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Abstract

Causal independence modelling is a well-known method both for reducing the size of
probability tables and for explaining the underlying mechanisms in Bayesian networks.
Many Bayesian network models incorporate causal independence assumptions; however,
only the noisy OR and noisy AND, two examples of causal independence models, are
used in practice. Their underlying assumption that either at least one cause, or all causes
together, give rise to an effect, however, seems unnecessarily restrictive. In the present
paper a new, more flexible, causal independence model is proposed, based on the Boolean
threshold function. A connection is established between conditional probability distri-
butions based on the noisy threshold model and Poisson binomial distributions, and the
basic properties of this probability distribution are studied in some depth. We present and
analyse recursive methods as well as approximation and bounding techniques to assess
the conditional probabilities in the noisy threshold models.

Keywords: Bayesian networks, causal independence, parameter assessment, knowledge
representation, probability theory.

1 Introduction

Bayesian networks [22] offer an appealing language for building models of domains with inher-
ent uncertainty. However, the assessment of a probability distribution in Bayesian networks
is a challenging task, even if its topology is sparse. This task becomes even more complex
if the model has to integrate expert knowledge. While learning algorithms can be forced to
take into account an expert’s view, for the best possible results the experts must be willing
to reconsider their ideas in light of the model’s ‘discovered’ structure. This requires a clear
understanding of the model by the domain expert. Causal independence models [6, 11, 27, 31]
can both limit the number of conditional probabilities to be assessed and provide the ability
for models to be understood by domain experts in the field.

∗This research, carried out in the TimeBayes project, was supported by the Netherlands Organization for
Scientific Research (NWO) under project number FN4556.
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Causal independence assumptions are often used in practical Bayesian network models
[18, 26]. However, only the logical OR and AND operators are used in practice in defining
the interaction among causes; their underlying assumption is that the presence of either at
least one cause or all causes at the same time give rise to the effect. The resulting probabilistic
submodels are called noisy OR and noisy AND, respectively. Our feeling is that in building
Bayesian-network models, the expressiveness of the noisy OR and noisy AND is too restrictive.

In this paper, we discuss a way to expand the space of causal independence models using
symmetric Boolean functions. It is known that any symmetric Boolean function can be
decomposed into threshold functions [28]. Thus, threshold functions offer a natural basis for
the analysis of causal independence models. Causal independence models with the threshold
interaction function are the main topic of this paper. They will be referred to as the noisy
threshold models. We present a theoretical basis for the introduced models and study in
some depth different ways to assess their conditional probability distributions. The presented
theory is illustrated by examples which motivate the use of threshold functions.

The structure of this paper is as follows. In the following section, the basic properties
of Bayesian networks are reviewed. Causal independence models and Boolean functions are
introduced in Section 3 as is the noisy threshold model. In Section 4, we establish a connection
between the noisy threshold model and Poisson binomial distribution. Section 5 explains two
recursive methods to compute the Poisson binomial distribution while Section 6 presents and
investigates the approximation and bounding techniques that assess the probabilities in linear
number of operations. Finally, in Section 7, we summarise what has been achieved by this
research.

2 Review of Bayesian Networks

A Bayesian network B = (G,Pr) represents a factorised joint probability distribution on a
set of random variables V. It consists of two parts: (1) a qualitative part, represented as
an acyclic directed graph (ADG) G = (V(G),A(G)), where there is a 1–1 correspondence
between the vertices V(G) and the random variables in V, and arcs A(G) represent the
conditional (in)dependencies between the variables; (2) a quantitative part Pr consisting of
local probability distributions Pr(V | π(V )), for each variable V ∈ V given the parents π(V )
of the corresponding vertex (interpreted as variables). The joint probability distribution Pr
is factorised according to the structure of the graph, as follows:

Pr(V) =
∏

V ∈V

Pr(V | π(V )).

Each variable V ∈ V has a finite set of mutually exclusive states. In this paper, we assume
all variables to be binary; as an abbreviation, we will often use v to denote V = > (true) and
v̄ to denote V = ⊥ (false). An expression such as

∑

ψ(H1,...,Hn)=e

g(H1, . . . , Hn)

stands for summing over all possible values of g(H1, . . . , Hn) for all possible values of the
variables Hk for which the constraint ψ(H1, . . . , Hn) = e holds.

Let us look at an example that provides motivation for this paper. Rheumatoid arthri-
tis is a chronic, systemic, inflammatory disease that mainly affects the synovial membranes
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Figure 1: Example Bayesian network, modelling the interaction between the diagnostic criteria
and rheumatoid arthritis.

C1 C2 . . . Cn

H1 H2 . . . Hn

E f

Figure 2: Causal independence model.

of multiple joints in the body. Although in most cases diagnosis of rheumatoid arthritis is
generally made without difficulty, some persons have atypical clinical and radiological fea-
tures. As a consequence, certain diagnostic criteria have been proposed: (1) morning stiffness
in and around joints lasting at least 1 hour before maximal improvement; (2) soft tissue
swelling of three or more joint areas observed by a physician; (3) swelling of the proximal
interphalangeal, metacarpophalangeal or wrist joints; (4) symmetric swelling; (5) presence
of rheumatoid nodules; (6) presence of rheumatoid factor; (7) radiographic erosions with or
without periarticular osteopenia in hand and/or wrist joints. Rheumatoid arthritis is defined
by the presence of four or more of the foregoing criteria [1]. A Bayesian network modelling
the described interaction is shown in Figure 1.

