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Abstract

Some of the speech databases and large spoken language corpora that have been collected 

during the last fifteen years have been (at least partly) annotated with a broad phonetic 

transcription. Such phonetic transcriptions are often validated in terms of their resemblance to 

a handcrafted reference transcription. However, there are at least two methodological issues 

questioning this validation method. Firstly, no reference transcription can fully represent the 

phonetic truth. This calls into question the status of such a transcription as a single reference 

for the quality of other phonetic transcriptions. Secondly, phonetic transcriptions are often 

generated to serve various purposes, none of which are considered when the transcriptions are 

compared to a reference transcription that was not made with the same purpose in mind. Since 

phonetic transcriptions are often used for the development of automatic speech recognition 

(ASR) systems, and since the relationship between ASR performance and a transcription’s 

resemblance to a reference transcription does not seem to be straightforward, we verified 

whether phonetic transcriptions that are to be used for ASR development can be justifiably 

validated in terms of their similarity to a purpose-independent reference transcription.

To this end, we validated canonical representations and manually verified broad phonetic 

transcriptions of read speech and spontaneous telephone dialogues in terms of their 

resemblance to a handcrafted reference transcription on the one hand, and in terms of their 

suitability for ASR development on the other hand. Whereas the manually verified phonetic 

transcriptions resembled the reference transcription much closer than the canonical 

representations, the use of both transcription types yielded similar recognition results. The 

difference between the outcomes of the two validation methods has two implications. First, 

ASR developers can save themselves the effort of collecting expensive reference 

transcriptions in order to validate phonetic transcriptions of speech databases or spoken 

language corpora. Second, phonetic transcriptions should preferably be validated in terms of 

the application they will serve because a higher resemblance to a purpose-independent 

reference transcription is no guarantee for a transcription to be better suited for ASR 

development.
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Abbreviations

ASR Automatic Speech Recognition

CGN Corpus Gesproken Nederlands -  Spoken Dutch Corpus

MPT Manual Phonetic Transcription

RT Reference Transcription

WER Word Error Rate
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1. Introduction

Phonetic transcriptions are the written records of perceptual analyses of speech. They describe 

continuous speech signals as sequences of discrete phonetic symbols. These symbols can be 

chosen from small (more general) or large (more detailed) sets of symbols, depending on the 

purpose the transcriptions are generated for. Transcriptions can be handmade, machine-made 

or they can be generated through a joint effort of man and machine.

Formally speaking, the validity of phonetic transcriptions indicates the adequacy with 

which the transcriptions represent the original speech signals, and as such also the adequacy 

with which the transcriptions serve the purpose which they will be employed for (Cucchiarini, 

1993). However, the purpose for which transcriptions are made is not always unique nor 

always known in advance. Some of the speech databases and large spoken language corpora 

that have been collected during the last fifteen years (e.g. Switchboard (Godfrey et al., 1992; 

Greenberg, 1997) or the Spoken Dutch Corpus (Oostdijk, 2002; Goddijn & Binnenpoorte, 

2003)) have been (at least partly) annotated with a phonetic transcription without knowing the 

specific purpose(s) the transcriptions would serve, since the corpora were explicitly aimed at 

serving a wide variety of research and development projects. In such contexts, phonetic 

transcriptions can only be validated by means of a purpose-independent validation criterion.

More often than not, phonetic transcriptions are validated through a comparison with 

some handmade reference transcription (RT) that is considered to be the most accurate 

representation of the speech signal that can be obtained with a given set of transcription 

symbols. In the literature several different instantiations of RTs have been used. Saraçlar et al. 

(2000) used a manual transcription that was independently produced by a phonetician. Kipp et 

al. (1996) used several independently produced manual transcriptions, each of which served 

as an independent reference. Kuijpers and van Donselaar (1997) also used several 

independently produced manual transcriptions, but they used them as a single reference by 

considering only the majority vote for every phonetic symbol. Shriberg et al (1984) argued 

that the best possible transcription is obtained by forcing two or more expert phoneticians to 

agree on each and every symbol in the transcription. A so-called ‘consensus transcription’ 

differs from a majority vote transcription in that the latter does not involve a negotiation phase 

during which individual transcribers may change their original transcript. Irrespective of the 

procedure through which a reference transcription is obtained, we will call the validation of 

phonetic transcriptions in terms of their resemblance to an RT the traditional validation 

method.
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There are at least two methodological issues that raise questions about the traditional 

method for validating phonetic transcriptions. The first issue relates to the status of the RT as 

the ‘true’ representation of the original speech signal. Since speech signals are the result of 

continuous dynamic gestures of articulators, each mapping of such a continuous process onto 

a sequence of symbols that are taken from a finite symbol set implies some degree of 

quantisation error. These errors show in the time domain as well as in the acoustic domain 

because all acoustic properties in a certain time interval have to be represented by just one 

symbol. Obviously, the quantisation errors in both domains will be larger if fewer symbols are 

used. The decision on the number and the identity of the symbols is to some extent dependent 

on the phonetician’s background. It can be concluded that there is no such thing as the “true” 

representation of a speech signal in the form of a sequence of discrete symbols (Cucchiarini, 

1993). Consequently, the concept of a unique symbolic representation of a speech signal is 

elusive at best. The traditional validation method, however, always requires such a unique 

representation in the form of a reference transcription.

