robot natig; purposes, tFEED proved to be up to 7x faster than using
FEED on each frame separately. It is up to 4x faster than stegaED algorithm available for video sequences and even
40% faster than generating city-block or chamfer distanapsior frames. Hence, tFEED is the first real time algorithm
for generating exact ED maps of video sequences.

Keywords: Exact Euclidean distance, FEED, tFEED, distance mapsftians, video processing, robot navigation

1. INTRODUCTION

In the areas of computer vision, image, and video procesgirggusually required to extract information about thepgha
and the position of the foreground pixels relative to eatlentSubsequently, many techniques evolved to accompiish t
task; one such technigue is the distance transform (DT)Dheonverts a binary image to another image, such that each
pixel has a value that represents the distance to its neaysit pixel. The new image is called the distance map of the
old image.

Rosenfeld and Pfaltz? introduced the first movements that could be utilized forgbaeration of distance maps for
digital images: the city-block and chessboard distanigeafid dg). The city-block distance allows measuring only in
horizontal and vertical directions, while the chessboasthdce takes diagonal directions also in consideratiam.tf&

d, or dg distance of two points is the number of steps required toreéber point from the other, where only city-block

or chessboard movements can be used, respectively. Toabtaatter approximation for the Euclidean distance (ED),
Rosenfeld and Pfaltz recommended the alternate use oftshélock and chessboard steps, which defines the distance
dot. Geometrically, the corresponding “disks” are diamondstlie distancei,, squares forlg, and octagons fod,,.;.
Henced,.: provided the best approximation of the ED out of these thigtances. However, there are many different DTs
available using different distance metrics.
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In principle, one wants to determine the exact ED. Then, a EP oan be determined for all object poiiftsj) in a
(binary) image. Such a map is determined by a ED transfornT{E®hich can be computed as:

dij = min{((i —x)* + (j —9)*)"/?}, i,j €N, 1)

wherex andy are object pixels.

The EDT is a basic operation in computer vision, patterngaitin, and robotics. For instance, if the object pixels
represent obstacles, thép tells us how far the point:, j) is from these obstacles. This information is useful when one
tries to move a robot in the free space and to keep it away fhenobstacles. However, finding the DT with respect to the
Euclidean metric is rather time consuming. In order to ta¢kk computational burden of EDT, two strategies have been
adopted: (i) parallel implementations and (ii) approxiimatf exact EDs.

Ten years after Rosenfeld and Pfaltatroduced their DTs, Borgefotextended them to chamfer DTs, where during
the scans different weights are given to neighboring pite[sroduce better approximations of the ED. In the 90s, s¢ver
other (parallel) implementations of EDTs have been progioée However, even among the parallel implementations,
mostly the EDs were approximated.

In 1998 Shih and Liti presented their method to obtain EDTs. They started with $oans on the image. Next, a
look-up table method was used to correct the wrong pixels. aHarge majority of cases, they were able to determine
exact EDTs. Three years later, Cdsfaesented such a method by using the concept of exact diatidgain, after a
period of three years, Shih and Wuintroduced their two scan method, with which they claimedéoable to obtain
true exact EDTs. In the same year, Schouten and Van den Brpedsented their Fast Exact Euclidean Distance (FEED)
transformation. With FEED they introduced an algorithmjehtobtained an exact EDT in a computational cheap way.

In the next Section (Section 2), we briefly discuss the ppilecdf FEED and the original methods used to obtain a fast
execution time. This is followed by descriptions of improents, increasing the speed by about 25%, and by visualizati
methods which were used during the developements desdrilitbis paper and which further can be used for tuning of
parameters to optimise the speed for new image sets. Ino8e&;tihe improved version of FEED is compared with four
other DT methods. Next, in Section 4, we discuss applicatfon EDTS, in particular robot navigation, and introduce a
newly developed, dynamic test-environment for robot natigmn purposes. It is explained how exact EDTs are generated
of video sequences. Next, timed FEED (tFEED) is introduce&eéction 5, which uses FEED to generate exact ED
maps separately for fixed and moving objects and then comlirean. In order to evaluate tFEED for video sequencing,
the algorithms used to evaluate FEED (Section 3) were addptevideo sequencing purposes. These adaptations are
discussed followed by the comparison of tFEED with the falaied DT methods. We end this paper with a discussion 6
of the work presented as well as proposals for future rekearc

