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ABSTRACT
Heparan sulfate (HS) within the glomerular basement membrane (GBM) is thought to play a major role
in the charge-selective properties of the glomerular capillary wall. Recent data, however, raise questions
regarding the direct role of HS in glomerular filtration. For example, in situ studies suggest that HS may
prevent plasma macromolecules from clogging the GBM, keeping it in an “open” state. We evaluated
this potential role of HS in vivo by studying the passage of protein through the glomerular capillary wall
in the presence and absence of HS. Intravenous administration of neuraminidase removed neuraminic
acid—but not HS—from the GBM, and this led to albuminuria. Concomitant removal of HS with
heparinase III, confirmed by ultrastructural imaging, prevented the development of albuminuria in
response to neuraminidase treatment. Taken together, these results suggest that HS keeps the GBM in
an open state, facilitating passage of proteins through the glomerular capillary wall.
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The glomerular capillary wall, which consists of fe-
nestrated endothelial cells, the glomerular base-
ment membrane (GBM), and podocytes with foot
processes interconnected by slit diaphragms, forms
the major filtration barrier of the glomerulus. It ex-
cludes plasma proteins with the size of albumin (69
kD, 3.6 nm) and larger from its filtrate.1,2 Next to
size, permeability of the glomerular capillary wall is
controlled by charge interactions. Neutral and cat-
ionic molecules can more easily penetrate the GBM
than anionic molecules, which encounter electro-
static repulsion by HS. In addition, the negative
charges of the cell coat (glycocalyx) of the endothe-
lial cells and podocytes may play a role in the
charge-dependent glomerular filtration.3,4 HS con-
tains multiple carboxylic groups and negatively
charged N-, 2-O-, 6-O-, and 3-O-sulfate groups.5,6

Because the majority of HS resides in the GBM, it is
assumed that GBM HS is responsible for the
charge-selective properties of the glomerular capil-
lary wall.3,7,8 This is supported by a number of stud-

ies. First, a reduction in glomerular HS has been
described in a number of human kidney diseas-
es8 –11 and experimental animal models8,12–14 char-
acterized by proteinuria. Second, intravenous in-
jection of rats with anti-HS antibody JM403
resulted in acute albuminuria.15 Third, perfusion of
isolated rat kidneys or glomeruli with the HS-de-
grading enzyme heparinase III resulted in penetra-
tion of ferritin and bovine serum albumin into the
GBM and passage to the urinary space.16,17 How-
ever, recent observations question the direct role of
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Figure 1. Evaluation of the efficacy of in vivo neuraminidase and heparinase III treatment on glomerular components. A through G:
PBS; A� through G�: neuraminidase; A� through G�: neuraminidase � heparinase III. Staining for HS with anti-HS antibodies HS4C3 (A
through A�), EW3D10 (B through B�) and JM403 (C through C�) was absent only after injection with neuraminidase � heparinase III
(A�, B�, C�). Anti-HS stub antibody 3G10 (D through D�), reflecting heparinase III activity, only stained neuraminidase � heparinase
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HS in glomerular filtration characteristics. In vivo removal of
HS from the GBM by intravenous injection of rats with hepa-
rinase III did not result in acute proteinuria.18 Podocyte-spe-
cific agrin (major heparan sulfate proteoglycan [HSPG] in the
GBM19) knockout mice and mice lacking exon 3 of perlecan
(HSPG expressed to a minor extent in the GBM8) do not de-
velop proteinuria.20,21 Podocyte-specific EXT1 (enzyme in-
volved in HS polymerization5) knockout mice also showed no
proteinuria before the age of 8 mo.22 In addition, transgenic
mice overexpressing the human endo-�-D-glucuronidase
heparanase showed only a two-fold increase in urinary pro-
tein.23,24

A study by Kanwar and Rosenzweig has indicated an alter-
native role for HS in the GBM. They found that neutralization
of the negative charge of the GBM by in situ perfusion of rat
kidneys with high molarity buffers resulted in accumulation of
ferritin in the GBM.25 It was suggested that the blockage of
negative charges led to clogging of the GBM by circulating
plasma macromolecules because a marked reduction in the
permeability of insulin as well as inulin across the glomerular
capillary wall was found. In this study we investigated this pos-
sible role of HS in vivo by evaluation of the effect of GBM HS on
neuraminidase-induced proteinuria. It was found that acute
removal of HS from the GBM stops proteinuria and that HS
may thus have a role in facilitating protein transport over the
GBM.