The second methodological issue is less obvious. It is related to the seemingly 

undisputable operationalisation of the concept of a transcription’s validity in terms of the 

transcription’s similarity with a purpose-independent reference transcription; there may not 

always be such a clear correlation between a transcription’s similarity to a reference 

transcription and the transcription’s suitability to serve a certain purpose. For example, no 

matter what the accuracy of a broad phonetic transcription may be, it will not be suitable for a 

phonetician who wants to represent the degree of diphthongisation of long vowels, simply 

because a broad phonetic transcription only reflects two extreme stages of diphthongisation: 

the process is either fully present or completely absent. For other applications, in which the 

detail in the phonetic transcription seems to correspond to the detail required by the 

application, the usefulness of the traditional validation method may be more difficult to 

estimate in advance. One such application is the development of automatic speech recognition 

(ASR) systems.

ASR development requires large speech databases or spoken language corpora with 

corresponding phonetic transcriptions for several different purposes, including the training of 

acoustic models and the construction of pronunciation lexicons. It is intuitively reasonable to 

expect that acoustic models will be less polluted if they are trained on the basis of a ‘better’ 

transcription, and to think that words will be more accurately recognised if the recogniser’s 

pronunciation lexicon comprises ‘better’ phonetic transcriptions. If we assume that 

transcriptions are ‘better’ if they are ‘more similar’ to a reference transcription, we assume
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that the traditional validation method is suitable for validating transcriptions that are to be 

used for ASR development.

Interestingly, however, the inverse relation between a transcription’s resemblance to an 

RT and ASR performance does not hold. Kessens and Strik (2004) investigated the 

relationship between the performance of a set of continuous speech recognisers, and the 

resemblance between an RT and phonetic transcriptions that were generated by the different 

recognisers. They concluded that recognisers with a higher recognition performance (or a 

lower word error rate (WER)) do not guarantee the generation of phonetic transcriptions that 

are more similar to a given RT.

Since the relationship between recognition performance and a transcription’s resemblance 

to an RT does not seem to be straightforward, this study was aimed at testing whether the 

traditional validation method offers a useful indication of a transcription’s suitability for basic 

ASR development. If, in addition to the results in Kessens and Strik (2004), we would fail to 

find a positive relationship between a transcription’s resemblance to an RT and its suitability 

to develop ASR systems, this would indicate that phonetic transcriptions may be better 

validated through an application-oriented validation method (which, in our case, would mean 

in terms of their contribution to ASR performance). Such a result would also indicate that 

ASR developers could save themselves the tedious and expensive effort of collecting 

reference transcriptions in order to validate phonetic transcriptions that may come with a new 

training database.

We required two resources to assess the validity of phonetic transcriptions in terms of 

their contribution to ASR performance. First, we required a corpus suitable for the training 

and the evaluation of an ASR system. This corpus had to contain at least two different 

transcriptions that could be used for that purpose. Second, we needed a fixed platform to 

develop and test the ASR system, in order to isolate the effect of the phonetic transcriptions 

from the multitude of other factors that could affect the performance of the ASR system.

Our first requirement was met by the Spoken Dutch Corpus (Oostdijk, 2002), a 9-million- 

word spoken language corpus, 10% of which comes with a manually verified broad phonetic 

transcription (Goddijn and Binnenpoorte, 2003). The second type of transcription that we 

used, viz. a canonical representation, is available in the canonical lexicon that typically comes 

with every corpus for ASR development. The corpus and the two transcriptions are described 

in more detail in Sections 3.1 and 3.2.

The requirement of a fixed platform to isolate the transcriptions as the only factor 

affecting the recognition performance was met by fixing the training and test corpora as well

6



as the language models of our system. As a consequence, we could study the effect of the two 

transcription types in relation to 1) the amount of phonetically transcribed material that was 

used to train the acoustic models (since the production of manually verified transcriptions is 

time-consuming and expensive, the amount of training speech that comes with a manual 

phonetic transcription cannot be expected to be as large as the amount of speech that can be 

annotated with a canonical representation), 2) the procedures with which the acoustic models 

were trained (with the canonical representations, the manually verified phonetic 

transcriptions, or through a bootstrap procedure involving both transcription types), and 3) the 

pronunciations in the recognition lexicon (canonical representations or manually verified 

phonetic transcriptions).