The given example as well as many similar examples for diagnosis of other diseases, in
particular mental disorders, has a simple underlying logic which suggests that the state of the
diagnosis variable depends on the number of diagnostic criteria that are present.

As the reader can notice, the discussed examples are concerned with diagnosis of the
disease and thus do not follow cause-effect interpretation which is characteristic for causal
independence models. Our feeling is that the discussed underlying logic should not be limited
to diagnostic problems and can be successfully used for the prognosis of the disease. Therefore,
another medical example which solves the problem of prognosis of the disease and for which
we have quantitative information will be presented in Section 6.
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3 Causal Modelling and Boolean Functions

3.1 Causal Independence

Causal independence (also known as independence of causal influence) is a popular way to
specify interactions among cause variables. The global structure of a causal independence
model is shown in Figure 2; it expresses the idea that causes C1, . . . , Cn influence a given
common effect E through hidden variables H1, . . . , Hn and a deterministic function f , called
the interaction function. The impact of each cause Ci on the common effect E is independent
of each other cause Cj , j 6= i. The hidden variable Hi is considered to be a contribution of
the cause variable Ci to the common effect E. The function f represents in which way the
hidden effects Hi, and indirectly also the causes Ci, interact to yield the final effect E. Hence,
the function f is defined in such a way that when a relationship, as modelled by the function
f , between Hi, i = 1, . . . , n, and E = > is satisfied, then it holds that e = f(H1, . . . , Hn). It
is assumed that Pr(e | H1, . . . , Hn) = 1 if f(H1, . . . , Hn) = e, and Pr(e | H1, . . . , Hn) = 0 if
f(H1, . . . , Hn) = ē.

A causal independence model is defined in terms of the causal parameters Pr(Hi | Ci),
for i = 1, . . . , n and the function f(H1, . . . , Hn). Most papers on causal independence models
assume that absent causes do not contribute to the effect [11, 22]. In terms of probability
theory this implies that it holds that Pr(hi | c̄i) = 0; as a consequence, it holds that Pr(h̄i |
c̄i) = 1. In this paper we make the same assumption.

In situations in which model does not capture all possible causes it is useful to introduce a
leaky cause which summarizes the unidentified causes contributing to the effect and is assumed
to be always present [12]. We will not separate the leaky cause from the other causes as in
an arithmetic context they do not differ.

The conditional probability of the occurrence of the effect E given the causes C1, . . . , Cn,
i.e., Pr(e | C1, . . . , Cn), can be obtained from the causal parameters Pr(Hl | Cl) as follows
[21, 31]:

Pr(e | C1, . . . , Cn) =
∑

f(H1,...,Hn)=e

n
∏

i=1

Pr(Hi | Ci). (1)

In this paper we assume that the function f in Equation (1) is a Boolean function. Systematic
analyses of the global probabilistic patterns in causal independence models based on restricted
Boolean functions were presented in [21] and [17]. However, there are 22n

different n-ary
Boolean functions [8, 28]; thus, the potential number of causal interaction models is huge.
However, if we assume that the order of the cause variables does not matter, the Boolean
functions become symmetric [28] and the number reduces to 2n+1.

An important symmetric Boolean function is the exact Boolean function εl, which has
function value true, i.e. εl(H1, . . . , Hn) = >, if

∑n
i=1 ν(Hi) = l with ν(Hi) equal to 1, if Hi is

equal to true and 0 otherwise. A symmetric Boolean function can be decomposed in terms of
the exact functions εl as follows [28]:

f(H1, . . . , Hn) =
n
∨

i=0

εi(H1, . . . , Hn) ∧ γi (2)

where γi are Boolean constants only dependent on the function f . For example, for the
Boolean function defined in terms of the OR operator we have γ0 = ⊥ and γ1 = . . . = γn = >.
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Another useful symmetric Boolean function is the threshold function τk, which simply
checks whether there are at least k trues among the arguments, i.e. τk(H1, . . . , Hn) = >, if
∑n

i=1 ν(Hi) ≥ k with ν(Hi) equal to 1, if Hi is equal to true and 0 otherwise. To express it in
the Boolean constants we have: γ0 = · · · = γk−1 = ⊥ and γk = · · · = γn = >. Note that the
noisy OR corresponds to a threshold function τk with k = 1 and the noisy AND corresponds
to a threshold function τk with k = n. Hence, these two commonly used Boolean functions are
the extremes of a spectrum of Boolean functions based on the threshold function. Obviously,
any exact function can be written as the subtraction of two threshold functions and thus any
symmetric Boolean function can be decomposed into threshold functions.

Modelling the interaction among the diagnostic factors and presence or absence of rheuma-
toid arthritis, as shown in Figure 1, by means of a causal independence model with a threshold
function τk where k = 4 would preserve the underlying logic. However, even though the noisy
threshold models have been applied in a medical Bayesian network [29], the conditional prob-
ability distributions of these models have not been investigated. In the following we therefore
explore properties of the noisy threshold models, and look at different ways to compute their
conditional probability distributions.

