The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/35731

Please be advised that this information was generated on 2020-09-21 and may be subject to change.
Limits on anomalous trilinear gauge couplings from $WW \to e^+e^-$, $WW \to e^+\mu^+$, and $WW \to \mu^+\mu^-$ events from pp collisions at $\sqrt{s} = 1.96$ TeV

Limits are set on anomalous $WW\gamma$ and WWZ trilinear gauge couplings using W^+W^- → $e^+\nu e^-\bar{\nu}_e$, $W^+W^- → e^+\nu e^-\bar{\nu}_e$, and $W^+W^- → \mu^+\nu\bar{\nu}_\mu$ events. The data set was collected by the Run II D0 detector at the Fermilab Tevatron Collider and corresponds to approximately
250 pb\(^{-1}\) of integrated luminosity at \(\sqrt{s} = 1.96\) TeV. Under the assumption that the \(WW\gamma\) couplings are equal to the \(WWZ\) couplings and using a form factor scale of \(\Lambda = 2.0\) TeV, the combined 95\% C.L. one-dimensional coupling limits from all three channels are \(-0.32 < \Delta \kappa < 0.45\) and \(-0.29 < \lambda < 0.30\).

Within the standard model (SM), interactions between the bosons of the electroweak interaction are entirely determined by the gauge symmetry. Any deviation from the SM couplings is therefore evidence of new physics. The most general Lorentz invariant effective Lagrangian which describes the triple gauge couplings has fourteen independent coupling parameters, seven for each of the \(WW\gamma\) and \(WWZ\) vertices [1]. With the assumption of electromagnetic gauge invariance and \(C\) and \(P\) conservation, the number of independent couplings is reduced to five, and the Lagrangian takes this form:

\[
\frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V (W_{\mu}^+ W_{\nu} V^{\mu
u} - W_{\mu}^- V_{\nu} W^{\mu
u}) \\
+ i\kappa_V W_{\mu}^+ W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{M_W^2} W_{\mu} W_{\nu} V^{\mu\nu}
\]

(1)

where \(V = \gamma\) or \(Z\), \(W\) is the \(W\) field, \(W_{\mu\nu} = \partial_\mu W_\nu - \partial_\nu W_\mu\), \(V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu\), and \(g_1^V = 1\). The overall couplings are \(g_{WWV} = -e\) and \(g_{WWZ} = -e\cot\theta_W\).

The five remaining parameters are \(g_1^{\gamma}, \kappa_Z, \kappa_\gamma, \lambda_Z\), and \(\lambda_\gamma\). In the SM, \(g_1^{\gamma} = \kappa_Z = \kappa_\gamma = 1\) and \(\lambda_Z = \lambda_\gamma = 0\). The couplings \(g_1^{\gamma}, \kappa_\gamma,\) and \(\kappa_Z\) are often written in terms of their deviation from the SM values as \(\Delta g_1^{\gamma} = g_1^{\gamma} - 1\), and similarly for \(\Delta \kappa_Z\) and \(\Delta \lambda_\gamma\).

One effect of introducing anomalous coupling parameters into the SM Lagrangian is an increase of the cross section for the \(q\bar{q} \to Z/\gamma \to W^+ W^-\) process, particularly as parton center-of-mass energies rise to infinity. Thus, constant finite values of the anomalous couplings produce unphysically large cross sections, violating unitarity. To keep the cross section from diverging, the anomalous coupling must vanish as \(s \to \infty\). This is done by introducing a dipole form factor for an arbitrary coupling \(\alpha (g_1^{\gamma}, \kappa_\gamma,\) or \(\lambda_\gamma\) from Eq. 1):

\[
\alpha(s) = \frac{\alpha_0}{(1 + s/\Lambda^2)^2}
\]

(2)

where the form factor scale \(\Lambda\) is set by new physics. For a given value of \(\Lambda\), there is an upper limit on the size of the coupling, beyond which unitarity is exceeded.