Since we aimed at investigating the direct influence of the two transcriptions in a fixed 

experimental design, we did not aim at optimising recognition performance by all possible 

means. Rather, our intention behind the fixed experimental design was similar to the intention 

behind the research conducted in the framework of the AURORA project, where the ASR 

decoder was fixed, and performance improvements could only be obtained by adapting the 

acoustic features (Pearce, 2001). For the same reason, it should be clear that we did not aim at 

generating the most accurate transcription possible. Rather, we aimed at testing whether the 

traditional and the application-oriented validation method agreed on their assessments of the 

validity of the phonetic transcriptions in order to establish whether the traditional validation 

method guarantees an adequate indication of a transcription’s suitability for ASR 

development.

This paper is organised as follows. Section 2 describes how canonical representations and 

manually verified phonetic transcriptions were validated in terms of the traditional validation 

method and in terms of their contribution to recognition performance. Section 3 presents the 

speech material and the architecture of the speech recogniser. In Section 4, we present and 

discuss the results of the validation experiments. In Section 5, we discuss the implications of 

our results.

2. Experimental setup

We validated canonical representations and manually verified phonetic transcriptions (MPTs) 

of data comprising two different speech styles: read speech and telephone dialogues. The 

details of the transcriptions are presented in Section 3.2. Here we confine ourselves to 

mentioning that the canonical representations were generated by concatenating the standard
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pronunciations of the words in the orthographic transcriptions. The MPTs were made by 

trained students who checked and corrected canonical representations by listening to the 

speech signal. The reference transcriptions were consensus transcriptions produced by two 

trained phoneticians.

2.1. THE TRADITIONAL VALIDATION METHOD

We compared the canonical representations and the manually verified phonetic transcriptions 

with reference transcriptions of the same data. To that end we aligned the transcriptions of 

every speech style with the appropriate RT. Subsequently we summarised the disagreements 

between the transcriptions and the RT in an overall disagreement measure that was defined as:

f  Subphone + Delphone + Insphone1 
Percentage disagreement = ----------------------------------- IX100% (1)

y Nphone J

i.e. the sum of all phone substitutions (Subphone), deletions (Delphone) and insertions (Insphone) 

divided by the total number of phones in the RT (Nphone).

We used Align (Cucchiarini, 1996) to align the phonetic transcriptions and to compute the 

percentage disagreement between them. Align is a dynamic programming algorithm designed 

to compute the optimal alignment between two strings of phonetic symbols according to 

matrices in which the articulatory distances between the phonetic symbols are defined. The 

optimal feature matrices were determined in previous research on similar data (Binnenpoorte 

and Cucchiarini, 2003). The matrices are presented in Appendix 1.

2.2. THE APPLICATION-ORIENTED VALIDATION METHOD

We validated the canonical representations and the MPTs in terms of their contribution to the 

overall recognition performance of a standard continuous speech recogniser. We adhered to 

the traditional evaluation metric for recognition performance in ASR, the word error rate 

(WER), which is defined as:

WER = f  Subword + Delw°"‘ + Insword 1X100% (2)y Nword J

i.e. the sum of all word substitutions (Subword), deletions (Delword) and insertions (Insword) 

divided by the total number of words in the orthographic reference transcription (Nword).
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The overall recognition performance of a continuous speech recogniser can be influenced 

by numerous factors. Two important factors, viz. the quality of the acoustic models and the 

degree to which the pronunciation lexicon contains realistic phonetic transcriptions for words 

to be recognised, are directly dependent on the availability of suitable phonetic transcriptions. 

The quality of acoustic models depends on the suitability of the phonetic transcriptions of the 

training material, because acoustic model training involves a time-alignment of large amounts 

of speech with corresponding phonetic transcriptions. Likewise, the quality of a pronunciation 

lexicon is determined by the quality of its transcriptions, in that more realistic phonetic 

transcriptions increase the chance of words to be correctly recognised. In addition, it has 

repeatedly been found that recognition performance also depends on the (lack of) 

correspondence between the transcriptions in the recognition lexicon and the transcriptions 

with which the acoustic models are trained. As already indicated, we validated the canonical 

representations and the MPTs in terms of overall recognition performance. By fixing the 

continuous speech recogniser but for the acoustic models and the recognition lexicon, we 

guaranteed that differences in the overall recognition performance could only result from the 

transcriptions’ influence on the acoustic models and the recognition lexicon.

Per speech style, we conducted a series of four experiments. In these experiments, we 

trained the same recogniser with different sets of acoustic models (all context-independent 

models with a fixed model topology, but trained with different transcriptions and different 

amounts of training data) and we tested the recogniser with different recognition lexica. Table 

1 presents a schematic overview of the four experiments. The experiments were characterised 

by three variables: 1) the amount of training data we used to train the acoustic models (large 

or small training set), 2) the (combinations of) transcriptions we trained the acoustic models 

with (canonical, MPT or a bootstrap procedure involving both transcription types -  see 

below) and 3) the type of the transcriptions in the recognition lexica (canonical or MPT).

Size of the training sets Transcriptions for the 

training of acoustic models

Transcriptions in the 

recognition lexica

Experiment 1 Small Canonical Canonical

Experiment 2 Small MPT MPT -based

Experiment 3 Large Canonical Canonical

Experiment 4a
Large Bootstrap MPT + Canonical

Canonical

Experiment 4b MPT -based
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Table 1: Overview o f the recognition experiments.

