Distributive laws for the
Coinductive Solution of Recursive Equations

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University Nijmegen
P.O. Bozr 9010, 6500 GL Nijmegen, The Netherlands
Email: B. Jacobs@cs.ru.nl URL: http://www.cs.ru.nl/B.Jacobs

Abstract

This paper illustrates the relevance of distributive laws for the solution of recursive
equations, and shows that one approach for obtaining coinductive solutions of equa-
tions via infinite terms is in fact a special case of a more general approach using an
extended form of coinduction via distributive laws.

1 Introduction

Distribution z(y + z) = xy + xz is common in many equational theories, such
as vector spaces. It may also occur in so-called distributive categories, of the
form X x (Y + 72) =2 (X xY) + (X x Z), see e.g. [8], where one direction
of the isomorphism is canonical and always exists. More generally, one can
have distributions GF' = F'G between two endofunctors F, (G on the same
category, as first studied in [7]. This phenomenon is especially interesting
when the functors F GG form signatures (or interfaces) for certain operations,
either in algebraic or in coalgebraic form.

Turi and Plotkin [25] first investigated such a situation where one functor
(G describes the syntax of a programming language and the other functor F
the behaviour of programs (terms) in that language. Having a distributive
law GF = F(G means that the behaviour on terms is well-defined, and leads
to results like: (coalgebraic) bisimilarity is an (algebraic) congruence. Hence
distributive laws capture where “algebra meets coalgebra”.

The theme of this paper is the same, in a slightly different context, namely
recursive equations x; = t;(x1,...,%,). The t; are terms from some algebra,
and may contain the recursive variables z;. The solutions of such equations

Preprint submitted to Elsevier Preprint 18th March 2005

mailto:B.Jacobs@cs.ru.nl
http://www.cs.ru.n1/B.Jacobs

are typically infinite, and are thus best described via (final) coalgebras. Hence
also in this situation algebra and coalgebra meet, and appropriate distributive
laws are to be expected.

The finality principle in the theory of coalgebras is usually called coinduc-
tion [15]. It involves the existence and uniqueness of suitable coalgebra homo-
morphisms to final coalgebras. It was realised early on (see [1,6]) that such
coinductively obtained homomorphisms can be understood as solutions to re-
cursive (or corecursive, if you like) equations. The equation itself is incorpo-
rated in the commuting square expressing that there is a homomorphism from
a certain “source” coalgebra to the final coalgebra. Since this diagram arises
from the source coalgebra, this source can also be identified with the recursive
equation (see Section 3 for examples).

A systematic investigation of the solution of such equations first appeared in
20], followed by [2]. Their coalgebraic approach simplifies results for recursive
equations with infinite terms from [10,11]. More recently, a general and ab-
stract approach is proposed in [5], using distributive laws. It builds on earlier
work [17] and may also be described dually, for algebras, as developed inde-
pendently in [26]. One of the main contributions of this paper is that it shows
how the approach of [2] for infinite terms fits in the general approach of [5]
with distributive laws. This involves the identification of suitable distributive
laws of the monads of terms over the underlying interface functor.

This paper is organised as follows. Section 2 briefly reviews the approach
of [5] based on distributive laws. It is illustrated in the context of languages
and automata in Section 3. Section 4 continues with two distributive laws for
canonical monads F™* and F'* associated with a functor F'. The approach of |2]
for solutions of equations with infinite terms is then explained in Section 5.
Finally, Section 6 shows that this approach is an instance of the distribution-
based approach.

An earlier version of this paper appeared as [12]. The present version ex-
tends [12] especially with Section 3 on distributive laws for languages and
automata. This topic is further elaborated in [14].

2 Distributive laws and solutions of equations

Distributive laws found their first serious application in the area of coalgebras
in the work of Turi and Plotkin [25] (see also [24]), providing a joint treatment
of operational and denotational semantics. In that setting a distributive law
provides a suitable form of compatibility between syntax and dynamics. The
claim of [25] that distributive laws correspond to suitable rule formats for

operators is further substantiated in [5]. The idea of using a distributive law
in extended forms of coinduction (and hence equation solving) comes from [17],
and is further developed in [5]. In this section we present its essentials.

