The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/35521

Please be advised that this information was generated on 2020-01-26 and may be subject to change.
Power linear Keller maps with ditto triangularizations

He Tong Michiel de Bondt*

October 21, 2014

Abstract
We show that power linear Keller maps $F = (x_1 + (A_1 x)^d, x_2 + (A_2 x)^d, \ldots, x_n + (A_n x)^d)$ are linearly triangularizable if (1) $\text{rk} A \leq 2$ or (2) $\text{cork} A \leq 2$ and $d \geq 3$ or (3) $\text{cork} A = 3$, $d \geq 5$ and the diagonal of A is nonzero. Furthermore, we show that the triangularizations can be chosen power linear as well.

1 Introduction

The famous Jacobian Conjecture, which was first formulated by O.H. Keller in 1939, for short JC, asserts that for every $n \geq 1$ the following holds:

If $F = (F_1, F_2, \ldots, F_n)$ is a polynomial map over \mathbb{C} with constant nontrivial Jacobian determinant, then F is invertible.

In the 1980’s, there are two famous reduction results. At first, it is shown that in order to prove the JC, it suffices to verify the JC for polynomial maps F over \mathbb{C} of special cubic homogeneous form:

$F = x + H = (x_1 + H_1, x_2 + H_2, \ldots, x_n + H_n)$

where each component H_i of H is either zero or homogeneous of degree 3, see [1]. Later, Ludwik Drużkowski showed in [8] that in addition, one may assume that each component H_i of H is a third power of a linear form:

$F = x + (Ax)^3 = (x_1 + (A_1 x)^3, x_2 + (A_2 x)^3, \ldots, x_n + (A_n x)^3)$

where $x = (x_1, x_2, \ldots, x_n)$, A_i is the i-th row of an $(n \times n)$-matrix A, and $A_i x$ is the matrix product

$$(A_{i1} A_{i1} \cdots A_{in}) \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

*Supported by the Netherlands Organisation of Scientific Research (NWO).

2000 Mathematical Subject Classification: 14R15, 14R10.

Key words and phrases: Jacobian Conjecture, Keller map, linearly triangularizable.
For the case $\deg F \leq 2$, S. Wang had already proved in 1980 that the JC is true over any field of characteristic $\neq 2$, see [17] and [1].

In 1993, David Wright showed that in case $n = 3$, the JC holds for maps F having special cubic homogeneous form, see [18]. In particular F is so called ‘linearly triangularizable’, see definition 2.5. In 1994, the result of Wright was extended to the case $n = 4$ by Engelbert Hubbers, see [13], but for $n = 4$, maps of special cubic homogeneous form are not always linearly triangularizable. Hubbers used a (for those days) strong computer to get these results.

More than 10 years later, the result of Wright was extended in another direction: Arno van den Essen and the second author showed that in case $n = 3$ the JC holds for maps F having special homogeneous form in general (not just cubic) in [2]. The main theorem of [2] asserts that F is even linearly triangularizable, just as in the cubic case.

But let us focus on special cubic linear maps $x + (Ax)^3$ and, more generally, special power linear maps $x + (Ax)^d$, from now on. At the same time that Wright showed the case $n = 3$ for special homogeneous cubic maps, Drużkowski showed that for special cubic linear maps $F = x + (Ax)^3$ with $\rk A \leq 2$ or $\cork A \leq 2$, F is invertible, see [9]. In particular, F is tame.

Although the results of Drużkowski for degree $d = 3$ generalize to degree $d \geq 3$ in a straightforward manner, we have chosen to rewrite these results. The main reason for this is that the proofs of Drużkowski are very sketchy; at some points, one can better speak of ‘guidelines of how to prove’. Furthermore, Drużkowski only proved tameness in [9], which is weaker than linear triangularizability, but for the case $\cork A \leq 2$, his proof is powerful enough for linear triangularizability, as Charles Ching-An Cheng observes in [4]. In the same article, Cheng proves linear triangularizability for the case $\rk A = 2$ and $d = 3$.

But this proof is quite long. Cheng presents a much shorter proof for the case $\rk A = 2$ and d arbitrary in [6], by showing the following result (Theorem 2 in [6]):

Theorem 1.1. Let $F = x + (Ax)^d$ be a power linear Keller map, $r = \rk A$, and assume that all special homogeneous Keller maps of degree d in dimension r are linearly triangularizable. Then F is linearly triangularizable as well.

Since it is a classical result that for $r = 2$, the conditions of this theorem are fulfilled (see [1], [2] or [6]), the case $\rk A = 2$ and d arbitrary follows. As mentioned above, the main result of [2] was exactly the case $r = 3$ of the conditions of the above theorem for all d, so the case $\rk A = 3$ and d arbitrary follows as well, as mentioned in [2].

We shall show that power linear Keller maps $F = (x_1 + (A_1x)^d, x_2 + (A_2x)^d, \ldots, x_n + (A_nx)^d)$ are linearly triangularizable in each of the following cases:

1. $\rk A \leq 2$,
2. $\cork A \leq 2$ and $d \geq 3$,
3. $\cork A = 3$, $d \geq 5$ and the diagonal of A is nonzero.
Furthermore, we show that in all of the above cases, the triangularizations can be chosen power linear as well. For a significant part, our results are based on the work of Družkowski in [9]. Although the results for \(\text{rk} A \leq 2 \) are valid for any \(d \), those for \(\text{cork} A \leq 2 \) apply only to the case \(d \geq 3 \). This restriction is not important for the JC, since it has already been proved for any polynomial map over \(\mathbb{C} \) with degree \(d \leq 2 \). On the other hand, the invertibility statement of the JC is weaker than linear triangularizability, so it is worth mentioning that in 2002, Cheng proved that quadratic linear Keller maps \(x + (Ax)^2 \) with \(\text{cork} A = 1 \) are linearly triangularizable, see [5].