In experiment 1, we trained acoustic models with the canonical representations of the small 

training sets (see Section 3.1), and we used the same transcriptions to build canonical 

recognition lexica. The results of the first experiment formed a good baseline for the second 

experiment, in which we used the MPTs of the same small training sets to train the acoustic 

models and to build MPT-based recognition lexica. Since the production of MPTs tends to be 

time-consuming and expensive, larger sets of MPTs than the ones used in this second 

experiment are hardly ever available.

The third experiment resembled the first experiment, in that we trained acoustic models 

with canonical representations and in that we used the same canonical recognition lexica. 

However, this time we trained acoustic models with the canonical representations of much 

larger amounts of training data. The increased size of the data sets (as opposed to the first 

experiment) had to provide insight into the importance of the size of data sets for the training 

of efficient acoustic models. All acoustic models used in the first three experiments were 

generated from scratch (i.e. starting from a linear segmentation of the material).

In ASR, one often uses modest amounts of MPTs to train initial sets of acoustic models 

that, in a second training pass, are further trained with larger amounts of automatic phonetic 

transcriptions. This training method is called bootstrapping. We applied bootstrapping since 

we assumed that acoustic models that were initially trained with a small amount of MPTs and 

that were subsequently further trained with a large amount of canonical representations would 

outperform acoustic models that were trained from scratch with only canonical 

representations.

In the fourth experiment, we used the acoustic models of experiment 2 (which were 

trained on the MPTs of the small data sets) to align the speech data of the large data sets with 

the corresponding canonical representations of the data. Then we trained new acoustic models 

with the time-aligned canonical representations of the large data sets. Since the resulting 

acoustic models were based on a two-pass training procedure with MPTs and canonical 

representations, recognition experiments were carried out with both the canonical recognition 

lexica (exp. 4a) and the MPT-based lexica (exp. 4b). The alternating use of these recognition 

lexica (while using the same acoustic models) enabled us to study the effect of the different 

types of transcriptions in the recognition lexica in isolation.

To conclude, these experiments allowed us to validate the canonical representations and 

the manually verified phonetic transcriptions in terms of their suitability to train acoustic
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models and to generate recognition lexica. The transcriptions’ suitability was reflected in and 

measured in terms of the recogniser’s overall recognition performance. Whereas experiments 

1 and 2 provided insight into the general influence of the two transcription types on the 

recognition performance, experiments 1 and 3 assessed the influence of different amounts of 

training data on the training of efficient acoustic models. Experiments 4a and 4b allowed us to 

investigate the influence of the different recognition lexica on the recognition performance.

3. Material and continuous speech recogniser

3.1 SPEECH MATERIAL

We extracted the speech material for our experiments from the Spoken Dutch Corpus (Corpus 

Gesproken Nederlands - CGN, 2004; Oostdijk, 2002). The Spoken Dutch Corpus is a 9- 

million-word multi-purpose spoken language corpus comprising Dutch as spoken in the 

Netherlands and Flanders in different communicative settings. The whole corpus was 

orthographically transcribed, lemmatised, and supplied with part-of-speech tagging. A 1- 

million-word subset of the corpus, the so-called core corpus, was enriched with a manually 

verified broad phonetic transcription and a syntactic annotation.

We conducted our experiments on speech from the Netherlands. The data comprised two 

speech styles with different acoustic and communicative properties: read speech (read aloud 

texts from a library for the blind) and conversational telephone dialogues. The read speech 

was recorded with table-mounted microphones and sampled at 16 kHz with a 16-bit 

resolution. The material comprised monologues with a vivid prosodic structure (due to the 

material’s fictional content and the purpose the texts were read for: entertainment). The 

telephone dialogues were recorded through a telephone platform and sampled at 8 kHz with 

an 8-bit A-law coding. The two speakers in each conversation were recorded on separate 

channels.

Reference sets Experimental sets

Speech style Large training 
set

Small training 
set

Development 
test set

Evaluation 
test set

Read
speech

# words 1,108 532,451 47,517 7,940 7,940
hh:mm:ss 0:04:57 44:55:59 4:04:28 0:40:10 0:41:39

T elephone 
dialogues

# words 363 263,501 41,736 6,953 6,955
hh:mm:ss 0:01:26 18:20:05 1:29:23 0:30:02 0:29:50

Table 2: Statistics (number o f words/tokens) o f the data sets.
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Per speech style, we divided the material into two separate data sets which will hereafter be 

called the reference sets and the experimental sets (see Table 2). The data in the reference sets 

were provided with a consensus transcription. This enabled us to validate the phonetic 

transcriptions according to the traditional validation method. The data in the experimental sets 

were used to validate the phonetic transcriptions in terms of their suitability for ASR 

development (a more application-oriented validation method). To this end, the transcriptions 

were used to train (large and small training sets), tune (development test sets) and test 

(evaluation test sets) our continuous speech recogniser. Except for the training sets (the large 

training sets comprised the small training sets), all data sets were mutually exclusive.

