Clinical Research in the Lay Press: Irresponsible Journalism Raises a Huge Dose of Doubt

In an era in which science and medicine make front-page news in the lay press, it is critical that the complex workings of clinical investigation be portrayed accurately to the public. The appetite for news of medical “breakthroughs” seems insatiable at times. In this setting, sensational articles about medicine, physicians, and pharmaceutical companies can easily find an attentive audience that may be unable to distinguish truth from sensationalism. To provide a case study for how inaccurate and dangerous the mainstream press can be if articles are not carefully written, as well as to correct inaccuracies and defend honesty in research, we offer our counterpoint to a recent article [1] that questions the various systems of checks and balances that govern the conduct of clinical trials and implicitly accuses one of our infectious diseases colleagues of unethical conduct in 2 clinical trials.

In “A Times Investigation: Drug Trials with a Dose of Doubt” [1], an article written by reporter David Willman and published in the Los Angeles Times, Dr. Thomas Walsh, the Chief of the Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health (NIH), was implicitly accused of unethical conduct in 2 randomized, controlled trials of empirical antifungal therapy for persistent neutropenic fever. Walsh was the lead author of both of these multicenter trials, both of which were published in the New England Journal of Medicine [2, 3]. The first study compared conventional deoxycholate amphotericin B (D-AmB) with liposomal amphotericin B (L-AmB), and the second compared L-AmB with caspofungin. Specifically, Walsh, the principal investigator, was implicitly accused of deliberately underdosing the standard therapy drug to favor the investigational agent of the pharmaceutical sponsor.

We use the term “implicitly accused,” because Willman is careful to not make explicit accusations of wrongdoing. However, when all of the misleading statements, nonsequiturs, loaded and pejorative descriptions, and selected quotations are strung together, Willman creates the image of a respected NIH scientist and pharmaceutical companies colluding to rig trials to win US Food and Drug Administration (FDA) approval for the favored drug (table 1). Willman implies that the biased trial design jeopardized patient safety because patients with life-threatening infections were treated with inadequate doses of antifungals. Implicit in these accusations is the contention that

Received 6 September 2006; accepted 6 September 2006; electronically published 13 September 2006.

Author affiliations are listed at the end of the text.

Reprints or correspondence: Dr. Elias J. Anaissie, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 816, Little Rock, AR 72205 (anaissieelias@uams.edu).

Clinical Infectious Diseases 2006;43:1031–9
© 2006 by the Infectious Diseases Society of America. All rights reserved.
1058-4838/2006/4308-0013$15.00
experienced physicians at multiple levels of oversight—including physicians at the NIH and FDA, site investigators and members of institutional review boards at dozens of health care centers, and the members of the New England Journal of Medicine editorial boards—either actively colluded in this conspiracy or had such poor knowledge about empirical antifungal therapy that they did not realize that a conspiracy had occurred. Although the title “Drug Trials with a Dose of Doubt” is an attention grabber that sells newspapers, an accurate representation of the facts will show that these trials were conducted with sterling integrity.

JUST GETTING STARTED

Willman opens his “investigation” with the implicit accusation that Walsh had extraordinary influence over the FDA’s approval of caspofungin. Caspofungin was initially approved as therapy for invasive aspergillosis in patients with refractory infection or intolerance to standard therapy. Willman correctly notes that the database involved a limited number of patients. However, this drug, representing a new class, was free of serious toxicity and had encouraging results in treating this life-threatening infection [5]. The FDA weighed the limited but supportive database, the acute, unmet need for effective therapeutics against aspergillosis, and the recommendations of its 12 independent advisory board members, and arrived at the very reasonable decision to approve caspofungin. Yet, Willman gives the false impression that Walsh had a singular influence over the FDA’s decision. “Merck summoned to the microphone one of its announced consultants, a man whose government job was nearby, at the NIH. Dr. Thomas J. Walsh assured the committee that Merck’s data describing the patients was ‘extremely robust and very, very rigorous’… The advisory committee voted unanimously to endorse the drug … Sixteen days later, the FDA approved it” [1].

On the basis of Willman’s remarks, an intelligent lay person may question whether the FDA actually looked at the data or whether Walsh’s remarks at the microphone were all the assurances that the FDA needed. The absurdity of this scenario is stunning, and yet Willman supports this allegation with a series of non sequiturs. Because Walsh and the FDA physicians are federal employees, Willman implies that Walsh must be in a unique position to influence FDA decisions and to single-handedly attain FDA approval of major drugs. The NIH and the FDA are entirely separate federal administrations with distinct missions and oversight. What is the evidence for Walsh’s purported excessive influence over the FDA? None exists. Unfortunately, Willman was just getting started.

CONSPIRACY BETWEEN WALSH AND THE PHARMACEUTICAL INDUSTRY TO RIG THE DRUG-APPROVAL PROCESS?

At the heart of the Willman “exposé” is the contention (although it is never explicitly stated) that the 2 clinical trials were rigged to increase the likelihood of FDA approval of the investigational drugs. Willman’s evidence consists of selective quotations from letters to the editor that raised concerns about the dose of standard drug used in the trials. Willman’s use of these selective quotations is antithetical to the rigorous, unbiased science that he claims to defend. Letters to the editor serve as a forum for debating points in published material and are typically critical. Some letters make cogent arguments. Others do not. More importantly, letters to the editor are typically authored by one or a few physicians, do not reflect broad consensus, and, unlike the article that they critique, are not subject to rigorous peer review. The web of deceit that is implicitly alleged by Willman’s article [1] involved the selection of the type of trial that would have the highest likelihood of securing FDA approval. Willman states that, “for makers of new antifungal drugs, less burdensome clinical study standards could make it easier to get the products approved … for instance some companies wanted to enroll cancer patients with suspected but unproven fungal infections,” thereby implying that studies of empirical therapy are not scientifically valid and are only designed for cherry-picked patients. We disagree. The rationale for empirical therapy is to treat a potential occult invasive fungal infection before it becomes clinically overt. This concept is based on the central tenet that early treatment of invasive fungal infections improves outcome and that lower doses, when used early, may benefit patients—particularly those patients with infections that are difficult to diagnose (such as invasive fungal infections). Before the development of empirical therapy, unsuspected infections with Candida species, Aspergillus species, and other fungi were frequently diagnosed at autopsy [6, 7]. Empirical antifungal therapy, as conducted in the 2 trials at issue, has been studied in >3000 patients and has been endorsed in authoritative guidelines from infectious diseases and hematology professional societies in North America and Europe [8, 9]. At the time that the 2 trials in question were designed, empirical antifungal therapy was a bedrock principle and standard-of-care for patients at risk for suspected fungal infections and was, therefore, a legitimate subject of clinical investigation. The recent availability of safe antifungal agents and improved diagnostic tools has opened a scientific debate about the current role of empirical therapy, with some investigators advocating different approaches [10]. These and other differences of opinion represent the scientific debate that is part and parcel of any scientific field.