3.2 The Noisy Threshold Model

Using the property of Equation (2) of the symmetric Boolean functions, the conditional
probability of the occurrence of the effect E given the causes C1, . . . , Cn can be decomposed
in terms of probabilities that exactly i hidden variables H1, . . . , Hn are true, as follows:

Pr(e | C1, . . . , Cn) =
∑

0 ≤ i ≤ n

γi

∑

εi(H1,...,Hn)

n
∏

j=1

Pr(Hj | Cj). (3)

Thus, Equation (3) yields a general formula to compute the probability of the effect in terms
of exact functions in any causal independence model where an interaction function f is a
symmetric Boolean function.

Let us denote a conditional probability of the effect E given causes C1, . . . , Cn in a noisy
threshold model with interaction function τk as Prτk(e | C1, . . . , Cn). Then, from Equation (3)
it follows that:

Prτk(e | C1, . . . , Cn) =
∑

k≤i≤n

∑

εi(H1,...,Hn)

n
∏

j=1

Pr(Hj | Cj). (4)

4 The Poisson Binomial Distribution

It turns out that causal independence models defined in terms of the Boolean threshold func-
tion, as discussed above, are closely connected to the so-called Poisson binomial distribution
known from statistics. In this section we establish this connection.

Let l denote the number of successes in n independent trials, where pi is a probability of
success in the ith trial, i = 1, . . . , n; let p = (p1, . . . , pn). The trials are then called Poisson
trials [9], and B(l;p) denotes the Poisson binomial distribution (also known as distribution
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of the number of successes of independent trials) [7, 19]:

B(l;p) =

{

n
∏

i=1

(1 − pi)

}

∑

1≤j1<...<jl≤n

l
∏

z=1

pjz
1 − pjz

(5)

The Poisson trials are characterized by the mean µ = 1
n

∑n
i=1 pi and the variance σ2 =

1
n

∑n
i=1(pi − µ)2. When the variance σ2 = 0, i.e., the success probability pi is a constant p,

the trials are called Bernoulli trials and B(l;p) reduces to the binomial distribution: B(l; p) =
(

n
l

)

pl(1 − p)n−l.
As it was assumed that absent causes do not contribute to the effect it follows that the

conditional probabilities Prτk(e | C1, . . . , Cn) depend only on the ‘active’ causes, i.e., causes Ci
that are equal to >. Let L = {i | Ci = >, i = 1, . . . , n}, and let r be a bijective renumbering
function, r : L↔ {1, . . . , |L|}, that respects the total order < on the natural numbers, i.e., if
i < i′, i, i′ ∈ L, then r(i) < r(i′). Then, p(C1, . . . , Cn) = {P (hi | ci) | i ∈ L} = {p1, . . . , p|L|},
where Pr(hi | ci) = pr(i), for each i ∈ L.

For example, to compute the conditional probability Prτk(e | c1, c̄2, c̄3, c4), the set of
probabilistic parameters is p(c1, c̄2, c̄3, c4) = {p1 = Pr(h1 | c1), p2 = Pr(h4 | c4)}.

Then, the connection between the Poisson binomial distribution and the causal indepen-
dence model using the noisy threshold function is as follows.

Proposition 1 It holds that:

Prτk(e | C1, . . . , Cn) =
∑

k≤i≤|p(C1,...,Cn)|

B(i;p(C1, . . . , Cn)). (6)

Proof: Note that in Section 3.2
∑

εl(H1,...,Hn)

∏n
j=1 Pr(Hj | Cj) was defined as the probability

that exactly l hidden variables H1, . . . , Hn are true. A hidden variable Hi can be seen as an
independent trial which has a probability of success Pr(hi | Ci), which is equal to 0 if Ci = ⊥,
and otherwise equal to Pr(hi | ci). Thus, in order to find the probability that exactly l hidden
variables are true it is enough to look only at those hidden variables that have a corresponding
active cause. Such a set of the probabilities Pr(hi | ci) has been defined as p(C1, . . . , Cn).
Considering the definition of the Poisson binomial distribution, Equation (4) yields what is
stated in the premise of this proposition. �

If the number of active cause variables is smaller than the threshold k the conditional
probability of the effect equals zero as it is shown in the following corollary.

Corollary 1 Let |p(C1, . . . , Cn)| < k, 1 ≤ k ≤ n, then Prτk(e | C1, . . . , Cn) = 0.

Proof: This follows directly from Equation (6). �

From Proposition 1 it follows that in a noisy threshold model with interaction function τk
and n cause variables,

∑k−1
i=0

(

n
i

)

of the probabilities Prτk(e | C1, . . . , Cn) are set to 0, while
the other

∑n
i=k

(

n
i

)

conditional probabilities of the effect such that |p(C1, . . . , Cn)| ≥ k are
computed from the corresponding Poisson binomial distributions.

In comparison, the noisy AND model has only one conditional probability of the effect that
is computed, i.e. Pr(e | C1, . . . , Cn) with |p(C1, . . . , Cn)| = n, while the other conditional prob-
abilities are set 0. In the noisy OR model only the conditional probability Pr(e | C1, . . . , Cn)
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with |p(C1, . . . , Cn)| = 0 is set to 0 and the other conditional probabilities in the model are
computed.

