The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/36439

Please be advised that this information was generated on 2019-04-21 and may be subject to change.
Search for production of single top quarks via flavor-changing neutral currents at the Tevatron

We search for the production of single top quarks via flavor-changing neutral current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb$^{-1}$ of lepton+jets data from pp collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions.
and hence set upper limits on anomalous coupling parameters κ_g^2/Λ and κ_q^2/Λ, where the κ_q define the strength of the tqg and tgq couplings, and Λ defines the scale of new physics. The limits at 95% C.L. are: $\kappa_g^2/\Lambda < 0.15 \text{ TeV}^{-1}$ and $\kappa_q^2/\Lambda < 0.037 \text{ TeV}^{-1}$.

PACS numbers: 11.30.Hv; 13.85.Rm; 14.65.Ha; 14.70.Dj

Top quarks were discovered in 1995 by the CDF and D0 collaborations [1] at the Fermilab Tevatron Collider in $t\bar{t}$ pair production involving strong interactions. The standard model (SM) also predicts the production of single top quarks via electroweak exchange of a W boson with cross sections of 0.88 pb in the s-channel (tb) and 1.98 pb in the t-channel (tqg) [2]. At the 95% C.L., limits set by D0 are 6.4 pb on the s-channel cross section and 5.0 pb on the t-channel cross section [3], and those set by CDF are 13.6 pb and 10.1 pb, respectively [4]. D0 recently reported evidence for the production of single top quarks at significance of 3.4 standard deviations [5].

Since the top quark’s discovery, several precision measurements have been made of its properties. Its large mass close to the electroweak symmetry-breaking scale suggests that any anomalous coupling is likely to be observed first in the top quark sector. One form of anomalous couplings can give rise to a single top quark in the final state through flavor-changing neutral current (FCNC) interactions with a charm or an up quark, involving the exchange of a photon, a Z boson, or a gluon [6]. Although such interactions can be produced by higher-order radiative corrections in the SM, the effect is too small to be observed [7]. Any observable signal indicating the presence of such couplings would be evidence of physics beyond the SM and would shed additional light on flavor physics in the top quark sector.

At present, strong constraints exist for FCNC processes via a photon or a Z boson exchange [8, 9, 10] from studies of both the production and decay of top quarks. In this Letter, we present a search for production of single top quarks via FCNC couplings of a gluon to the top quark in data collected from pp collisions at $\sqrt{s} = 1.96$ TeV using the D0 detector. This is the first search of its kind at hadron colliders. We consider top quark production rather than decay, since the former is more sensitive to the anomalous couplings (κ_g) involving the gluon [11]. To date, the best constraints on these processes are from the DESY ep Collider (HERA): $\kappa_g/\Lambda < 0.4 \text{ TeV}^{-1}$, at 95% C.L. [12], where Λ is the new physics cut-off scale.

In this analysis, we consider events where the top quark decays into a b quark and a W boson, and the latter subsequently decays leptonically ($W \rightarrow l\nu$, where $l = e, \mu$ or τ, with the τ decaying to either an electron or a muon, and two neutrinos). This gives rise to an event with a charged lepton of high transverse momentum (p_T), significant missing transverse energy (E_T^m) from the neutrinos, and at least two jets, one that is a b-quark jet (from the top quark decay), and the other from a c quark, u quark, or a gluon. Displaced secondary vertices are used to identify b jets [3]. The largest physics backgrounds to these events are from SM production of $W+\text{jets}$ and $t\bar{t}$, along with smaller contributions from SM production of single top quarks (tb and tqg) and dibosons (WW and WZ). An additional source of background is from multijet events in which a jet is incorrectly identified as an electron or in which a muon from a heavy flavor decay appears isolated.

The D0 detector is described elsewhere [13]. We use the same dataset, basic event selections and background modeling as in our SM single top quark search [3]; however, since the FCNC signal processes have only one b quark in the final state, we consider here events with only one b-tagged jet. In addition, we include here the SM single top quark processes (tb and tqg) in the background model. The data were recorded between August 2002 and March 2004 with a total integrated luminosity of $230 \pm 15 \text{ pb}^{-1}$ [14] and were collected using a trigger that required a reconstructed jet and an electromagnetic energy cluster in the electron channel, or a jet and a muon in the muon channel.