RESULTS

HS and Neuraminic Acid Are Removed from the
Glomerulus by Heparinase III and Neuraminidase
Treatment, Respectively
To test whether the injected heparinase III and neuramini-
dase enzymes had removed HS and neuraminic acid, respec-
tively, presence of both components in the kidney was in-
vestigated with immunofluorescence staining. Renal HS
staining with antibodies HS4C3 (Figure 1A) and EW3D10
(Figure 1B), which recognize sulfated HS epitopes, was
abolished after injection of neuraminidase � heparinase III.
Staining for the nonsulfated HS epitope defined by antibody
JM403 (Figure 1C) also disappeared. No differences in
staining for HS were found in the rats injected with neur-
aminidase alone. Staining for HS stubs, reflecting hepari-
nase III activity, with antibody 3G10 (Figure 1D) was only
visible after neuraminidase � heparinase III injection. Glo-
merular staining with Peanut agglutinin lectin (Figure 1E),
reflecting neuraminidase activity, was intense in the rats

Figure 2. Electron microscopical detection of sulfated GAGs in
the GBM of rats injected with PBS, neuraminidase, or neuramin-
idase � heparinase III, using cupromeronic blue in the critical
electrolyte concentration mode. The grazing section demon-
strates that GAGs in the GBM form a network. GAG staining in the
GBM was greatly reduced after neuraminidase � heparinase III
treatment, but not after treatment with neuraminidase alone.
Bars � 250 nm. US, urinary space; FP, podocyte foot processes;
GBM, glomerular basement membrane; GEC, glomerular endo-
thelial cells; CL, capillary lumen. Arrows indicate fenestrae in the
endothelium.

III-treated kidneys (D�). Peanut agglutinin lectin (E through E�), reflecting neuraminidase activity, showed a strong, linear staining along
the glomerular capillary wall after neuraminidase and neuraminidase � heparinase III treatment (E�, E�), whereas staining in the
PBS-injected rats was negative (E) (arrows indicate glomeruli). Expression of the HSPG core protein agrin, visualized using antibody
MI91 (F through F�), and the podocyte-associated, neuraminic acid-containing protein podocalyxin (G through G�) was not affected by
either neuramindase or neuraminidase � heparinase III treatment (F�, F�, G�, G�). Bar � 50 �m; magnification is identical for
each photograph.
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treated with neuraminidase or neuraminidase � heparinase
III, but negative in the PBS-injected rats. These results in-
dicate that renal HS as well as neuraminic acid were re-
moved after heparinase III and neuraminidase treatment,
respectively. Expression of the core protein of agrin (Figure
1F), the major HSPG in the GBM, and of the protein part of
podocyalyxin (Figure 1G), a podocyte-associated neura-
minic acid-containing protein, was not affected by enzyme
treatments.

The effect of heparinase III was also studied at the electron-
microscopic level using the cupromeronic blue staining proce-
dure. This method visualizes sulfated glycosaminoglycans
(GAGs) as electron-dense filaments caused by their collapse
onto the core protein26 (Figure 2).26 There was a strong reduc-
tion of GAGs in the GBM after heparinase III � neuraminidase
injection. A few short filaments were left, which may be caused
by the presence of chondroitin sulfate, which is another class of
sulfated GAGs present in small quantities in the GBM. HSPGs
form a network in the GBM as deduced from grazing sections
(Figure 2). The electron-dense filaments associated with the
podocytic site of the GBM were larger and more intensely
stained compared with the ones at the endothelial site. This
indicates that the HSPGs from the podocytes and the endothe-
lium are different.

Immediately after the first injection of neuraminidase �
heparinase III, HS appeared in the urine (Figure 3A), indicat-
ing that heparinase III had cleaved HS. No HS was found at
later time points (note that 8 h after the first injection a second
injection was given), indicating that HS regeneration is not
taking place within the time frame of the experiment (i.e.,
24 h). No HS was detected in the urine of the neuraminidase-
and PBS-injected rats. Increased urinary levels of free neura-
minic acid were detected in the rats injected with neuramini-
dase (data derived from Wijnhoven et al.18) and those with
neuraminidase � heparinase III (Figure 3B). As can be seen,
the increase in urinary excretion of neuraminic acid is retarded
after combined injection with heparinase III. This suggests that
penetration of neuraminidase into the glomerular capillary
wall is retarded after cleavage of HS.