In [30] it was shown that the threshold function is a monotonic function, i.e., for all k it
holds:

n
∑

i=1

ν(Hi) ≤
n′

∑

i=1

ν(H ′
i) ⇒ ν(τk(H1, . . . , Hn)) ≤ ν(τk(H

′
1, . . . , H

′
n′)).

In words, if the number of hidden variables that are true increases then the output of the
threshold function goes from false to true or remains the same.

We can also show that the probability function Prτk(e | C1, . . . , Cn) is monotonic with re-
spect to the probability Pr(ht | ct) when the other causes and their corresponding probabilities
are fixed.

Proposition 2 The probability function Prτk(e | C1, . . . , Cn) is monotonically increasing with
respect to any conditional probability Pr(ht | ct), 1 ≤ t ≤ n.

Proof: The Poisson Binomial probabilities have the following property [5]:

B(l;p) = B(l;p\m)(1 − pm) + B(l − 1;p\m)pm.

Let pm = Pr(ht | ct) ∈ p(C1, . . . , Cn) and ρ = |p(C1, . . . , Cn)|, then:

Prτk(e | C1, . . . , Cn) = (1 − pm)
∑

k≤i≤ρ

B(i;p(C1, . . . , Ct−1, Ct+1, . . . , Cn))

+ pm
∑

k−1≤i≤ρ−1

B(i;p(C1, . . . , Ct−1, Ct+1, . . . , Cn)).

As B(ρ;p(C1, . . . , Ct−1, Ct+1, . . . , Cn)) = 0, the equation becomes:

Prτk(e | C1, . . . , Cn) =
∑

k≤i≤ρ−1

B(i;p(C1, . . . , Ct−1, Ct+1, . . . , Cn))

+ pmB(k − 1;p(C1, . . . , Ct−1, Ct+1, . . . , Cn)).

The Poisson binomial probabilities in the equation are independent of pm, thus the probability
function Prτk(e | C1, . . . , Cn) is monotonically increasing with respect to pm = Pr(ht | ct). �

In the remainder of the paper, we review the exact, approximation and bounding methods
to compute the conditional probabilities in the noisy threshold models. We also present
examples illustrating the discussed methods. We use both n and ρ = |p(C1, . . . , Cn)| to
define the cardinality of the set p: n is used while discussing the properties of the Poisson
binomial distribution and ρ is employed to analyse these properties in the context of noisy
threshold models.

5 Recursive Computation of the Poisson Binomial Distribu-

tion

Computing the probability B(l;p) naively, e.g. through (5), one needs to sum n!
l!(n−l)! terms,

which is impractical even when l and n are of moderate sizes. Recursive formulas require a
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smaller number of operations for computing this sum. We review two recursive methods to
compute the Poisson binomial probabilities in a recursive way.

The first method was presented by Chen et al. [4]. Let B(l;p) denote l successes in n

Poisson trials, then

B(l;p) = R(l)
n
∏

i=1

(1 − pi)

where R(l) can be computed recursively from

R(l) =
1

l

l
∑

i=1

(−1)i+1T (i)R(l − i)

with T (i) =
∑n

j=1

(

pj

1−pj

)i

for any i ≥ 1.

The second recursive method to calculate the Poisson binomial distribution is very similar
to the method presented by Howard [14]. The Poisson binomial probability B(l;p) can be
computed recursively from

B(l; (p1, . . . , pn)) = B(l; (p1, . . . , pn−1))(1 − pn) + B(l − 1; (p1, . . . , pn−1))pn.

Both presented methods require the order l×n operations to compute the Poisson binomial
probability B(l;p), |p| = n.

Using

B(l; (p1, . . . , pn)) = B(n− l; (1 − p1, . . . , 1 − pn))

and

n
∑

i=k

B(i; (p1, . . . , pn)) = 1 −
k−1
∑

i=0

B(i; (p1, . . . , pn))

we can always rewrite Equation (6) so that the probability Prτk(e | C1, . . . , Cn) can be com-
puted in order ρ× min(k, ρ− k) steps applying both methods.

6 Approximations and Bounds for the Poisson Binomial Dis-

tribution

In Section 5 we presented a recursive method to compute the Poisson Binomial probabilities
in a quadratic number of operations. However, it can still be too expensive, thus in this
section we present approximations and bounds that can be computed in a linear number of
operations.

To illustrate the quality of the presented results we will use a noisy threshold model
shown in Figure 3 that represents a real-world medical problem of prognosis in patients with
gastric non-Hodgkin’s lymphoma. Gastric non-Hodgkin’s lymphoma is a type of cancer of the
lymphatic system, the disease-fighting network spread throughout the body, which originates
in the stomach. The following pretreatment variables are used as the prognostic factors in
the model: (1) age; (2) general health status; (3) bulky disease; (4) histological classification;
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Figure 3: Noisy threshold model modelling complete remission following the treatment of
gastric Non-Hodgkin lymphoma. Prk is a shortening for Pr(hk | ck), and τ2 stands for
Boolean threshold function with k = 2. Leaky cause C7 is assumed to be always active.