3.2 PHONETIC TRANSCRIPTIONS

We worked with broad phonetic transcriptions of speech. All transcriptions were generated 

with the CGN phone set comprising 46 phones. However, not all of these phones occurred 

frequently enough in the training data to train robust acoustic models. In order to alleviate this 

problem, we mapped the phones in the transcriptions to the 39 phones presented in Appendix

2.

The canonical representations were generated by means of a lexicon-lookup procedure in 

which every word in the orthography was substituted with its standard pronunciation as 

represented in the canonical pronunciation lexica described in Section 3.3.1.

We extracted the MPTs of the data in the reference sets, the small training sets and the 

development and evaluation test sets from the CGN. The MPTs of the CGN are based on 

canonical representations to which all obligatory word-internal phonological processes (such 

as assimilation and degemination) were applied (Goddijn and Binnenpoorte et al., 2003; 

Booij, 1999). Cross-word processes were not applied. Human transcribers verified and 

corrected these example transcriptions according to a strict protocol. They were instructed to 

change the automatic transcriptions only if they were certain that the changes would yield a 

transcription that was substantially closer to the actual speech signal. As a consequence, the 

MPTs of the CGN may have a bias towards the canonical representations. However, such a 

check-and-correct procedure is a standard transcription procedure that has also been followed 

in other transcription projects (e.g. Greenberg, 1997).

The RTs were made in a fundamentally different way. Whereas the MPTs were made by 

human transcribers manually verifying an automatically generated transcription, the RTs were 

generated by two expert phoneticians transcribing from scratch. The transcribers had to reach 

a consensus on every symbol in the RTs. As a consequence, our reference sets were quite
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small compared to the evaluation test sets. However, whereas consensus transcriptions are 

always limited in size, they are often used to assess the validity of transcriptions obtained by 

means of other transcription procedures (like the MPTs and the canonical representations in 

our experiments).

3.3 LEXICA

3.3.1. Canonical pronunciation lexica

Our canonical lexica (one for each speech style) comprised one canonical pronunciation for 

every word in the development, evaluation and small training sets. The canonical lexica were 

compiled from the TST-lexicon (in-house version of 29-09-2004) and the CGN-lexicon. The 

TST-lexicon is a comprehensive multi-purpose lexicon for language and speech processing. It 

was compiled by merging various existing electronic lexical resources such as CELEX 

(Baayen et al, 1995), RBN (Referentiebestand Nederlands, 2005), and PAROLE (PAROLE 

lexicon, 2005). The CGN lexicon (delivered with the first release of the CGN) comprised the 

canonical representations of almost all unique word forms occurring in our data sets. The 

phonetic representations in the CGN lexicon were generated by means of TREETALK (Hoste 

et al., 2000), a grapheme-to-phoneme converter trained on the CELEX Dutch database 

(Baayen et al., 1995). Obvious errors in frequent words were manually corrected. The 

transcriptions of English loan words that were not yet included in the CGN lexicon were 

obtained from the CELEX English database (Baayen et al., 1995). The missing transcriptions 

of geographical names were obtained from ONOMASTICA (Quazza and van den Heuvel, 

2000). The remaining out-of-vocabulary words were transcribed by means of a rule-based 

grapheme-to-phoneme converter (Kerkhoff and Rietveld, 1994) and the transcriptions were 

manually verified.

3.3.2. Pronunciation lexica with manually verified phonetic transcriptions

The MPT-based lexica (one for each speech style) were generated through word-to- 

transcription mappings between the orthographic transcriptions and the MPTs of the data in 

the development, evaluation and small training sets. We included the manually verified 

pronunciations of the words in the development and evaluation sets because not all of these 

words occurred in the small training sets. In doing so, we excluded the number of out of 

vocabulary words as an extra variable from the comparison of the canonical and the MPT- 

based lexica. Similarly, in order to exclude the lexical confusability from the comparison of
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the lexica, we retained only the most frequently observed pronunciation variant per word. 

This way both the canonical and the MPT-based lexica contained precisely one pronunciation 

for every word in the orthographic transcriptions.

The major difference between the canonical lexica and the MPT-based lexica was that the 

canonical lexica reflected the underlying morphological structure of the words and hypotheses 

about their underlying phonemic representations, whereas the MPT-based lexica mainly 

reflected knowledge about the most frequent pronunciation of the words in everyday speech. 

The MPT-based and the canonical lexica for the read speech contained different transcriptions 

for 40% of their entries, the lexica of the telephone dialogues for 45% of their entries.

3.4 THE CONTINUOUS SPEECH RECOGNISER

The continuous speech recogniser was built with the HTK toolkit (Young et al., 2001) using 

standard procedures. The characteristics of the recogniser were fixed in all experiments, 

except for the recognition lexicon and the acoustic models, which were based on the different 

phonetic transcriptions under investigation.

