PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/50122

Please be advised that this information was generated on 2019-01-01 and may be subject to change.
Preserved Sensitivity to β_2-Adrenergic Receptor Agonists in Patients with Type 1 Diabetes Mellitus and Hypoglycemia Unawareness

Bastiaan E. De Galan, Pieter De Mol, Lianne Wennekes, Bas J. J. Schouwenberg, and Paul Smits

Departments of General Internal Medicine (B.E.D.G., B.J.J.S., P.S.) and Pharmacology-Toxicology (P.D.M., L.W., P.S.), Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, The Netherlands

Background and Objective: Use of β_2-adrenergic receptor agonists has been advocated for the treatment of hypoglycemia unawareness in type 1 diabetes. *In vitro,* however, hypoglycemia unawareness has been associated with reduced β_2-adrenergic sensitivity. Therefore, *in vivo* sensitivity to β_2-adrenergic receptor agonist stimulation was compared between type 1 diabetic patients with and without hypoglycemia unawareness and non-diabetic controls.

Methods: Ten type 1 diabetic patients with hypoglycemia unawareness, 12 type 1 diabetic patients with intact hypoglycemic awareness, and 11 healthy controls were enrolled. β_2-Adrenergic sensitivity was determined by measuring the forearm vasodilator response to intrarterial infusion of salbutamol. Salbutamol was infused in six increasing doses ranging from 0.003 to 1.0 μg·min$^{-1}$·dl$^{-1}$. Forearm blood flow (FBF) was bilaterally measured by venous occlusion plethysmography. Diabetic patients received low-dose insulin before FBF measurements to ensure that experiments were carried out under normoglycemic conditions.

Results: At baseline, FBF was 1.9 ± 0.3 ml·min$^{-1}$·dl$^{-1}$ in controls, 2.3 ± 0.4 ml·min$^{-1}$·dl$^{-1}$ in patients with intact awareness, and 1.4 ± 0.1 ml·min$^{-1}$·dl$^{-1}$ in patients with hypoglycemia unawareness ($P = 0.048$ vs. aware patients). In response to salbutamol, FBF increased 9.1-fold in controls, 8.0-fold in patients with intact awareness, and 10.7-fold in patients with hypoglycemia unawareness ($P = NS$). Heart rate increased in all groups due to systemic spillover of salbutamol but appeared blunted, considering a greater fall in mean arterial pressure in patients with hypoglycemia unawareness.

Conclusions: Sensitivity to β_2-adrenergic receptor agonist stimulation is preserved in type 1 diabetic patients with hypoglycemia unawareness. (J Clin Endocrinol Metab 91: 2878–2881, 2006)
Subjects and Methods

Written informed consent was obtained from 22 T1DM patients recruited from the outpatient clinic of our hospital and 11 healthy controls recruited by advertisement. All diabetic subjects were free of classical long-term diabetic complications, except background retinopathy. Autonomic neuropathy was excluded by normal responses to cardiovascular reflex tests (i.e., heart rate response to Valsalva maneuver, heart rate variability to deep breathing, and blood pressure responses to standing up and sustained handgrip) (14). The magnitude of hypoglycemic awareness was assessed on the basis of the score on a Dutch modification of a standardized hypoglycemia questionnaire (15). Patients with a score less than 3 (of maximal 10) were classified as being hypoglycemia aware (n = 12), and patients with higher scores were classified as hypoglycemia unaware (n = 10). Three of the latter had previously participated in a trial in which their inability to detect hypoglycemia was objectified by a hypoglycemic clamp test (16). All the latter had previously participated in a trial in which their inability to detect hypoglycemia was objectified by a hypoglycemic clamp test (16). All the latter had previously participated in a trial in which their inability to detect hypoglycemia was objectified by a hypoglycemic clamp test (16). All the latter had previously participated in a trial in which their inability to detect hypoglycemia was objectified by a hypoglycemic clamp test (16).