(5) stage of the cancer; (6) clinical signs (hemmorhage, perforation, obstruction) due to the
disease; (7) leaky cause that stands for unidentified prognostic factors. The prognosis stands
for endoscopically verified result of the treatment, six to eight weeks after treatment with
complete remission defining a situation in which all clinical signs of disease disappear with
the treatment. A more elaborate description of the domain can be found in [20].

6.1 Noisy Threshold Models for Classification

Classification is one of the ways to use the noisy threshold models. In this case, the causes
can be interpreted as feature variables, the effect as the class variable, and the conditional
probability Prτk(e | C1, . . . , Cn) as the class probability. For binary classifiers the default
classification threshold (not to be confused with the threshold function) typically is set to 1

2 .
To classify a data instance using a noisy threshold classifier as defined there is no need to
compute the exact probability Prτk(e | C1, . . . , Cn), it is enough to know whether
Prτk(e | C1, . . . , Cn) ≤ 1

2 or Prτk(e | C1, . . . , Cn) ≥ 1
2 . We will show that in many cases there

is a simple way to determine which state of the effect/class variable is more likely to occur.
We start by introducing some properties of the Poisson binomial distribution that are

needed to derive this result.
The mean mp of the distribution B(i;p) is by definition equal to

mp =
n
∑

i=0

i B(i;p).

By means of some algebraic manipulation it can be shown that for the Poisson binomial
distribution B(l;p) the mean mp is equal to the sum of the probabilities p1, . . . , pn [9]:

mp =
n
∑

i=1

pi.
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The median Mp of the discrete probability distribution B(l; p) is the integer number such
that:

(1)

Mp
∑

i=0

B(i;p) ≥ 1

2
,

(2)

n
∑

i=Mp

B(i;p) ≥ 1

2
.

Jogdeo and Samuels [16] established a connection between the mean mp and the median
Mp of the Poisson binomial distribution:

Mp =

{

l if mp = l

l or l + 1 if l < mp < l + 1
(7)

where 0 ≤ l ≤ n is an integer.
Knowing the connection between the median and the mean we can distinguish between the

conditional probabilities where the effect E is more likely to be present and the conditional
probabilities where the effect E is more likely to be absent.

Proposition 3 Let |p(C1, . . . , Cn)| ≥ k, 1 ≤ k ≤ n, then

• Prτk(e | C1, . . . , Cn) ≥ 1
2 if k ≤ mp,

• Prτk(e | C1, . . . , Cn) ≤ 1
2 if k ≥ mp + 1.

Proof: Equation (6) can be written in the form

Prτk(e | C1, . . . , Cn) =

Mp−1
∑

i=k

B(i;p) +

ρ
∑

i=Mp

B(i;p) if k ≤Mp,

Prτk(e | C1, . . . , Cn) = 1 −
Mp
∑

i=0

B(i;p) −
k−1
∑

i=Mp+1

B(i;p) if k ≥Mp + 1.

Then from the definition of the median Mp we get the following inequalities:

Prτk(e | C1, . . . , Cn) ≥
1

2
if k ≤Mp,

Prτk(e | C1, . . . , Cn) ≤
1

2
if k ≥Mp + 1.

From Equation (7) it follows that Mp equals bmpc or dmpe, thus the inequalities above can
be written as:

Prτk(e | C1, . . . , Cn) ≥
1

2
if k ≤ mp,

Prτk(e | C1, . . . , Cn) ≤
1

2
if k ≥ mp + 1.

�
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Figure 4: Example of the Poisson approximation for the Poisson binomial distribution.

In the noisy threshold model modelling complete remission of gastric non-Hodgkin lym-
phoma there are 26 = 64 conditional probabilities of the effect. From Proposition 3 we find
that 23 of the probabilities are equal or larger than 1

2 and 9 probabilities are equal or smaller
than 1

2 . Unfortunately, the other 32 probabilities cannot be determined as their mp value falls
into the interval (1; 2). However, one should notice that this result strongly depends on the
size of the model, i.e. in a bigger noisy threshold model where mp values vary more, a bigger
percentage of the conditional probabilities of the effect can be classified in the described way.

6.2 Approximations for the Poisson Binomial Distribution

The Poisson binomial distribution can be approximated by other distributions that are com-
puted in linear rather than quadratic time.

6.2.1 Poisson Approximation

Let

P(l;mp) =
e−mpml

p

l!

denote the Poisson distribution. The following bound on the total variation distance between
the Poisson binomial distribution and the Poisson distribution was established in [19]:

∞
∑

l=0

|B(l;p) − P(l;mp)| < 2
n
∑

i=1

p2
i .

Thus, the Poisson approximation will be accurate whenever the probabilities (p1, . . . , pn)
are small.

Let us take an example from the noisy threshold model for the gastric non-Hodgkin
lymphoma. To compute the conditional probability Pr(e | c1, c̄2, c̄3, c4, c̄5, c6) we have to
compute the Poisson binomial distribution B(l; (0.18, 0.22, 0.10, 0.28)). Figure 4 shows the
quality of the Poisson approximation for this distribution.
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6.2.2 Normal Approximation

Another approximation for the Poisson binomial distribution found in the probabilistic liter-
ature is the approximation by the standard normal distribution [2], [24]. Let

φ(x) =
1√
2π

e−
1

2
x2

denote the normal density function, and let

Φ(z) =

∫ z

−∞
φ(x)dx.