Distributive laws are natural transformations GF' = F'G between two endo-
functors F,G:C — C on a category C. These I’ and G may have additional
structure (of a point or copoint, or a monad or comonad, see [18]), that must
then be preserved by the distributive law. We shall concentrate on the case of
distribution of a monad over a functor, because it seems to be most common
and natural—see the examples in the next section. We shall recall what this
means.

Definition 1 Let (T, n, i) be a monad on a category C, and F:C — C be an
arbitrary functor. A distributive law of T' over I is a natural transformation

making for each X € C the following two diagrams commute.

T(\
FX —_ T2FX TN oy Az, FT2X
nFXj G MFXL jF(uX)
TEX FTX TEX FTX
>\X >\X

Sometimes we shall consider the situation when I is a monad too. When
A then also preserves the unit and multiplication associated with F'—in the
obvious way, like above—we shall say that X is a distributive law of monads.

The underlying idea is that the monad T describes the terms in some syn-
tax, and that the functor F' is the interface for transitions on a state space.
Intuitively, the presence of the distributive law tells us that the terms and be-

haviours interact appropriately. The associated notion of model is a so-called
A-bialgebra.

Definition 2 Let \: TF = F'T be a distributive law, like above. A A\-bialgebra
consists of an object X € C with a pair of maps:

TxX—4-x-b.py

where:
e a is an Filenberg-Moore algebra, meaning that it satisfies two standard equa-

tions, namely: a o nx = id and a o px = a o T'(a).
e a and b are compatible via \, which means that the following diagram com-

mutes.

X4y b.py
7(0)| F@
TEX FTX

Ax

A map of \-bialgebras, from (TX > X -2 FX) to (TY =Y -5 FY)
s a map [X — Y in C that is both a map of algebras and of coalgebras:
foa=coT(f) anddo f=F(f)ob.

The following result is standard.

Lemma 3 Assume a distributive law \: TF = FT', and let (: Z = FZ bea
final coalgebra. It carries an Eilenberg-Moore algebra obtained by finality in:

FTZ---—~-- -FZ
v
TEZ =1¢
UGIE
TZ----z---+%

The resulting pair (TZ %~ Z LR FZ) is then a final A-bialgebra.

Proof. By the uniqueness part of finality one proves that « is an Eilenberg-
Moore algebra. By construction, « and { are compatible via A. Assume an
arbitrary A-bialgebra (T'X —% X -2 FX). It induces a unique coalgebra
map [: X — Z with (o f = F(f) o b. One then obtains f o a = a o T(f)
by showing that both maps are homomorphisms from the coalgebra Ax o
T(): TX — FTX to the final coalgebra (. O

We shall consider some simple ways to build distributive laws.
Example 4 Let T:C — C be a monad with unit and multiplication n, p.

(1) Let a:TA — A be an Eilenberg-Moore algebra. It yields a distributive law
a:TKy = KAT, where K4:C — C s the functor which is constantly A.

(2) Assume we have an I-indexed collection of functors Fy: C — C with dis-
tributive laws \;: T'F; = F;/T. Then, assuming that the product functor
F =Tlicr Fi exusts, there is a distributive law \: T'F = F'T given by

(T'(73))ier [Licr A

Ax = (T([lier BX) Mier THX [ier FiTX)

Special cases worth emphasising are:

o [={1,2}, describing the distributive law T(Fy x) = F\T x 5T for

a binary product from [5, Lemma 4.4.5];

o cach I is equal to G, so that I’ is the exponent functor G, with

“strength” distributive law T(GT) = (GT)!.

(3) Dually, if T preserves coproducts, one can construct a distributive law
T(ier Fi) = (User £5)T from laws TF; = FT.