2. FAST EXACT EUCLIDEAN DISTANCE (FEED) TRANSFORMATION

The FEED algorithm! calculates the EDT starting directly from the definitiong&guation 1), or rather its inverse: each
object pixelfeedsits ED to all pixels in the image, which in turn calculate thenitmum of all received EDs. The naive
algorithm then becomes:

(1) initialize D(p) = if (p € O) then 0, else 0o

(2) foreachqe O @

(3) foreach p

(4) update : D(p) = min{D(p), ED(q,p)}

Compared to the originally presented algorithm, in aldwonit2 a small adaption is made. The third line of the original

algorithm wasforeach p ¢ O. However, the restrictiog O is not needed, removing it has no effect on the functionality
of the algorithm since its initialization is done in the filiske; it even increased the speed of the naive algorithm.

On the one hand, the disadvantage of this algorithm (stiifsicomputational expensiveness; on the other hand, it can
be easily proven to be correct using classical methods. efdrey, we executed the naive algorithm on a large set of test
images, which provided us with a reference set of distangesnaubsequently, this reference set was used for teseéng th
functionality of the following speedup methods appliedtto i
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Figure 1. Principle of limiting the number of background pixels to update. (a) Onlylpina and to the left of the bisection lirte
between a border pixeB and an object pixe4 have to be updated. (b) An example showing that each backgrounidhgix¢o be
updated only once. Each background pixel is labeled by the borddyixeh updates it.

In line (2) only the “border” pixelsB3 of O have to be considered because the minifal from any background pixel
to the setD, is the distance from that background pixel to a border pixelf O. A border pixelB is defined here as an
object pixel with at least one of its four 4-connected pixelthe background.

The ED in line (4) can be retrieved from a pre-computed madibwith a size equal to the image size:

ED((4,Yq)s (Tp,Yp)) = M(|zg — Tpl, yg — Ypl)

Due to the definition o (p), the matrix) can be filled with any non-decreasing functipof ED:

f(D(p)) = min(f(D(p)), f(ED(q,p))).

For instance, the square &fD allowing the use of an integer matri¥ in the calculation to make it faster. Alternately,
one can truncate the ED to integer values\inwhen it is stored in such format in the finBl(p) to be used for further
image processing. Again this makes the method faster andssa@onversion in the further processing chain.

Moreover, the number of pixels that have to be considereiaén(B) can be limited to only those that have an equal or
smaller distance to the curreBtthan to any object pixe} (see Figure 2a). By taking all bisection lines into accoiint,
can be assured that each background pixel is updated ondy(see Figure 2b). For that, background pixels on a bisection
line are only updated wheR is on a chosen side of the line.

However, searching for and bookkeeping of bisection liaées time and that time should be smaller than the time
gained by updating less pixels, otherwise no speedup wautibtained but the algorithm would become slower. Bisection
lines closer to the origii3 have a larger effect than lines further away. Since in géeanamber of object points from the
same object are close 18, they are located first by scanning a small area ardgind

The search for object pixelsfurther away is done along a set of lines under certain anglstarting from the current
border pixel (3). Not all the pixels on a line are checked for being an objéatlpbut a certain stepping can be used
depending on the expected size of the objects in the imaggefoind then defines a bisection line, which can be written
in the formm,y + myx = m.q,, With m,, m;, andm, being integers that depend only sn Further searching along the
line can then be stopped.

