ABSTRACT

Analyses of Dutch children’s (1.0 – 2.11) production data have shown that both place and voice features show asymmetrical behavior in early productions. This study aimed to test whether these asymmetries also emerge in perception. Results show that children are able to detect mispronunciations of place and voice features in certain contexts, but not all. The same asymmetries attested in production are also found in perception. These findings suggest a tight link between perception and production in acquisition.

INTRODUCTION

• Production data suggests underspecified early lexical representations [1,2].
• Perception data from Swingley & Aslin [3] (a.o.) seem to indicate detailed representations: children are able to detect small mispronunciations of well known words.
• However, different types of mispronunciations were not tested in a systematic way. We used the same procedure as in [3], keeping factors clearly balanced. We tested two aspects: voice and place.

METHOD

SUBJECTS
• Forty-eight 24 month-old Dutch-learning children

PROCEDURE
• Split-screen Preferential Looking Paradigm

STIMULI

• “Kijk naar de poes! Mooi he?”
• “Kijk naar de boom!”
• “Kijk naar de dier!”

The initial stop of the target word (e.g., ‘poes’) was either:
1. pronounced correctly (CP condition)
2. pronounced with a change of the voice feature (MPvoice condition) (“Kijk naar de boez!”)
3. mispronounced with a change of the place feature (MPplace condition) (“Kijk naar de boez!”)

CONDITIONS

There were four different tests; subjects were presented with target words starting with either /p/, /b/, /t/, or /d/. The target words were each presented in all 3 conditions (CP, MPvoice and MPplace)

RESULTS

Figures 1, 2 and 3 show changes in looking times to the target picture. Proportions of looking times were compared in a window of 2 seconds before the target word was heard, with the first second after the target word. If children detect a mispronunciation, a smaller increase (or even decrease, a negative number) in looking time is expected.

DISCUSSION

• Different mispronunciations are not equal: not all featural changes yield equally strong effects (See also [4]).
• Voice: The Dutch voicing contrast is between unaspirated voiceless and prevoiced voice stops. The realization of voiceless stops, but not of voiceless stops, can sometimes vary in spoken Dutch [5]. If children know this, it can cause them to ignore voiceless mispronunciations of voice stops.
• Production data from Dutch children show that Dutch voiceless stops are acquired before voice stops [2]. This contrast is acquired late (not yet by 2;6). The perception data show this same asymmetry.

ACKNOWLEDGEMENTS

• This research was supported by NWO grant 350-70-100 awarded to Paula Fikkert & Rene Kager. All experiments were run in the Baby Research Center in Nijmegen supported by the Spinoza grant awarded to Arne Cutter (www.mpnl/babylab). We thank all children and parents who participated in the experiments.

REFERENCES


CONCLUSIONS

Subjects were able to detect mispronunciations of features in well-known words - but not of all changed features in all MP conditions.

The attested asymmetries between labials and coronals and between voiced and voiceless stops cannot be accounted for by assuming that children merely perceive changes in the phonetic realizations of the target words.

These data suggest a tight link between perception and production.