(4) If our category C is Sets, and the functor T preserves weak pullbacks,
then there is a distributive law of monads TP = PT, where P is the
powerset monad. This construction comes from [13], and is called the
“power law”. Here we sketch the essentials.

We associate the so-called “relation lifting” Rel(T) with T. It is a func-
tor that maps a relation (ri,ra): R — X XY to a relation Rel(T)(R) —
T(X) x T(Y) by taking the image of the map (T'(r1),T(r2)): T(R) —
T(X) x T(Y). Applying this relation lifting to the inhabitation relation
Ex— X XP(X) yields Rel(T)(€x) — TX xTP(X). Then we can define
Ax:TP(X) — P(T'X) as:

Ax(u) ={a € TX | {(a,u) € Rel(T)(€x)}.

In [13] it is shown that X preserves the powersel monad structure. But
it also preserves the unit n and multiplication p of the monad T in case
the natural transformations n, i are Cartesian. This means that their
naturality squares are pullbacks.

The following notion of equation and solution comes from [5].

Definition 5 Assume a distributive law \: TF = FT. A guarded recursive
equation is an F'T-coalgebra e: X — FTX. A solution to such an equation
in a A\-bialgebra (TY =Y LR FY)isamap [: X — Y making the following
diagram commute.

FTX FT) FTY
VF(a)
e FY (1)
1b
X 7 Y

In ordinary coinduction one obtains solutions for equations X — FX. The
additional expressive power of the above notion of equation X — FT'X lies
in the fact that it allows actions on terms. For convenience we shall often
call these equations X — FT'X A-equations—even though their formulation
does not involve a distributive law A. But their intended use is in a context
with distributive laws. Similarly, we shall say that the above solution f is
defined by A-coinduction.

This notion of solution may seem a bit strange at first, but becomes more
natural in light of the following result (see also [5, Lemma 4.3.4]).

Proposition 6 There exists a bijective correspondence between A-equations
e: X — FTX and \-bialgebras (T?°X £5 TX <, FTX) with free algebra
HX-

Moreover, let (TY —2-Y LN FY) be a \-bialgebra. Then there is a bijective
correspondence between solutions f: X — Y as in (1) and bialgebra maps
q:TX — Y —for the associated \-equations and \-bialgebras. UJ

Now we can formulate the main result of this distribution-based approach to
solving equations. It is the dual of |26, Theorem 1].

Theorem 7 Let I':C — C be a functor with a final coalgebra Z = FZ. For
each monad T with distributive law \:'TF = FT there are unique solutions
to A-equations in the final A\-bialgebra (TZ — Z — FZ) from Lemma 3.

Proof. For a A-equation e: X — FTX, a solution in (I'Z7 — Z — FZ) is
by the previous proposition the same thing as a map of A-bialgebras from the
associated (1T%X — TX — FTX) to (TZ — Z — FZ). Since the latter is

final, there is precisely one such solution. 0

In the next section, and also in Example 13, we present illustrations.

3 Kleene algebras and differential equations for languages

This section contains two applications of distributive laws in the context of
languages: first, in order to obtain a “language” monad whose algebras are
Kleene algebras, and second, to describe differential equations for languages
with solutions as in the previous section.

3.1 Kleene algebras

A basic observation and starting point in this subsection is that there is a
“power” distributive law 7 in:

P(X)* = P(X*)

(2)

(up, .oy up) —————={{(x1, ..., Tpn) | Vi < n.x; € u;}

It is obtained from the construction in Example 4 (4), using that the list monad
(—)* is Cartesian. In order to investigate the consequence we use the following
general result about distributive laws between monads. It is standard, and
may be traced back to [7,16,4] or [25].