Several pre-processing procedures were applied to the speech signal. First pre-emphasis 

was applied. Feature extraction was implemented as a Fast Fourier Transform using a 

Hamming window every 10 ms for 25-ms frames. The mel-scaled filter bank analysis (50

8000 Hz for the read speech and 80-4000 Hz for the telephone dialogues) resulted in 39 

cepstral coefficients per frame (12 coefficients and a separate energy component, and their 

delta and acceleration coefficients).

The recogniser used one back-off bigram language model per speech style. The evaluation 

test set perplexity of the read speech was 61.12. The evaluation test set perplexity of the 

telephone dialogues made 43.22. The lower test set perplexity of the telephone dialogues 

reflects the high frequency of standard phrases in the conversations. The higher test set 

perplexity of the read speech reflects the fact that the read speech comprised fragments with 

varied content from a number of different novels that were written by different authors. The 

order of magnitude of the test set perplexities was low enough to obtain credible WERs and at 

the same time high enough to not obscure the effects of improved acoustic models.

The acoustic models were 3-state continuous density left-right context-independent 

Hidden Markov Models. We trained speech style specific acoustic models on the canonical 

representations and the MPTs of the large and small training sets. Per set, 39 models were 

trained: 37 phone models, one model representing long silences, and one 1-state model
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modelling the optional short pauses between words (see Appendix 2). All models were 

gender-independent and accent-independent and comprised 32 mixture components (diagonal 

variance vectors) per state.

4. Results and discussion

4.1 TRADITIONAL VALIDATION METHOD

Table 3 reflects the validity of the phonetic transcriptions of both speech styles as assessed in 

terms of their overall disagreement (in % disagreement) with a reference transcription.

Speech style PT Substitutions (%) Deletions (%) Insertions (%) % disagreement

Read speech Canonical 7.39 3.51 1.14 12.04

MPT 3.88 1.19 0.69 5.76

T elephone 

dialogues

Canonical 9.60 10.92 1.08 21.61

MPT 4.68 2.64 1.08 8.4

Table 3: Validation of phonetic transcriptions in terms of their deviation from a reference transcription. The 
lower the disagreement, the better the transcription is considered to be.

The results in Table 3 are very clear: 1) the MPTs consistently resembled the RTs more than 

the canonical representations did (p < .01, f-test), and 2) the deviations of the different 

transcriptions from the RTs were larger when more spontaneous speech was involved. The 

significance of the differences suggests that the power of the test was sufficiently large 

despite the moderate size of the reference sets.

The relatively high resemblance between the MPTs and the RTs (as compared to the 

resemblance between the canonical representations and the RTs) is probably due to the fact 

that the MPTs and the RTs, even though produced according to different protocols (cf. 

Section 2.2), were produced by human transcribers who based their judgments on the actual 

speech signal. The canonical representations were automatically produced without taking the 

actual speech signal into account.

The results in Table 3 are in line with results published in the field. Binnenpoorte et al. 

(2003) also reported that the degree of resemblance between phonetic transcriptions and a 

reference transcription is inversely related to the degree of spontaneity of the transcribed 

speech, and proportional to the amount of manual effort devoted to the production of the 

transcriptions.
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In any case, the results in Table 3 indicate that according to the traditional validation 

method, the validity of the MPTs of the Spoken Dutch Corpus is significantly higher than the 

validity of the canonical representations of the same material.

4.2. APPLICATION-ORIENTED VALIDATION METHOD

Table 4 reflects the validity of the phonetic transcriptions of both speech styles as assessed in 

terms of the transcriptions’ contribution to recognition performance (in WER).

Substitutions (%) Deletions (%) Insertions (%) WER (%)

Experiment 1 Read speech 7.68 2.85 0.82 11.35

Tel dialogues 33.43 17.12 2.60 53.16

Experiment 2 Read speech 7.95 2.07 1.27 11.28

Tel dialogues 33.56 16.97 2.56 53.09

Experiment 3 Read speech 7.61 2.17 0.96 10.73

Tel dialogues 32.47 17.97 2.13 52.57

Experiment 4a Read speech 7.36 2.75 0.91 11.01

Tel dialogues 33.64 16.99 2.66 53.30

Experiment 4b Read speech 7.77 2.07 1.12 10.96

Tel dialogues 33.26 17.11 2.52 52.42

Table 4: Validation o f phonetic transcriptions in terms o f their influence on recognition performance. The lower 

the WER, the more suitable the transcription is considered to be.

The modest nature of the recognition results in Table 4 can be partly explained by the lively 

prosody and fictional content characterising the read speech, and by the spontaneity and 

acoustic conditions characterising the telephone dialogues. Moreover, only bigram language 

models and context-independent acoustic models were used, since our main target, viz. 

validating phonetic transcriptions for ASR, only required the development of a standard 

recogniser that differed with respect to 1) the amount of phonetically transcribed data used to 

train the acoustic models, 2) the type of transcriptions of the training data, and 3) the type of 

transcriptions in the recognition lexicon. It is most striking that for both speech styles, none of 

the experiments yielded significantly different WERs (p > .05, t-test).

