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Summary

Objective: To predict the development of carcinoid heart disease (CHD), which is a
life-threatening complication of certain neuroendocrine tumors. To this end, a novel
type of Bayesian classifier, known as the noisy-threshold classifier, is applied.
Materials and methods: Fifty-four cases of patients that suffered from a low-grade
midgut carcinoid tumor, of which 22 patients developed CHD, were obtained from the
Netherlands Cancer Institute (NKI). Eleven attributes that are known at admission
have been used to classify whether the patient develops CHD. Classification accuracy
and area under the receiver operating characteristics (ROC) curve of the noisy-
threshold classifier are compared with those of the naive-Bayes classifier, logistic
regression, the decision-tree learning algorithm C4.5, and a decision rule, as for-
mulated by an expert physician.
Results: The noisy-threshold classifier showed the best classification accuracy of 72%
correctly classified cases, although differences were significant only for logistic
regression and C4.5. An area under the ROC curve of 0.66 was attained for the
noisy-threshold classifier, and equaled that of the physician’s decision-rule.
Conclusions: The noisy-threshold classifier performed favorably to other state-of-
the-art classification algorithms, and equally well as a decision-rule that was for-
mulated by the physician. Furthermore, the semantics of the noisy-threshold classifier
make it a useful machine learning technique in domains where multiple causes
influence a common effect.
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1. Introduction

Bayesian networks have become a widely accepted
formalism for reasoning under uncertainty by pro-
viding a concise representation of a joint probability
distribution over a set of random variables [1]. This
distribution is factorized according to an associated
acyclic directed graph (ADG) that represents the
independence structure between random variables.
However, the construction of a Bayesian network
that fully captures this independence structure for a
realistic domain, has proven to be a difficult task. It
requires either manual specification of the ADG by
means of available expert knowledge, or large
amounts of high-quality data when we resort to
structure learning.

An alternative to the construction of an ADG that
fully captures the independence structure that holds
between variableswithin thedomain, is to use a fixed
or severely constrained graph topology for classifica-
tion purposes. In the latter contextwe call a Bayesian
network a Bayesian classifier. The use of Bayesian
methods inmedicinewasfirst proposedby Ledley and
Lusted in their classic 1959 paper [2], and one of the
first successful implementations of Bayesian classi-
fiers in medicine was De Dombal’s system for the
diagnosis of acute abdominal pain [3]. The classifier
that was used assumes independence of symptoms
given the disease, and is known as the naive-Bayes
classifier. Over the years, many different Bayesian
classifier architectures have been proposed, and
many of them focus on lifting the independence
assumptions of the naive-Bayes classifier [4]. How-
ever, a standard technique such as logistic regression,
which is used extensively in medicine, can also be
interpreted in terms of a Bayesian classifier archi-
tecture (Fig. 1).Other examples of Bayesian classifier
architectures can be found in refs. [5—7].

Although, typically, the actual joint probability
distribution, and the joint probability distribution
that is represented by the Bayesian classifier, differ
considerably, this approach can still yield good
results with respect to the classification task [8].
Figure 1 A naive-Bayes classifier (a) is a generative
method which models how a disease D leads to symptoms
Si, where symptoms are assumed independent given the
disease. Logistic regression (b) is a discriminative method
that assumes no such independence and rather assumes
that the influences of symptoms combine linearly.
However, a weakness of this approach is that the ad-
hoc restrictions that are placed on the underlying
graph effectively reduces the Bayesian network to a
black box model, making the relation between
properties of the domain and classification outcome
often difficult to understand. This is an undesirable
property; especially in medicine, where ideally one
wants to be able to interpret how the classification
outcome (such as diagnosed disease or patient prog-
nosis) relates to the available domain knowledge (its
causes). The explanation of drawn conclusions is
required to increase the acceptance of machine-
learning techniques in practice [9,10].

In this paper,weemployanovelBayesianclassifier,
introduced in ref. [11], that facilitates this interpre-
tationas it explicitly provides for a semantics in terms
of cause and effect relationships [12]. This noisy-
threshold classifier is basedona generalization of the
well-known noisy-or model, which has already been
used for the purpose of text classification in ref. [13].
In order to demonstrate the merits of the noisy-
threshold classifier in a medical context, we apply
the technique to the prediction of carcinoid heart
disease(CHD); a serious condition that arises as a
complication of certain neuroendocrine tumors
[14]. We demonstrate that the noisy-threshold clas-
sifier performs competitively with state-of-the art
classification techniques for this medically relevant
problem. Furthermore, an expert physician at the
Netherlands Cancer Institute (NKI) was consulted,
and it is demonstrated how her knowledge concern-
ing CHD relates to the parameters that were esti-
mated for the noisy-threshold classifier.

This paper proceeds as follows. Section 2 intro-
duces the necessary preliminaries and discusses the
semantics of the noisy-threshold model, whereas
Section 3 describes the medical problem. The use
of thenoisy-thresholdmodel as a Bayesian classifier is
discussed in Section 4. The results on the classifica-
tion task and the medical interpretation by the
expert physician is presented in Section 5. The paper
is ended by some concluding remarks in Section 6.
2. Preliminaries