Simultaneous Removal of HS and Neuraminic Acid
Does Not Result in Proteinuria, Whereas Removal of
Neuraminic Acid Alone Does
An increase in urinary albumin was detected in rats injected with
neuraminidase alone as revealed by SDS-PAGE followed by Coo-
massie brilliant blue staining (Figure 4A). These results are in line
with studies from Kanwar and Rosenzweig27 and from Gelberg et
al.28 In contrast to neuraminidase-injected rats, the urinary pro-
tein profile of rats injected with neuraminidase � heparinase III
was similar to that of the PBS-injected rats with only trace
amounts of albumin. Albuminuria was further analyzed by ELISA
(Figure 4B). Urinary albumin levels were greatly increased after
injection of neuraminidase alone (e.g., 13.6 � 0.3 versus 1.4 � 1.1
mg albumin/mg creatinine for neuraminidase- and PBS-injected
rats at 12 to 24 h, respectively; (data derived from Wijnhoven et
al.18). No increase in urinary albumin could be detected in the rats
injected with neuraminidase � heparinase III (e.g., 0.9 � 0.3 mg
albumin/mg creatinine at 12 to 24 h).

Urinary volume was normal in the enzyme-treated rats
(neuraminidase: 8.2 � 1.1 ml/24 h; neuraminidase � hepari-
nase III: 10.5 � 1.4 ml/24 h; PBS: 10.7 � 0.9 ml/24 h). No
major differences in creatinine clearance were detected (neur-
aminidase: 2.8 � 0.3 ml/min; neuraminidase � heparinase III:
2.3 � 0.2 ml/min; PBS: 2.3 � 0.3 ml/min).

No alterations in renal morphology were observed for the
enzyme-treated rats by light microscopy (Figure 5). No major
abnormalities in the ultrastructure of the glomerular capillary
wall were observed by electron microscopy either (data not
shown). The three layers of the glomerular capillary wall (fe-
nestrated endothelial cells, GBM, and podocyte foot processes)
were clearly visible. There was no detectable foot process ef-
facement. Presence of the GBM components type IV collagen
and laminin, visualized by immunofluorescence staining, was
not affected either (data not shown).

DISCUSSION

The hypothesis that HS keeps the GBM in an open state, allow-
ing proteins to pass through the barrier, was investigated in

Figure 3. Urinary excretion of HS, demonstrated by agarose gel electrophoresis (A), and of neuraminic acid, demonstrated by an
enzymatic method (B), in rats injected with neuraminidase, neuraminidase � heparinase III, or PBS. Values are given as mean �
SEM (n � 2 for neuraminidase and neuraminidase � heparinase III; n � 4 for PBS). Immediately after injection of neuraminidase
� heparinase III, HS was found in the urine. Increased levels of free neuraminic acid were detected in the urine of the rats treated
with neuramininidase and neuraminidase � heparinase III. The standard contains 20 ng chondroitin sulfate (CS), 20 ng dermatan
sulfate (DS), and 40 ng HS.
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vivo by intravenous injection of rats with neuraminidase in the
presence and absence of HS. Glomerular HS and neuraminic
acid were removed by heparinase III and neuraminidase, re-
spectively, and both components could be detected in the
urine. Rats injected with neuraminidase developed albumin-
uria, but only in the presence of HS. In its absence, no increase
in urinary albumin was measured. From this we conclude that
removal of HS from the GBM blocks passage of proteins
through the GBM and that HS may thus have a role in facili-
tating protein passage. Because of its negative charge, HS at-
tracts a large number of sodium ions, and as a consequence
HSPGs attract large amounts of water, making the GBM a gel-
like structure capable to withstand compressional forces.29 To-
gether with type IV collagen, which provides the structural
backbone of the GBM,30 HS therefore allows the GBM to with-
stand the dynamic glomerular blood flow pressure and to re-
main in an open state. This situation would be analogous to the
role of GAGs in cartilage, where they form a hydrated gel
trapped in a network of collagen fibrils providing pressure-
absorbing properties. In addition, hydration of HS may allow
molecules, which are also surrounded by a water coat, to slide
along the sugar chain when passing from the capillary lumen to
the urinary space. In such a way, the hydrated HS can be re-
garded as a kind of Teflon preventing plasma proteins from
(nonspecific) interaction with other GBM molecules, such as