Proposition 8 Let m: ST = TS be a distributive law between monads S and
T on a category C. Then:

(1) TS is a monad, with unit and multiplication given as:

T2 S TQS

&S

phS pge” T

/\5

n = = TSTST@TQS2

N/’s

Moreover, there are obvious maps of monads S = TS and T = T'S qiven
by unats.
(2) There is an induced lifting of T to Eilenberg-Moore algebras of S as in:

STX
Alg(S) Alg(S) sx 2
L L given by V| — | TSX
X y
C T C TX

This yields a new monad T. It can be shown that there is a bijective
correspondence between such liftings and distributive laws.
(3) There is an isomorphism of categories of algebras:

Alg(TS) = Alg(T)
\ /
Alg(95)
e
C

When we apply this result to our power law 7: (—=)*P = P(—)* from (2) we
obtain a new monad £ = P(—)* which we shall call the language monad.
This name is chosen because the sets L(X) = P(X™*) contain languages L C
X* with words over the alphabet X.

O

According to Proposition 8 (1), the unit nx: X — L£(X) is given by

The multiplication px: £2(X) — L(X) maps a set V € LX) = P(P(X*)*)
of sequences of languages to the language:

px (VY = {{s1,. .., 80) | HLy,..., Lp) € V.Vi <m.s; € L;}
where 7: X** — X™* is (—)*’s “flattening” multiplication
={s1... 8| IHLy,....Ly) €eV.Vi<n.s; € L;}
where - is concatenation of sequences
=WLi-...-Ly| (Ly,...,L,) €V}

where - is concatenation for sets of sequences (languages).

The next question is: what are the algebras of the language monad L7 Before
answering this question we recall the well-known facts that the algebras of the
(—)* monad are monoids, and that the algebras of the powerset monad P are
complete lattices (posets in which each subset has a join). Proposition 8 (3)
tells that £-algebras are algebras of the lifted monad P on the category Mon of
monoids. The functor P maps a monoid (X, -, 1) to the monoid (P(X), e, {1}),
with composition operation e given on u,v € P(X) as:

vev={x-y|lrc€uny€uv}.

An algebra (P(X), e, {e}) — (X, -, e) is thus a P-algebra P(X) — X, forming
a join-operation \/, which is a homomorphism of monoids:

(Vu)- (Vo) =Vuev=V{z-y|lxeceunyecv}.

This means that the monoid’s operation - preserves joins in both variables
separately. The next (folklore) result summarises the situation so far.

Theorem 9 The language monad £ = P((—)*) induced by the “power” dis-
tributive law (—)*P = P(—)* from (2) has Kleene algebras as Eilenberg-
Moore algebras. The latter are complete lattices with a monoid structure in
which joins are preserved by the monoid operation, in both variables. 0

Often one sees the “finite” version of Kleene algebras with only finite joins 0
and x + y satisfying distribution equations like (x +y) -z =2 -2+ y- 2z and
z(xt+y)=z-x+z-yand 0-x =0 = x-0. In the theorem we obtain algebras
with arbitrary joins, such as used in [9], under the name “standard Kleene
algebras”. The associated iteration operation is obtained as z* = \,en2"™.
Our L-algebras are also known as unital quantales, see [22].

The set of languages £(X) carries a free Kleene algebra structure py: £2(X) —
L(X), with the familiar structure induced by the multiplication u:

0 = px (0) =0
1 = rx ({O}) = {0}
Li-Ly = px ({{L1, La)}) = {s1-82| 81 € L1 Asy € Lo}
Vier Li = px({{Li) |i€1}) = UierLs
L = px({{L,..., L) [n € N}) = Vpen L™

3.2 Differential equations for languages

In the previous subsection we have seen how sets of languages L(A) = P(A*)
form free Kleene algebras. Here we shall investigate them as (carriers of) final
coalgebras. We shall do so in three stages, where the first one is well-known
(and extensively studied in |23, Section 10]), and the second one comes from |5,
Corollary 4.4.6]. The third one builds on the above language monad L.

3.2.1 Languages and deterministic automata

A deterministic automaton, with alphabet A, is a coalgebra (4, £): X — X4 x2.
The transition function § maps a state together with an input to a new (next)
state, and the output function ¢ tells of a state x € X whether x is terminal
(e(x) = 1) or not (e(x) = 0). We shall write D = (=)* x K, for the functor
involved. Typical for these deterministic automata is that for each state x and
input letter @ € A there is precisely one successor state 2’ with x - 2/,
i.e. with ' = §(x)(a).