To keep track of the update area, the maximum x and y valuesabf guadrant around the currditare updated (see

Figure 2a). Only pixels inside the rectangles defined by tagimum values need to be updated, but not all of them as
bisection lines might define cuts in the rectangles. A newdtisn lineb,,.,, in a quadrant might update these maximum



max
> a

yl

l ! bold

max

max,, | A

max ., <
A
v « >
max 5
<« MaXy
t
I B
max ., b max
max 3 ew

(@) (b)

Figure 2. Principle of the bookkeeping and updating. (a) Keeping track of the marimand y values per quadrant around a border
pixel. (b) Updating along scan lines: bisection lines determine start andants on them.

values in that and the two neighboring quadrants. In Figbrthis is indicated with the arrows along the axis, the closed
arrows perpendicular to the axis give the old position of nieximum values while the open arrows indicate the new
positions. Note that in this case there is no updateam,».

The intersection point of two bisection lines in differentagirants might also give a new maximum value. This is
shown in the figure where the intersection poinbgf,, andb,;q decreasesiaz,; to the position indicated by the double
arrow. Again, this takes time and doing it for all possibleisections might reduce the speed.

The maximum values also determine the maximum distanceai@ls@long a new search line, because a found new
bisection line should cut into the rectangular area’s teetev effect. Further if the area that they define is small empug
searching is stopped because no further time gain can betexpe

The final selection of pixels to update is made in the updateqss. For each scan line in a quadrant, the maximum
x and y values of the quadrant and the found bisection lingeahand neighboring quadrants, determine start and end
points, as is indicated with the arrowed lines in Figure 2b.

In addition, some further speedups are implemented, usiftggniation saved from a border point for next border
points. By searching for border pixels along horizontalhsliaes, the search for object pixels along the= 0 line can
be combined with it. For searching in the vertical directiaminning of the image in the vertical direction is used,ahhi
is done combined with the initialization @b(p). Pixels exactly on a bisection line, have only to be updatezoThis is
done in quadrants 1 and 2, by simply decreasing, by 1 for quadrants 3 and 4.

2.1. Speedup of FEED

We will now discuss a set of changes and additions that hase dgplied to FEED. The three most important changes are:

1. The decision to stop searching because the remainingsaseaall enough, is now based on an estimation of that
area, which also takes bisection lines unglgr into account.

2. The maximum values in a quadrant can be at several losatitmpending on whether crossings of bisection lines
were always calculated during the search process. In FRiutiis is shown fofnaz,;, which might be at locations



a orb. In order to find the crossing of a bisection line in a quadweitth a bisection line in the next quadrant, it is
now checked whether the minimum value of a scan line is laifggar the maximum value. In that case no further
scan lines in that quadrant are considered. This also meanthe effect on the execution time of the determination
of crossing of bisections directly during the search predcetess. Subsequently, this is only done for bisectiorsline
of the same angler.

3. The update process is speeded up by distinguishing $pesies:

e Whenmaz, is smaller than a certain value, begin and end points areatetrdined for each scan line but the
whole rectangular area is updated.

e Pixels along the horizontal and vertical axis are updatpdrsgely from the inside quadrant area’s. A further
speedup is achieved here by not taking the EDs from the mfrbut by recalculating them as they are simply
equal to the coordinate along the axis.

e Quadrants for which only pixels along th&° line (and possible a line parallel to it, shifted by 1 pixedivk to
be updated, are also handled separately by stepping aletiges.

4. Finally, the binning of the image in the vertical directis replaced by a combination of updating top values during
the scan over the image and by more searching in the forwatidaledirection.

The consequences of all changes were carefully considettharoughly tested before they were incorporated. To-
gether they resulted in an average speedup of 25%, compatked first release of FEED, as introduced by Schouten and
Van den BroeK!

2.2. VISUALIZATION OF PARAMETER EFFECT

To get a grip on the consequences of tuning, we have devetopedsualization methods. One shows the changes in the
maximum x and y values in the quadrants and the bisectios tineng the search process separately for each border pixel
The other shows constantly during the execution of the prognow often pixels have been updated. The final result of
this is shown in Figure 3 for three settings of the parametersompanied by the original input image.