The recognition results of the first two experiments imply that the canonical 

representations were as suitable as the MPTs for training acoustic models on relatively small 

data sets (40K words), and for building pronunciation lexica for recognition. Remarkably, this 

did not only hold for the read speech, but also for the more spontaneous telephone dialogues
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in which the actual pronunciation could be expected to differ substantially from the canonical 

representation of the words. The MPT-based ASR system obtained a WER of 53.09%, which 

was almost identical to the 53.16% WER obtained by the system that was developed on the 

basis of the canonical representation of the words.

A comparison of the results of the first and the third experiment illustrates that the use of 

larger training sets (500K) decreased the WERs, though not significantly (0.62% absolute 

decrease on the read speech, 0.59% absolute decrease on the telephone dialogues). We did not 

conduct a similar experiment with MPTs, since the Spoken Dutch Corpus does not provide 

MPTs for such a large training set (nor does any other corpus available to date). However, 

MPTs of smaller data sets can be used to train acoustic models which in turn can be used to 

get good initial segmentations of much larger data sets. In our fourth experiment, we validated 

MPTs and canonical representations in terms of their potential for such a bootstrapping 

procedure.

In experiment 4a, we used the acoustic models trained on the MPTs of the small data sets 

(experiment 2) to get good initial segmentations of the large data sets. These segmentations 

were generated through a forced alignment of the canonical representations with the speech 

signal. A comparison of the results of experiments 3 and 4a illustrates that the bootstrapping 

procedure did not yield significantly different recognition results.

A comparison of the results of experiments 4a and 4b shows that the combined use of the 

MPT-based lexicon and the bootstrapped acoustic models yielded better (though not 

significantly better) results than the use of the canonical recognition lexicon with the same 

models. Especially the recognition of the telephone dialogues was facilitated by the use of the 

MPT-based lexicon. This is probably due to a larger mismatch between the actual data and the 

canonical representation of the spontaneous telephone speech.

At last, a comparison of the results of experiments 1 and 2 on the one hand and 

experiments 3, 4a and 4b on the other hand indicates that for both speech styles the acoustic 

models trained on the small data sets could not be improved substantially by adding more 

training material.

Overall, our recognition results are in line with a similar study on spontaneous telephone 

dialogues in American English (Switchboard) by Saraçlar et al. (2000). In that study, 

recognition experiments were conducted with different sets of acoustic models (trained on 

MPTs and automatic phonetic transcriptions) and matching decision tree-based pronunciation 

models. Their results showed that acoustic models trained on human transcriptions 

(Greenberg, 1997) did not give lower WERs than acoustic models trained on canonical
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baseforms. Saraçlar et al. (2000) found that the models trained on the MPTs gave lower phone 

error rates, but no lower WERs than the models trained on the canonical baseforms. They 

concluded that their results must have been due to the increased lexical confusability in the 

corresponding MPT-based recognition lexicon. Our results suggest that this cannot be the full 

explanation. By allowing only the most frequent transcription per word, we minimised the 

risk of increasing the lexical confusability. Still we observed similarly remarkable recognition 

results, which seem to suggest that for our ASR task, the canonical representations served 

their purpose as well as the manually verified phonetic transcriptions.

5. General discussion

This study was aimed at investigating whether the validity (or: the suitability) of phonetic 

transcriptions for basic ASR development can be assessed by means of the traditional 

validation method, i.e. in terms of the transcriptions’ deviations from a handmade reference 

transcription. Previous research (Kessens and Strik, 2004) has shown that the relationship 

between recognition performance and a transcription’s resemblance to an RT should not be 

taken for granted. In order to evaluate the usefulness of the traditional validation method, we 

conducted a series of experiments in which we assessed the influence of two different types of 

transcriptions (canonical representations and manually verified phonetic transcriptions) of two 

different speech styles (read speech and telephone dialogues) on the overall recognition 

accuracy of a continuous speech recogniser. As opposed to the traditional validation method, 

the assessment of the transcriptions’ suitability for one particular purpose can be considered 

as an application-oriented validation method.

The outcome of the traditional validation method (which did not take into account the 

purpose the transcriptions would be used for) was quite outspoken: the validity of the MPTs 

was assessed much higher than the validity of the canonical representations because the MPTs 

deviated much less from the reference transcriptions than the canonical representations did. 

The application-oriented validation method gave quite another estimate of the transcriptions’ 

validity. The assessment of the transcriptions’ suitability for ASR showed that the use of 

MPTs and canonical representations did not yield significantly different recognition 

performance. This implies that both the MPTs and the canonical representations were equally 

valid for the purpose of developing a basic ASR system.