2.1. Bayesian networks

Bayesian networks provide for a compact factoriza-
tion of a joint probability distribution over a set of
random variables by exploiting the notion of condi-
tional independence [1]. Conditional independence
can be represented by an acyclic directed graph
(ADG) G consisting of vertices VðGÞ and arcs AðGÞ,
and relies on the notion of d-separation [1]. Let G be
an ADG and P a joint probability distribution over a
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set of random variables X ¼ fX1; . . . ; Xng. We
assume that there is a one-to-one correspondence
between the vertices VðGÞ and random variables X.
In general, we will use Xv to refer to the random
variable that corresponds to a vertex v, and use XU

to refer to the set of random variables
fXv jv 2U;U�VðGÞg. A Bayesian network is defined
as a pair ðG; PÞ, such that G admits the following
recursive factorization of the joint probability dis-
tribution:

PðXÞ ¼
Y

v 2VðGÞ
PðXv jXpGðvÞÞ (1)

with pGðvÞ ¼ fv 0jðv 0; vÞ 2AðGÞg. To simplify nota-
tion, we will use vertices VðGÞ and random variables
in X interchangeably, where the interpretation will
be clear from context. We use x to denote an
arbitrary element in the sample space VX of a
random variable X, and x for an element in the
sample space VX ¼ VX1 � � � � �VXn for a set X ¼
fX1; . . . ; Xng of random variables.

2.2. Semantics of the noisy-threshold
model

In this section, we will show how to arrive at the
noisy-threshold model, by introducing a number of
assumptions that are motivated by the semantics in
terms of causes and effects, that is taken to hold for
causal independencemodels. Causal independence is
a popular way to specify interactions among cause
variables [1,12,15—17]. The global structure of a
causal independence model is shown in Fig. 2; it
expresses the idea that causesC ¼ fC1; . . . ;Cng influ-
encea commoneffectE throughhiddenvariablesH ¼
fH1; . . . ;Hng and a deterministic function f, called
the interaction function. The causal independence
assumption does not refer to independence between
causes, but rather to the assumption that hidden
variables Hi are independent of causes CnfCig given
Ci. Causal independence is therefore also known as
independence of causal influence or exception inde-
pendence. In practice, causes in a causal indepen-
dence model can be dependent; for instance, when
the model is embedded within a larger network, or if
Figure 2 Causal independence model.
there are direct dependencies between causes. How-
ever, if causes are completely observed then it is not
necessary to model the dependence structure
between cause variables.

In this paper, we assume that causes are either
present or absent. We use xþ and x� for X ¼ >
(true) and X ¼ ? (false), respectively, and inter-
pret > as 1 and ? as 0 in an arithmetic context. The
individual contribution of a cause Ci to the effect E is
realized by the parameter PðHijCiÞ associated with
the hidden variable Hi; if Pðhþi jc

þ
i Þ< 1 then Hi is said

to inhibit the cause Ci. The assumption of account-
ability states that absent causes do not contribute
to the effect which implies that Pðhþi jc�i Þ ¼ 0 [1].
The interaction function f represents in which way
the hidden variables Hi, and indirectly also the
causes Ci, interact deterministically to yield the
final effect E. Since variables are binary, f reduces
to a Boolean function. It is also useful to introduce a
leak termwhenever it is infeasible to identify all the
variables that influence the effect. We model this
leak term by postulating a cause Cl, l2f1; . . . ; ng,
that is always present with which is associated a leak
probability Pðhþl jc

þ
l Þ [18]. In this manner, we main-

tain the closed-world assumption [19].
It follows from these assumptions that the con-

ditional probability of the effect eþ given a config-
uration c of the causes C can be obtained from the
parameters PðhijciÞ as follows [15]:

P fðeþjcÞ ¼
X
h: fðhÞ

Yn
i¼1

PðhijciÞ; (2)

where P fðeþjhÞ ¼ 1, fðhÞ ¼ > .

As there are 22
n
different n-ary Boolean functions

[20,21], the potential number of causal indepen-
dence models that is admitted by Eq. (2) is huge.
However, if we assume that the order of the cause
variables does not matter, the Boolean functions
become symmetric and the number of such func-
tions reduces to 2nþ1 [21]. An important symmetric
Boolean function is the exact Boolean function em,
which is defined as:

emðh1; . . . ; hnÞ ¼ > ,
Xn
j¼1

hj ¼ m:

Any symmetric Boolean function can be decom-
posed in terms of the exact functions em as follows
[21]:

fðh1; . . . ; hnÞ ¼
_n
m¼0

emðh1; . . . ; hnÞ ^ gm (3)

where gm are Boolean constants dependent on the
choice of the symmetric function f. A particularly
useful type of symmetric Boolean function is the
threshold function tk, which simply checks whether
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there are at least k values > among the arguments,
i.e.:

tkðh1; . . . ; hnÞ ¼ > ,
Xn
j¼1

hj� k:

In terms of causes and effects, the use of the
threshold function as the interaction function of a
causal independence model expresses the notion
that sufficient causes should be present in order
to induce the effect. Then, the noisy-threshold
model, as defined in ref. [22], is given by:

PtkðeþjcÞ ¼
Xn
j¼k

X
h:e jðhÞ

Yn
i¼1

PðhijciÞ: (4)

To express a threshold function in terms of
Eq. (3), we use g0 ¼ � � � ¼ gk�1 ¼ ? and
gk ¼ � � � ¼ gn ¼ > . Note that the noisy-or model,
with fðh1; . . . ; hnÞ, h1 _ � � � _ hn, corresponds to
threshold function t1, and the noisy-and model,
with fðh1; . . . ; hnÞ, h1 ^ � � � ^ hn, corresponds to
threshold function tn. Hence, these two commonly
used causal independence models are the extremes
of a spectrum of causal independence models that
are defined by the noisy-threshold function.