Figure 3 shows the effect of the search effort on the numbepdates and on the execution times. The input image
(Figure 3a) consists of 76800 pixels of which there are 13%2ct (non-white) pixels, with 1725 of them being border
pixels. The other images show the number of updates per wikelblack indicating 0 updates and white indicating 4 or
more updates. Pixels with 1,2 or 3 updates get an interneegiay level of respectively 64, 128, and 192. Figure 3b shows
too little searching, resulting in the large number of 29DTipdates (where 62858 is the minimum number of updates)
and subsequently in a large execution time (5.7 ms). In ashtFigure 3¢ shows too much searching with its 86487
updates, close to the minimum. The execution time is vegelarith 8.4 ms. Figure 3d shows the optimal settings of the
parameters, which produces 179373 updates and the minke@lion time of only 4.5 ms.

The execution times were determined on a standard PC withMiD Athlon XPR 1666 MHz processor (64kB L1
cache, 256kB L2 cache) and 512 MB memory and using the Miéi@dsual C++ 6.0 programming environment in
the standard release setting. Please note that no efforspeasl on reducing the execution time by varying compiler
optimization parameters, by using pointers instead otieslpr by exploiting the particular characteristics of thechine.

3. COMPARISON

We are interested in obtaining an exact EDT in a limited amaditime, such that it can be used for real time image
processing purposes. Therefore, we compared FEED withast@pproximations of the ED and with two state-of-the-art
algorithms, which produce (almost) exact EDs. So, in toEEDB is evaluated against four other methods for obtaining
EDTs, with respect to both accuracy and speed. These foer ptethods are:

1. The city-block distance (CH1,1), as introduced by Rosienéind Pfaltz 2, which gives the crudest but fastest
approximation of the ED.

2. The Chamfer 3,4 distance (CH3,4) from Borgefowghich gives a more accurate approximation of the ED.



Figure 3. The number of updates used for several settings of the searchgtaranPixels with O updates are indicated in black, pixels
with 4 or more updates in white. (a) An input image with 76800 pixels, 13%}2cb pixels and 1725 border pixels. (b) Too little
searching resulting in 290771 updates and an execution time of 5.7 f&aeuch searching resulting in 86487 updates and 8.4 ms
execution time. (d) Optimal searching resulting in 179373 updates amdsieéxecution time.

3. EDT4, the EDT of Shih and Liy which uses 4 scans with a 3x3 neighborhood over the image.stans alone
produce an approximated ED in the sense that for most piltelsitained distance is correct but sometimes it is a
bit to high. This is due to the fakt that the tiles of the Voronoi diagram are not always conrksgs on a discrete
lattice. This is shown in Figure 5, the pixel above the arrewloser to object 2 than to objects 1 and 3, but all its
8-connected neighbors are closer to objects 1 or 3. Shih arfdokovide a method to detect these situations and to
correct the distance. We did not implement this correct®RBED is already faster.

4. EDT2, the EDT from Shih and Wt, which uses 2 scans with a 3x3 neighborhood over the image.alithors
claim that this produces the exact ED, however this was mpwbrkiced by our implementation of their method.

As described in the previous section, FEED can produce act ezpresentation of the ED by using the square of
the ED in its matrix)M. But it can also use less exact representations, like flpqiiint or truncated integer, it/ and
its final result. As these representations are often usetdrfurther processing chain, using them in FEED avoids a
format conversion, which is costly because of the squareaperation. Therefore, for this comparison, two different
output formats were chosen: EDs as single precision (3Zlb#jing point values and EDs truncated to 32 bit integer
values. Moreover, the methods used to compare FEED witte adapted to obtain these output formats and internal and



intermediate formats were chosen to obtain the fastestéredime while reaching the required accuracy.