In the last section, we present a quadratic linear map in dimension 6 with \(\text{rk} A = \text{cork} A = 3 \), which is, as observed above, linearly triangularizable, but without a linear triangularization that is quadratic linear as well. So in our result for \(\text{cork} A = 3 \), the assumption \(d \geq 5 \) or at least some assumption on \(d \), is necessary.

2 Definitions and preliminaries

Definition 2.1. Write \(A^t \) for the transpose of a matrix \(A \). Now let \(A \) be an \((n \times n)\)-matrix. We write \(e_i \) for the \(i \)-th standard basis vector over \(\mathbb{C}^n \). Viewing vectors as column matrices, the matrix product \(Ae_i \) evaluates to the \(i \)-th column of \(A \) and \(e_i^tA \) evaluates to the \(i \)-th row of \(A \). But we will just write \(A_i \) for the \(i \)-th row of \(A \).

Definition 2.2. We call a map \(H \) power linear (of degree \(d \)) if \(H \) is of the form
\[
H = (Ax)^d := ((A_1x)^d, (A_2x)^d, \ldots, (A_nx)^d)
\]
and a map \(F \) special power linear (of degree \(d \)) if \(F \) is of the form
\[
F = x + (Ax)^d = (x_1 + (A_1x)^d, x_2 + (A_2x)^d, \ldots, x_n + (A_nx)^d)
\]
So \(H \) is power linear if and only if \(x + H \) is special power linear.

Definition 2.3. Let \(F \) be a polynomial map. We say that \(F \) is upper/lower triangular if its Jacobian \(JF \) is upper/lower triangular. We call \(F \) triangular if it is either upper or lower triangular.

A triangular Keller map is tame and hence invertible.

Definition 2.4. Let \(F = x + H \) be a polynomial map. We call \(F \) special homogeneous (of degree \(d \)) if \(H \) is homogeneous (of degree \(d \)).

In [1, lemma 4.1], it is shown that a special homogeneous map of degree \(d \geq 2 \) is a Keller map, if and only if \(JH \) is nilpotent.

Definition 2.5. Let \(F \) be a polynomial map over \(\mathbb{C} \). We call \(F \) linearly triangularizable if there exists a \(T \in \text{GL}_n(\mathbb{C}) \) such \(T^{-1} \circ F \circ T \) is triangular.
A linear triangularizable map can be triangularized to both an upper and a lower triangular map: take $T = (x_n, x_{n-1}, \ldots, x_1)$ to get from lower to upper and vice versa.

Proposition 2.6. If $F = x + H$ is a linearly triangularizable Keller map and the components of H do not have linear parts, then JH is nilpotent.

Proof. The proof is left as an exercise to the reader. A stronger result can be found in [10, Th. 1.6].

Proposition 2.7. If $F = x + H$ is a triangular Keller map and the components of H do not have linear parts, then JH has only zeros on its diagonal.

Proof. From proposition 2.6, it follows that JH is nilpotent. Since a nilpotent matrix over a reduced ring has only eigenvalue zero and the diagonal of a triangular matrix is formed by its eigenvalues, it follows that JH has only zeros on its diagonal.

Definition 2.8. Let $f \in \mathbb{C}[x] = \mathbb{C}[x_1, x_2, \ldots, x_n]$. We write $\text{deg} f$ for the total degree of f. We write $\text{deg}_{x_i} f$ for the degree of f, seen as a polynomial in x_i over $\mathbb{C}[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$. We write $\text{deg}_{x_i, x_j, x_k} f$ for the (total) degree of f, seen as polynomial in x_i, x_j, x_k.

3 Some results on linear dependence

Lemma 3.1. Let $H := (Ax)^d$ such that JH is nilpotent. Assume that the first r rows of A_1, A_2, \ldots, A_r of A are independent and the last $n - r$ rows of A are dependent of A_{r-1} and A_r only. Assume a similar condition on the columns of A, i.e. the last $n - r$ columns of A are dependent of Ae_{r-1} and Ae_r only. Then the components of $H := (Ax)^d$ are linearly dependent.

Proof. Write $Ae_{r+i} = \lambda_{r+i} Ae_{r-1} + \mu_{r+i} Ae_r$. Put

$$L = \begin{pmatrix} x_1 \\ \vdots \\ x_{r-2} \\ x_{r-1} - \lambda_{r+1} x_{r+1} - \cdots - \lambda_n x_n \\ x_r - \mu_{r+1} x_{r+1} - \cdots - \mu_n x_n \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix}$$

and let $B := A \cdot JL$. Then the last $n - r$ columns of B and hence those of JH
are zero, where

\[\tilde{H} := L^{-1} \circ H \circ L = \begin{pmatrix} (B_1 x)^d \\ \vdots \\ (B_{r-2} x)^d \\ (B_{r-1} x)^d + \lambda_{r+1}(B_{r+1} x)^d + \cdots + \lambda_n(B_n x)^d \\ (B_r x)^d + \mu_{r+1}(B_{r+1} x)^d + \cdots + \mu_n(B_n x)^d \\ \vdots \\ (B_r x)^d \end{pmatrix} \]

Each row \(B_{r+i} \) with \(i \geq 1 \) is a linear combination of \(B_{r-1} \) and \(B_r \), for a similar statement holds for the rows of \(A \). So \(\hat{H} := (\tilde{H}_1, \ldots, \tilde{H}_{r-2}, \tilde{H}_{r-1}, \tilde{H}_r) \) is of the form

\[\hat{H} = \begin{pmatrix} (B_1 x)^d \\ \vdots \\ (B_{r-2} x)^d \\ p(B_{r-1} x, B_r x) \\ q(B_{r-1} x, B_r x) \end{pmatrix} \]