PICKING PATIENTS

The first layer of purported deceit implicitly alleged by Willman’s article [1] involved the selection of the type of trial that would have the highest likelihood of securing FDA approval. Willman states that, “for makers of new antifungal drugs, less burdensome clinical study standards could make it easier to get the products approved … for instance some companies wanted to enroll cancer patients with suspected but unproven fungal infections,” thereby implying that studies of empirical therapy are not scientifically valid and are only designed for cherry-picked patients. We disagree. The rationale for empirical therapy is to treat a potential occult invasive fungal infection before it becomes clinically overt. This concept is based on the central tenet that early treatment of invasive fungal infections improves outcome and that lower doses, when used early, may benefit patients—particularly those patients with infections that are difficult to diagnose (such as invasive fungal infections). Before the development of empirical therapy, unsuspected infections with Candida species, Aspergillus species, and other fungi were frequently diagnosed at autopsy [6, 7]. Empirical antifungal therapy, as conducted in the 2 trials at issue, has been studied in >3000 patients and has been endorsed in authoritative guidelines from infectious diseases and hematology professional societies in North America and Europe [8, 9]. At the time that the 2 trials in question were designed, empirical antifungal therapy was a bedrock principle and standard-of-care for patients at risk for suspected fungal infections and was, therefore, a legitimate subject of clinical investigation. The recent availability of safe antifungal agents and improved diagnostic tools has opened a scientific debate about the current role of empirical therapy, with some investigators advocating different approaches [10]. These and other differences of opinion represent the scientific debate that is part and parcel of any scientific field.
Table 1. Statements made in the Willman article [1] and our rebuttal.

<table>
<thead>
<tr>
<th>Willman’s statements</th>
<th>Rebuttal</th>
</tr>
</thead>
<tbody>
<tr>
<td>“U.S. law generally prohibits a federal employee from representing an outside party before a government agency.”</td>
<td>As the principal investigator and chair of the data review committee of both trials in question, it was appropriate for Walsh to present the data to a US Food and Drug Administration advisory committee.</td>
</tr>
<tr>
<td>“…controversy has flared over whether results from two of the studies were misleading and whether some of the participating patients received adequate treatment.”</td>
<td>The criticisms made in peer-reviewed journals related to the studies in question [2, 3] reflect honest debate about trial design. The criticisms cited by Willman were made by a distinct minority of clinical scientists. To our knowledge, the only published article that has implied unethical conduct in these studies is Willman’s.</td>
</tr>
<tr>
<td>“In separate letters to a leading medical journal, other researchers criticized two of those studies. They questioned whether the studies artificially boosted the new products by comparing them to drugs that were given at doses that were too low.”</td>
<td>Willman blurs the distinction between honest disagreement and debate in peer-reviewed journals and accusations of misconduct. A letter to the editor reflects only the views of the authors of the letter. In contrast, the conduct of a major multicenter randomized trial requires consensus among site investigators, institutional review boards, and regulatory agencies as to what constitutes standard of care.</td>
</tr>
<tr>
<td>“More patients died who took the ‘comparator’ drugs than those who got the new products.”</td>
<td>This statement is misleading. In the D-AmB versus L-AmB (AmBisome; Fujisawa/Astellas) trial, overall survival was similar. In the caspofungin versus L-AmB trial, there was a trend toward superior survival among caspofungin recipients. As we discuss exhaustively in the text of our article, the dosage of L-AmB (3 mg/kg per day) was the same in both trials and was the FDA-approved dosage for this indication. The favorable results in the caspofungin arm do not denote that the study was rigged to favor this drug.</td>
</tr>
<tr>
<td>“No published study has established that a higher dose of an antifungal drug is more effective in treating suspected infection, and some studies have suggested that lower dosing may provide similar benefits. But the possibility that patients did not receive adequate doses, combined with Walsh’s advisory role with the drug companies, adds a new dimension to the furor over NIH scientists’ ties to industry.”</td>
<td>Willman’s first point concedes that there is no evidence that patients in the control arms of either study in question received an inadequate dosage of drug. As the principal investigator of the trials in question [2, 3], Walsh’s relationships with the pharmaceutical industry were legitimate. It seems to us that Willman may be more interested in creating “a new dimension to the furor” than in reporting on one.</td>
</tr>
<tr>
<td>“Eight doctors, including seven who participated in one or the other major study with Walsh and who are not employed by the NIH, also contacted the newspaper and said they stood behind the validity of the research. The study designs, they said, ‘were both scientifically and medically sound, reflect the state of the art in the field, and have advanced supportive care, improving the management of patients worldwide and saving lives.’ Other researchers have said that doses of comparator drugs that are inadequate may endanger patients or make a new drug look more effective than it is.”</td>
<td>These 8 researchers, along with over 100 other investigators who are authors of this article, stand by the integrity of these studies [2, 3]. Moreover, we take this stand in support of the integrity of these studies and of Dr. Walsh publicly. Willman makes his implicit accusations of misconduct in the studies in question behind the invisible facade of unnamed “other researchers.” These “other researchers” are unwilling to state their views in the open and are thus accountable to no one.</td>
</tr>
<tr>
<td>“Patients with early fungal infections who were given AmBisome ‘may have received suboptimal doses of that drug at a time when frontloading of therapy is critical to gain control of the infection,’ Marty and a colleague wrote. ‘You have a bad infection and you don’t get enough drug, you may be dead,’ Marty said. He noted that the medical-practice guidelines—cowritten by Walsh—suggested a dose of 5 milligrams per kilogram of body weight for aspergillus. For those patients, Marty said, ‘you’re not doing a good job with 3 milligrams.’”</td>
<td>Willman confuses the distinction between empirical antifungal therapy and early treatment of an established fungal infection. Dr. Marty’s last point has been proven incorrect. A recent high-quality, randomized study showed that L-AmB administered at 3 mg/kg per day was equally as effective as but less toxic than a dosage of 10 mg/kg per day as initial therapy for invasive mold infections [4]. This study, once and for all, ends any controversy regarding dosing of L-AmB for invasive mold infections. The implications of this study were pointed out to Willman by outside experts interviewed by Willman prior to publication. Willman dismisses this critical study in his article by mentioning its existence in the context of a statement by Dr. Walsh offered in his own defense. In fact, this study of proven invasive mold infections [4] unequivocally disproves the central tenet that L-AmB was underdosed in the 2 empirical antifungal trials in question [2, 3].</td>
</tr>
<tr>
<td>“Furberg, the former NIH clinical research specialist, said the two major antifungal studies fell short because they left unanswered which drug or dose was best against suspected infections. ‘When you set up studies with controversial comparisons, you risk misleading everybody—regulatory agencies, physicians and patients,’ said Furberg, now a professor at Wake Forest University.”</td>
<td>Willman quotes Dr. Furberg, a cardiovascular diseases investigator with no published research in infectious diseases. We question Dr. Furberg’s expertise in the nuances of antifungal dosing and strongly disagree with his remarks. The results from both trials in question have led to definitive conclusions regarding the questions that they aimed to address and have changed standards of care. The statements by Furberg are a fitting ending for Willman’s article, which is filled with implications and cherry-picked quotations that are based on nothing.</td>
</tr>
</tbody>
</table>