As is well-known, the final D-coalgebra is given by the set of languages L(A) =
P(A*) over the alphabet A, with coalgebra structure (8,): L{A) — L(A)*A x 2
given by the “derivative” function and “is nullable” predicate (see [9,23]): for
LeL(A)and a € A,

6(L)(a) = La
={oe A |a-c€l}
e(L) = (1< L)

= (0 el)

For an arbitrary D-coalgebra X — X“ x 2, the induced homomorphism to

this final coalgebra,

XAx9-—-—-—-=-—-—-- =L(A)4 x 2
=1(d,€)
X----—=------ =L(A)

sends a state x € X to the language accepted in this state, i.e. to the set of
those strings {(ay, ..., a,) € A* leading from x to a terminal state.

The behaviour—or accepted languages—associated with a deterministic au-
tomaton can be described via “differential equations”. For instance, the au-
tomaton:

a

,)
QCOW with state 1 terminal

b

can be described by the equations:

L L
%LO %Ll <>€L0 %Ll %Ll <>€L1,
where L; is the language accepted in state ¢, and g—’; is a fancy notation for the
derivative L,, where x € A = {a,b}. The obvious solution of these equations
is Ly = a*b(a*b*)* and Ly = (a*b*)*. It is obtained as map L:2 — L(A) by
finality, using the above differential equations as description of a coalgebra
2 — 24 x 2.

By combining several clauses from Example 4 we obtain the following result
from [14] describing a sufficient condition for the existence of a distributive
law for deterministic automata, together with the associated final bialgebra.
For the proof we refer to [14].

Theorem 10 An Filenberg-Moore algebra 3:T(2) — 2 for a monad T induces
a distributive law \:'T'D = DT, namely as composite:

(T(m1), T'(m2)) stx 3

T(XA x 2) T(X4) x T(2) T(X)A x 2

where st: T(XA) — T(X)? is the so-called strength map st(u)(a) = T(\f €
X4 f(a))(w).

The Filenberg-Moore algebra forming the final A-bialgebra with the final coal-
gebra L(A) = DL(A) like in Lemma 3 is obtained pointwise as:

T(L(A)) = T(2A) ——T(2)4" LAY L(A). D

10

3.2.2 Languages and non-deterministic automata

A non-deterministic automaton, with alphabet A, is a coalgebra of the form
(6,€): X — P(X)4 x 2. The transition function § now maps a state z and an
input a to a set d(x)(a) € X of successor states.

As observed in [5], there is a distributive law PD = DP, where D = (—)4 x K,
as defined in Subsection 3.2.1. It is an instance of Theorem 10, because the
set 2 = {0, 1} = P(1) carries a (free) P-monad structure, which is of course
given by union \/ wrt. the standard order 0 < 1. The resulting distributive
law, say A7, is given explicitly by:

Ak

P(XA x 2) P(X)4 x 2

Ur————Xa € AA{f(a) | 3b.(f,b) €U}, 3f.(f,1) € U)

It is not hard to see that the (final) A”-bialgebra induced as in Lemma 3 (and
given in Theorem 10) involves the union operation J: P(L(A)) — L(A) in:

ppeA)- - 2V iy - o x 2
A
(0u, eu) PDL(A) ~|(0,€)
P4, ‘C“MN
PL(A) -~~~ oL

In fact, this says that the union J of languages can be defined by coinduction
via the D-coalgebra (du, ey) given by:

eu(U) = (0 eUU) and ou(U)(a) ={L.| L eU}.