Furthermore, since the last \(n - r \) columns of \(J\tilde{H} \) are zero, the \((r \times r)\)-matrix \(J\tilde{H} \) is nilpotent as well. In particular, \(\det J\tilde{H} = 0 \). If \(p(B_{r-1} x, B_r x) \) and \(q(B_{r-1} x, B_r x) \) are algebraically independent, then all linear forms \(B_i x \) with \(i \leq r \) are algebraically dependent of the components of \(\hat{H} \). So

\[\text{trdeg}_C \tilde{H} = \text{trdeg}_C(B_1 x, \ldots, B_r x) = \text{trdeg}_C(A_1 x, \ldots, A_r x) = r \]

for the first \(r \) rows of \(A \) are linearly independent. This contradicts \(\det J\tilde{H} = 0 \), so \(p(B_{r-1} x, B_r x) \) and \(q(B_{r-1} x, B_r x) \) are algebraically dependent. But with \(p \) and \(q \) homogeneous of the same degree \(d \), this dependence relation refines to a linear relation, say that \(\nu_1 p + \nu_2 q = 0 \) with \(\nu \neq 0 \). Then

\[\nu_1((B_{r-1} x)^d + \lambda_{r+1}(B_{r+1} x)^d + \cdots + \lambda_n(B_n x)^d) + \\
\nu_2((B_r x)^d + \mu_{r+1}(B_{r+1} x)^d + \cdots + \mu_n(B_n x)^d) = 0 \]

So the components of \((B x)^d\), and hence those of \(H = (A x)^d \) also, are linearly dependent.

The preceding lemma is a special case of the following theorem:

Theorem 3.2. Let \(H := (A x)^d \) such that \(JH \) is nilpotent. Assume that the first \(r \) rows of \(A_1, A_2, \ldots, A_r \) of \(A \) are independent and the last \(n - r \) rows of \(A \) are dependent of \(A_{r-1} \) and \(A_r \) only. Then the components of \(H := (A x)^d \) are linearly dependent.

Proof. Since the rows of \(A \) are dependent, the columns are dependent as well. We distinguish two cases:

\[\Box \]
• There is an $i \leq r - 2$ such that column Ae_i of A is dependent of the other columns of A.
Then there is a vector λ with $\lambda_i \neq 0$ for some $i \leq r - 2$ such that $A\lambda = 0$. Replacing H by $P^{-1} \circ H \circ P$ for a suitable permutation P within $x_1, x_2, \ldots, x_{r-2}$, we may assume that $\lambda_1 \neq 0$. Since

$$JH = d \begin{pmatrix} A_{11}(A_1x)^{d-1} & A_{12}(A_1x)^{d-1} & \cdots & A_{1n}(A_1x)^{d-1} \\ A_{21}(A_2x)^{d-1} & A_{22}(A_2x)^{d-1} & \cdots & A_{2n}(A_2x)^{d-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1}(A_nx)^{d-1} & A_{n2}(A_nx)^{d-1} & \cdots & A_{nn}(A_nx)^{d-1} \end{pmatrix}$$

(1)

the expression $\det(TI_n + JH)$, which is T^n on account of the nilpotence of JH, can be seen as a polynomial in the transcendent ‘variables’ A_1x, A_2x, \ldots, A_rx. Since $r - 2 \geq 1$, ‘variable’ A_1x only appears in the first row of (1). So substituting $A_1x = 0$ in JH just makes the first row of JH zero. This substitution does not affect the condition $\det(TI_n + JH) = T^n$. So JH is nilpotent, where $\hat{H} := (0, H_2, \ldots, H_n)$. Next, let

$$\hat{H} := L^{-1} \circ \hat{H} \circ L = \hat{H} \circ L$$

where $L = x + \lambda_1^{-1}(0, \lambda_2x_1, \ldots, \lambda_nx_1)$. Now $x + \hat{H}$ is power linear of degree d as well, but both the first row and the first column of JH are zero. Hence $x + \hat{H}$ is essentially a power linear map in dimension $n - 1$, and the result follows by induction.

• For each $i \leq r - 2$, column Ae_i of A is independent of the other columns of A.
Since in particular the first $r - 2$ columns of A are independent, there exists a basis of the column space of A of the form $Ae_1, A_2e_2, \ldots, A_{r-2}e_{r-2}, Ae_{i_1}, Ae_{i_2}$. Furthermore, for each $j \geq r - 1$, column Ae_j is a linear combination of Ae_{i_1} and Ae_{i_2} only. We shall show that we may assume that $i_1 = r - 1$ and $i_2 = r$, in order to be able to apply lemma 3.1.

For that purpose let us look at the rows A_{i_1} and A_{i_2} of A. If both rows are dependent, then H_{i_1} and H_{i_2} are linearly dependent and we are done. So assume that A_{i_1} and A_{i_2} are independent. Since the last $n - r$ rows of A are linear combinations of A_{r-1} and A_r and $i_1, i_2 \leq r - 1$, both A_{i_1} and A_{i_2} are linear combinations of A_{r-1} and A_r. Hence the spaces $\mathbb{C}A_{i_1} + \mathbb{C}A_{i_2}$ and $\mathbb{C}A_{r-1} + \mathbb{C}A_r$ are equal.

Hence A_{i_1} and A_{i_2} can take the role of A_{r-1} and A_r, i.e. the rows $A_1, A_2, \ldots, A_{r-2}, A_{i_1}, A_{i_2}$ are independent and each row A_j with $j \geq r - 1$ is a linear combination of A_{i_1} and A_{i_2} only.