NOTE. D-AmB, deoxycholate amphotericin B; L-AmB, liposomal amphotericin B.
AND PICKING DOSES

The second and more serious of Willman’s implicit accusations is that Walsh deliberately chose to administer lower, less-effective dosages of comparator drugs in the 2 trials. In trial 1, D-AmB (0.6 mg/kg per day) was compared with L-AmB (3 mg/kg per day). In trial 2, L-AmB (3 mg/kg per day) was compared with caspofungin (70 mg administered once, followed by a regimen of 50 mg per day). Willman [1] implicitly alleges that D-AmB (the control drug) was underdosed in trial 1. He further suggests that, in trial 2, it was L-AmB (now the control drug), that was underdosed to favor caspofungin. That the dose of L-AmB was the same in both trials makes these allegations self-contradictory and logically untenable.

In fact, the dosages of all drugs used in both trials were appropriate on the basis of substantial published data. Consensus supporting the 0.6 mg/kg per day D-AmB dosage in trial 1 [2] and the 3 mg/kg per day L-AmB dosage in trial 2 [3] is based on the following data. First, D-AmB was administered at a dosage of 0.5–0.6 mg/kg per day in prior studies of empirical therapy that established the safety of this approach and suggested a protective benefit [6, 11].

Second, no evidence of superior outcomes associated with higher dosages of D-AmB or L-AmB has ever been published. In a randomized, controlled trial of empirical therapy that compared D-AmB 1 mg/kg per day versus L-AmB 1 mg/kg per day versus L-AmB 3 mg/kg per day, D-AmB recipients had a response rate comparable to that of patients treated with L-AmB, but they experienced greater nephrotoxicity (23%) than did patients receiving L-AmB 1 mg/kg per day (0%) or L-AmB 3 mg/kg per day (3%) (P = .01) [12]. These results were similar to those for trial 1 (D-AmB vs. L-AmB) [2], which showed comparable efficacy but higher nephrotoxicity in the D-AmB 0.6 mg/kg per day group than in the L-AmB 3 mg/kg per day group. In another study of empirical antifungal therapy, L-AmB administered at a dosage of 3 mg/kg per day and 5 mg/kg per day had similar efficacy and toxicity [13]. Finally, a recent trial of primary therapy for invasive aspergillosis (the AmBiLoad study [4]) showed that L-AmB (3 mg/kg per day, which is the same dosage that was administered in the empirical trials) was equally effective but less toxic than a 10 mg/kg per day regimen of L-AmB. Yet, Willman [1] creates the misleading impression that patients enrolled in these empirical trials may have died of breakthrough aspergillosis because of inadequate dosing of D-AmB or L-AmB. The results discussed above, particularly the findings of the AmBiLoad study, dispel the false notion that administering higher dosages of drug is equated with improved efficacy, and they unequivocally give further validation of the dosages used in the Walsh trials in question [2, 3].

Third, there is evidence of increasing dose-dependent toxicity with D-AmB. Even a superficial review of the literature would find multiple reports of high rates of dose-limiting nephrotoxicity associated with D-AmB use [4, 12, 14–18]. D-AmB–related nephrotoxicity has been shown to be an independent risk factor for mortality [14]. Yet, Willman [1] chose to ignore these well-documented, substantial patient safety concerns in his discussion of the D-AmB versus L-AmB empirical trial.