2.3. Parameter estimation

The parameters Pðhþi jc
þ
i Þ of the model can be

learned using an expectation-maximization (EM)
algorithm [23]. EM is a method for finding maximum
likelihood estimates of parameters in probabilistic
models, where the model depends on (unobserved)
hidden variables. Every iteration of an EM algorithm
consists of two steps: the expectation step (E-step),
which computes the expected value of the hidden
variables, and a maximization step (M-step), which
computes the maximum likelihood estimates of the
parameters given the data.

To learn the parameters in the noisy-threshold
classifier, we use the EM algorithm for noisy-thresh-
old models [11]. This EM algorithm is based on the
connection between noisy-threshold models and the
Poisson binomial distribution. Let pðcÞ ¼ f pij pi ¼
Pðhþi jciÞ; i ¼ 1; . . . ; ng. Then

Bðl;pðcÞÞ ¼
Yn
i¼1
ð1� piÞ

( ) X
1� j1 < ��� < jl�n

Yl
z¼1

pjz

1� pjz

is the Poisson binomial probability [24,25], where l
denotes the number of successes in n independent
trials. The following connection holds between the
conditional probabilities in the noisy-threshold
model and the Poisson binomial distribution:

PtkðeþjcÞ ¼
Xn
i¼k

Bði;pðcÞÞ:
An analysis of this connection, as well as compu-
tationally efficient methods to compute, approxi-
mate, or bound this probability distribution, can be
found in ref. [22].

Let the data set D ¼ fu1; . . . ;uNg be a multiset,
where instances u j ¼ fc j; ejg ¼ fc j

1; . . . ; c j
n; e

jgwith
j ¼ 1; . . . ;N consist of realizations of causes and the
effect. Let Dþ �D denote those instances fc j; ejg
for which ej ¼ > , and let D� �D denote those
instances fc j; ejg for which ej ¼ ? . We use u ¼
fuijui ¼ Pðhþi jc

þ
i Þ; i ¼ 1; . . . ; ng to denote the para-

meters of the noisy-threshold model. Then, on the
ðz þ 1Þth iteration, EM proceeds as follows.

E-step. For every instance, u j ¼ fc j; ejg with
j ¼ 1; . . . ;N, set

pðz; jÞ ¼ f pðz; jÞi j pðz; jÞi ¼ u
ðzÞ
i c j

i ; i ¼ 1; . . . ; ng: (5)

Subsequently, we compute the probability

Pðhþmju j; uðzÞÞ

¼

p
ðz; jÞ
m

Xn�1
i¼m�1

Bði;pðz; jÞnm Þ

Xn
i¼m

Bði;pðz; jÞÞ
; if u j 2Dþ

pðz; jÞm 1�
Xn�1

i¼m�1
Bði;pðz; jÞnm Þ

 !

1�
Xn
i¼m

Bði;pðz; jÞÞ
; if u j 2D�

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(6)

where p
ðz; jÞ
nm ¼ f pðz; jÞi ji ¼ 1; . . . ; n; i 6¼mg for hidden

variables Hm, with m ¼ 1; . . . ; n.

M-step. Update the parameter estimates for all
i ¼ 1; . . . ; n:

u
ðzþ1Þ
i ¼

PN
j¼1Pðhþi ju j; uðzÞÞPN

j¼1c
j
i

: (7)

Generally, the expectation and maximization
steps are alternated repeatedly until convergence.
However, for small data sets, this may result in
overfitting artifacts; an issue to which we return
in Section 4.1.

The analysis in this section has shown that causal
independence models such as the noisy-threshold
model have an interesting semantics in terms of
causes and effect, and can be learned using the
EM algorithm, given a symmetric Boolean interac-
tion function. The next section describes the
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medical problem that is used to illustrate the use-
fulness of the noisy-threshold model as a classifier.
3. Carcinoid heart disease

Carcinoid tumors belong to the group of neuroendo-
crine tumors, which are known for the production of
vasoactive agents in the presence of metastatic
disease; usually hepatic (liver) metastases. Among
these agents, serotonin is themost important agent,
leading to the characteristic carcinoid syndrome of
flushes and diarrhea. The other main characteristic
feature of neuroendocrine tumors is the slow pro-
gression of most tumors if the histology shows a low-
grade pattern [26].

Serotonin overproduction may also cause carci-
noid heart disease (CHD), which is characterized by
fibrosis of the right sided heart valves as shown in
Fig. 3. Fibrosis induces thickening and retraction of
the tricuspid valve, leading to tricuspid insuf-
ficience and ultimately heart failure, which is
the cause of death in as much as one-half of
carcinoid patients [14,27]. Since so many carcinoid
patients die of CHD, it is important to distinguish
patients that are admitted to the clinic into
patients that are prone to develop a severe form
of carcinoid heart disease, and those that do not
develop this severe form. In this way, patients that
are at risk can be given more aggressive treatment
in order to reduce the probability of the develop-
ment of CHD. Hence, the classification task for this
Figure 3 CHD is characterized by heart valve fibrosis as
shown in the overlay.
medical problem will be to classify the patients
into these two groups, depending on the attributes
that are known at the time of admission to the
clinic. We use chd+ to denote the development of
moderate to extreme tricuspid valve insufficience
and chd� to denote the absence, or development
of mild tricuspid valve insufficience during patient
follow-up.