Replacing H by $P^{-1} \circ H \circ P$ for a suitable permutation P within $x_{r-1}, x_r, \ldots, x_n$, we may assume that H satisfies the conditions of lemma 3.1. So the components of H are linearly dependent. \qed
The proof of theorem 3.2 and its preceding lemma was essentially given by Druzkowski in [9], where he proved the case \(r = n - 2 \) of theorem 3.2. The remaining theorems in this section show that under certain conditions, the components of \(H \) are not only linearly dependent, but the linear dependence even restricts to two components of \(H \), i.e. \(H_i = sH_j \) for some \(i \neq j \) and an \(s \in \mathbb{C} \).

Lemma 3.3. Let \(L_1, L_2, \ldots, L_r \in \mathbb{C}[x] \) be linear such that \(2 \leq r \leq d + 1 \) and

\[
\lambda_1 L_1^d + \lambda_2 L_2^d + \ldots + \lambda_r L_r^d = 0
\]

for some \(\lambda = (\lambda_1, \ldots, \lambda_r) \neq 0 \). Then there are \(i \neq j \) and an \(s \in \mathbb{C} \) such that \(L_i = sL_j \).

Proof. Assume the opposite. In particular, \(L_1 \neq sL_r \) and \(L_r \neq sL_1 \) for all \(s \in \mathbb{C} \), whence \(L_1 \) and \(L_r \) are independent. There exists a linear basis \(y_1, y_2, \ldots, y_n \) of \(\mathbb{C}[x] \) with \(y_1 = L_1 \) and \(y_2 = L_r \).

The case \(d = 1 \) is easy, so assume \(d \geq 2 \). Differentiating (2) with respect to \(y_1 \) gives

\[
\mu_1 L_1^{d-1} + \mu_2 L_2^{d-1} + \ldots + \mu_{r-1} L_{r-1}^{d-1} = 0
\]

for certain \(\mu_i \in \mathbb{C} \). In particular, \(\mu_1 = d\lambda_1 \), whence not all \(\mu_i \) are zero. Hence, the result follows by induction on \(d \). \(\square \)

The following theorem generalizes Theorem 3.1 of [16] (the case cork \(A = 3 \) of this theorem). [16] is a co-production of Song Shuang and the first author.

Theorem 3.4. Assume \(H \) is of the form \((Ax)^d\) such that cork \(A \leq d - 2 \), \(\text{tr}JH = 0 \), and the diagonal of \(A \) is nonzero. Then there are \(i \neq j \) and an \(s \in \mathbb{C} \) such that \(A_i = sA_j \neq 0 \).

Proof. Since the diagonal of \(JH \) is nonzero, we can replace \(H \) by \(P^{-1} \circ H \circ P \) to get \(A_{11} \neq 0 \), where \(P \) is a permutation. Similarly, we can make the first \(r \) rows of \(A \) independent in addition, where \(r = \text{rk}A \geq n - (d - 2) \). Since \(\text{tr}JH = 0 \), we have

\[
dA_{11}(A_1x)^{d-1} + dA_{22}(A_2x)^{d-1} + \cdots + dA_{nn}(A_ax)^{d-1} = 0 \tag{3}
\]

Since the first \(r \) rows of \(A \) are independent, there exists a basis \(y \) of \(\mathbb{C}x_1 + \mathbb{C}x_2 + \cdots + \mathbb{C}x_n \) such that \(A_ix = y_i \) for all \(i \leq r \). Differentiating (3) with respect to \(y_1 \) gives

\[
d(d-1)A_{11}(A_1x)^{d-2} + \lambda_{r+1}(A_{r+1}x)^{d-2} + \cdots + \lambda_n(A_nx)^{d-2} = 0
\]

for certain \(\lambda_i \in \mathbb{C} \). These are \(n - r + 1 \leq d - 1 \) linear powers (powers of linear forms). Now apply lemma 3.3 to get \(A_i = sA_j \) for some \(i \neq j \) and \(s \in \mathbb{C} \) with \(i, j \in \{1, r+1, r+2, \ldots, n\} \). \(\square \)

Theorem 3.5. Assume \(H \) is as in theorem 3.2 and cork \(A \leq d - 1 \). Then there are \(i \neq j \) and an \(s \in \mathbb{C} \) such that \(A_i = sA_j \).
Proof. From theorem 3.2, it follows that there is a linear relation between the components of H. Similar to the proof of theorem 3.4 (but with d instead of $d-1$), one can show that this relation is of the form $H_i = \alpha H_j$ for some $i \neq j$. So $A_i = sA_j$ for some $s \in \mathbb{C}$.

We will use the above theorems in the next section.

4 Linear triangularization to power linear maps

The following lemma is crucial in both [9] and our study of power linear maps $(Ax)^*d$ where A has a small corank. It can be found at the beginning of page 238 in [9].

Lemma 4.1. Let $H = (Ax)^*d$ such that $\mathcal{J}H$ is nilpotent. If A has a principal minor of any size which determinant is nonzero, then there exists a relation $R \neq 0$ such that

$$R((A_1 x)^{d-1}, (A_2 x)^{d-1}, \ldots, (A_n x)^{d-1}) = 0$$

and $\deg_y R(y) \leq 1$ for all $i \leq n$. Furthermore, if $A_k = 0$ for some k, then $\deg_y R = 0$ as well.