PATIENT SAFETY WAS OF PRIMARY IMPORTANCE

The majority of patients who receive empirical antifungal therapy do not have an occult fungal infection. Therefore, this approach necessarily entails treating many individuals to benefit a minority of patients. It is, therefore, of key importance that the regimen be safe. Willman’s contention that patients were put at risk by unethical trial design flies in the face of his article’s [1] total disregard of the inherent toxicities in AmB-based antifungal therapy mentioned above [4, 12, 14–16, 18]. Furthermore, the dosages of D-AmB and L-AmB in trial 1 [2] were agreed upon by all 32 investigators and by senior members and statisticians of the Mycoses Study Group and were approved by participating health care center institutional review boards, the National Institute of Allergy and Infectious Disease protocol review committee, and the FDA. Patient safety measures were stringent and relied on baseline evaluation to exclude invasive fungal infection, including monitoring for breakthrough invasive fungal infection during therapy, allowed for dosage modification (with dosage to be increased if invasive fungal infection was suspected and decreased in response to toxicity), and included prospective data review by an independent data safety monitoring board. D-AmB recipients had significantly more frequent dose reductions because of toxicity than did L-AmB recipients. This finding totally discredits the theory of deliberate underdosing of D-AmB. Further, the difference in the number of deaths associated with each therapy, emphasized in Willman’s article [1], was, in fact, not statistically significant in this cohort of 687 patients [2].

Willman [1] further suggests a disregard for patient safety by claiming that the L-AmB dosage in the L-AmB versus caspofungin trial [3] could not be increased until a patient had received 5 days of the original dosage of investigational or comparator drugs and continued to deteriorate. The implication is that the patient’s life and health were endangered by remaining on ineffective treatment until the 5-day limit. However, Willman acknowledges that “A patient also could be removed from the study and treated differently” and that “the five-day provision … was intended to standardize the conditions for increasing the dosages” and “was approved by all investigators, their institutional review boards, and the FDA” [1]. That is, the study design encouraged investigators to act as doctors and to err on the side of patient safety, even if doing so meant removing a patient from the trial, because patient safety was at the heart of the investigators’ concerns.

The implied accusation that the L-AmB...
dosage was suboptimal in trial 2 [3] (but not in trial 1, which used the same dosage [2]) is inconsistent with overwhelming evidence indicating that the 3 mg/kg per day L-AmB dosage is justified for empirical therapy. The implicit accusation also demonstrates a lack of knowledge of regulatory oversight. On the basis of the results of trial 1 [2], L-AmB was approved by the FDA as empirical therapy for neutropenic fever at a dosage of 3 mg/kg per day. The FDA requires the use of standard-therapy control subjects when investigating new agents, such as caspofungin. Therefore, the use of L-AmB at 3 mg/kg per day in trial 2 was logical, evidence-based, and required for regulatory approval.

MULTICENTER TRIALS REQUIRE BROAD CONSENSUS AND OVERSIGHT, NOT A SINGLE VOICE

Although Walsh was an active participant in discussions to determine dosage selection (and rightfully so), a consensus by a large group of expert investigators who had to approve the study design and numerous layers of regulatory approval were essential to implement the study. Indeed, a major element in the success of the American system of drug approval has been the system of checks and balances. These same concepts—plus skilled oversight by investigators, regulatory agencies, and institutional review boards—are an integral part of our approach to clinical research, providing expert council for all aspects of the drug development process. As imperfect as it might be, this model remains the gold standard for drug development.

HAVE ALL SYSTEMS OF INDEPENDENT OVERSIGHT BEEN CORRUPTED?

Willman [1] alleges, in effect, that dozens of investigators worldwide and regulatory entities conspired actively with Walsh to harm patients (including causing patient deaths) or were unaware that a conspiracy was plotted. If this is true, then the entire system of oversight of medical research in the United States and abroad is tainted or defective.

In addition, although he does not explicitly say so, Willman [1], in effect, implicitly attacks the NIH (for collaborating with the pharmaceutical industry and for incompetent oversight); the competence and/or integrity of dozens of investigators, senior Mycoses Study Group members, and FDA officers (for allowing patient enrollment in unethical trials with standard care); the institutional review boards at numerous academic institutions (for uncritically reviewing the study protocols); the editorial board at the New England Journal of Medicine (for accepting publications of unethical research); and the FDA and its 12-member advisory board (for approving drugs on the basis of tainted trials). Indeed, all of these systems of independent oversight needed to have failed for the proposed conspiracy between Walsh and the pharmaceutical industry to be successful.

We also emphasize Willman’s citation of Walsh’s superiors: “There is no rational motivation for an investigator or sponsoring company to design a trial with a control arm that is not standard of care” [1]. We go one step further. We believe it is impossible to conduct a study involving dozens of health care centers worldwide if the control arm does not adhere to a general consensus of what is considered to be standard of care.

CAN PRINCIPAL INVESTIGATORS PROVIDE ADVICE TO BOTH THE PHARMACEUTICAL INDUSTRY AND THE FDA?

Willman [1] further attacks Walsh on the inappropriateness of his advice to regulatory agencies. In doing so, Willman disregards the major responsibility of principal investigators and the data review committee chair (in collaboration with other investigators) for study development, execution, and analysis, as well as for presenting results to the relevant agencies. It is entirely appropriate for a principal investigator and data review committee chair to provide advice to both the pharmaceutical industry and the FDA, particularly when he happens to be, like Walsh, an accomplished investigator with almost 600 peer-reviewed scientific publications and service on numerous scientific advisory boards. Being a federal employee does not disqualify Walsh from providing such advice; he is as qualified to do so as any other academic investigator with similar expertise. There is, indeed, a very small pool of highly qualified individuals who can deliver such necessary expertise to both the pharmaceutical industry and the FDA. Such expertise is critical to the vital scientific collaboration between the pharmaceutical industry and the scientific community, especially in this time of decreased federal funding. In fact, all drugs are brought to market through collaboration between the pharmaceutical industry, independent researchers (including some whose research is federally funded), and the FDA. The 2-decade–long collaborative federal and pharmaceutical industry support of the Mycoses Study Group is but one example of positive interaction that had led to major developments in antifungal therapy.