In principle, the physician can make use of the
attributes that are measured at admission (Table 1),
in order to predict the development of CHD. How-
ever, in practice, in order to determine the prob-
ability of developing moderate to severe tricuspid
valve insufficience, the physician makes use of the
following decision rule:

PðchdþjcÞ

¼

0:50; if HIAþ ^Diaþ ^HMeþ

0:25; if HIAþ ^ðDia� ^HMeþ _Diaþ ^HMe�Þ
0:10; if HIAþ^Dia�^HMe� _HIA� ^Diaþ ^HMeþ

0:03;otherwise:

8>>><
>>>:
The aim of this paper is to show that a noisy-

threshold model can be used as a Bayesian classi-
fier, where performance is compared both with
the physician’s classification performance, as well
as with standard classification techniques such as
the naive-Bayes classifier, logistic regression and
decision-trees. The patient attributes are used as
cause variables in the definition of a noisy-thresh-
old model, and it is assumed that independence of
causal influence, accountability, symmetry and
sufficiency hold. As required, variables are binary,
and positive states of variables are perceived to
be less favorable than negative states, such that
they could be responsible for carcinoid heart dis-
ease. To train and test Bayesian classifiers for this
medical problem, we have used a clinical database
consisting of 54 patients that suffered from a
neuroendocrine tumor, and for which the grade
of tricuspid valve insufficience was known.
Twenty-two patients developed moderate or
worse tricuspid valve insufficience during follow-
up.
Table 1 Patient attributes that are measured at
admission

Name Definition Name Definition

HIA 5-HIAA levels GIL General illness
CGA Chromogranin

A levels
BOB Bowel obstruction

DIA Diarrhea IBL Internal bleeding
WHE Wheezing FEV Fever
FLU Flushing HME Hepatic metastases
APA Abdominal pain
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Figure 4 A noisy-threshold model for carcinoid heart disease, where the dashed region represents the total tumor
burden for the patient. Note the use of the leak cause Cl in order to model possible hidden causes.
We have not yet touched upon the most impor-
tant assumption of causal independence models.
That is, can the variables be regarded as causes
of carcinoid heart disease? For some attributes this
is questionable. Diarrhea, for instance, is a symptom
of other processes and is therefore not likely to be a
cause of carcinoid heart disease. However, we can
interpret the attributes as risk factors that act as
components of the total tumor burden, as depicted
in Fig. 4. Since the causes are assumed to be com-
pletely observed, we refrain from adding additional
dependencies between cause variables.
4. The noisy-threshold classifier

4.1. Classifier construction

Construction of a noisy-threshold classifier (NTC)
proceeds as follows. We first determine the cause
variablesC and effect variable E that are used in the
classifier. In the context of a classifier, the cause
variables stand for the attributes and the effect
variable stands for the class-variable. Secondly, we
need to determine the positive states of the vari-
ables. In the CHD domain, the positive states are
simply defined as the presence of attributes that
affect the presence of the class-variable CHD. Once
the cause and effect variables have been defined,
we need to find both the optimal values for the
parameters Pðhþi jcþi Þ using the EM algorithm of
Section 2.3, as well as the correct threshold func-
tion tk.

To this end, we define the followingmeasures with
respect to a fixed database D and model M. Let the
true positives (tp) stand for the number of instances
u j 2Dþ for which Pðeþjc jÞ� 0:5 and let the false
negatives (fn) stand for the number of instances
u j 2Dþ forwhich Pðeþjc jÞ< 0:5. Likewise,we define
the true negatives (tn) as the number of instances
u j 2D� for which Pðeþjc jÞ< 0:5 and the false posi-
tives (fp)as thenumberof instancesu j 2D� forwhich
Pðeþjc jÞ� 0:5. In order to learn the parameters of
the noisy-threshold model, we used a training set
Dtrain and a validation set Dvalidate. The validation
set is used to counterbalance the overfitting that
may occur when learning model parameters. The
aim of the learning phase is to maximize both the
classification accuracy

hðDÞ ¼ tpþ tn

tpþ tnþ fnþ fp

as a measure of the number of correctly classified
cases, and the F1 measure

F1ðDÞ ¼
2pr

pþ r

as a measure that takes into account the tradeoff
between precision p ¼ tp=ðtpþ fpÞ and recall r ¼
tp=ðtpþ fnÞ; which is also known as sensitivity. We
use these two measures since the accuracy is the
obvious measure butmay convey the wrong intuition
when the classes are not equal in size [28]. Finding
the optimal noisy-threshold classifier then proceeds
as follows:
(1) D
ivide the data setD into the disjoint setsDtrain,
Dvalidate and Dtest.
(2) F
or all noisy-threshold models Pt1
; . . . ; Ptn with

n ¼ jCj, use the training data Dtrain and the EM-
algorithm of Section 2.3 to learn the parameters
Pðhþi jc

þ
i Þ.
(3) S
elect the noisy-threshold model and the num-
ber of iterations of the EM-algorithm that max-
imizes w1 � hðDvalidateÞ þ w2 � F1ðDvalidateÞ with
equal weights w1 ¼ w2, as the optimal noisy-
threshold classifier.
With regard to the clinical data set D, we have
used a leave-one-out cross-validation scheme to
implement the above algorithm.D contains toomany
missing values to simply remove the instances that
contain missing data. We have used mean substitu-
tion [29] as an imputation scheme, and note that
multiple imputation [30] produced similar results.
LetNi be the number of data sampleswithoutmissing
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Table 2 Classification accuracy on Dtest for noisy-
threshold classifiers Pt1 ; . . . ; Pt12

NTC h ðDtestÞ NTC h ðDtestÞ NTC h ðDtestÞ
data for the variable Ci for all i ¼ 1; . . . ; n. If Ci is
missing in the sample j then we replace c j

i in Eqs. (5)
and (7) by the estimate

mi ¼
1

Ni

XNi

k¼1
cki

of the prior Pðcþi Þ.