type IV collagen and laminin. A constant flow of solutes
through the GBM may thus be maintained with no plasma
proteins being trapped in the GBM. Analogy of the GBM may
be drawn with polysulfone membranes, which are used for
dialysis therapy.31,32 To prevent clogging by plasma proteins,
the membranes contain sulfonates (equivalent to sulfate
groups), which, like the sulfate groups in GBM HS, make the
polymer polar, giving it a high affinity for water.33 The idea to
synthesize polysulfonated membranes was actually initiated by
the notion that heparin (highly sulfated HS) acts as an antifoul-
ing agent and keeps the walls of blood vessels wet.34

Our data support the hypothesis of Kanwar and Rosenzweig
that HS in the GBM serves as an anticlogging agent, facilitating
protein permeability. Their hypothesis was based on in situ
studies in which neutralization of the negative charge of the
GBM was accomplished by perfusion of isolated rat kidneys
with high-salt buffer, resulting in accumulation of ferritin in
the GBM and in a marked reduction in the permeability of
insulin as well as inulin across the glomerular capillary wall.25

Their approach using high-salt conditions (up to 2.5 M NaCl),
however, cannot be applied in vivo.

Taken together, we propose the following model (Figure 6):
In the normal situation, type IV collagen forms a network,
making the GBM a porous structure.30 HSPGs are lining the
type IV collagen scaffold and provide osmotic pressure29 to
keep the pores in an open state. In addition, they prevent pass-
ing plasma proteins from interacting with GBM components.
When HS is removed, the GBM can not withstand the com-
pressional forces caused by the blood flow, and the pore size
will be reduced. This may lead to a reduced permeability of the
GBM for larger molecules, which results in clogging and
thereby compromises its ability to serve as an effective ultrafil-
ter. Our experimental set-up does not allow a conclusion at
which molecular size the permeability becomes compromised
after acute HS removal. We can only conclude that the passage
of water is not imparted because the urinary volume was not
reduced after heparinase III injection. Also creatinine (113 Da)

Figure 4. Urinary albumin, demonstrated by SDS-PAGE (A) and
ELISA (B), in rats injected with neuraminidase, neuraminidase �
heparinase III, or PBS. Values are given as mean � SEM. Note the
increase in urinary albumin in the rats treated with neuraminidase,
but not in the rats treated with neuraminidase � heparinase III.
LMW, low molecular weight.

Figure 5. Delafield’s hematoxylin and eosin staining of kidneys of
rats injected with PBS, neuraminidase, or neuraminidase � hepa-
rinase III. Top: glomeruli; bottom: tubules. Renal morphology of
the enzyme-injected rats was normal. Bar � 25 �m; magnification
is identical for each photograph.
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can still freely pass because creatinine clearance was not differ-
ent after heparinase III injection.18 Our data support the hy-
pothesis of Kanwar and Rosenzweig25 that HS in the GBM
serves as an anticlogging agent for large proteins, facilitating
their permeability, because neuraminidase-induced albumin-
uria was blocked after HS removal.

Loss of glomerular HS has been reported in a number of
renal diseases with proteinuria, including diabetic nephropa-
thy,9,11,35 minimal change disease,10,11 and membranous glo-
merulopathy.11 How can this be explained? Although specula-
tive, clogging of the GBM may ultimately lead to local
disruption of the filtration barrier, resulting in leakage of
plasma proteins into the urinary space and proteinuria. In this
process, the proposed nondiscriminatory shunt pathway,
which allows large proteins to pass the glomerular capillary
wall and which is increased in patients with a nephrotic syn-
drome, may be involved.36 –38 It should be noted that protein-
uria is not always associated with loss of GBM HS, as has been
reported for IgA nephropathy11 and congenital nephrotic syn-
drome of the Finnish type,39,40 and which also indicates that
GBM HS does not offer major resistance to proteins. This is in
line with biophysical studies in which no differences in diffu-
sion of albumin through matrices containing heparin, dextran
sulfate, or uncharged dextran were found.41 It should be noted,
however, that prolonged absence of GBM HS may result in a
number of effects including a reduction of HS-binding
growth factors (fibroblast growth factor 2, vascular endo-
thelial growth factor, transforming growth factor �, con-