A HUGE DOSE OF DOUBT ABOUT THE LOS ANGELES TIMES

Newspapers owe their readership a modicum of objectivity. This does not equate with simply presenting both sides of an argument. It must also give some sense of the weight of the evidence supporting opposing positions, to give some context to readers and to enable them to reach considered judgments. Newspaper editors owe it to their readership to perform a thorough review of any proposed article for the validity of the evidence presented and the reliability of the article’s sources. The Los Angeles Times has failed its readership on all counts. The destructive nature of Willman’s implicit allegations and
the strong rebuttals made by several investigators and by Walsh’s superiors several months before the publication of Willman’s article [1] should have prompted Willman’s editors to scrutinize carefully the quality of his “evidence.” Their failure to do so calls into question the credibility of the Los Angeles Times as a serious newspaper. Accordingly, the editors bear responsibility, together with Willman, for this publication. One might ask at what point reporters and editors cross the line of ethical reporting. If anything, this sad chapter should give the public a huge dose of doubt about this newspaper.

The core of Willman’s implied accusations against Walsh—that dosages of antifungals were manipulated to bias the 2 empirical trials in favor of the investigational agents—has been discredited in the preceding discussion. But another disturbing fact is the lack of objectivity displayed during the conduct of the “investigations” that led to the inaccurate article [1]. Willman began his “investigations” of Walsh in mid-2005 with several accusations (Thomas Walsh, personal correspondence). Eight of us rebutted Willman’s accusations in a detailed, point-by-point response in November 2005. This response did not satisfy Willman, but prompted him to write another letter in February 2006, which contained even more queries. An extensive response was provided to Willman and his editors in June 2006 that further detailed the gross misrepresentations of his implied allegations. This, too, was willfully ignored, and Willman’s article [1] was published in July 2006. Our criticisms of Willman’s flawed assertions are acknowledged in passing in his article, by statements such as “much controversy still surrounds the optimal timing, dosage and duration of therapy for patients with suspected infections”; “drug dosages were not chosen by Walsh individually but with assent of other researchers”; and, “study designs were reviewed and approved by the FDA and institutional review boards of participating centers” [1]. One would think that these statements, in and of themselves, would exonerate Walsh of culpability with respect to the core accusations. However, undaunted by the above-mentioned facts, Willman relies on far less authoritative sources, such as “some investigators” (unnamed) and selective quotations from the correspondence sections of medical journals, to support the implicit allegations of conspiracy.

POSSIBLE IMPLICATIONS OF WILLMAN’S ARTICLE

Sensational attacks on a respected academic and government employee (and, implicitly, on the entire drug-approval process) and fear-mongering addressed to the lay reader (implying that individuals should enroll in clinical trials at their own risk) may be attention-grabbing ways to sell more newspapers; for this purpose, Walsh served as a convenient scapegoat. As colleagues of Dr. Walsh, we are deeply concerned that his reputation is being unfairly maligned. To his patients and colleagues, Dr. Walsh is a compassionate physician whose dedication to the care of immunocompromised children and adults is central to his professional life. To his colleagues worldwide, Dr. Walsh is an outstanding investigator who has substantively advanced the field of antifungal therapy. This is the real story of Dr. Walsh.

The greatest danger of articles such as Willman’s [1] is that members of the lay public do not read medical journals. By contrast, the Los Angeles Times is widely read, is disseminated online, and is perceived as an authoritative news source. Accordingly, there is good reason to fear that the public will conclude, on the basis of Willman’s article [1], that the entire process of drug development in the United States and abroad is corrupt and that they should refrain from participating in clinical trials. We question whether Willman and the Los Angeles Times considered the possibility that future patients might suffer as a result of Willman’s irresponsible report.

As clinical researchers who require the trust of the public, we expect and welcome scrutiny by the lay press. But we also have the responsibility to vigorously defend our colleagues when their professional integrity has been unfairly maligned and to restore public confidence in clinical research and its systems of independent oversight when they have been unfairly attacked.

AUTHOR AFFILIATIONS

1-Myeloma Institute for Research and Therapy and 2-Department of Pharmacy Practice, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock; Departments of 3-Medicine and 4-Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Departments of 5-Leukemia and 6-Medicine, University of Texas MD Anderson Cancer Center, and 7-Metropolitan Infectious Diseases, Houston; 8-Division of Infectious Diseases, Texas Tech University Health Sciences Center, El Paso; Departments of 9-Pathology, 10-Dermatology, and 11-Microbiology and Immunology, University of Texas, Galveston, and 12-Infectious Disease Service, Brooke Army Medical Center, Fort Sam Houston, Texas; 13-Marlene and Stewart Greenebaum Cancer Center, University of Maryland, and 14-Department of Pediatrics, Division of Pediatrics Hematology-Oncology, The Children’s Hospital at Sinai, Baltimore, and 15-Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; 16-Department of Infectious Diseases, St. Jude Children’s Research Hospital, and Departments of 17-Molecular Sciences and 18-Pediatrics, University of Tennessee Health Sciences Center, Memphis; 19-Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, and 20-Department of Pediatrics and Epidemiology, Pediatric Infectious Disease, The Children’s Hospital