4.2. Classifier evaluation

In order to evaluate the performance of the noisy-
threshold classifier, we compared its classification
accuracy with the accuracy of a number of other
well-known algorithms. For the comparison we have
used the naive-Bayes classifier (NBC), logistic
regression (LG) and a decision-tree learning algo-
rithm (C4.5) as implemented by the WEKA machine
learning tool [31].1 Furthermore, we compare the
performance of the optimal noisy-threshold classi-
fier with that of the noisy-or classifier Pt1

as a special
case [13]. For the naive-Bayes classifier, the poster-
ior probability of developing carcinoid heart disease
is given by

PðeþjcÞ ¼ PðeþÞ
Yn
i¼1

PðcijeþÞ

and for logistic regression, the posterior probability
of developing carcinoid heart disease is given by

PðeþjcÞ ¼ 1

1þ e�ða0þa1c1þ ��� þancnÞ

where the parameters are estimated from data.
Classification proceeds by selecting the class

value that has highest posterior probability. For
the decision-tree learning algorithm, classification
proceeds by traversing the tree and selecting the
class value that is associated with the leaf node.
Hence, no posterior probability PðeþjcÞ is com-
puted.

As pointed out in ref. [32], when comparing two
classification algorithms, the approach preferred to
a standard t-test, is to use a binomial test, which
uses the number of cases n for which the two
classifiers produce a different output, and the num-
ber of cases s where the output of the examined
classifier was correct, while the output of the refer-
ence classifier was wrong. Under the null hypothesis
that the two classifiers perform equally well, we
compute:

q ¼
Xn
i¼s

n!

i!ðn� iÞ! ð0:5Þ
n

1 We use WEKA’s default parameter settings; the default impu-
tation method is to interpret a missing value for X as a separate
value x 2VX .
for a one-tailed test, and p ¼ 2q for a two-tailed
test.

Since the classification accuracy assumes equal
costs between false positives and false negatives,
we use the receiver operating characteristics (ROC)
curve to compare the performance of some of the
classifiers in terms of the trade off between sensi-
tivity r ¼ tp=ðtpþ fnÞ and specificity s ¼ tn=ðtnþ
fpÞ for every possible cutoff [33], where r is shown
on the y-axis, and 1� s is shown on the x-axis. This
performance can be quantified by computing the
area under the ROC curve (AUC), which has been
shown to equal the outcome of the Mann—Whitney U
statistic [34]:

AUC ¼
P

ci 2Dþ
P

c j 2D� uðci; c jÞ
jDþjjD�j

where

uðci; c jÞ ¼
1; if PðeþjciÞ> Pðeþjc jÞ
1

2
; if PðeþjciÞ ¼ Pðeþjc jÞ

0; if PðeþjciÞ< Pðeþjc jÞ

8><
>:

We can interpret this statistic as follows. We
assume that there is a ranking between instances
in D such that any deviation from the perfect rank-
ing that ranks all positive examples higher than all
negative examples leads to a decrease in the AUC
[35]. If PðeþjciÞ> Pðeþjc jÞ then we produce a cor-
rect ranking, if PðeþjciÞ ¼ Pðeþjc jÞ then we break
ties at random and produce a correct ranking one-
half of the time, and if PðeþjciÞ< Pðeþjc jÞ then we
produce an incorrect ranking.
5. Results

5.1. Classification performance

Table 2 lists the classification accuracy for noisy-
threshold classifiers Pt1

to Pt12
. The noisy-threshold

classifier Pt6
is selected, based on the validation set

Dvalidate, and shows the best classification accuracy
of 0:72 on the test set Dtest. Note that this exceeds
considerably the classification accuracy of 0.54 for
the noisy-or classifier Pt1

.

Pt1
0.54 Pt5

0.69 Pt9
0.59

Pt2
0.65 Pt6

0.72 Pt10
0.59

Pt3
0.65 Pt7

0.65 Pt11
0.59

Pt4
0.70 Pt8

0.57 Pt12
0.59
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Table 3 Classification accuracy and p-values for clas-
sification of Dtest

Classifier h ðDtestÞ p

Physician 0.69 7:0� 10�1

NBC 0.63 2:3� 10�1

LG 0.67 6:3� 10�1

C4.5 0.44 6:2� 10�5

Noisy-or 0.54 6:4� 10�3

Figure 5 ROC curve for the noisy-threshold classifier,
logistic regression, and the naive-Bayes classifier, where
the straight line segment in the NTC curve is a conse-
quence of the model assumption that absent causes do not
contribute to the effect.
In order to test how well the NTC performs
compared with the physician, and with the other
classification algorithms that were discussed in Sec-
tion 4.2, we have determined the classification
accuracy. Table 3 describes the classification accu-
racy on Dtest for the physician, NBC, LG, C4.5 and
noisy-or, and p-values for the null-hypothesis that
the classifier accuracy is comparable to that of the
NTC Pt6

.
Note that the expert physician’s classification

accuracy is reasonably high, outperforming all but
the noisy-threshold classifier. The noisy-threshold
classifier Pt6

shows the best classification accuracy,
although the difference is significant only for C4.5
and the noisy-or classifier at a confidence level of
p ¼ 0:05. For the physician’s decision rule, the
naive-Bayes classifier, and logistic regression, we
cannot reject the null hypothesis that the algo-
rithms may in fact be equally accurate for this data
set.