Proof. Write

$$\det(TI_n + d)
\begin{pmatrix}
A_{11}y_1 & A_{12}y_1 & \cdots & A_{1n}y_1 \\
A_{21}y_2 & A_{22}y_2 & \cdots & A_{2n}y_2 \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1}y_n & A_{n2}y_n & \cdots & A_{nn}y_n
\end{pmatrix}
= T^n + R_1(y)T^{n-1} + R_2(y)T^{n-2} + \cdots + R_{n-2}(y)T^2 + R_{n-1}(y)T + R_n(y)$$

Since $\mathcal{J}H$ is nilpotent, $\det(TI_n + \mathcal{J}H) = T^n$. It follows from (1) that the coefficient of T^{n-j} of $\det(TI_n + \mathcal{J}H)$ equals

$$R_j((A_1 x)^{d-1}, (A_2 x)^{d-1}, \ldots, (A_n x)^{d-1}) = 0$$

for all $j \geq 1$. Furthermore, it follows from the definition of determinant that $\deg_y R_j \leq 1$ for all i, j. For some j, A has a principal minor of size j which determinant is $\alpha \neq 0$, say with rows and columns i_1, i_2, \ldots, i_j. Then the coefficient of $y_{i_1}y_{i_2}\cdots y_{i_j}$ of R_j equals da, whence $R_j \neq 0$.

If $A_k = 0$, then all minors with row k of A have determinant zero, whence $\deg_y R_j = 0$.

In all remaining lemmas in this section, relations R between linear powers $L_i^d, L_2^d, \ldots, L_m^d$ with $\deg_y R \leq 1$ for all $i \leq m$ are studied. For such relations, conditions are formulated that imply $L_i = sL_j$ for some $i \neq j$ and an $s \in \mathbb{C}$.
Lemma 4.2. Let \(d \geq 2 \) and \(R \) be a nonzero relation with \(\deg y_i, R \leq 1 \) such that
\[
R(x_1^d, x_2^d, \ldots, x_r^d, (\lambda_1 x_1 + \lambda_2 x_1 + \cdots + \lambda_r x_r)^d) = 0
\]
(4)

Then \(\lambda = \lambda_i e_i \) for some \(i \).

Proof. Since \(x_1^d, x_2^d, \ldots, x_r^d \) are algebraically independent, it follows that \(R \) has a term of the form
\[
\alpha y_1^{t_1} \cdots y_r^{t_r} y_{r+1}
\]
with \(\alpha \neq 0 \) and \(0 \leq t_i \leq 1 \) for all \(i \). The coefficient of \(x_1^{d_1} x_2^{d_2} \cdots x_r^{d_r} x_j^{d-1} x_k \) in (4) equals \((d-1)\alpha \lambda_j \lambda_k = 0\), so \(\lambda_j \lambda_k = 0 \) for all \(j \neq k \). It follows that \(\lambda \) has at most one nonzero coordinate, i.e. \(\lambda = \lambda_i e_i \) for some \(i \).

Lemma 4.3. Let \(d \geq 2 \) and \(R \) be a nonzero relation with \(\deg y_i, R \leq 1 \) such that
\[
R(x_1^d, x_2^d, \ldots, x_r^d, (\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_r x_r)^d, (\mu_1 x_1 + \mu_2 x_2 + \cdots + \mu_r x_r)^d) = 0
\]
(5)

Assume further that \(\lambda_i = \mu_i = 0 \) for at most \(r - 3 \) \(i \)'s. Then either \(\lambda = \lambda_i e_i \), for some \(i \) or \(\mu = \mu_i e_i \) for some \(i \) or \(\lambda \) and \(\mu \) are dependent.

Proof. Assume that \(\lambda \) and \(\mu \) are independent. Without loss of generality, we assume that \((\lambda_1, \lambda_2) \) and \((\mu_1, \mu_2) \) are independent. The cases \(\deg y_{r+1} R = 0 \) and \(\deg y_{r+2} R = 0 \) follow from lemma 4.2. So assume the opposite.

i) Suppose first that \(\lambda_1 = \mu_2 = 0 \). Then \(\lambda_2 \mu_1 \neq 0 \). Since \(\deg y_{r+2} R = 1 \), \(R \) has a term of the form
\[
\alpha y_1^{t_1} y_2^{t_2} \cdots y_r^{t_r} y_{r+1} y_{r+2}
\]
with \(0 \leq t_i \leq 1 \) for all \(i \). If \(t_{r+1} = 0 \), then by looking at the term
\[
x_1^{d_1} x_2^{d_2} \cdots x_r^{d_r} (x_1^{d-1} x_m)
\]
of (5), we see that \(\mu_m = 0 \) for all \(m \neq 1 \), i.e. \(\mu = \mu_1 e_1 \). So assume \(t_{r+1} = 1 \). Looking at the term
\[
x_1^{d_1} x_2^{d_2} \cdots x_r^{d_r} x_2^{d-1} x_1 x_1^{d-1}
\]
of (5), we see that \(\lambda_l \mu_t = 0 \) for all \(l \geq 3 \). Assume \(\lambda \neq \lambda_2 e_2 \). Then there is an \(l \geq 3 \) such that \(\lambda_l \neq 0 \). So \(\mu_l = 0 \). Looking at the term
\[
x_1^{d_1} x_2^{d_2} \cdots x_r^{d_r} x_2^{d-1} x_1 x_m x_1^{d-1}
\]
gives \(\mu_m = 0 \) for all \(m \geq 3 \). So \(\mu = \mu_1 e_1 \).

So assume \((\lambda_1, \mu_3, \ldots) \neq 0 \) for \(i = 1, 2 \). Since \((\lambda_1, \lambda_2) \) and \((\mu_1, \mu_2) \) are independent, at least three of their four coordinates are nonzero. Assume without loss of generality that \(\lambda_1 \lambda_2 \mu_1 \neq 0 \). If \(\mu_2 = 0 \), then we may assume that \(\mu_3 \neq 0 \) on account of the assumption \(\mu \neq \mu_1 e_1 \).
If $\mu_2 \neq 0$, then $\lambda_1 \lambda_2 \mu_1 \mu_2 \neq 0$. From the assumption $\lambda_i = \mu_i = 0$ for at most $r - 3$ i’s, it follows that $\lambda_i \neq 0$ or $\mu_i \neq 0$ for some $i \geq 3$. So without loss of generality, we may assume $\mu_3 \neq 0$. So assume $\mu_3 \neq 0$ regardless of whether $\mu_2 = 0$ or not.