Two sets of 10 images each were used for this comparison. édméth a size of 320x240 pixels as shown in Figure 3(a)
with the triangular object on the left translated and ratateer the image. The other set had a size of 640x480 pixeds als
with a triangular object translated and rotated over thegenan example is shown in Figure 4. In these images white
denotes a background pixel and non-white denotes an ohjeit p

. A
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Figure 4. A large input image of size 640x480 with 47811 Figure5. A testimage with 3 objects. The set of pixels which
objects pixels of which 2654 are border pixels. are closer to object 2 than to the other objects is a discon-
nected set. Hence the ED can not exactly be determined using
a scan which uses only local information.
format truncated integer floating point
images 320 x 240 640 x 480 320 x 240 640 x 480
method| time errors time errors time errors time errors
(ms) | max.# % | (ms) | max.# % | (Ms) | max.# % | (Ms) | max.# %
FEED 4.5 0| 00| 173 0| 0.0 5.2 0.0 0.0| 185 1.0| 0.0
EDT2 8.4 2| 05| 36.5 5| 3.1 8.9 20| 12| 373 42| 5.2
EDT4 14.5 2| 03] 62.1 3 13| 143 15| 0.6| 61.6 29| 26
CH3,4 2.2 3]222| 11.3 6 | 36.6 3.4 25]41.4| 16.3 6.3 | 44.6
CH1,1 1.3 14| 42.0 7.2 45 | 44.7 2.1 13.9| 42.0| 10.2 44.8 | 44.7

Table 1. Timing (in ms) and accuracy results. The maximum error in units of pixe#sx(#) and in percentage of pixels (%), which have
received a different distance than the ED.

In Table 1 timing and accuracy results are presented usmdadindware and software configuration as described in
Section 2.2. Timings are given in ms. The maximum error isioiexd in units of pixels (max.#). In addition, the percemtag
of pixels, which have received a different distance thanBbe(%) is provided. The values are averages over the images
in each image set. For reliable timing results, each methasinepeated a number of times for each image, such that the
time per image per method was about 4 seconds. The reprddyabthe given time due to other processes running on
the computer is better than 0.1 ms.

FEED is about a factor 2 faster than EDT2, which in turn is &dfiat.6 faster than EDT4. For EDT2 and EDT2 a few
percent of the pixels have the wrong value after the scanghhucould be corrected by the method described by Shih
and Lil®. These results confirm the earlier results presented byuseh@nd Van den Broék More than for EDT2 and
EDT4, the execution time of FEED depends on the content ointiage. For instance, on random dot images there will
be a lot of border pixels usually with no adjacent object lsixe provide a large cut on the number op pixels to update.
Hence, FEED will be slower than EDT2 under certain filling dibions of the random dots. But we can state that FEED is
the fastest exact EDT method for object like images on a sei@lenachine.



FEED compares favorable with the chamfer methods. It is arictor 2 to 3 slower than the city-block distance and
a factor 1 to 2 than the chamfer 3,4 distance. Regarding spacérements in addition to the output matrix, FEED uses
a pre calculated matrix for EDs having the size of the imageTZand EDT4 use during their operation two auxiliary
matrices having the size of the image to store pixel cootdsiaHence, FEED uses much less memory capacity than EDT2
and EDTA4.

4. ROBOT NAVIGATION

Distance maps, such as generated by FEED, can be appliecimga of settings, either by itself or as an important in-
termediate or auxiliary method in applications; e.qg., tabavigationt3, trajectory plannindf, skeletonizatiot?, Voronoi
tessellation¥’, fMRI data analysi¥’, neuromorphometr§, volume rendering, reconstruction of surface normals smd
etration of distances for applications in haptics and gtsssiased modeling, Bouligand-Minkowsky fractal dimensidh,
and Watershed algorithriis

Where EDTs can be applied in a range of settings, our primanysftays in a general applicable algorithm, not in a
specific application. However, a field of application neettede chosen to illustrate and test EDTs working in a varying,
preferably controlled, environment. As field of applicatie have chosen robot navigation, since it requires arsabfsi
video sequencing.

Searching for shortest paths on surfaces with stationastaoles is a classical problem in robot navigation. Sohgtio
to the problems are based on computational geometry methadifferential geometry and hybrid techniqdég*, as
well as graph search based algoritAPdn practice, most approaches are based on heuristic ap@eand provide ‘&’
path rather than an optimal one. In contrast, DT can be usfadimg the optimal path of a robot in the presence of both
stationary and moving obstacles.