Procedure

All experiments took place in the morning in a quiet, temperature-controlled room (23–24 °C), with the subjects supine. The brachial artery of the nondominant arm was cannulated (Angiocath 20-gauge; Beckton Dickinson, Sandy, UT) under local anesthesia (Xylocaine 2%) for infusion of salbutamol (Ventolin; GlaxoSmithKline, Zeist, The Netherlands) and blood pressure monitoring (monitor 378341A; Hewlett Packard GmbH, Böblingen, Germany). Intraarterial infusion rates were calculated per deciliter body surface area. Baseline values for FBF in the infusion arm were 1.9 ± 0.3 ml/min−1·dl−1 in control subjects, 2.3 ± 0.4 ml/min−1·dl−1 in hypoglycemia-aware T1DM patients (P = NS), and 1.4 ± 0.1 ml/min−1·dl−1 in hypoglycemia-unaware patients (P = 0.048 vs. aware patients). Corresponding values in the noninfused arm were 1.9 ± 2.0, 2.0 ± 0.2, and 1.6 ± 0.2 ml/min−1·dl−1 (P = NS). The lowering of plasma glucose levels in the diabetic patients did not affect FBF in either arm (data not shown). Maximal FBF responses to salbutamol in the infused arm were 14.9 ± 1.3 ml/min−1·dl−1 in controls, 14.6 ± 1.3 ml/min−1·dl−1 in hypoglycemia-aware diabetic patients, and 13.8 ± 1.5 ml/min−1·dl−1 in hypoglycemia-unaware diabetic patients (Fig. 1), corresponding to 9.1-, 8.0-, and 10.7-fold increases, respectively (P < 0.001 for all groups). There were no statistically significant differences between the groups for the normoglycemic range in the diabetic patients during FBF measurements.

Calculations and statistical analyses

 Vasodilator responses to salbutamol were expressed as absolute FBF and as increase in FBF above baseline values (ΔFBF). The effects of salbutamol on FBF and hemodynamic variables were analyzed by repeated-measures ANOVA. Differences in means were tested by Student’s t test. For data that had no normal distribution, the Wilcoxon signed rank test and Mann-Whitney U test were used to compare paired and unpaired data, respectively. The χ² test was used to compare the male-female distribution of the study population. The SPSS personal computer software package (version 12.0; SPSS, Chicago, IL) was used for statistical analyses. P < 0.05 was considered statistically significant. Data are presented as means ± SEM unless otherwise specified.

Results

Characteristics of the participants are shown in Table 1. As a group, the diabetic patients were slightly older and had higher heart rate and blood pressure at baseline than the control subjects. There was a preponderance of males among the unaware diabetic patients and a preponderance of females among the aware diabetic patients, but this difference did not reach statistical significance. HbA1c and fasting plasma glucose values were lower and disease duration was longer in T1DM patients with hypoglycemia unawareness, compared with patients with intact awareness. Insulin levels were significantly higher in diabetic patients than controls at all time points (Table 2) but despite intermittent insulin infusion remained relatively stable for the duration of the experiment. Plasma glucose levels, albeit significantly higher than in controls, remained around the upper level for the normoglycemic range in the diabetic patients during FBF measurements.

The vascular response to salbutamol

Baseline values for FBF in the infusion arm were 1.9 ± 0.3 ml/min−1·dl−1 in control subjects, 2.3 ± 0.4 ml/min−1·dl−1 in hypoglycemia-aware T1DM patients (P = NS), and 1.4 ± 0.1 ml/min−1·dl−1 in hypoglycemia-unaware patients (P = 0.048 vs. aware patients). Corresponding values in the noninfused arm were 1.9 ± 2.0, 2.0 ± 0.2, and 1.6 ± 0.2 ml/min−1·dl−1 (P = NS). The lowering of plasma glucose levels in the diabetic patients did not affect FBF in either arm (data not shown). Maximal FBF responses to salbutamol in the infused arm were 14.9 ± 1.3 ml/min−1·dl−1 in controls, 14.6 ± 1.3 ml/min−1·dl−1 in hypoglycemia-aware diabetic patients, and 13.8 ± 1.5 ml/min−1·dl−1 in hypoglycemia-unaware diabetic patients (Fig. 1), corresponding to 9.1-, 8.0-, and 10.7-fold increases, respectively (P < 0.001 for all groups). There were no statistically significant differences between the groups for the normoglycemic range in the diabetic patients during FBF measurements.

TABLE 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>T1DM aware</th>
<th>T1DM unaware</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (male/female)</td>
<td>11 (6/5)</td>
<td>12 (4/8)</td>
<td>10 (7/3)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>28.3 ± 8.1</td>
<td>33.3 ± 11.5</td>
<td>38.8 ± 9.7a</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.2 ± 2.5</td>
<td>25.0 ± 1.9</td>
<td>23.8 ± 2.3</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>58 ± 5</td>
<td>69 ± 9</td>
<td>65 ± 9</td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td>79 ± 11</td>
<td>90 ± 9</td>
<td>93 ± 11a</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>ND</td>
<td>8.7 ± 1.2</td>
<td>7.6 ± 0.7b</td>
</tr>
<tr>
<td>Duration of diabetes (yr)</td>
<td>11.6 ± 5.2</td>
<td>19.7 ± 6.2b</td>
<td></td>
</tr>
<tr>
<td>Insulin dose (U/kg)</td>
<td>0.72 ± 0.24</td>
<td>0.68 ± 0.17</td>
<td></td>
</tr>
</tbody>
</table>

Data are in number or means ± SD. ND, Not determined.

a P < 0.05 vs. controls.