Limits on the \(WW\gamma\) and \(WWZ\) anomalous couplings are set using the data, event selection, and background calculations from the recent \(WW\) cross section analysis published by the DO Collaboration [2]. The cross section analysis measures the \(pp \to WW\) cross section to be \(13.8^{+4.3}_{-3.8}\) (stat)\(^{+1.2}_{-0.9}\) (syst) \(\pm 0.9\) (lum) pb, compared with a SM next-to-leading order prediction of \(13.0 - 13.5\) pb [3].

The leptonic channels \(WW \to \ell^+ \ell^- \nu \bar{\nu} (\ell = e, \mu)\) were used to measure the cross section, with integrated luminosities of 252 pb\(^{-1}\) for the \(e^+e^-\) channel, 235 pb\(^{-1}\) for the \(e^+\mu^-\) channel, and 224 pb\(^{-1}\) for the \(\mu^+\mu^-\) channel.

Table I summarizes the predicted numbers of signal and background events, with statistical error, and number of candidate events for each decay channel.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Signal</th>
<th>Background</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^+e^-)</td>
<td>3.26 ± 0.05</td>
<td>2.30 ± 0.21</td>
<td>6</td>
</tr>
<tr>
<td>(e^+\mu^-)</td>
<td>10.8 ± 0.1</td>
<td>3.81 ± 0.17</td>
<td>15</td>
</tr>
<tr>
<td>(\mu^+\mu^-)</td>
<td>2.01 ± 0.05</td>
<td>1.94 ± 0.41</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE I: Predicted numbers of signal and background events, with statistical error, and number of candidate events for each decay channel.

The leading order MC generator by Hagiwara, Woodside, and Zeppenfeld (HWZ) [1] is used to generate events for a grid in (\(\Delta \kappa, \lambda\)) space. The central area of each grid has a finer spacing of generated coupling parameters to ensure that the likelihood surface is well defined inside the area where limits are expected to be set.

The generated events for each grid point are passed through a parametrized simulation of the DO detector that is tuned using Z boson events. The outputs for each grid point are the simulated \(p_T\) spectra for the two leptons in the event scaled to match the luminosity of the data. Eight \(p_T\) bins are used to calculate the likelihood at each grid point: three bins plus an overflow bin for each of the two leptons. Figure 1 shows the data for the leading lepton in the \(e^+\mu^-\) channel with MC estimations for the SM and two sample anomalous coupling grid points.

The simulated signal from the HWZ generator and the
FIG. 1: Leading lepton p_T distributions for data (points), SM MC (solid line), and two anomalous coupling MC scenarios (dashed lines), from the $WW \rightarrow e\mu\tau$ channel, binned as used to calculate likelihood.

background, taken from the cross section analysis, are compared to the p_T distribution of the data by calculating a bin-by-bin likelihood. Each bin is assumed to have a Poisson distribution with a mean equal to the sum of the signal and background. The uncertainties on the signal and background distributions are accounted for by weighting with Gaussian distributions. Correlations between the signal and background uncertainties for each channel are small, so they are handled separately. The uncertainty on the luminosity is 100% correlated, and so varies the same way for all channels. The likelihood, L, is calculated as

$$L = \int \mathcal{G}_f P_{\ell\ell}(f_i) P_{\ell\mu}(f_i) P_{\mu\mu}(f_i) df_i \quad (3)$$

$$P_{\ell\ell}(f_i) = \int \mathcal{G}_{fn} \prod_{i=1}^{N_{\text{bins}}} \mathcal{P} \left[N_{\ell\ell}^i; (f_if_{nm}b_{\ell\ell}) \right] df_n df_b \quad (4)$$

where $\mathcal{P}(a; \alpha)$ is the Poisson probability of obtaining a events if the mean expected number is α; $N_{\ell\ell}^i$ and $b_{\ell\ell}$ are the simulated numbers of signal and background events for the $\ell\ell'$ channel in bin i; $N_{\ell\ell}^i$ is the measured number of events for this channel in this bin; and f_i, f_n, and f_b are the luminosity, signal, and background weights drawn from the Gaussian distributions \mathcal{G}_{f_i}, \mathcal{G}_{f_n}, and \mathcal{G}_{fb} respectively.