In order to experiment with such settings, we developedtaalirdynamic robot navigation environment. Initially we
wanted to make video-streams of a real robot moving in aicegtavironment. However, to tackle the potential problems
with real world video sequencing, we decided to create arpisimeam directly by animation using Macromegji&lash.
This provides us with a fully controlled environment andvideo sequences. Moreover, using animation has the fallgwi
advantages:

e By using layers one can separate the background from thengnolijects.

e The ease of creating moving objects: drawing a line in a lagg@ven a number of frames, Flash will generate the
different frames with the object shifted along the path.(esge the path drawn in Figure 6). In addition, rotation of
the object can be specified.

e Flash uses vector graphics. Therefore, it is relatively éashange the animations.

e Most animation programs interpolate color values at eddesbpects, with the export of bitmap images. This
results in a loss of object indexation. In contrast, Flashtha ability to preserve the color map and thus the object
indexation, with the export of its animations to a set of gihiges.

To put it in a nutshell, the utilization of an animation emmriment is preferred since it can be used to generate a
controlled experimentation environment and Flash, inipalgr, was chosen for its ease in use and its advantages of
a more technical nature. Therefore, Macrom@®lidash was used to rapidly generate binary video streams wingo
objects between stationary objects in a controlled manner.

For this paper two sets of generated video sequences are@seds a sequence of 60 frames of 320x240 pixels, one
of them is shown in Figure 3(a). There are 12 fixed objectslaaifield whose border had two openings. Note that in the
FEED algorithm the border pixels are also object pixels. floging object is a triangle which rotated such that one of the
corners always points to the direction of movement. Of th@0D6pixels there are about (because of the rotation) 13942
object pixels of which 1725 are border pixels. The other saeqa consists of 120 frames of 640x480 pixels with 7 fixed
objects in the field and with the moving object also being angle. An example is shown in Figure 4. Of the 307200
pixels there are about 47811 object pixels of which 2654 arddr pixels.
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Figure 6. The dynamic test environment for robot navigation purposes with itd imgortant compounds are labeled. The line drawn
from left to right denotes the robot’s trajectory.

The size were chosen because they are common sizes in camidra’position of fixed objects were chosen to provide
an average difficulty for FEED to find bisection lines (seet®@c?). Note that these video sequences are used to compare
performances, many more images were used to check the thmetioning of all the implementations.

The frames of the sequence were R,G,B images with whiteseptimg a background pixel, black a fixed object pixel,
and red a moving object pixel. Additional moving objects tdaen be given other colors. The used test programs convert
the frame to a byte image with white representing a backgtquixel and black a fixed object pixel while certain gray
levels are used to denote moving object pixels. Note thatwioesets of 10 images used in the previous section, were
equidistant samples from the two video sequences. The segsithemselves are used in the next section.

5. TFEED FOR VIDEO

For tFEED we look to the situation of a sequence of framesrf@agies) showing fixed objects and one moving objects.
Please not that methods for more moving objects can be gmeloased on the methods for one moving object. A simple
possibility is to run the method for the moving object twickhndifferent tests for determining the various kind of g&e
Further certain operations can then be combined or intexteto gain some speed.

According to the definition of the DT, the distance maps (sgeaiion 1), for the fixed objectd);;.q) and for the
moving object D,,.ving) €an be calculated separately and then be combined usingittieum operator to obtain the
distance map for the total frame:

Dfiwed-l—nwving (p) = mzn{Dfued(p) ) Dmoving (p)} (3)

To speedup the method, thein operator is applied during the process (instead of aftet)ard so takes the influence
of the moving objects into account. Subsequently, the fatig algorithm can be applied for the calculation of the éxac



ED for a sequence of frames (tFEED):

fizedFEED : Diigea(p) = FEED with Ofieq
movingFFEED :
initialize Dfixed+moving (p) = Dfixed(p) (4)
fO’I’SCLCh qc Omom’ng
foreach p

update : Dfi:r:ed+moving(p) = min{Dfizederoving(p) ) ED(Qap)}v

whereO fiz.q andO,,0ving denote the object pixels of respectively the fixed and theingpebjects.