nective tissue growth factor), structural GBM alterations,
and disruption of cell-GBM interactions, leading to dedif-
ferentiation/loss of podocytes and/or endothelial cells. In
fact, a recent study of Chen et al.22 points to renal pathology
associated with prolonged absence of GBM HS. However,
our experimental set-up, comprising an observation period
of 24 h after enzyme injection, does not allow conclusions in
this respect. Taken together, our results indicate that HS
keeps the GBM in an open state, facilitating protein passage
through the GBM.

CONCISE METHODS

Experimental Set-Up
Male Wistar rats (250 to 300 g) were housed in the Central Animal

Facility of the Radboud University Nijmegen Medical Centre with

free access to standard pelleted food and drinking water. The animal

ethics board approved all animal experiments. Power analysis re-

vealed that two rats per treatment group are sufficient to visualize a

more than two-fold difference in urinary protein.

Rats were injected twice (t � 0 h and t � 8 h) via the tail vein with

PBS (pH 7.3) containing 0.4 IU neuraminidase (E.C. 3.2.1.18; from

Vibrio cholerae; 90 kD) (Calbiochem, La Jolla, CA) (n � 2), PBS con-

taining 0.4 IU neuraminidase and 0.3 IU heparinase III (E.C. 4.2.2.8;

from Flavobacterium heparinum; 73 kD) (IBEX, Mt. Royal, Quebec,

Canada) (n � 2), or PBS alone (n � 4). Rats were housed individually

in metabolic cages to collect urine, and they were killed 24 h after the

first injection. At the end of the experiment, blood was collected to

obtain serum, and kidneys were removed and processed for general

histology, immunofluoresence staining, and electron microscopy.

Using a protease fluorescence detection kit according to the man-

ufacturer’s protocol (Sigma, St. Louis, MO), it was checked whether

the heparinase III and neuraminidase solutions contained protease

activity. No protease activity was detected (data not shown).

To study if neuraminidase activity could be affected by hepari-

nase III and/or HS, an in vitro assay was performed. An incubation

mixture was applied containing 0.04 IU/ml neuraminidase,

0.15 mM 2�-(4-methylumbelliferyl)-�-D-acetylneuraminic acid

(Sigma), and 0.167 M sodium acetate (pH 7.0). After incubation at

37°C for 2 h, the reaction was terminated by the addition of 0.8 M

glycine buffer (pH 10.6) and 0.025% (vol/vol) Triton X-100. The

amount of liberated 4-methylumbelliferone was measured spec-

trofluorometrically. The effect of heparinase III and/or HS on

neuraminidase activity was investigated by adding 0.04 IU/ml

heparinase III and/or 100, 25, or 10 �g/ml HS to the incubation

mixture. No inhibitory effect of heparinase III and/or HS on neur-

aminidase activity was detected (Figure 7). Neuraminidase activity

was also studied in vivo (see below).

Immunofluorescence Staining
To evaluate the effect of heparinase III, renal cryosections were

incubated with antibodies as described previously.18 The phage

display– derived anti-HS antibodies HS4C3 and EW3D10 (pro-

duced in our laboratory42– 44) were detected by incubation with

Figure 6. Model illustrating the role of HS in the GBM in facili-
tating protein passage through the GBM. Top (open GBM): The
GBM is composed of a basic network of type IV collagen to which
negatively charged HSPGs are associated. Because of the abun-
dance of negative charges, HS attracts large amounts of water,
making the GBM a gel-like structure capable of offering counter
pressure to the glomerular blood flow and keeping the GBM in an
open state. In addition, the hydration of HS allows proteins to
slide along the sugar chain from the capillary lumen to the urinary
space. Bottom (collapsed GBM): After removal of GBM HS, the
network structure collapses and proteins accumulate in the GBM
(clogging). Proteins are no longer able to pass through the filtra-
tion barrier.
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mouse IgG anti-vesicular stomatitis virus (VSV) tag antibody