Then for every Poisson binomial distribution B with mean mp, variance σ2
p,

max
0≤i≤n

∣

∣

∣

∣

∣

∣

i
∑

j=0

B(j;p) − Φ

(

i−mp

σp

)

∣

∣

∣

∣

∣

∣

<
0.7975

σp

.

Thus, we see that the normal approximation is accurate when the standard deviation of
the Poisson binomial distribution

σp =
√

n (µ(1 − µ) − σ2)

is large, i.e. when n→ ∞.
Let

N(i;mp;σp) = Φ

(

i+ 1
2 −mp

σp

)

− Φ

(

i− 1
2 −mp

σp

)

be a normal approximation of B(i;p).
To illustrate the quality of this approximation once again we use an example from the

noisy threshold model for the gastric non-Hodgkin lymphoma. We chose a conditional
probability with the biggest number of active causes n = 7. To assess the conditional
probability Pr(e | c1, c2, c3, c4, c5, c6) we need to compute the Poisson binomial distribution
B(l; (0.18, 0.74, 0.65, 0.22, 0.92, 0.10, 0.28)). Figure 5 shows the normal approximation of
this distribution.

The Poisson binomial distribution can also be approximated by the binomial distribution
[25]. The binomial approximation is accurate whenever the variance σ2 is small.

6.3 Bounds for the Conditional Probabilities of Effect in the Noisy Thresh-

old Models

Even though the presented approximations for the Poisson binomial distribution can be very
handy, in some cases none of them is accurate enough to be employed. In such cases the
bounds for the Poisson binomial distribution can provide information on the conditional
probabilities of the noisy threshold models.

A number of bounds for the Poisson binomial distribution based on various characteristics
of the underlying set of probabilities p1, . . . , pn can be found in the literature [13], [10], [3],
[15], [23]. All bounds for the Poisson binomial distribution concern bounds for cumulative
probabilities, i.e. they are well suited to bound the conditional probabilities in the noisy
threshold models. We see Hoeffding’s inequalities and the Percus and Percus bounds as most
suitable for the domain of noisy threshold models.
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Figure 5: Example of the normal approximation for the Poisson binomial distribution.

6.3.1 Hoeffding’s inequalities

Let B(l;µ;n) =
(

n
l

)

µl(1 − µ)n−l be a binomial distribution. Hoeffding [13] presents the
following bounds for the probabilities

∑c
i=0 B(i;p) and

∑c
i=b B(i;p) given the mean mp of

the Poisson binomial distribution:

0 ≤
c
∑

i=0

B(i;p) ≤
c
∑

i=0

B(i;µ;n) if 0 ≤ c ≤ mp − 1 (8)

c
∑

i=0

B(i;µ;n) ≤
c
∑

i=0

B(i;p) ≤ 1 if mp ≤ c ≤ n (9)

c
∑

i=b

B(i;µ;n) ≤
c
∑

i=b

B(i;p) ≤ 1 if 0 ≤ b ≤ mp ≤ c ≤ n (10)

where b and c are integers.
All bounds are attained. The upper bound for 0 ≤ c ≤ mp − 1 and the lower bound for

mp ≤ c ≤ n are attained if and only if p1 = p2 = . . . = pn = µ. In Equation (10) both bounds
are attained. The lower bound is attained if and only if p1 = p2 = . . . = pn = µ unless b = 0
and c = n.

From Hoeffding’s inequalities we find the following bounds for the probabilities
Prτk(e | C1, . . . , Cn).

Proposition 4 Let ρ = |p(C1, . . . , Cn)| ≥ k, 1 ≤ k ≤ n, then

• Prτk(e | C1, . . . , Cn) ≥
∑ρ

i=k B(i;µ; ρ) if k ≤ mp,

• Prτk(e | C1, . . . , Cn) ≤
∑ρ

i=k B(i;µ; ρ) if k ≥ mp + 1.

Proof: If b = k and c = ρ then Equation (10) becomes:

ρ
∑

i=k

B(i;µ; ρ) ≤
ρ
∑

i=k

B(i;p) ≤ 1 if k ≤ mp.
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Figure 6: Hoeffding’s bounds for the conditional probabilities of the gastric non-Hodgkin
lymphoma model.

If c = k − 1 then Equation (9) becomes:

k−1
∑

i=0

B(i;µ; ρ) ≤
k−1
∑

i=0

B(i;p) ≤ 1 if mp ≤ k − 1.

As
∑k−1

i=0 B(i;p) = 1 −∑ρ
i=k B(i;p), we can write the last equation as:

0 ≤
ρ
∑

i=k

B(i;p) ≤
ρ
∑

i=k

B(i;µ; ρ) if mp + 1 ≤ k.

Finally, using Proposition 1 we get

Prτk(e | C1, . . . , Cn) ≥
ρ
∑

i=k

B(i;µ; ρ) if k ≤ mp,

Prτk(e | C1, . . . , Cn) ≤
ρ
∑

i=k

B(i;µ; ρ) if k ≥ mp + 1.