One of the nice observations in [5], see its Corollary 4.4.6, is that the
languages associated with a non-deterministic automaton can be defined by
AP-coinduction, i.e. as solution of a AP-equation, namely of the automaton
X — DP(X) = P(X)4 x 2 itself, like in:

11

For instance, the non-deterministic automaton

1

b with state 2 terminal

2

s

gives rise to the differential equations

OL, oLy 0L, OLy OLy, OLy
0 tle o0 om0 Gl =0 = L

() & Lo () &L () €Ly

What is important is that the expressions on the right-hand-side may now
involve a + operation for union. The solution, obtained by A”-coinduction as
a function L:3 — L(A) can be described explicitly as Lo = (a-+ab)(b(a+ab))*,
Ly = b(b(a+ ab))* and Ly = (b(a + ab))*.

3.2.3 Languages and language automata

Our next step is to use a new kind of automata, namely of the form (§,¢): X —
L(X)"*x2. We call them “language automata” because of the occurrence of the
language monad L. Such automata may involve non-deterministic transitions
r -2 (zy1,...,7,) to multiple states, for instance in some decomposed form.

Again by Theorem 10 there is a distributive law A*: £D = DL. This time
we need an algebra £(2) — 2. It is again obtained by freeness, using that
L(0) = P(0*) = P(1) = 2. The resulting multiplication map u: £L(2) — 2 is
given by p(V) = Liff (1,...,1) € V for some sequence (1,...,1) of 1’s only.
Concretely, the resulting distributive law A% P((X4 x 2)*) — P(X*)4 x 2 is:

A5 (V)
(Xa€ AL{f(a), ..., fa(@))|Tbr, .. by €2.((f1.b1), .., (fa, ba)) € V1,
3 € XA (A0, (f) EV)

It is not hard to see that the map of monads o = P(n*): P = L—see Propo-
sition 8 —commutes with the distributive laws A\¥ and M\, in the sense that
the following diagram commutes.

P
PD—A . pp
aDj jDU
LD ——z—=DrL

12

Like before we get a final A*-bialgebra, with algebra structure | J: £2(A) —
L(A) determined in:

pera---PW L priay - ciat <o
M|
(0, eL)) LDL(A) ~|(4,¢€)
L(6, g>)T~
L2(A)-—— - L)

This means that |] is given on a set V' € L2(A) of sequences of languages by:

HellV<=cey(V)=1<= Ly,....,L,) eV.Vi.() € L;

and for a € A,

(|_| v)a — |_|{<(L1)aa DRI (Ln)a> | <L17 . ..,Ln> S V}

This second equation implies that | | is not the multiplication pu: £2(A) — L(A)
of the monad L. Following the formula in Theorem 10 we can describe it
explicitly as union of intersections:

UV =WLin---NL, | {Ly,..., L, € V}.

These language automata X — £(X)“ x 2 resemble alternating automata [21].
It is at this stage not clear how useful the additional expressive power is for
solving more expressive differential equations (with A*-coinduction).

4 Free monads and their distributive laws

In this section we consider an endofunctor F:C — C with two canonical
associated monads I'* and '™, together with distributive laws A* and A
over I'. Propositions 11 and 12 contain standard results about F'* which are
not used directly, but provide the setting for similar (new) results about F'*°.
The latter form the basis for our main result in Section 6, namely the link
between two forms of equation solving.

4.1 The free monad on a functor

Let F:C — C be an arbitrary endofunctor on a category C with (binary)
coproducts +. The only assumption we make at this stage is that for each

13

object X € C the functor X + F'(—):C — C has an initial algebra. We shall
use the following notation. The carrier of this initial algebra will be written
as F*(X) with structure map given as:

X F(FH(X)) —Z—F*(X)
Further, we shall write

Nix — Qx © Ky Tx — Qx © Kg,
so that ax = [nx, 7x].

The mapping X — F*(X) is functorial: for f: X — Y we get:

ax] flm o f.7v]
FrX)= == -~ 15*—(17)““>F*(Y)

This means that
Fr(f)yonx =nvof F2(f)o1x = 7v o F(F*(f)),
i.e. that n:id = I and 7: FI'* = ['* are natural transformations.