We model the FCNC signal kinematics using a parton-level leading order (LO) matrix element event generator ComPHEP [16]. We consider the following four subprocesses:

\begin{equation}
\begin{aligned}
cq & \rightarrow t\ell, & cg & \rightarrow tq, & q\bar{q} & \rightarrow t\bar{c}, & gg & \rightarrow t\bar{c},
\end{aligned}
\end{equation}

and also those that replace the c quark with a u quark and the charge conjugates. The identity of the associated final state jet depends upon the initial state of the system. Decays of the top quark and W boson are done in ComPHEP to take into account all spin-dependent effects. The effects of FCNC couplings are parameterized in a model-independent way via an effective Lagrangian [11] that is a linear function of the factor κ_g/Λ. The production cross section of single top quarks (tb and tqg) is therefore safe to assume that the top quark decays into a W boson and a b quark with a branching fraction close to unity, as in the standard model, and
TABLE I: The production cross sections $\sigma(t)$ of single top quarks through a gluon exchange in pp collisions at $\sqrt{s} = 1.96$ TeV for different κ_g/Λ values, as obtained from COMPHEP and scaled to NLO by a K-factor of 1.6.

<table>
<thead>
<tr>
<th>κ_g/Λ [TeV$^{-1}$]</th>
<th>$\sigma(t)$ [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_{cg} ($k_g^2 = 0$)</td>
</tr>
<tr>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.03</td>
<td>0.45</td>
</tr>
<tr>
<td>0.07</td>
<td>2.40</td>
</tr>
<tr>
<td>0.11</td>
<td>5.86</td>
</tr>
</tbody>
</table>

hence, the cross section $\sigma(t)$ multiplied by the branching fraction for the process $t \rightarrow Wb \rightarrow \ell\nu b$ would also depend quadratically on κ_g/Λ. We may therefore model the shapes of the signal kinematic variables at any one value of κ_g/Λ and scale the distributions appropriately to obtain them at any other value of the coupling. We choose that value of κ_g/Λ to be 0.03 TeV$^{-1}$ in COMPHEP and generate two sets of signal events: one for the t_{cg} process only, in which k_g^2 is set to zero, and the other for the t_{ug} process only, in which k_g^2 is set to zero.

The parton-level samples from COMPHEP are processed with PYTHIA [18] for fragmentation, hadronization, and modeling of the underlying event, using the CTEQ5L [19] parton distribution functions. We use TAUOLA [20] for the tau lepton decays and EVTGEN [21] for the b-hadron decays. The generated events are processed through a GEANT-based [22] simulation of the D0 detector, and normalized to the NLO cross sections for $\kappa_g/\Lambda = 0.03$ TeV$^{-1}$. For the backgrounds, the Monte Carlo (MC) simulated samples are generated and normalized as described in Ref. [3].

The event selections [3] applied to the simulated signals and backgrounds and to the D0 data are summarized in Table II. The resulting numbers of events from all samples, along with their systematic uncertainties described later, are shown in Table III. We find that the observed numbers of events agree with the predicted numbers for the SM backgrounds within uncertainties in both the electron and muon channels, and that the FCNC signals are a tiny fraction. We therefore construct multivariate discriminants using neural networks to separate the expected signal from the background and enhance the sensitivity.

We use MLPfit implementation [23] of neural networks with ten input variables, one hidden layer, and one output layer. The input variables represent individual object kinematics, global event kinematics, and angular correlations, and are listed in Table IV. For training of the networks, we consider the sum of t_{cg} and t_{ug} processes as signal, since the final states for these two processes are indistinguishable in this analysis, and the sum of all SM processes as background. The processes in each