1036 • CID 2006:43 (15 October) • Anaissie et al.
of Philadelphia Center for Clinical Epidemiology and Biostatistics and 18Department of Medicine, Division of Infectious Disease, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania; 19Infectious Disease Research, Ochsner Clinic Foundation, New Orleans, and 20Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Departments of 21Pediatrics, 22Molecular Genetics, 23Microbiology, and 24Medicine, 25Division of Infectious Diseases, and 26Clinical Mycology Laboratory, Duke University Medical Center, and 27Duke Clinical Research Institute, Duke University, Durham, North Carolina; 28Department of Medicine, Harvard Medical School, 29Division of Infectious Disease, Brigham and Women’s Hospital, Divisions of 30Geographic Medicine and 31Infectious Diseases, Tufts University School of Medicine, Tufts New England Medical Center, and 32Division of Infectious Diseases, Massachusetts General Hospital, Boston, and 33Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts; 34Department of Medicine, University of Southern California Keck School of Medicine, 35Critical Care Services, Los Angeles County and University of Southern California Medical Center, and 36Pediatric Infectious Diseases, Children’s Hospital of Orange County, Los Angeles; 37Infectious Diseases, Miller Children’s Hospital, Long Beach, and 38Department of Infectious Disease, City of Hope National Medical Center, Duarte, California; 39Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; 40Department of Infectious Diseases, H. Lee Moffitt Cancer Center, University of Florida College of Medicine, Tampa; 41Medical Intensive Care Unit, Jackson Memorial Hospital, and 42Department of Medicine, University of Miami Miller School of Medicine, Miami; 43Department of Medicine, Division of Infectious Diseases, Mayo Clinic College of Medicine, Jacksonville, and 44Department of Medicine, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida; 45Department of Medicine, Immunocompromised Infectious Disease Service, Indiana University School of Medicine, and 46MiraVista Diagnostics/MiraBella Technologies, Indianapolis, Indiana; 47Department of Medicine, Division of Infectious Disease, University of Colorado at Denver, Denver; Departments of 48Medicine and 49Microbiology, University of Wisconsin, Madison; 50Department of Medicine, University of Virginia Health System, Charlottesville, and 51Department of Medicine, Virginia Commonwealth University Medical Center, Richmond; 52Division of Clinical Microbiology, 53Department of Pediatrics, and 54Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, and 55Department of Medicine, Division of Infectious Diseases, Mayo Clinic College of Medicine, Buffalo, Minnesota; 56Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham; 57New York University School of Medicine and 58Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, 59Division of Infectious Diseases, Roswell Park Cancer Center, Buffalo, and 60Division of Clinical Pharmacology, Albany Medical College, Albany, New York; 61Department of Pharmacy Practice, Schools of Pharmacy and Medicine, and 62Mycotic Research Center, Department of Medicine, Division of Infectious Disease, University of Mississippi Medical Center, Jackson; 63Department of Internal Medicine, Division of Infectious Diseases, University of Kentucky School of Medicine, Lexington; 64Washington Hospital Center and 65Department of Medicine, Georgetown University School of Medicine; 66Department of Pediatrics, George Washington University School of Medicine and Public Health, and 67Department of Hematology/Oncology, Children’s National Medical Center, Washington, DC; 68Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, and 69Department of Surgery, Division of Trauma and Critical Care, University of Cincinnati, Cincinnati, Ohio; 70Division of Infectious Diseases, Wayne State University, Detroit, Michigan; 71Department of Medicine, Infectious Diseases Division, Robert Wood Johnson Medical School, Cooper University Hospital, Camden, New Jersey; 72Department of Medicine, University of Illinois at Chicago, Chicago; 73Department of Mycology, University of Aberdeen, and Departments of 74Medicine and 75Medical Mycology, Education Research Centre, Wythenshawe Hospital, Manchester, United Kingdom; 76Department of Clinical Haematology, Catholic University of Leuven, Belgium; Departments of 77Medical Microbiology and 78Hematology, University Hospital Nijmegen, 79Department of Haematology, Radboud University Nijmegen Medical Centre, and 80Nijmegen University Centre for Infectious Diseases, Nijmegen, The Netherlands; 81Department of Medicine, Karolinska Institutet, and 82Hematology Center, Karolinska University Hospital, Stockholm, Sweden; 83Department of Microbiology–Infectious Diseases, Hospital Maisonneuve-Rosemont, and 84Department of Microbiology and Immunology, Sainte-Justine Hospital, University of Montreal, Montreal, Quebec, and 85Division of Infectious Diseases, McMaster University, and 86Infectious Disease Service, Hamilton Health Service, Hamilton, Ontario, Canada; 87Service des Maladies Infectieuses et Tropicales, Hôpital Necker, Paris; 88Hematology Department, CHU Henri Mondor, Creteil, and 89Department of Hematology and Oncology, Hôpital de Hautepierre, Strasbourg, France; 90University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 91Department of Internal Medicine, University of Cologne, Cologne, and 92Charité Universitätsmedizin, Campus Charité Mitte, Medizinische Klinik und Poliklinik II, Berlin, Germany; 93Department of Infectious Diseases, Foundation for the Fight Against Leukemia, Buenos Aires, Argentina; 94Department of Public Health, Colorado State University, Fort Collins, Colorado; 95Infectious Disease Center, Duarte, California; 96Department of Medicine, Division of Hematology/Oncology, The University of Texas Medical Branch, Galveston, Texas; 97Department of Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston; and 98Division of Clinical Immunology, Sainte-Justine Hospital, University of Montreal, Montreal, Quebec, and 99Duke Clinical Research Institute, Durham, North Carolina; 100Department of Infectious Diseases, University of Alabama at Birmingham, Birmingham; 101Department of Internal Medicine, University of Maryland School of Medicine, Baltimore; and 102Department of Medicine, Division of Hematology/Oncology, Case Western Reserve University, Cleveland.
Health, Microbiology, and Virology, University degli Studi di Milano, Milan, and University of Genova, Division of Infectious Disease, San Martino University Hospital, Genoa, Italy; 88Department of Hematology and 89Bone Marrow Transplant Unit, University of Ankara; 90Department of Medicine, Hacettepe University School of Medicine, Ankara, Turkey; 91Department of Infectious Diseases, Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, and 92Department of Clinical Microbiology and Infectious Diseases, St. Vincent’s Hospital, Darlinghurst, Australia; 93Department of Mycology, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; 94Department of Medicine, United Arab Emirates Medical School, Al-Ain; and 95Decane School of Health, Slovakia.