It is well-known that classifiers that show large
bias tend to outperform classifiers that show high
variance for small data sets, since this reduces the
risk of overfitting. For this reason, the naive-Bayes
classifier tends to perform well on many data sets
[36]. However, although not always reflected in its
classification accuracy [8], the assumption of inde-
pendence between attributes given the class-vari-
able, is a strong assumption which does not hold in
general. In contrast, the noisy-threshold classifier’s
assumptions are motivated by a cause—effect
semantics as described in Section 2, and hold for
domains where the presence of a sufficient number
of causes is sufficient to induce the effect.

Fig. 5 presents the ROC curves for the physician,
the noisy-threshold classifier Pt6

, the naive-Bayes
classifier and logistic regression, where the area
under the curve equals 0.66, 0.66, 0.60 and 0.59,
respectively. Although the performance in terms of
AUC is mediocre, both the physician’s decision rule,
and thenoisy-threshold classifier showaconsiderably
better performance than the other standard classi-
fication techniques.TheROCcurvedoesdemonstrate
a potential danger of using the noisy-threshold clas-
sifier, especially when the causal assumptions are not
satisfied.Whereas thenaive-Bayes classifier is able to
gradually increase the true positive rate at the
expense of increasing the true negative rate, the
noisy-threshold classifier fails to accomplish this
for all true positive rates. This is a consequence of
the model assumption that absent causes cannot
contribute to the effect; the probability Ptk

ðeþjciÞ
of assigning an instance to the positive class equals
zero whenever the number of present causes is less
than the chosen threshold k.

5.2. Medical interpretation

In this section, we look at the noisy-threshold clas-
sifier for CHD from a medical point of view. Prior to
presenting the resulting classifier, we have asked
the physician to indicate how important the indivi-
dual attributes were felt to be with respect to
predicting the development of carcinoid heart dis-
ease.

According to the physician, progressive carcinoid
disease is often accompanied by the carcinoid syn-
drome, which is characterized by diarrhea (DIA)
caused by increased bowel motility due to serotonin
overproduction, by periodical flushing attacks (FLU)
due to the synergistic interaction between various
vasoactive agents, and sometimes by wheezing
(WHE). As discussed in Section 3, serotonin over-
production is thought to play a key role in the
etiology of CHD and it can be measured indirectly
by means of the urinary 5-HIAA level (HIA) since this
is a metabolite of serotonin. Hence, the variables
related to the carcinoid syndrome are indicative of
serotonin overproduction and ultimately CHD. It is
therefore assumed that the variables HIA, DIA, FLU
and to a lesser extent WHE have a high predictive
value. Serotonin overproduction is itself caused by
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the carcinoid tumor in the presence of particular
metastases; hormones released by carcinoid tumors
are often destroyed by the liver before they reach
the general circulation to cause symptoms. There-
fore, only hepatic metastases (HME), or metastases
that can release hormones directly into the general
circulation, can produce the carcinoid syndrome.
According to the physician, the presence of hepatic
metastases (HME) during hospitalization is indica-
tive of CHD development, since this is a requirement
for serotonin overproduction. The plasma chromo-
granin A (CGA) level is used as a general marker of
neuroendocrine activity and tumor extensiveness
[37]. Although not regarded as important as the
previously discussed attributes, the physician
expected CGA to have a high predictive value since
extensive tumors with high neuroendocrine activity
are more likely to cause CHD. In contrast, the vari-
ables IBL, FEV, APA and BOB were not thought to
predict CHD very well. Local progression of hyper-
vascular primary tumors into the lumen of the small
bowel is often the cause of internal bleeding (IBL),
but is not thought to be related to metastatic dis-
ease. Fever (FEV) can be caused by hepatic metas-
tases, as captured by the variable HME, but it is also
a non-specific symptom that is not necessarily
caused by carcinoid disease in the first place.
Abdominal pain (APA) and bowel obstruction (BOB)
are often caused by complications due to the pri-
mary tumor and were assumed to be unrelated to
the development of CHD. According to the physi-
cian, general illness (GIL) could be indicative of the
development of carcinoid heart disease; a poor
condition is often due to extensive metastases
and therefore a high probability of serotonin over-
production. In general, the physician expected that
at least some of the risk factors should occur
together in order to cause CHD.

Fig. 6 depicts the actual estimates of prior prob-
abilities Pðcþi Þ and conditional probabilities
Pðhþi jc

þ
i Þ, for the noisy-threshold classifier that
Figure 6 Estimates of priors Pðcþi Þ, and conditional proba
threshold function t6.
was used for predicting CHD. The predictive value
of the variables HIA, DIA, FLU and WHE is reflected
in the reasonably high associated probabilities
Pðhþi jc

þ
i Þ with i2f1; 3; 4; 5g, which range from

0.67 to 0.91, where wheezing is indeed seen to
be of less predictive value than the other attributes.
The presence of hepatic metastases (HME) is also an
important predictor of CHD, as is indicated by the
high probability Pðhþ11jcþ11Þ ¼ 0:92. Notice that most
patients that are admitted already present with
such metastases, which is reflected by the high prior
probability Pðcþ11Þ ¼ 0:78. Contrary to the physi-
cian’s expectations, CGA was not a very good pre-
dictor of CHD, with Pðhþi jcþi Þ ¼ 0:53. In hindsight,
this may be explained by the fact that CGA over-
production does not necessarily reflect serotonin
overproduction, and if it does, it may be redundant
information given that we have observed HIA, which
is a metabolite of serotonin. Internal bleeding
(IBL) and fever (FEV), with Pðhþi jc