Next we establish that F™* is a monad. The multiplication g is obtained in:

0 1 BP0 - AT e)
OZF*(X)lN L[id’ x|
FHF* (X)) - = — = — - il = F*(X)

This yields one of the monad equations, namely px o np:(x) = id. The related
equation py o F*(nyx) = id follows from uniqueness of algebra maps ay —
Qax:

px o F*(nx) o ax = px o [neex) © Nx, Trex)] © (id + F(F*(nx)))
= [nx,7x o Fpux)] o (id + F(F*(nx)))
= ax o (id + F(ux o F*(nx))).

Similarly, the other requirements making F* a monad are obtained.
The following standard result sums up the situation.
Proposition 11 Let F: C — C with induced monad (F*,n, 1) be as described

above.

14

(1) The mapping X — [F(F*(X)) =5 F*(X)] forms a left adjoint to the
forgetful functor U: Alg(F) — C. The monad induced by this adjunction

is (F*,m, 1)
(2) The mapping ox = 7x o F(nx): F(X) — F*(X) yields a natural trans-
formation F' = F* that makes I'* the free monad on F. 0J

The next observation shows that the monad F™* of (finite) F-terms fits with
the behaviour of F. It follows from a general observation (made for instance
in [5]) that distributive laws F*G = GF* correspond to ordinary natural
transformations F'G = GF*. Hence by taking G = F' and unit F'F' = FF~*
one gets F*I' = F'F*. But here we shall present the construction explicitly.

Proposition 12 Let I':C — C have free monad F*. Then there is a distribu-
tive law *: F*F = F'F*.

Proof. We define \y: F*(FX) — F(F*X) as follows.

F*(FX) O‘E‘}(FXJrF(F*(FX)) [F(nX)aF(ﬂX © F*(UX))]

F(F*X)

where ox = 7x o F(nx): F(X) — F*(X) as introduced in Proposition 11 (2).

Example 13 Let Z = RN be the set of streams of real numbers. It is of
course the final coalgebra of the functor ' = R x (=), via the head and tail

operations (hd, th: Z —> R x Z. It is shown in [23] that on such streams one
can coinductively define binary operators & for sum and @ for shuffle product
satisfying the recursive equations:

& @y = (hd(x) + hd(y)) - (thz) @ thy))
x @y = (hd(z) x hd(y)) - ((tx) @ y) © (x @ tly))),

where - is prefi.

It is easy to see that one defines & by ordinary coinduction, in:

Rx (ZxZ)y--—-== Rx Z
C@T ~]<hd,t/>
A

where the coalgebra cq 1s defined by:

Co(x,y) = (hd(x) + hd(y), (tlx), tly))).

Once we have §: 7 X 7 — 7 we show how to obtain x @y as a solution of
a A-equation. We start from the signature functor (X)) = X x X. There

15

is an obuvious natural transformation X F = FY* given by ((r,x), (s,y)) —
(r+s,(x,y)). By [5, Lemma 3.4.24] it lifts to a distributive law A\: ¥*F = FY*
involving the associated free monad Y*. The algebra ®:3(7Z) — Z yields an
Filenberg-Moore algebra | — ||: X>*(Z) — Z, which is by the same result of [5]
a A-bialgebra. Now we obtain @ as solution in:

R x 2(Z x 7)- “4X 8L R o oseiy
jz‘d <=1
de R x Z
~]<hd, o)
X Fm—— == - G- -7

i which the \-equation dg is defined by:

do(2,y) = (hd(x) x hd(y), (thz),y) Dz, thy))),

where & is a symbol for sum in the language of terms on pairs from Z x Z.
Here we exploit the expressive power of the A-approach, because we can now
write terms as second component.