A comparison of the outcomes of the two validation methods supports different 

conclusions. First of all, it should be stressed that the application-oriented validation method 

did not contradict the usefulness of MPTs for ASR development, since we did not get better
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recognition results when using the canonical representations for this purpose. Logically, this 

also implies that the application-oriented validation method did not contradict the usefulness 

of manually verified transcriptions as such. As a matter of fact, for other purposes than 

training straightforward ASR systems (e.g. training more elaborate ASR systems), the story 

may well be different. For applications such as research in phonetics, it will probably even 

remain essential for transcriptions to reflect the speech signal as closely as possible. For such 

purposes, MPTs should definitely be preferred over canonical representations because 

canonical representations cannot (or only partially) represent the pronunciation variation 

observed in everyday speech.

A more important conclusion, however, is that the traditional validation method assigned 

a much higher validity rating to the MPTs than to the canonical representations. This was not 

confirmed by the outcome of our recognition experiment; the use of the canonical 

representations yielded similar recognition results. Considering the fact that the generation of 

MPTs is known to be time-consuming, expensive and error-prone (Cucchiarini, 1993), a 

preference for canonical representations seems more justified for our development task.

To conclude, we found no consistent relationship between the distance of a broad 

phonetic transcription to a reference transcription on the one hand, and the influence of that 

transcription on the recognition performance of a continuous speech recogniser on the other 

hand. This outcome has two implications. First of all, it suggests that ASR developers can 

save themselves the time and effort of collecting expensive reference transcriptions in order to 

validate phonetic transcriptions of speech databases or spoken language corpora. Second, and 

most importantly, it implies that phonetic transcriptions should preferably be validated in 

terms of the application they will serve because a higher resemblance to a purpose

independent reference transcription proved no guarantee for a transcription to be better suited 

for ASR development.
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Appendix 1: Feature matrix used to align two phonetic transcriptions of speech (Align).

Consonant Place Voice Nasal Stop Glide Lateral Fricative Trill

p 5,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0
b 5,0 2,0 0,0 0,5 0,0 0,0 0,0 0,0
t 4,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0
d 4,0 2,0 0,0 0,5 0,0 0,0 0,0 0,0
k 2,0 1,0 0,0 0,5 0,0 0,0 0,0 0,0
f 5,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0
v 5,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0
s 4,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0
z 4,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0
x 2,0 1,0 0,0 0,0 0,0 0,0 0,5 0,0
G 2,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0
m 5,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0
n 4,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0
N 2,0 2,0 0,5 0,0 0,0 0,0 0,0 0,0
l 4,0 2,0 0,0 0,0 0,0 0,5 0,0 0,0
r 3,0 2,0 0,0 0,0 0,0 0,0 0,0 0,5
w 5,0 2,0 0,0 0,0 0,5 0,0 0,0 0,0
j 3,0 2,0 0,0 0,0 0,5 0,0 0,0 0,0
h 1,0 2,0 0,0 0,0 0,0 0,0 0,5 0,0

Appendix 1a: Articulatory distance between consonants.

Vowel Length Place Tongue Round Diphthong
i 1,5 3,0 4,0 1,0 1,0
I 1,0 2,5 3,5 1,0 1,0
e 2,0 3,0 3,0 1,0 1,5
@+ 2,0 3,0 3,0 2,0 1,5
E 1,0 3,0 2,0 1,0 1,0
a 2,0 2,0 1,0 1,5 1,0
A 1,0 1,0 1,5 1,5 1,0
o 2,0 1,0 3,0 2,0 1,5
O 1,0 1,0 2,0 2,0 1,0
u 1,5 1,0 4,0 2,0 1,0
y 1,5 3,0 4,0 2,0 1,0
Y 1,0 2,5 3,5 2,0 1,0
@ 1,0 2,0 2,5 1,5 1,0
E+ 2,0 2,5 3,0 1,0 2,0
Y+ 2,0 2,5 3,0 1,0 2,0
A+ 2,0 1,5 3,0 2,0 2,0

Appendix 1b: Articulatory distance between vowels.
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Appendix 2: Phone mapping 46 CGN phone set to 39 phone set.

Class Example CGN-symbol Can/MPT symbol(s)

Plosives put p p
bad b b
tak t t
dak d d
kat k k
goal g k

Fricatives fiets f f
vat v v
sap s s
zat z z
sjaal S S
ravage Z z+j
licht x x
regen G G
geheel h h

Sonorants lang N N
mat m m
nat n n
oranje J n+j
lat l l
rat r r
wat w w
jas j j

Short vowels lip I I
leg E E
lat A A
bom O O
put Y Y

Long vowels liep i i
buur y y
leeg e e
deuk 2 @+
laat a a
boom o o
boek u u

Schwa gelijk @ @
Diphthongs wijs E+ E+

huis Y+ Y+
koud A+ A+

Loan vowels scène E: E
freule Y: Y
zone O: O

Nasalised vowels vaccin E~ E
croissant A~ A
congé O~ O
parfum Y~ Y

Long silence sil
Optional short silence sp
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