<table>
<thead>
<tr>
<th>Source</th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{cg}</td>
<td>0.6 ± 0.2</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>t_{ug}</td>
<td>8.4 ± 2.1</td>
<td>9.8 ± 2.7</td>
</tr>
<tr>
<td>SM single top ($tb+t\bar{t}b$)</td>
<td>6.4 ± 1.4</td>
<td>6.1 ± 1.4</td>
</tr>
<tr>
<td>tt</td>
<td>31.8 ± 6.9</td>
<td>31.4 ± 7.0</td>
</tr>
<tr>
<td>W+jets</td>
<td>84.6 ± 10.2</td>
<td>76.8 ± 8.5</td>
</tr>
<tr>
<td>Multijets</td>
<td>13.7 ± 4.3</td>
<td>17.2 ± 1.5</td>
</tr>
<tr>
<td>Total SM background</td>
<td>136.5 ± 13.4</td>
<td>131.5 ± 12.7</td>
</tr>
</tbody>
</table>

To estimate systematic uncertainties, we consider two classes of effects: those that alter the overall normalization of the distributions and those that also change their shapes. The dominant normalization effects are from lepton identification (4%), integrated luminosity measurement (6.5%), and cross section estimates. The uncertainties on the cross sections vary from 9% for diboson production to 16% for SM single top quark production and 18% for the tt samples [26]. The latter two include the uncertainty due to the top quark mass. For the FCNC signal, we factor out the parameter $(\kappa_g/\Lambda)^2$ from the cross section, and assume an uncertainty of 15% on the remaining quantity based on a discussion in Ref. [17] on how the theoretical predictions depend on the particular choice of the factorization scale. The W+jets and multi-
TABLE IV: Input variables used in the neural network analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(\text{jet1})$</td>
<td>Transverse momentum of the leading jet</td>
</tr>
<tr>
<td>$p_T(\text{jet1_tagged})$</td>
<td>Transverse momentum of the b-tagged jet</td>
</tr>
<tr>
<td>$\eta(\text{lepton})$</td>
<td>Pseudorapidity [24] of the lepton</td>
</tr>
<tr>
<td>E_T</td>
<td>Missing transverse energy</td>
</tr>
<tr>
<td>$p_T(\text{jet1, jet2})$</td>
<td>Transverse momentum of the two leading jets</td>
</tr>
<tr>
<td>$H_T(\text{jet1, jet2})$</td>
<td>Scalar sum of the transverse momenta of the two leading jets</td>
</tr>
<tr>
<td>$p_T(\text{W})$</td>
<td>Transverse momentum of the reconstructed W boson</td>
</tr>
<tr>
<td>$M(\text{W, jet1_tagged})$</td>
<td>Invariant mass of the reconstructed top quark using the W boson [25]</td>
</tr>
<tr>
<td>$M(\text{alljets})$</td>
<td>Invariant mass of all jets</td>
</tr>
<tr>
<td>$\cos(\text{jet1, lepton})_{\text{lab}}$</td>
<td>Cosine of the angle between the leading jet and lepton in the laboratory frame of reference</td>
</tr>
</tbody>
</table>

FIG. 1: Neural network output distributions of summed background samples and D0 data, for the combined electron and muon channels. Also shown is the FCNC signal distribution with the $t\bar{c}g$ and $t\bar{u}g$ processes evaluated at $\kappa_g/\Lambda = 0.03$ TeV$^{-1}$ and summed (color online).

The shape effects are modeled by shifting the uncertainty components one-by-one by plus or minus one standard deviation with respect to their nominal values, for each sample, and propagating the changes to the kinematics of the different objects (electrons, muons, jets, and E_T) before making any event selections. The resulting uncertainties are as follows: (i) (1-16)% due to jet energy scale, (ii) (2-8)% from trigger modeling, (iii) (1-5)% due to jet energy resolution, (iv) (1-9)% due to jet identification, and (v) (5-13)% from b-tag modeling. Although the $W+$jets MC yield is normalized to data, it is also affected by the uncertainty from the b-tag modeling since the normalization is done before b-tag parametrization, and we take this into account.