�

Hoeffding’s inequalities do not provide a bound when mp < k < mp + 1.
Since µ can be computed in linear time, the Hoeffding’s bounds are computable in linear

time as well.
We have examined the tightness of the Hoeffding’s bounds for the conditional probabilities

of the noisy threshold model of non-Hodgkin lymphoma. The obtained results, represented
as the difference between the bounds, are shown in Figure 6. As the model we use is a small
model, 32 probabilities cannot be determined as their mp value falls into the interval (1; 2).
The other half of the conditional probabilities are bounded by intervals smaller than 0.4.
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6.3.2 Percus and Percus bounds

Percus and Percus introduce a lower bound for the sum of the Poisson binomial probabilities
∑c

i=0 B(i;p). The bound applies when the probability B(0;p) is given [23]:

c
∑

i=0

B(i;p) ≥ B(0;p)
c
∑

i=0

(

n

i

)

(

(B(0;p))−
1

n − 1
)i

. (11)

From Equation (11) we can also derive an upper bound for the sum of Poisson binomial
probabilities

∑c
i=0 B(i;p).

Let us define the probabilities of failures in Poisson trials q = (1 − p1, . . . , 1 − pn). Then
the relation between the two Poisson binomial distributions is as follows:

c
∑

i=0

B(i;p) =
n
∑

i=n−c

B(i;q) = 1 −
n−c−1
∑

i=0

B(i;q).

We can rewrite Equation (11) as follows:

c
∑

i=0

B(i;q) ≥ B(0;q)
c
∑

i=0

(

n

i

)

(

(B(0;q))−
1

n − 1
)i

= B(n;p)

c
∑

i=0

(

n

i

)

(

(B(n;p))−
1

n − 1
)i

.

Thus, we obtain the upper bound:

c
∑

i=0

B(i;p) ≤ 1 − B(n;p)
n−c−1
∑

i=0

(

n

i

)

(

(B(n;p))−
1

n − 1
)i

. (12)

Using the Percus and Percus bounds we can find the upper and lower bounds of the
conditional probabilities Prτk(e | C1, . . . , Cn).

Proposition 5 Let ρ = |p(C1, . . . , Cn)| ≥ k, 1 ≤ k ≤ n, B(0;p) =
∏ρ
i=1(1−pi) and B(ρ;p) =

∏ρ
i=1 pi. Then,

• Prτk(e | C1, . . . , Cn) ≤ 1 − B(0;p)
∑k−1

i=0

(

ρ
i

)

(

(B(0;p))
− 1

ρ − 1
)i

,

• Prτk(e | C1, . . . , Cn) ≥ B(ρ;p)
∑ρ−k

i=0

(

ρ
i

)

(

(B(ρ;p))
− 1

ρ − 1
)i

.

Proof: Let c = k − 1. Then using Proposition 1 Equations (11) and (12) become:

Prτk(e | C1, . . . , Cn) = 1 −
k−1
∑

i=0

B(i;p) ≤ 1 − B(0;p)
k−1
∑

i=0

(

ρ

i

)

(

(B(0;p))
− 1

ρ − 1
)i

,

Prτk(e | C1, . . . , Cn) = 1 −
k−1
∑

i=0

B(i;p) ≥ B(ρ;p)

ρ−k
∑

i=0

(

ρ

i

)

(

(B(ρ;p))
− 1

ρ − 1
)i

.

�
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Figure 7: Percus and Percus bounds for the conditional probabilities of the gastric non-
Hodgkin lymphoma model.

Since B(0;p) and B(ρ;p) can be computed in linear time, the Percus and Percus bounds
can be computed in linear time as well.

We have examined the tightness of the Percus and Percus bounds for the conditional
probabilities of the noisy threshold model of non-Hodgkin lymphoma. The obtained results
are shown in Figure 7.

The best bounds for the probabilities Prτk(e | C1, . . . , Cn) can be achieved by combining
Hoeffding’s and Percus and Percus bounds. In our simulations, non-trivial Hoeffding’s bounds
were always at least as tight as the Percus and Percus bounds. See Figure 8 for the results.
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Figure 8: Combined Hoeffding’s and Percus and Percus bounds for the conditional probabil-
ities of the gastric non-Hodgkin lymphoma model.
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7 Discussion

In this paper, we expanded the space of possible causal independence models by introducing
new models based on the Boolean threshold function, which we have called noisy thresh-
old models. The introduced models can be looked upon as spanning a spectrum of causal
independence models with the noisy OR and noisy AND as extremes.

It was shown that there is a close connection between the probability distribution of noisy
threshold models and the Poisson binomial distribution. We have investigated what the well-
studied properties of the Poisson binomial distribution mean in the context of these newly
introduced models.

We presented recursive methods to compute the exact Poisson binomial probabilities as
well as approximation and bounding techniques that can assess the probabilities in a linear
number of operations. To illustrate the quality of the approximations and bounds we have
used a noisy threshold model that represents a real-world medical problem. More experimental
results can be found in a follow-up paper. The follow-up paper introduces the EM algorithm
to learn the hidden parameters of the model and presents the classification results using
the noisy threshold models that show their competitive performance in comparison with the
noisy OR classifier as well as widely used classifiers such as naive Bayes, logistic regression
and decision trees.