Assume that (λ_2, λ_3) and (μ_2, μ_3) are dependent. Then $\mu_2 \mid \lambda_2 \mu_3 \neq 0$, so $\lambda_2 \mu_2 \neq 0$. If we interchange (λ_1, μ_1) and (λ_2, μ_2), which can be realized by flipping x_1 and x_2, (λ_2, λ_3) and (μ_2, μ_3) get independent but the condition $\lambda_1\mu_1 \neq 1$ is not affected. So we may assume that (λ_2, λ_3) and (μ_2, μ_3) are independent and in addition $\lambda_1\mu_1 \neq 0$.

ii) We show that the above assumptions lead to a contradiction. Replacing R by $R(y_1, y_2, \ldots, y_r, \lambda_3^2 y_{r+1}, \mu_3^2 y_{r+2})$, we may assume that $\lambda_1 = \mu_1 = 1$. Write $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_r x_r = x_1 + L$ and similarly $\mu_1 x_1 + \mu_2 x_2 + \cdots + \mu_r x_r = x_1 + M$.

Let $s := \deg_{y_{r+1}, y_{r+2}} R$. Notice that $\deg_{y_i} R \leq 1$ for all i. If $s \geq 3$, then $s = 3$ and the left hand side of (5) has degree $3d$ with respect to x_1; contradiction. Since $\deg_{y_{r+1}} R \neq 0$, $s \geq 1$. So two cases remain:

- $s = 1$:

 We can write

 $$R = R_1 y_1 + R_2 y_{r+1} + R_3 y_{r+2} + R_4$$

 with $R_i \in \mathbb{C}[y_2, \ldots, y_r]$. Looking at the coefficient of x_1^{d-1} in (5) gives

 $$R_2(x_2^d, \ldots, x_r^d) L = -R_3(x_2^d, \ldots, x_r^d) M$$

 Assume $R_2 \neq 0$. Notice that $d \geq 2$. Reduction modulo $x_i^d - y_i$ for all i gives $R_2 L = -R_3 M$. Next, a generic substitution into the y_i’s gives $L = \alpha M$ for some $\alpha \in \mathbb{C}$. So L and M are linearly dependent. This contradicts the independence of (λ_2, λ_3) and (μ_2, μ_3), so $R_2 = R_3 = 0$. Looking at the coefficient of x_1^d in (5) gives $R_1 = 0$. So $R = R_4$. This contradicts $s = 1$.

- $s = 2$:

 We can write

 $$R = R_1 y_{r+1} y_{r+2} + R_2 y_1 y_{r+1} + R_3 y_1 y_{r+2} + R_4$$

 with $R_i \in \mathbb{C}[y_2, \ldots, y_r]$ for all $i \leq 3$ and $\deg_{y_1, y_{r+1}, y_{r+2}} R_4 \leq 1$. Looking at the coefficient of x_1^{2d-1} in (5) gives

 $$(R_1 + R_3)(x_2^d, \ldots, x_r^d) L = -(R_1 + R_3)(x_2^d, \ldots, x_r^d) M$$

 and $(R_1 + R_3) = (R_1 + R_2) = 0$ follows similar as $R_2 = R_3 = 0$ in the case $s = 1$. Looking at the coefficient of x_1^{2d} in (5) gives $R_1 + R_2 + R_3 = 0$, so $R_2 = R_3 = 0$ and also $R_1 = 0$. So $R = R_4$. This contradicts $s = 2$.

\[\square\]
Applying lemma 4.2 again gives $A \in \mathcal{s}$ linear transformation, we have A are independent and after a suitable permutation, we have that the rows P again by [9, lemma 1.2], there is a permutation matrix P. This transformation may make all principal minor determinants zero, but then, for a suitable linear transformation T such that $P^{-1}AP$ is lower triangular. So we may assume that there is still a nonzero principal minor determinant in A is lower triangular. So we may assume that there is still a nonzero principal minor determinant in A. From lemma 4.1, it follows that there exists a nonzero relation R such that $R((A_1x)^{d-1}, (A_2x)^{d-1}, \ldots, (A_nx)^{d-1}) = 0$.

Let $r := \text{rk}A \geq n - 2$. After a suitable permutation, we have that the rows A_1, A_2, \ldots, A_r are independent,

$$A_{r+1} = \lambda_1 A_1 + \lambda_2 A_2 + \cdots + \lambda_r A_r$$

and, in case $r = n - 2$,

$$A_{r+2} = \mu_1 A_1 + \lambda_2 A_2 + \cdots + \mu_r A_r$$

We first show that $A_i = sA_j$ for some $i \neq j$ and $s \in \mathbb{C}$. The case $r = n - 1$ follows from lemma 4.2, so assume that $r = n - 2$. The case $\lambda_i = \mu_i = 0$ for at most $r - 3$ i’s follows from lemma 4.3, so assume $\lambda_i = \mu_i = 0$ for at least $r - 2$ i’s. Replacing A by $P^{-1}AP$ for a suitable permutation P, we get that $\lambda_i = \mu_i = 0$ for all $i \leq r - 2$, and theorem 3.5 applies. So $A_i = sA_j$ for some $i \neq j$ and $s \in \mathbb{C}$.