We use a Bayesian approach to set upper limits [27] on the FCNC coupling parameters. Given N observed events, we define the Bayesian posterior probability density in a two-dimensional plane of (κ_g^2/Λ) and (κ_u^2/Λ) as:

$$p(\kappa_g^2/\Lambda, \kappa_u^2/\Lambda \mid N) \propto \int \int L(N \mid n) \ p_1(f_c, f_u, b) \ p_2(\kappa_g^2/\Lambda) \ p_3(\kappa_u^2/\Lambda) \ df_c df_u db,$$

where L is a Poisson likelihood with mean n, and p_i ($i = 1, 2, 3$) are the prior probability densities of the respective parameters. The likelihood L is a product of the likelihoods over all bins of the neural network output distributions, n is the predicted number of events, equal to the sum of signal (s) and background (b) yields:

$$n = s + b = f_c \times (\kappa_g^2/\Lambda)^2 + f_u \times (\kappa_u^2/\Lambda)^2 + b,$$

with the constants f_c and f_u are determined from the simulated signal samples at $\kappa_g/\Lambda = 0.03$ TeV$^{-1}$. The prior probability density, p_1, is a multivariate Gaussian, with the mean and standard deviation defined by the estimated yields and their uncertainties, to take into account correlations among the different samples and bins. Since the signal cross sections depend quadratically on κ_g/Λ, for p_2 and p_3 we choose priors flat in (κ_g^2/Λ) and $(\kappa_u^2/\Lambda)^2$ respectively, which imply priors flat in the corresponding cross sections.

From the two-dimensional posterior probability density, exclusion contours at different levels of confidence (k) are defined as contours of equal probability that enclose a volume k around the peak of the posterior probability density. These contours are shown in Fig. 2, using data from both the electron and muon channels and including all systematic uncertainties with correlations. The one-dimensional posterior probability density over any dimension is obtained by integrating the two-dimensional posterior over the other dimension. The resulting limits, translated to κ_g/Λ, using data (observed limits) as well as the expected limits for which the observed count is set to the predicted background yield in
any bin, are summarized in Table V.

To conclude, we analyzed 230 pb$^{-1}$ of lepton+jets data collected at D0 from $p\bar{p}$ collisions at a center of mass energy of 1.96 TeV, and searched for the presence of non-SM production of single top quarks. We found no deviation from SM predictions, and therefore set limits on the anomalous coupling parameters, κ_3^γ/Λ and κ_3^a/Λ, using multivariate neural network discriminants. The 95% C.L. observed (expected) limits are 0.16 (0.17) TeV$^{-1}$ on κ_3^γ/Λ, and 0.037 (0.041) TeV$^{-1}$ on κ_3^a/Λ. These are the first limits from hadron colliders on FCNC couplings of a gluon to the top quark and a charm or up quark, and a factor 3–11 better than those from HERA.

![FIG. 2: Exclusion contours at various levels of confidence using 230 pb$^{-1}$ of D0 data in both the electron and muon channels (color online).](image)

TABLE V: Upper limits on κ_3^γ/Λ and κ_3^a/Λ, at 95% C.L.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observed (expected) limits [TeV$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron channel</td>
<td>0.16 (0.19) 0.046 (0.052)</td>
</tr>
<tr>
<td>Muon channel</td>
<td>0.21 (0.21) 0.049 (0.050)</td>
</tr>
<tr>
<td>Combined</td>
<td>0.15 (0.16) 0.037 (0.041)</td>
</tr>
</tbody>
</table>

We are grateful to Tim Tait for discussions related to this search. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

We thank the DOE and NSF (USA); CEA and CNRS/IN2P3 collaborating institutions, and acknowledge support from this search. We thank the staffs at Fermilab and universities.

[*] Visitor from Augustana College, Sioux Falls, SD, USA.

[14] T. Edwards et al., FERMILAB-TM-2278-E (2004). After completion of this analysis a new luminosity estimate became available [15]. Consistent scaling of signal and background prior to optimization using the new D0 luminosity will lead to somewhat better limits. Nevertheless, we choose to keep the analysis consistent with this estimate of the luminosity value.

[22] R. Brun

[23] J.J. Liu

[26] R. Bonciani

[34] R. Brun et al., CERN Program Library Long Writeup W5013 (1994).

[43] Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$, where θ is the polar angle with respect to the beam axis, with the origin at the primary vertex.

[44] The longitudinal component of the momentum of the neutrino is obtained using a SM W boson mass constraint, choosing the smaller of the two possible solutions.