To extract the limits, a 6th order polynomial is fitted to the grid of negative log likelihood values. The one- and two-dimensional 95% C.L. limits are determined by integrating the likelihood curve or surface, respectively. In the one-dimensional case, the 95% C.L. limits represent the pair of points of equal likelihood that bound 95% of the total integrated area between the ends of the MC grid. The two-dimensional 95% C.L. contour line is the set of points of equal likelihood that bound a region containing 95% of the total integrated volume between the MC grid boundaries.

One-dimensional 95% C.L. limits are summarized in

<table>
<thead>
<tr>
<th>Coupling</th>
<th>95% C.L. Limits</th>
<th>Λ (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WW\gamma = WWZ$</td>
<td>$\Delta\kappa$</td>
<td>-0.31, 0.33</td>
</tr>
<tr>
<td></td>
<td>$\Delta\lambda$</td>
<td>-0.36, 0.47</td>
</tr>
<tr>
<td>$WW\gamma = WWZ$</td>
<td>$\Delta\kappa$</td>
<td>-0.29, 0.30</td>
</tr>
<tr>
<td></td>
<td>$\Delta\lambda$</td>
<td>-0.32, 0.45</td>
</tr>
<tr>
<td>HISZ</td>
<td>$\Delta\kappa$</td>
<td>-0.34, 0.35</td>
</tr>
<tr>
<td></td>
<td>$\Delta\kappa_{\gamma}$</td>
<td>-0.57, 0.75</td>
</tr>
<tr>
<td>SM WWγ</td>
<td>$\Delta\kappa$</td>
<td>-0.39, 0.39</td>
</tr>
<tr>
<td></td>
<td>$\Delta\lambda$</td>
<td>-0.45, 0.55</td>
</tr>
<tr>
<td>SM WWZ</td>
<td>$\Delta\kappa$</td>
<td>-0.97, 1.04</td>
</tr>
<tr>
<td></td>
<td>$\Delta\kappa_{\gamma}$</td>
<td>-1.05, 1.29</td>
</tr>
</tbody>
</table>

FIG. 2: One- and two-dimensional 95% C.L. limits when WWZ couplings are equal to WWγ couplings, at $\Lambda = 2.0$ TeV. The bold curve is the unitarity limit, the inner curve is the two-dimensional 95% C.L. contour, and the ticks along the axes are the one-dimensional 95% C.L. limits.
FIG. 3: One- and two-dimensional 95% C.L. limits for (a) $WW\gamma = WWZ$ at $\Lambda = 1.5$ TeV, (b) HISZ at $\Lambda = 1.5$ TeV, (c) SM $WW\gamma$ at $\Lambda = 2.0$ TeV, and (d) SM WWZ at $\Lambda = 1.0$ TeV. The bold curve is the unitarity limit (where it fits within the plot boundaries), the inner curve is the two-dimensional 95% C.L. contour, and the ticks along the axes are the one-dimensional 95% C.L. limits.

Table II, and two-dimensional 95% C.L. contours are shown in Figs. 2 and 3. Under the assumption that the $WW\gamma$ and WWZ couplings are equal and using a form factor scale of $\Lambda = 2.0$ TeV, the 95% C.L. limits obtained are $-0.32 < \Delta \kappa < 0.45$ and $-0.29 < \lambda < 0.30$. This significantly improves upon the previous limits from the DØ Collaboration, $-0.62 < \Delta \kappa < 0.77$ and $-0.53 < \lambda < 0.56$, set in Run I at the Fermilab Tevatron Collider for the same channels under the same assumption using an integrated luminosity of 100 pb$^{-1}$ [5]. Although the combined anomalous coupling limits from the CERN e^+e^- Collider (LEP) collaborations are tighter [6], the hadronic collisions at the Fermilab Tevatron Collider explore a range of parton center-of-mass energies not explored at LEP.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

[4] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993), the coupling relationships used are $\Delta \kappa Z = \Delta \kappa, (1 - \tan^2 \theta W), \Delta \phi^\gamma = \Delta \kappa \gamma / (2 \cos^2 \theta W)$, and $\lambda Z = \lambda \gamma$.