So the components of H are linearly dependent. Replacing H by $T^{-1} \circ H \circ T$ for a suitable linear transformation T, we get $H_1 = 0$ and hence $A_1 = 0$. This transformation may make all principal minor determinants zero, but then, again by [9, lemma 1.2], there is a permutation matrix P such that $P^{-1}AP$ is lower triangular. So we may assume that there is still a nonzero principal minor determinant in A. From lemma 4.1 it follows that there exists a nonzero relation R_1 such that $R_1((A_2x)^{d-1}, \ldots, (A_nx)^{d-1}) = 0$.

After a suitable permutation, we have that the rows $A_2, A_3, \ldots, A_{r+1}$ are independent and

$$A_{r+2} = \lambda_2 A_2 + \lambda_3 A_3 + \cdots + \lambda_{r+1} A_{r+1}$$

Applying lemma 4.2 again gives $A_i = sA_j$ for some $i \neq j$ with $i, j \neq 1$ and $s \in \mathbb{C}$, i.e. a linear relation between $(A_2x)^d, \ldots, (A_nx)^d$. So after a suitable linear transformation, we have $A_2 = 0$ as well. Since $\text{cork}A \leq 2$, $(A_3x)^{d-1}, \ldots, (A_nx)^{d-1}$ are algebraically independent. It follows from lemma 4.1 that all principal minor determinants of A are zero. So again we can take for T a suitable permutation matrix P. \hfill \Box

\textbf{Theorem 4.4.} Assume A is a matrix of corank 2 at most, $d \geq 3$ and $H = (Ax)^d$ such that $\mathcal{J}H$ is nilpotent. Then there exists a $T \in \text{GL}_n(\mathbb{C})$ and a lower triangular matrix B such that $T^{-1} \circ (Ax)^d \circ T = (Bx)^d$.

\textbf{Proof.} Assume first that every principal minor of A has determinant zero. From [9, lemma 1.2] (see also [12, prop. 6.3.9]), it follows that there is a permutation P such that $P^{-1}AP$ is lower triangular. So take $T = P$.

Assume next that A has an invertible principal minor. From lemma 4.1, it follows that there exists a nonzero relation R such that

$$R((A_1x)^{d-1}, (A_2x)^{d-1}, \ldots, (A_nx)^{d-1}) = 0$$

Let $r := \text{rk}A \geq n - 2$. After a suitable permutation, we have that the rows A_1, A_2, \ldots, A_r are independent,

$$A_{r+1} = \lambda_1 A_1 + \lambda_2 A_2 + \cdots + \lambda_r A_r$$

and, in case $r = n - 2$,

$$A_{r+2} = \mu_1 A_1 + \lambda_2 A_2 + \cdots + \mu_r A_r$$

We first show that $A_i = sA_j$ for some $i \neq j$ and $s \in \mathbb{C}$. The case $r = n - 1$ follows from lemma 4.2, so assume that $r = n - 2$. The case $\lambda_i = \mu_i = 0$ for at most $r - 3$ i’s follows from lemma 4.3, so assume $\lambda_i = \mu_i = 0$ for at least $r - 2$ i’s. Replacing A by $P^{-1}AP$ for a suitable permutation P, we get that $\lambda_i = \mu_i = 0$ for all $i \leq r - 2$, and theorem 3.5 applies. So $A_i = sA_j$ for some $i \neq j$ and $s \in \mathbb{C}$.

So the components of H are linearly dependent. Replacing H by $T^{-1} \circ H \circ T$ for a suitable linear transformation T, we get $H_1 = 0$ and hence $A_1 = 0$. This transformation may make all principal minor determinants zero, but then, again by [9, lemma 1.2], there is a permutation matrix P such that $P^{-1}AP$ is lower triangular. So we may assume that there is still a nonzero principal minor determinant in A. From lemma 4.1 it follows that there exists a nonzero relation R_1 such that

$$R_1((A_2x)^{d-1}, \ldots, (A_nx)^{d-1}) = 0$$

After a suitable permutation, we have that the rows $A_2, A_3, \ldots, A_{r+1}$ are independent and

$$A_{r+2} = \lambda_2 A_2 + \lambda_3 A_3 + \cdots + \lambda_{r+1} A_{r+1}$$

Applying lemma 4.2 again gives $A_i = sA_j$ for some $i \neq j$ with $i, j \neq 1$ and $s \in \mathbb{C}$, i.e. a linear relation between $(A_2x)^d, \ldots, (A_nx)^d$. So after a suitable linear transformation, we have $A_2 = 0$ as well. Since $\text{cork}A \leq 2$, $(A_3x)^{d-1}, \ldots, (A_nx)^{d-1}$ are algebraically independent. It follows from lemma 4.1 that all principal minor determinants of A are zero. So again we can take for T a suitable permutation matrix P. \hfill \Box

11
Lemma 4.5. Let \(d \geq 3 \) and \(R \) be a nonzero relation with \(\deg y_1 R \leq 1 \) such that
\[
R(x_1^d, x_2^d, \ldots, x_r^d, (\lambda_1 x_1 + \lambda_2 x_1 + \cdots + \lambda_r x_r)^d, (\mu_1 x_1 + \mu_2 x_1 + \cdots + \mu_r x_r)^d) = 0 \quad (6)
\]
Then either \(\lambda = \lambda_i e_i \) for some \(i \) or \(\mu = \mu_i e_i \) for some \(i \) or \(\lambda \) and \(\mu \) are dependent.

Proof. The cases \(\deg y_{i+1} R = 0 \) and \(\deg y_{i+2} R = 0 \) follow from lemma 4.2, so assume the opposite. The case \(\lambda_i = \mu_i = 0 \) for at most \(r-3 \) \(i \)'s follows from lemma 4.3, so assume without loss of generality that \(\lambda_i = \mu_i = 0 \) for all \(i \geq 3 \).