þ
i Þ ¼ 0:12 and

Pðhþi jcþi Þ ¼ 0:13, respectively, did not contribute
much to the effect. Unexpectedly, both abdominal
pain (APA) and bowel obstruction (BOB) had rela-
tively high probability values Pðhþi jcþi Þ of 0.80 and
0.84, respectively. After some deliberation, the
physician gave the following possible explanation.
Since abdominal pain and bowel obstruction are
often caused by complications due to the primary
tumor, both APA and BOB indicate a midgut tumor
with possible mesenterial fibrosis. A midgut locali-
zation is a prerequisite for serotonin overproduc-
tion, and mesenterial fibrosis is thought to be
related to tricuspid valve fibrosis [38], and there-
fore, the presence of these variables could have
been indicative of the development of CHD. General
illness (GIL) had a high probability value of
Pðhþi jcþi Þ ¼ 0:93. Five out of seven patients that
suffered from general illness indeed developed
CHD. The threshold function t6 corresponds to the
physician’s assessment that the presence of just one
risk factor is generally insufficient to cause CHD,
bilities Pðhþi jcþi Þ, for the noisy-threshold classifier with
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whereas the presence of all risk factors is much too
strict a requirement as a cause for CHD; demonstrat-
ing that the noisy-threshold model as a general-
ization of both the noisy-or and noisy-and model
can be the proper choice for realistic domains.
6. Conclusions

The noisy-threshold classifier is a novel type of
classifier that has a well-defined semantics in terms
of causes and effect. Due to the independence
assumptions that are made by the classifier, para-
meters can be reliably estimated without needing to
resort to huge amounts of data. This is an important
feature since many domains are characterized by
limited amounts of data, as discussed in ref. [39].
Learning Bayesian classifiers from data is to be
contrasted with the construction of a full Bayesian
network that captures available domain knowledge,
which, although possible, can be very resource
intensive for realistic domains.

We have demonstrated that the noisy-threshold
classifier performs comparably with the decision
rule that is used by an expert physician, and com-
petitively with state-of-the-art classifiers, on an
important classification task in oncology. Further-
more, it significantly outperforms the noisy-or clas-
sifier, as a special case of the noisy-threshold
classifier, for this data set. The semantics of the
noisy-threshold classifier enables an interpretation
in terms of available domain knowledge, as is illu-
strated by the physician’s interpretation of classifier
parameters. Nevertheless, one should be cautious
when defining the positive states of the cause vari-
ables since negative states cannot contribute to the
effect, as reflected by the straight line segment of
the ROC curve. The competitive classification per-
formance and well-defined semantics make the
noisy-threshold classifier a promising new machine
learning technique, as was demonstrated here in the
context of medical prognosis. Currently, the tech-
nique is being applied in the context of the analysis
of gene expression data.

Various extensions to the noisy-threshold classi-
fier are possible, that increase its applicability. One
extension would be to incorporate graded or con-
tinuous variables that allow a more natural repre-
sentation of risk factors such as abdominal pain or
fever. Another extension would be the incorporation
of time for the noisy-threshold model, analogous to
the generalization of noisy-or models to temporal
noisy-or models as was realized in ref. [40], and
applied to modeling the spread of nasopharyngeal
cancer [41]. Furthermore, lifting the assumption
of independence of causal influence by allowing
multiple causes to influence the same hidden vari-
ables may lead to more realistic models. We leave
these extensions as topics for further research.
Acknowledgements

This research was sponsored by the Netherlands
Organization for Scientific Research (NWO) under
grant numbers 612.066.201 and FN4556. We would
like to thank the anonymous reviewers for their
valuable comments.
References

[1] Pearl J. Probabilistic reasoning in intelligent systems: net-
works of plausible inference, 2nd edition, San Francisco,
CA: Morgan Kaufmann; 1988.

[2] Ledley R, Lusted L. Reasoning foundation of medical diag-
nosis: symbolic logic, probability, and value theory aid our
understanding of how physicians reason. Science 1959;130:
9—21.

[3] de Dombal FT, Leaper D, Staniland J, Horrocks J, McCann A.
Computer aided diagnosis of acute abdominal pain. Br Med J
1972;2:9—13.

[4] Spiegelhalter D, Knill-Jones R. Statistical and knowledge-
based approaches to clinical decision-support systems, with
an application in gastroenterology. J R Stat Soc 1984;147:
35—77.

[5] Sahami M. Learning limited dependence Bayesian classifiers.
In: Second international conference on knowledge discovery
in databases. Portland, OR: AAAI Press; 1996. p. 335—8.

[6] Friedman N, Geiger D, Goldszmidt M. Bayesian network
classifiers. Machine Learn 1997;29:131—63.

[7] Cheng J, Greiner R. Comparing Bayesian network classifiers.
In: Proceedings of the fifteenth conference on uncertainty in
artificial intelligence. Stockholm: Morgan Kaufmann; 1999.
p. 101—7.

[8] Domingos P, Pazzani M. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learn
1997;29:103—30.

[9] Teach R, Shortliffe E. An analysis of physician attitudes
regarding computer-based clinical consultation systems.
Comput Biomed Res 1981;14:542—58.

[10] Lacave C, Dı́ez F. A review of explanation methods for
Bayesian networks. Knowledge Eng Rev 2002;17(2):107—27.

[11] Jurgelenaite R, Heskes T. EM algorithm for symmetric causal
independence models. In: Proceedings of the seventeenth
European conference on machine learning. Heidelberg, Ger-
many: Springer-Verlag; 2006. p. 234—45.

[12] Heckerman D, Breese J. A new look at causal independence.
In: Proceedings of the tenth conference on uncertainty in
artificial intelligence. San Francisco, CA: Morgan Kaufmann;
1994. p. 286—92.