Here FEED is the method as described in Sections 2. The saadgps are applied to movingFEED as were to FEED.
In addition, the maximum distanek,,., in D s;;.q(p) is determined because each border pixeDjf,,i., Needs to feed
its ED only up to a distancé,, ... This is implemented by using,,... in the initialization of the maximum x and y values
per quadrant, as defined in Section 2.

Note that this optimization can also be applied to FEED diyaghen the maximum distance in the image is somehow
known a priori or when one is only interested in distancesoug tertain maximum. For example, in a robot navigation
problem where only smaller distances give navigation Atigns.

The four methods to which we want to compare tFEED with ancttvlaire indicated in Section 3, were also adapted
to the situation of frames with fixed objects and a moving dbjé&irst the original method is applied to an image with
only the fixed objects producinBy;..q. Then, for each frame the bounding box of the moving objedeiermined. As
we can assume an 8-connected moving object, otherwise ildwimitwo objects, this can be done by searching for a
pixel of the moving object using a refining sequence of coacs@s over the image. When a pixel is found, neighborhood
scans are used to locate the bounding box. Next, the boubdixgs extended in all directions by the maximum distance
dmaz OCCUItiNg inD ;.4 in Order to define a rectangular area of the frame to which tiggnal method is applied. This
produces a locab ¢;..q+moving Of the rectangular area. Since the moving object has no mflueutside this rectangular
area, copying the locdD ¢;zcd+moving INTO D fizeq reSUlts iND ¢;zcq+moving Of the full frame.

As input video sequences, two sets of images were used, aslagsin Section 3. The input image was split in two
images. One for the program parts handling the fixed objeittsOandicating a fixed object pixels and 255 the background.
The other for the program parts handling the moving objeth @iindicating a fixed object pixel, 127 indicating a pixel
from the moving object, and 255 for the background.

format truncated integer floating point
images 320 x 240 640 x 480 320 x 240 640 x 480
method full | partial | full | partial | full | partial | full | partial
(tFEED | 4.5 0.7 17.3 32| 52 0.7 | 185 3.3
()EDT2 | 8.5 26| 365| 10.2| 8.9 291373 108
(VEDT4 | 145 441620 17.0| 14.3 42| 616| 16.4
()CH3,4| 2.2 1.0 11.3 40| 3.4 151 16.3 5.3
(HCH1,1| 1.3 10| 7.2 50| 21 1.2 10.2 5.9

Table 2. Timing results in ms. "full” gives the time when applying the original DT method the full image. "partial” gives the time
for the distance map per image using the adapted methods per frame.

Table 2 shows the obtained timing results using the samenaaedand software configuration as described in Sec-
tion 2.2 and the same measurement condition as given inoBegti “full” provides the processing time (in ms), when
applying the original DT methods on the full images, considgepixels from fixed and moving objects as the object pixels
to which the distance of the other pixels are calculatedyBheuld be equal to the times given in Table 1 within the state
repeatability of 0.1 ms and within a small variation causgdhe fact that the measurements are over a different number
of images. The times are indeed equal to within 0.1 ms. “pldienotes the processing time (in ms) for obtaining the ful
distance map by generating a partial map for the moving tbjed combining that with the map for the fixed object. The
timings (in ms) are the averages over the 60 images in the 320 sequence and the 120 images of the 640x480 sequence.
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The time needed to calculaf2y;,.q(p) once per sequence is not shown, but is equal to the “full” tivitkin a few tenths
of ams.

As shown in Table 2, tFEED is about a factor 6 faster than FBEHE®@wvever, also for the other adapted methods a
considerable speedup is observed but to a lesser extenébthiiiEED. This results in tFEED being a factor 3 to 4 faster
than the adapted EDT2 (tEDT2) method, for obtaining ED mapa fnoving object between fixed objects. This holds even
without taking the time needed for correcting the resulttheflatter into account. Hence, tFEED is the fastest availab
method for obtaining ED maps for video sequences.