b P < 0.05 vs. T1DM aware.
TABLE 2. Plasma glucose and insulin levels

<table>
<thead>
<tr>
<th>Glucose level (mg/dl)</th>
<th>Controls</th>
<th>T1DM aware</th>
<th>T1DM unaware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>92 ± 8</td>
<td>243 ± 72(^{a})</td>
<td>211 ± 42(^{a})</td>
</tr>
<tr>
<td>Prior to test</td>
<td>92 ± 8</td>
<td>108 ± 16(^{a})</td>
<td>111 ± 17(^{a})</td>
</tr>
<tr>
<td>End of test</td>
<td>92 ± 8</td>
<td>125 ± 21(^{a})</td>
<td>131 ± 29(^{a})</td>
</tr>
<tr>
<td>Insulin level (μU/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>9 ± 4</td>
<td>30 ± 43(^{a})</td>
<td>30 ± 20(^{a})</td>
</tr>
<tr>
<td>Prior to test</td>
<td>13 ± 5</td>
<td>27 ± 14(^{a})</td>
<td>29 ± 17(^{a})</td>
</tr>
<tr>
<td>End of test</td>
<td>10 ± 4</td>
<td>21 ± 12(^{a})</td>
<td>21 ± 14(^{a})</td>
</tr>
</tbody>
</table>

Data are means ± sd. To convert plasma glucose values to millimoles per liter, divide by 18; to convert plasma insulin values to picomoles per liter, multiply by 6.

\(^{a}\) P < 0.05 vs. controls.

\(^{b}\) P < 0.05 vs. T1DM aware.

either the maximal FBF response or the course of FBF (P = 0.7 by ANOVA). Comparable results were obtained when the data were expressed as absolute or relative changes in FBF from baseline (FFB).

In both controls and hypoglycemia-aware T1DM patients, FBF in the noninfused arm increased 1.5-fold in response to the highest salbutamol dose to 3.0 ± 0.6 ml·min\(^{-1}·dl\(^{-1}\) in the first (P = 0.007) and 2.6 ± 0.3 ml·min\(^{-1}·dl\(^{-1}\) in the latter (P = 0.043), indicating a systemic effect. In T1DM patients with hypoglycemia unawareness, salbutamol did not affect FBF in the noninfused arm. Heart rate increased by 13 ± 2, 11 ± 2, and 9 ± 2 beats per minute (bpm) in controls, hypoglycemia-aware, and hypoglycemia-unaware T1DM patients, respectively (P < 0.001 for all groups), whereas mean arterial pressure (MAP) decreased in unaware diabetic patients (−5 ± 3 mm Hg, P = 0.001) and controls (−3 ± 2 mm Hg, P = 0.005) but not in patients with intact awareness. Despite within-group effects, the course of FBF in the noninfused arm and heart rate and MAP did not differ among the three groups when tested by ANOVA.

Stratification according to glycemic control and duration of disease

Stratification of the diabetic patients (n = 22) according to HbA\(_{1c}\) value yielded a low-HbA\(_{1c}\) group [mean HbA\(_{1c}\) 7.1% (range 6.0–7.9), n = 8], a middle-HbA\(_{1c}\) group [8.1% (8.0–8.3%), n = 7], and a high-HbA\(_{1c}\) group [9.5% (8.7–11.4%), n = 7]. In response to salbutamol, FBF increased from 1.7 ± 0.5 to 13.5 ± 1.4 ml·min\(^{-1}·dl\(^{-1}\) in the low-HbA\(_{1c}\) group, from 1.6 ± 0.3 to 14.0 ± 2.0 ml·min\(^{-1}·dl\(^{-1}\) in the middle-HbA\(_{1c}\) group, and from 2.4 ± 0.5 to 15.3 ± 1.7 ml·min\(^{-1}·dl\(^{-1}\) in the high-HbA\(_{1c}\) group (P = NS by ANOVA). When recalculating FBF responses according to disease duration, FBF increased from 1.9 ± 0.3 to 15.4 ± 1.3 ml·min\(^{-1}·dl\(^{-1}\) in patients with a mean disease duration of 9.9 (range 3–15) yr and from 1.9 ± 0.4 to 13.1 ± 1.4 ml·min\(^{-1}·dl\(^{-1}\) in patients with a mean disease duration of 20.6 (17–33) yr (P = NS by ANOVA).

Discussion

Reduced β\(_{2}\)-adrenergic sensitivity has been reported in T1DM patients with hypoglycemia unawareness (9, 10). The present study was conducted to test the involvement of the β\(_{2}\)-adrenergic receptor \emph{in vivo}. Therefore, the vasodilator response to local administration of salbutamol was compared among T1DM patients with hypoglycemia unawareness, T1DM patients with intact hypoglycemic awareness, and nondiabetic controls. Our finding of similar vasodilator responses does not support a role for the β\(_{2}\)-adrenergic receptor in reduced β\(_{2}\)-adrenergic sensitivity. When the data were expressed as fold increase from baseline, salbutamol elicited even higher responses in unaware diabetic patients than the other two groups, although these differences did not reach statistical significance.