Acknowledgments

Potential conflicts of interest. E.I.A. has received grant support from Astellas, Curagen, Enzon, Nuvelo, Orthobiotech, and Pfizer, is a consultant for Astellas, Gilead Sciences, Merck, Pfizer, and Schering Plough, and is a member of the speaker’s bureau for Astellas, Gilead Sciences, Merck, Pfizer, and Schering Plough, and is a consultant for Enzon and Schering Plough, and is a member of the speaker’s bureau for Merck and Pfizer. J.R.G. has received grant support from Aro- nex, Vicuron, Pfizer, Schering, Fujisawa, Astellas, F2G, Merck, and Indevus, is a consultant for Aro- nex, Vicuron, Pfizer, Schering, Fujisawa, Astellas, F2G, Merck, Indevus, Abbott, and GlaxoSmithKline, and is a member of the speaker’s bureau for Pfizer, Schering, and F2G. C.A. is a stockholder in Merck. J.R.P. has received grant support from Merck, Enzon, Astellas, Schering Plough, and is a consultant for Merck, Enzon, Astellas, Schering Plough, and Pfizer. M.K. has received grant support from Pfizer and is a member of the speaker’s bureau for Pfizer and Enzon. D.B. has received grant support from Astellas, MedImmune, Pediatric, Rocketshar Research, Astra Zeneca, Johnson & Johnson, Pfizer, and Vicuron. J.A.A. has received grant support from Bristol Myers Squibb, Gilead, Abbott, Roche, Berlex Labs, Merck, GlaxoSmithKline, and Tibotec and is a consultant for Bristol Myers Squibb, Gilead, Abbott, GlaxoSmithKline, and Boehringer Ingelheim. B.D.A. has received grant support from Astellas and Enzon, is a consultant for Astellas, Pfizer, Schering Plough, Enzon, Bristol Myers Squibb/Esai Medical Research, Cubicin, Merck, Novartis, Pharma-
macia, Roche, Vicuron, and Viropharma, and is a member of the speaker’s bureau for Astellas, Pfizer, Schering Plough, and OrthoBiotec. D.A. has received grant support from Astellas, Pfizer, Enzon, Schering, GlaxoSmithKline, and Merck, is a consultant for Pfizer, Schering Plough, and Merck, and is a member of the speaker’s bureau for Pfizer and Merck, W.B.I. has received grant support from Merck and Astellas, is a consultant for Merck, and is a member of the speaker’s bureau for Enzon, Merck, and Pfizer. M.A.B. has received grant support from Astellas, Cubist, Genzyme, and Merck, is a consultant for Astellas, Abbott, Pfizer, Merck, and Schering Plough, and is a member of the speaker’s bureau for Astellas, Abbott, Pfizer, Merck, and Schering Plough. H.W.B. is a consultant for Cubist Pharmaceuticals, Pfizer, Aspreva, Aspreva Pharmaceuticals, and Schering Plough, is a member of the speaker’s bureau for Cubist Pharmaceuticals, Pfizer, Aspreva, Aspreva Pharmaceuticals, and Schering Plough, and is a member of the speaker’s bureau for Astellas, Gilead, Merck, and Schering Plough. M.C.-E. has received grant support from Pfizer, Merck, Schering Plough, and Gilead and is a member of the speaker’s bureau for Gilead, Merck, Pfizer, and Schering Plough. J.S.D. has received grant support from Merck and Schering Plough. L.R.D. has received grant support from the Canadian Institute of Health. M.C.D. is a member of the speaker’s bureau for Pfizer. W.E.D. has received grant support from Merck and Astellas, is a consultant for Astellas and Pfizer, and is a member of the speaker’s bureau for Astellas, Pfizer, and Merck. G.R.D. has received grant support from Fujisawa/Astellas, Merck, and Optimer. B.D. has received grant support from Astellas, Pfizer, Schering, and Merck, is a consultant for Bio Alliance Pharma, and is a member of the speaker’s bureau for Astellas, Schering, and Merck. M.E. has received grant support from Merck and Gilead and is a member of the speaker’s bureau for Pfizer and Gilead. A.E.-L. has received grant support from Pfizer and Schering Plough. J.A.F. has received grant support from Astellas and Roche, is a consultant for Gilead, Merck, Biogen-IDEc, Hoffman LaRoche, Athelas Primera, FDA/CBER—Xenotransplantation, and is a member of the speaker’s bureau for the Immune Tolerance Network—National Institute of Allergy and Infectious Diseases—Na- tional Institutes of Health Transplantation Trials. R.F. has received research support from Cubicin and GlaxoSmithKline, is a consultant for Pfizer, Ean Pharmaceuticals, Abbott, and GlaxoSmith- Kline, and is a member of the speaker’s bureau for Merck, Pfizer, and GlaxoSmithKline. G.F. has received research support from Astellas, Cubist, and Pfizer and is a member of the speaker’s bureau for Astellas, Cubist, Pfizer, and Schering Plough. M. Ghannoun has received grant support from Astellas, Enzon, Teides, Pfizer, Merck, Helix BioAlliance, Novartis, Anacor, Nex Med, Maruho, and Great Lakes Pharmaceuticals, is a consultant for Stiel, Pfizer, Schering Plough, Novartis, and Enzon, and is a member of the speaker’s bureau for Astellas, Merck, Pfizer, Schering Plough, and Enzon. M. Goldman has received research support from Pfizer and Glaxo, is a consultant for Gilead Sciences, Schering Plough, and Merck, and is a member of the speaker’s bureau for Merck. I.N.G. has received research support from Pfizer and Schering Plough. R.N.G. has received research support from Acambis, Vaxgen, Dynport, Tibotec, Merck, Schering Plough, Virxys, GlaxoSmithKline, Boer- inger-Ingeheim, Bristol Myers Squibb, and VA, is a consultant for Acambis, and is a member of the speaker’s bureau for Schering Plough. P.O.G. has received research support from Astellas and Pfizer, is a consultant for Astellas and Merck, and is a member of the speaker’s bureau for Astellas, Merck, and Schering Plough. S.H. has received research support from Pfizer, is a consultant for Astellas, Schering Plough, and Domantis, and is a member of the speaker’s bureau for Astellas, Merck, Pfizer, Schering Plough, and