P5D4 (1:10; Boehringer, Mannheim, Germany) and Alexa 488-

conjugated goat anti-mouse IgG (1:200; Molecular Probes, Eu-

gene, OR). Anti-HS antibody JM40345 (1:400) was visualized using

Alexa 488 – conjugated goat anti-mouse IgM (1:200, Molecular

Probes). Anti-HS stub antibody 3G10 (1:100; Seikagaku, Tokyo,

Japan), which recognizes unsaturated uronates obtained after

cleavage of HS,46 was visualized using Alexa 488 – conjugated goat

anti-mouse IgG. Antibody MI9147 (1:800), which stains the HSPG

core protein agrin, was visualized using CY3-conjugated goat anti-

hamster IgG (1:800; MP Biomedicals, Irvine, CA).

To evaluate the effect of neuraminidase, cryosections were in-

cubated with Peanut agglutinin lectin (1:1000; Vector Laborato-

ries, Burlingame, CA), which binds to an epitope that becomes

available after removal of neuraminic acid (Gal�1–3GalNAc),48 as

described before.18 Antibody ASD-86 (culture supernatant 1:20;

provided by the Department of Pathology, Radboud University

Medical Centre Nijmegen, Nijmegen, The Netherlands),18 which

stains the protein part of the podocyte-associated neuraminic

acid– containing protein podocalyxin, was visualized using Alexa

488 – conjugated goat anti-mouse IgG.

Expression of type IV collagen was studied using anti–type IV

collagen antibody (1:250; Southern Biotech, Birmingham, AL), visu-

alized using Alexa 488 – conjugated donkey anti-goat IgG (1:200, Mo-

lecular Probes). Expression of laminin was studied using anti-laminin

antibody (1:250; Sigma) and visualized using Alexa 488 – conjugated

goat anti-rabbit IgG (1:200, Molecular Probes). Staining of the sec-

tions was examined using a Leica CTR6000 microscope (Leica,

Wetzlar, Germany).

General Histology
Hematoxylin and eosin staining of paraffin-embedded kidney sec-

tions was performed as described previously.18 Sections were exam-

ined using a Leica CTR6000 microscope.

Electron Microscopy
To study the renal ultrastructure, kidney tissue was processed as

described previously.18 To visualize sulfated GAGs, kidney tissue

was fixed in 25 mM sodium acetate buffer (pH 5.6) containing

2.5% (vol/vol) glutaraldehyde, 0.2 M MgCl2, and 0.2% (wt/vol)

cupromeronic blue (Seikagaku, Tokyo, Japan), according to the

critical electrolyte concentration method.18,26 Ultrathin sections

were prepared and studied using a Jeol TEM 1010 microscope (Jeol

Ltd., Tokyo, Japan).

Urine and Serum Analyses
Urinary creatinine, GAGs, neuraminic acid, and protein were deter-

mined in timed urine collections. Serum creatinine was determined

from blood obtained at the time that the rats were killed.

Creatinine
Urinary and serum creatinine were measured enzymatically as de-

scribed previously,49 using the Aeroset apparatus (Abbott, Hoofd-

dorp, The Netherlands). All reagents were obtained from Roche Di-

agnostics (Almere, The Netherlands). Calibration was performed

according to isotope dilution mass spectrometry in line with interna-

tional agreements. Creatinine clearance (ml/min) was calculated as

follows: [urinary creatinine (�mol/ml) � serum creatinine (�mol/

ml)] � [urinary volume (ml) � time (min)].

Glycosaminoglycans
Urinary GAGs were determined by agarose gel electrophoresis. Stain-

ing was performed with combined azure A–silver treatment as de-

scribed by van de Lest et al.50

Neuraminic Acid
Urinary neuraminic acid was measured enzymatically using a colori-

metric assay (Roche Diagnostics) according to the manufacturer’s

protocol.

Proteins
Qualitative examination of urinary proteins of the injected rats was

carried out by SDS-PAGE followed by Coomassie brilliant blue stain-

ing as described by Laemmli et al.51 Urinary albumin was analyzed

quantitatively using an ELISA kit (Bethyl Laboratories, Montgomery,

TX) according to the manufacturer’s protocol.
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