Our data extend those obtained previously with microdialysis (11) but are at variance with \emph{in vitro} studies reporting reduced β\(_{2}\)-adrenergceptor-mediated action in hypoglycemia-unaware T1DM patients on basis of reduced β\(_{2}\)-adrenergic receptor density or affinity for isoproterenol on white blood cells (9, 10). However, alterations in β\(_{2}\)-adrenoceptor density or binding affinity on white blood cells do not necessarily reflect those on other tissues, such as the vascular wall. In addition, white blood cells may not be a stable population, especially after stress hormone release. Lymphocytes, granulocytes, and monocytes of various subsets that differ according to receptor density and binding affinity from cells already in the circulation can be mobilized by catecholamines and cortisol (18). In contrast, the perfused forearm technique is a validated \emph{in vivo} method to quantify tissue sensitivity to vasoactive substances (10). Moreover, our findings remained unaltered when the diabetic patients were stratified according to tightness of glycemic control as crude marker of (the risk for) hypoglycemia unawareness.

It is unlikely that the higher insulin levels in the two diabetic groups affected our data. First, a significant vasodilator effect of insulin requires 4-fold higher plasma concentrations than those achieved here (17); second, insulin does not exert its vasodilator effects by modulation of β\(_{2}\)-adrenergic receptors (19). Moreover, insulin levels were identical in the two diabetic groups throughout the experiments, and baseline FBF, although mutually different, was not dissimilar from that in controls.

Our study had some limitations. First of all, the groups were incompletely matched for sex, age, and disease duration. The effect of the latter two parameters on β\(_{2}\)-adrenergic...
sensitivity is probably negligible: vasodilator responses to β2-adrenergic stimulation are age independent (20), and stratification of our data according to disease duration did not reveal an effect of diabetes per se. However, β2-adrenergic sensitivity may differ by sex, with women probably having a more profound responsiveness to β2-adrenergic stimulation than men (21). In the present study, women were overrepresented in the hypoglycemia-aware diabetic group and underrepresented in the unaware diabetic group, although this difference did not reach statistical significance. A post hoc analysis of our data by gender did not reveal differences in β2-adrenergic sensitivity between men and women in either the control or diabetic group or when all subjects were pooled (data not shown), although it should be acknowledged that our study was not designed for that purpose. Yet even when gender would have had an effect, a more balanced matching according to gender would have resulted in greater, not smaller, salbutamol responsiveness in the TIDM patients with hypoglycemia unawareness.

Previous in vivo studies on β-adrenergic sensitivity in diabetes used the isoproterenol sensitivity test (4–8), in which β-adrenergic sensitivity is expressed as the dose of iv isoproterenol that produces an increment in heart rate of 25 bpm over baseline values. This heart rate increment is the consequence of direct stimulation of cardiac β1- and β2-receptors and an indirect baroreflex response to β2-receptor-mediated peripheral vasodilatation (22). When reconciling data from studies using the isoproterenol test with that of the current study, it seems plausible that hypoglycemia-associated reduction in β-adrenergic sensitivity is mediated by the β2-receptor. In our study, the heart rate response to systemic spillover of salbutamol in TIDM patients with hypoglycemia unawareness appeared blunted in view of the greater fall in blood pressure, which lends support to this suggestion. However, subtle impairments in baroreflex sensitivity, only to be detected by spectral analysis (23, 24) but not by conventional tests, have been found to correlate with diabetes duration. Because disease duration was longer in patients with hypoglycemia unawareness, compared with patients with intact awareness in both the current study and studies using the isoproterenol test (4–6), a contribution of reduced baroreflex sensitivity to the lower heart rate response cannot be excluded.

In conclusion, sensitivity to β2-adrenergic agonist stimulation is not reduced in TIDM patients with hypoglycemia unawareness. This observation may be of potential value when treatment with β2-adrenergic agonists is considered to support glucose counterregulation. Whether reduced β2-adrenergic sensitivity in hypoglycemia unawareness is mediated through the β2-receptor or impairments in the baroreflex response pathway requires further study.

Acknowledgments

We are indebted to all participants for their cooperation in the study.

Received March 8, 2006. Accepted May 8, 2006.

Address all correspondence and requests for reprints to: Bastiaan E. De Galan, M.D., Ph.D., Department of General Internal Medicine 463, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. E-mail: b.degalan@aig.umcn.nl.

The authors have nothing to disclose and no conflicts of interest.

References

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.