[13] Vomlel J. Exploiting functional dependence in Bayesian
network inference. In: Proceedings of the eighteenth con-
ference on uncertainty in artificial intelligence. San Fran-
cisco, CA: Morgan Kaufmann; 2002. p. 528—35.

[14] Zuetenhorst J, Bonfrer J, Korse C, Bakker R, van Tinteren H,
Taal BG. Carcinoid heart disease: the role of urinary 5-HIAA
excretion and plasma levels of TGF- b and FGF. Cancer
2003;97:1609—15.



Predicting carcinoid heart disease with the noisy-threshold classifier 55
[15] Zhang N, Poole D. Exploiting causal independence in Baye-
sian network inference. J Artif Intell Res 1996;5:301—28.

[16] Dı́ez F. Parameter adjustment in Bayes networks. The gen-
eralized noisy OR-gate. In: Proceedings of the ninth con-
ference on uncertainty in artificial intelligence. San
Francisco, CA: Morgan Kaufmann; 1993. p. 99—105.

[17] Lucas P. Bayesian networkmodelling by qualitative patterns.
Artif Intell 2005;163:233—63.

[18] Pradham M, Provan G, Middleton B, Henrion M. Knowledge
engineering for large belief networks. In: de Mantaras RL,
Poole D, editors. Proceedings of the tenth conference on
uncertainty in artificial intelligence. San Fransisco, CA:
Morgan Kaufmann; 1994. p. 484—90.

[19] Reiter R. On closed-world data bases. In: Gallaire H, Minker
J, editors. Logic and databases. New York, NY: Plenum Press;
1978. p. 55—76.

[20] Enderton H. Amathematical introduction to logic. New York,
NY: Academic Press, Inc.; 1972.

[21] Wegener I. The complexity of boolean functions. New York,
NY: John Wiley & Sons; 1987.

[22] Jurgelenaite R, Heskes T, Lucas P. Noisy threshold functions
for modelling causal independence in Bayesian networks.
Tech. Re ICIS-R06014. Nijmegen, The Netherlands: Radboud
University; 2006.

[23] Dempster A, Laird N, Rubin D. Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc 1977;39:
1—38.

[24] Edwards A. The meaning of binomial distribution. Nature
1960;186:1074—6.

[25] Cam LL. An approximation theorem for the Poisson binomial
distribution. Pacific J Math 1960;10:1181—97.

[26] Zuetenhorst J, Taal B. Metastatic carcinoid tumors: a clinical
review. Oncologist 2005;10(2):123—31.

[27] Zuetenhorst J, Taal B. Carcinoid heart disease. New Engl J
Med 2003;348:2359—61.

[28] van Rijsbergen C. Information retrieval, 2nd edition, Lon-
don, UK: Butterworths; 1979.

[29] Kline R. Principles and practice of structural equation mod-
eling. New York, NY: Guilford; 1998.
[30] Rubin D. Multiple imputation for nonresponse in surveys.
New York, NY: Wiley; 1987.

[31] Witten I, Frank E. Data mining: practical machine learning
tools and techniques, 2nd edition, San Francisco, CA:
Morgan Kaufmann; 2005.

[32] Salzberg S. On comparing classifiers: pitfalls to avoid and a
recommended approach. Data Mining and Knowledge Dis-
covery 1997;1:317—27.

[33] Egan J. Signal detection theory and ROC analysis. New York,
NY: Academic Press; 1975.

[34] Bamber D. The area above the ordinal dominance graph and
the area below the receiver operating characteristic graph.
J Math Psychol 1975;12:387—415.

[35] Cortes C, Mohri M. AUC optimization vs. error rate
minimization. In: Thrun S, Saul L, Schölkopf B, editors.
Advances in neural information processing systems, vol. 16.
Cambridge, MA: MIT Press; 2004.

[36] Kohavi R, Wolpert DH. Bias plus variance decomposition for
zero-one loss functions. In: Saitta L, editor. Machine learn-
ing: proceedings of the thirteenth international conference.
San Mateo, CA: Morgan Kaufmann; 1996. p. 275—83.

[37] Nobels F, Kwekkeboom D, Bouillon R, Lamberts S. Chromo-
granin A: its clinical values as marker of endocrine tumours.
Eur J Clin Invest 1998;28:431—40.

[38] Modlin I, Shapiro M, Kidd M. Carcinoid tumors and fibrosis: an
association with no explanation. Am J Gastroenterol
2004;99:2466—78.

[39] van Gerven M, Lucas P. Using background knowledge to
construct Bayesian classifiers for data-poor domains. In:
Bramer M, Coenen F, Allen T, editors. Proceedings of AI-2004,
the twenty-fourth SGAI international conference on inno-
vative techniques and applications of artificial intelligence.
London, UK: Springer-Verlag; 2004. p. 269—82.

[40] Galán S, Dı́ez F. Networks of probabilistic events in discrete
time. Int J Approx Reason 2002;30:181—202.

[41] Galán S, Aguado F, Dı́ez F, Mira J. Nasonet, modeling the
spread of nasopharyngeal cancer with networks of probabil-
istic events in discrete time. Artif Intell Med 2002;25(3):
247—64.


	Predicting carcinoid heart disease with the �noisy-threshold classifier
	Introduction
	Preliminaries
	Bayesian networks
	Semantics of the noisy-threshold model
	Parameter estimation

	Carcinoid heart disease
	The noisy-threshold classifier
	Classifier construction
	Classifier evaluation

	Results
	Classification performance
	Medical interpretation

	Conclusions
	Acknowledgements
	References