Even though this paper has focused on the conditional probability distributions of noisy
threshold models, most of the presented theory can be exploited as a basis for the assessment
of probability distributions of causal independence models where the interaction function
is defined in terms of any symmetric Boolean function. This is a consequence of the fact
that any symmetric Boolean function can be decomposed into a disjunction of Boolean exact
functions in conjunction with Boolean constants. This basic property indicates that the
theory developed in this paper has an even wider application, which, however, still needs to
be explored.

References

[1] F.C. Arnett, S.M. Edworthy, D.A. Bloch, D.J. McShane, J.F. Fries, N.S. Cooper, et
al, The American Rheumatism Association 1987 revised criteria for the classification of
rheumatoid arthritis. Arthritis Rheum, 31:315-324, 1988.

[2] P. van Beek, An application of Fourier methods to the problem of sharpening the Berry-
Essen inequality. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 23:187-196, 1972.

[3] G. Bennett, Probability inequalities for the sum of independent random variables. Journal
of the American Statistical Association, 57:33-45, 1962.

[4] X.H. Chen, A.P. Dempster and J.S. Liu, Weighted finite population sampling to maximize
entropy. Biometrika, 81:457-469, 1994.

[5] J. Darroch, On the distribution of the number of successes in independent trials. The
Annals of Mathematical Statistics, 35:1317-1321, 1964.

[6] F.J. Dı́ez, Parameter adjustment in Bayes networks. The generalized noisy OR-gate.
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, 99-105,
1993.

17



[7] A.W.P. Edwards, The Meaning of Binomial Distribution. Nature 186, 1074, 1960.

[8] H.B. Enderton, A Mathematical Introduction to Logic. Academic Press, San Diego, 1972.

[9] W. Feller, An Introduction to Probability Theory and Its Applications. John Wiley, 1968.

[10] J.L. Gastwirth, A probability model of a pyramid scheme. The American Statistician,
31:79-82, 1977.

[11] D. Heckerman and J.S. Breese, A new look at causal independence, Proc. UAI-94, pp.
286–292, 1994.

[12] M. Henrion, Some practical issues in constructing belief networks. Uncertainty in Artifi-
cial Intelligence, 3:161–173, 1989.

[13] W. Hoeffding, On the distribution of the number of successes in independent trials. The
Annals of Mathematical Statistics, 27:713-721, 1956.

[14] S. Howard, Discussion on Professor Cox’s paper. Journal of the Royal Statistical Society,
Series B, 34:210-211, 1972.

[15] S. Janson, Large deviation inequalities for sums of indicator variables. Technical Report,
1994.

[16] K. Jogdeo and S.M. Samuels, Monotone convergence of binomial probabilities and a
generalization of Ramanujan’s equation. The Annals of Mathematical Statistics, 39:1191-
1195, 1968.

[17] R. Jurgelenaite and P.J.F. Lucas, Exploiting Causal Independence in Large Bayesian
Networks. Knowledge-Based Systems Journal, 18:153-162, 2005.

[18] H.J. Kappen, J.P. Neijt, Promedas, a probabilistic decision support system for medical
diagnosis. Technical report, SNN - UMCU, 2002.

[19] L. Le Cam, An approximation theorem for the Poisson binomial distribution. Pacific
Journal of Mathematics, 10: 1181-1197, 1960.

[20] P.J.F. Lucas, H. Boot and B. Taal, Computer-based Decision Support in Management
of Primary Gastric non-Hodgkin Lymphoma. Methods of Information in Medicine, 37:
206-219, 1998.

[21] P.J.F. Lucas, Bayesian network modelling through qualitative patterns. Artificial Intelli-
gence, 163: 233-263, 2005.

[22] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kauffman Publishers, 1988.

[23] O.E. Percus and J.K. Percus, Probability bounds on the sum of independent nonidentically
distributed binomial random variables. SIAM Journal on Applied Mathematics, 45:621-
640, 1985.

[24] J. Pitman, Probabilistic bounds on the coefficients of polynomials with only real zeros.
Journal of Combinatorial Theory, Series A, 77:279-303, 1997.

18



[25] B. Roos, Binomial approximation to the Poisson binomial distribution: the Krawtchouk
expansion. Theory of Probability and Its Applications, 45:258-272, 2001.

[26] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann and
G.F. Cooper, Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR
knowledge base, I – The probabilistic model and inference algorithms. Methods of Infor-
mation in Medicine, 30: 241-255, 1991.

[27] S. Srinivas, A generalization of the noisy-or model. Proceedings of the Ninth Conference
on Uncertainty in Artificial Intelligence, 208-215, 1993.

[28] I. Wegener, The Complexity of Boolean Functions. John Wiley & Sons, New York, 1987.

[29] S. Visscher, Peter J.F. Lucas, M. Bonten and K. Schurink, Improving the Therapeutic
Performance of a Medical Bayesian Network Using Noisy Threshold Models. Proceedings
of ISBMDA 2005, the 6th International Symposium on Biological and Medical Data
Analysis, 161-172, 2005.

[30] J. Vomlel, Decomposition of Probability Tables Representing Boolean Functions. Proceed-
ings of the Eighth Czech-Japan Seminar on Data Analysis and Decision Making under
Uncertainty, 18 - 21, 2005.

[31] N.L. Zhang and D. Poole, Exploiting causal independence in Bayesian networks inference.
Journal of Artificial Intelligence Research, 5:301-328, 1996.

19