Note that tFEED is even 20% to 50% faster than the adaptedfeh&m (tCH3,4) and the adapted city-block distance
(tCH1,1). In case that one wants these distances, tFEED eadldpted to provide them. This means that the bisection
lines can only be used for the horizontal and vertical dioast and that the matrid/ (see Section 2) must be calculated
to give the appropriate distance, or that the distance &ctlir calculated for each update as that might be faster. /e d
this for the city-block distance, obtaining 0.7 and 3.4 mstfie small and large images in the integer output formateHer
we recalculated the distances as that was faster. ¢Froma Zabtan be seen that using tFEED to obtain the city-block
distance is thus substantially faster than doing it diyectl

Note that the chamfer 3,4 distance is often faster than tiyebtiick distance. This can be explained by the fact that
the city-block distance largely overestimates distancesitd the45° directions. This makes the needed rectangular area
around the moving object larger for the city-block distatiwmn for the chamfer 3,4 distance.

6. DISCUSSION

Schouten and Van den Bro€khave developed a Fast Exact Euclidean Distance (FEED)oramation, starting from the
inverse of the DT: each object pixel feeds its distance tbadkground pixels. The prohibitive computational costhis t
naive implementation of traditional ED transformationsswackled by three operations: restriction of both the remob
object pixels and the number of background pixels takendotwsideration as well as the pre-computation of the ED. In
the first part of this paper, the original FEED algorithm igefly discussed as well as additional speedups. In Section 3,
FEED was compared with two other fast EDTs, showing that FEE&bout a factor 2 faster than the fastest of them. It
also shows than FEED compares favorable with chamfer disganvhich provide an approximation of the ED.

In Schouten and Van den Brokkit was stated that it would be feasible to adapt FEED so thani&ps could be
obtained of video sequences. With the introduction of tilrRE&D (tFEED) (in Section 5) this claim proved to be justified.
In Section 5, the algorithms tested in Section 3 were alsptadao handle video sequences and compared with tFEED.
The obtained speedup is larger for tFEED than for the otheéhoas. This makes tFEED by a factor 3 to 4 the fastest
method for obtaining ED maps for video sequences. It is thven 20% to 50% faster than the adapted chamfer 3,4 and
the city-block distances.

Note that there are some further possibilities to increlhsepeed of tFEED and the adaptations of the other methods.
The fixed objects could be encoded in a suitable form, foaimst by run length encoding, to speed up the searching
in movingFFEED (see Equation 4) and the location of the moving object in athads. It can be expected that this
speedups tFEED more than the other methods. Further, titeopas the moving object can be predicted from previous
frame, resulting in a faster location of it in average sense.

Last, note that FEED is essentially parallel so that pdriatiplementations can be developed if the need arises. |Blaral
implementations of the EDT are in particular required fal ngorld applications involving large amounts of data and/o
real-time execution. The use of parallel methods for DT wasipusly addressed 417, where a Single Instruction
Multiple Data (SIMD) system was adopted. Alternatively, liifple Instruction Multiple Data (MIMD) systems can be
used, which have a superior performance when compared t® StMnterparts.

The dynamic test environment (see Section 4) provides ttaa® generate, in principle every possible test environ-
ment for EDT methods. So, future releases of FEED and tFEEedhoroughly tested varying several parameters (e.g.,
number, size, position of static and/or moving objects).rédver, we aim in narrowing the gap between the conditions
generated in the test environment and those in real worlot nedovigation. For example, slightly changing backgrouaud ¢
be included in the test environment, the effects of a lighitse can be mimicked (e.g., shadows can be generated),@and th
shape of objects can be manipulated through time.
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So, with tFEED no approximations of ED transformations aeded due to its computational burden, but both Fast and

Exact ED transformations can be done on video sequenceaiginigt objects. With that a new real time video processing
algorithm is launched, important for many applicationsntage and video analysis.
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