Enzon. R.H. has received research support from Pfizer, is a consultant for ACE Bio- sciences, Astellas, Gilead Sciences, Merck, Pfizer, Schering Plough, and Zeneus, and is a member of the speaker’s bureau for Gilead Sciences, Pfizer, and Schering Plough. J.W.H. has received research support from Astellas, Curagen, and Schering Plough, is a consultant for Astellas, Pfizer, Three Rivers, and Schering Plough, and is a member of the speaker’s bureau for Astellas, Merck, and Pfizer. W.H. is associated with Astellas. D.R.H. has received grant support from Merck, Pfizer, and Schering Plough and is a member of the speaker’s bureau for Merck and Pfizer. J.I.I. is a consultant for Enzon, Pfizer, and Schering Plough and is a member of the speaker’s bureau for Astellas, Enzon, Pfizer, and Schering Plough. R.M.I. has received grant support from Merck, VaxGen, BioPort, and Chiron (Novartis). D.H.K. has received grant support from Pfizer, Wyeth, Merck, Astellas, and Hopira, is a consultant for Pfizer, Enzon, Wyeth, Astellas, Lilly, Sanofi Aventis, and Glaxo. K.K. has received grant support from Merck and Schering Plough. D.P.K. has received grant support from Schering Plough, Pfizer, Astellas, Enzon, and Merck. R.L. has received grant support from Merck, Incyte Abbott, Boeringer Ingeheim, and Gilead Sciences. M.I. has received grant support from Astellas, Pfizer, Schering Plough, BioRad Laboratories, and Vicuron, is a consultant for Pfizer Canada, Astellas Canada, Merck Frosst Canada, and Schering Canada, and is a member of the speaker’s bureau for Pfizer Canada, Astellas Canada, and Merck Frosst Canada. P.L. is a consultant for Gilead Sciences and a member of the speaker’s bureau for Zeneus Pharma. J.M. has received grant support from Pfizer, Bio-Rad, and MSD, is a consultant for Astellas, Gilead Sciences,
Nektar, Pfizer, MSD, and Schering Plough, and is a member of the speaker’s bureau for Astellas, Gilead Sciences, Merck, Pfizer, Schering Plough, MSD, and Bio-Rad. G.M. has received grant support from Astellas and MGI and is a member of the speaker’s bureau for Astellas, Merck, and Pfizer. M.R.M. is a member of the speaker’s bureau for Schering Plough. M.M. has received grant support from Pfizer and Merck, is a consultant for Astellas, Enzon, and Pfizer, and is a member of the speaker’s bureau for Astellas, Cubist, and Enzon. M.N. has received grant support from Astellas, Enzon, Merck, and Schering Plough, and is a consultant for Gilead Sciences, Pfizer, and Merck, and is a member of the speaker’s bureau for Gilead Sciences, Merck, and Pfizer Major. F.C.O. has received grant support from Merck, MDS UK, Johnson & Johnson, Syngenta, and Italfarmaco, is a consultant for Bristol Myers Squibb, Gilead Sciences, Italfarmaco, Johnson & Johnson, Merck, Oxford Glycosciences, Pfizer, Schering Plough, Syngenta, Tibotec, and Vicon, is a member of the speaker’s bureau for Astellas, Gilead Sciences, Merck, Pfizer, and Schering Plough, and is a stockholder in Johnson & Johnson. T.P. has received grant support from Astellas, Enzon, Pfizer, Nektar, Merck, and Schering Plough, is a consultant for Astellas, Merck, Pfizer, Schering Plough, Affinium Pharmaceuticals, Basel, Diversa, Eisai, Urich, MediciNova, Microbia, Nektar, Rib-X Pharmaceuticals, Human Genome Sciences, and Cogenesys, and is a member of the speaker’s bureau for Astellas, Merck, Pfizer, and Schering Plough. R.R.R. has received grant support from Roche Laboratories. A.C.R. has received grant support from Merck, Cadence, and Optima, is a consultant for Pfizer and Astellas, and is a member of the speaker’s bureau for Pfizer and Merck. J.L.R.T. has received grant support from Pfizer, Merck, Schering Plough, and Gilead and is a member of the speaker’s bureau for Gilead, Merck, Pfizer, and Schering Plough. C.R. has received grant support from Astellas, Johnson & Johnson, Pfizer, Wyeth, and Merck and is a consultant for Astellas, Bayer, Merck, Pfizer, and Wyeth. M.R. has received grant support from Pfizer, is a consultant for Astellas, Gilead Sciences, Pfizer, Schering Plough, Janssen, and Merck/MSD, and is a member of the speaker’s bureau for Gilead, Merck, Pfizer, and Schering Plough. M.S. has received grant support from Astellas, Enzon, Pfizer, and Merck and is a member of the speaker’s bureau for Enzon and Pfizer. S.S. has received grant support from Astellas, Enzon, Merck, and AdvanDx, is a consultant for Pfizer, Astellas, Merck, and Enzon, is a member of the speaker’s bureau for Pfizer, Roche, Merck, Enzon, and AdvanDx, and is a stockholder in Medonyx. N.S. is a consultant for Enzon and is a member of the speaker’s bureau for Astellas, Pfizer, and Enzon. N.S. has received grant support from Schering Plough and Enzon. W.J.S. has received grant support from Astellas and Merck and is a member of the speaker’s bureau for Schering Plough, Astellas, and Pfizer. Z.T. has received grant support from Abbott, Gilead Sciences, and Bristol Myers Squibb. C.V. has received grant support from Gilead Sciences and Wyeth, is a consultant for Pfizer, and is a member of the speaker’s bureau for Gilead Sciences. M.A.V. is a member of the speaker’s bureau for Gilead Sciences. J.L.W. is a consultant for BioRad and a stockholder in Miravista Diagnostics and Mirabella Technologies. J.R.W. has received grant support from Merck and Schering Plough, is a consultant for Merck, Nektar, Pfizer, and Schering Plough, and is a member of the speaker’s bureau for Merck, Pfizer, and Schering Plough. V.L.Y. has received grant support from Pfizer and OrthoMcNeil. T.Z. has received grant support from Merck, Pfizer, and Eli and is a consultant for Enzon and Zeneus. All other authors: no conflicts.

References