Clearly, the above diagram says:
hd(x @ y) = hd(x) x hd(y).
And also, as required:

thx @y) =

4.2 The free iterative monad on a functor

Let, like in the previous section, [: C — C be an arbitrary endofunctor on a
category C with (binary) coproducts +. The assumption we now make is that
for each object X € C the functor X + F'(—):C — C has a final coalgebra—
instead of an initial algebra. We shall use the following notation. The carrier
of this final calgebra will be written as F'*°(X) with structure map given as:

Fo(X) — S X 4 F(F(X)

16

The sets F*(X) in the previous section are understood as the set of finite
terms of type F' with free variables from X. Here we understand F'*°(X) as
the set of both finite and infinite terms (or trees) with free variables in X.

Like before, we shall write:

nx = Cx' ok Tx = (X' © Ka.

Functoriality of [’ is obtained as follows. For f: X — Y in C we get:

Y + F(F®(X)) MAFERD)Ly P(F>(Y))
(F +id) o] o
FR(X)= ===~ ﬁ@ﬂ““’Fm(Y)

This means that

Fe(fyonx =nyof Fee(f) omx = 1y o F(E>(f)),
t.e. that n:id = F'*° and 7: 'I’™ = '™ are natural transformations.

It is shown in [3,19] that F* is a monad'. The multiplication operation
i is rather complicated, and can best be introduced via substitution ¢[s/z].
What we mean is replacing all occurrences (if any) of the variable z in the
term ¢ by the term s, but now for possibly infinite terms. In most gen-
eral form, this substitution ¢[8"/77] replaces all occurrences of all variables
x € X simultaneously. In this way, substitution may be described as an oper-
ation which tells how an X-indexed collection (s;).ex of terms s, € F=(Y)
acts on a term ¢t € F*°(X). More precisely, substitution becomes an oper-
ation subst(s): F>°(X) — F*(Y), for a function s: X — F*°(Y). As usual,
such a substitution operation should respect the term structure—i.e. be a
homomorphism—and be trivial on variables. Standardly, substitution is de-
fined by induction on the structure of (finite) terms. But since we are dealing
here with possibly infinite terms, we have to use coinduction. This makes the
substitution more challenging. In general, it is done as follows.

Lemma 14 Let X,Y be arbitrary sets. Each function s: X — F*(Y) gives
rise to a coalgebraic substitution operator subst(s): F*(X) — F>(Y),

1 Similar results appeared earlier in [20], but for the functor Y — F(X +Y).

17

namely the unique homomorphism of I'-algebras:

P (0)) D oo) X
Txl [T Y with nx | \
F=X) subst(s) F=Y) F=X) subst(s) F=Y)

Proof. We begin by defining a coalgebra structure on the coproduct F'*°(Y)-+
F*(X) of terms, namely as the vertical composite on the left below. This coal-
gebra on F™(Y) 4+ F*(X) simply unravels on F*°(Y) on the left component
of +, and it applies s to the variables in the right component.

Y 4 F(FR(Y) + Fo(x)) - A I Y 4 F(F=(Y))
[®y+me%6ww0ﬂ@H
PR(Y) + F(F=(X)

[K1, sTJr id | ~oy
F=(Y) + (X + F(F>(X))
idy ‘TF Cx
FoRY)+ Fo(X)- - ————2—-— - - - - F(Y)

One first proves that f o x; is the identity, using uniqueness of coalgebra maps
(y — (y. Then, f o ks is the required map subst(s). O

In the remainder of this paper we shall make frequent use of this substitution
operator subst(—). Computations with substitution are made much easier with
the following elementary results. Proofs are obtained via the uniqueness prop-
erty of substitution.

Lemma 15 For s: X — F*(Y) we have:

(1) SUbSt(nx) ZdF(X

(2) subst(s) o F*(f) = subst(so), for [+ 7 — X.

(3) subst(r) o subst(s) = subst(subst(r) o s), for r:Y — F*(Z).

(4) F°°() = subst(ny o [), for [:Y — Z, and hence subst(F*(f) o s) =
F>(f) o subst(s).

(5) subst(s) = |s, 7y o F(subst(s))] o (x. O

Proposition 16 The map px = subst(idpe(x)): F'*°(F>(X)) — F>(X) makes
the triple (F*°,n, 1) a monad.

18

