The following full text is an author’s version which may differ from the publisher’s version.

For additional information about this publication click this link. http://hdl.handle.net/2066/42072

Please be advised that this information was generated on 2020-02-15 and may be subject to change.
SEGMENTAL DETAIL IN CHILDREN’S EARLY LEXICAL REPRESENTATIONS

Suzanne van der Feest & Paula Fikkert
Radboud University Nijmegen
s.v.defeest@let.ru.nl, p.fikkert@let.ru.nl

ABSTRACT
Analyses of Dutch children’s (1;0 – 2;11) production data have shown that both place and voice features show asymmetrical behavior in early productions. This study aimed to test whether these asymmetries also emerge in perception. Results show that children are able to detect mispronunciations of place and voice features in certain contexts, but not all. The same asymmetries attested in production are also found in perception. These findings suggest a tight link between perception and production in acquisition.

INTRODUCTION
Production data suggests underspecified early lexical representations [1, 2]. Perception data from Swingley & Aslin [3] (a.o.) seem to indicate detailed representations: children are able to detect small mispronunciations of well known words. However, different types of mispronunciations were not tested in a systematic way. We used the same procedure as in [3], keeping factors clearly balanced. We tested two aspects: voice and place.

METHOD
SUBJECTS
Fourty-eight 24 month-old Dutch-learning children

PROCEDURE
Split-screen Preferential Looking Paradigm

STIMULI
"Kijk naar de poes! Mool he?"
(Look at the cat! Do you like it?)

The initial stop of the target word (e.g. ‘poes’) was either:
1. pronounced correctly (CP condition)
2. mispronounced with a change of the voice feature (MP voice condition) ("Kijk naar de boes!")
3. mispronounced with a change of the place feature (MP place condition) ("Kijk naar de boest!")

Repeated measures ANOVA revealed a main effect of CP versus MP (both place and voice), and significant interactions between voice and condition, and between place and condition. In voiceless and labials, but not in voiced and coronal conditions, the MP conditions showed in Figure 2 and 3 were significantly different from the CP condition.

RESULTS
There were four different tests; subjects were presented with target words starting with either /p/, /b/, /t/, or /d/. The target words were each presented in all 3 conditions (CP, MP voice and MP place)

DISCUSSION
Different mispronunciations are not equal: not all featural changes yield equally strong effects (See also [4]).

Voice: The Dutch voicing contrast is between unaspirated voiceless and prevoiced voiceless stops. The realization of voiceless stops, but not of voiceless stops, can sometimes vary in spoken Dutch [5]. If children know this, it can cause them to ignore mispronunciations of voiced stops.

Production data from Dutch children show that Dutch voiceless stops are acquired before voice stops [2]. This contrast is acquired late (not yet by 2;6). The perception data show this same asymmetry.

Place: Research on child language production studies has argued that Dutch children underspecify coronal place of articulation in early lexical representations [1]. This predicts stronger effects for mispronunciations of place on coronals then on labials.

This asymmetry is also reflected in confusion matrices for Dutch, [8] shows that coronals are more often perceived as labials, then the other way around.

CONCLUSIONS
Subjects were able to detect mispronunciations of features in well-known words - but not of all changed features in all MP conditions.

The attested asymmetries between labials and coronals and between voiced and voiceless stops cannot be accounted for by assuming that children merely perceive changes in the phonetic realizations of the target words.

References

ACKNOWLEDGEMENTS
This research was supported by NWO Grant 350-70-100 awarded to Paula Fikkert & Rene Kager. All experiments were run in the Baby Research Center in Nijmegen supported by the Finsen grant awarded to Anne Cutter. (www.mpnl/babylab) We thank all children and parents who participated in the experiments.