Similar as in the proof of lemma 4.3, we assume that \(\lambda_1 = \mu_1 = 1 \) and write
\[
\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_r x_r = x_1 + L \text{ and } \mu_1 x_1 + \mu_2 x_2 + \cdots + \mu_r x_r = x_1 + M.
\]
Put \(s := \deg y_{i+1} y_{i+2} R \). If \(s \geq 3 \), then \(s = 3 \) and the left hand side of (6) has degree 3d in \(x_1 \); contradiction. Since \(\deg y_{i+1} R \neq 0 \), \(s \geq 1 \). So two cases remain:

- \(s = 1 \):

 Since \(\lambda_i = \mu_i = 0 \) for all \(i \geq 3 \), \(R \) is in fact a relation between \(x_1^d, x_2^d, (x_1 + L)^d \) and \((x_1 + M)^d \), say

 \[
 R_0(x_1^d, x_2^d, (x_1 + L)^d, (x_1 + M)^d) = 0
 \]
 for some homogeneous \(R_0 \neq 0 \) with \(\deg y_{i+3} R_0 \leq s \) and \(\deg y_{i+2} R_0 \leq 1 \). If \(R_0 \) is linear, then it follows from lemma 3.3 and \(d \geq 3 \) that \(L = 0 \), \(M = 0 \) or \(L = M \). If \(R_0 \) is not linear, then it follows from \(s = 1 \) that \(R_0 \) is quadratic and \(y_2 \mid R_0 \), for \(R_0 \) is homogeneous. Hence, \(R_0 \) decomposes into linear factors and can be chosen linear instead.

- \(s = 2 \):

 Write

 \[
 R = R_1 y_{i+1} y_{i+2} + R_2 y_1 y_{i+2} + R_3 y_1 y_{i+1} + R_4
 \]
 with \(R_i \in \mathbb{C}[y_1, \ldots, y_r] \) for all \(i \leq 3 \) and \(\deg y_{i+1} y_{i+2} R_4 \leq 1 \). Looking at the coefficient of \(x_1^{2d-1} \) in (6) gives

 \[
 (R_1 + R_3)(x_2^d, \ldots, y_r^d)L = -(R_1 + R_2)(x_2^d, \ldots, y_r^d)M
 \]
 Looking at the coefficient of \(x_1^{2d} \) in (6), gives \(R_1 + R_2 + R_3 = 0 \), which implies \(-R_2 L = R_3 M \).

 At last, the coefficient of \(x_1^{2d-2} \) in (6) implies that the following is zero:

 \[
 2dR_1 LM + (d-1)(R_1 + R_3)L^2 + (d-1)(R_1 + R_2)M^2
 = 2dR_1 LM - (d-1)R_2 L^2 - (d-1)R_3 M^2
 = 2dR_1 LM + (d-1)R_3 LM + (d-1)R_2 LM
 = (d+1)R_1 LM
 \]
So \(LM = 0 \) or \(R_1 = 0 \). So assume \(R_1 = 0 \). Then \(-R_2 = R_3\) due to \(R_1 + R_2 + R_3 = 0 \). From \(-R_2 = R_3\) and \(-R_2L = R_3M\), it follows that either \(R = R_4\), which contradicts \(s = 2\), or \(L = M\). \(\square \)

Theorem 4.6. If \(H \) is as in theorem 3.4 and \(\text{cork}A = 3\), then there exists a \(T \in \text{GL}_n(\mathbb{C}) \) and a lower triangular matrix \(B \) such that

\[
T^{-1} \circ (Ax)^s d \circ T = (Bx)^s d
\]

Proof. Since the proof of theorem 4.6 is more or less similar to that of theorem 4.4, we only give a sketch of it.

From theorem 3.4 or [16, Th. 3.1], it follows that \(A_i = sA_j \) for some \(i \neq j \) and \(s \in \mathbb{C}\), i.e. the components of \(H \) are linearly dependent. So we may assume that the first row of \(A \) is zero. Assume \(A \) has a nonzero principal minor determinant. The conditions of theorem 3.4 imply that \(3 = \text{cork}A \leq d - 2 \), so \(d \geq 5 \). So it follows from lemmas 4.1 and 4.5 that we may assume that the first two rows of \(A \) are zero. Next, it follows from lemmas 4.1 and 4.2 that we may assume that the first three rows of \(A \) are zero. Since \(\text{cork}A = 3 \), all principal minors of \(A \) have determinant zero. So \(B \) as above exists. \(\square \)

Observe that in the proofs of theorems 4.4 and 4.6, the process of triangularization is as follows: first, all occurrences of \(A_i = sA_j \) with \(i \neq j \) and \(s \in \mathbb{C}^* \) are eliminated by linear transformations ‘within \(\mathbb{C}[x_i, x_j] \)’. After that, \(A \) is made triangular by a permutation transformation. This result does not follow from the methods of Drużkowski.

The above observation does not hold for power linear maps \((Ax)^s d\) with \(\text{rk}A = 2\), but still there exist a triangularization of \((Ax)^s d\) that is power linear as well. The following theorem, which is in fact a closer look on what happens in the proof of Theorem 1 of [6], shows this result not only for \(d \geq 3 \), but for any \(d \geq 1 \).

Theorem 4.7. Assume \(A \) is a matrix of rank 2 at most and \(J(Ax)^s d \) is nilpotent. Then there exists a \(T \in \text{GL}_n(\mathbb{C}) \) and a lower triangular matrix \(B \) such that

\[
T^{-1} \circ (Ax)^s d \circ T = (Bx)^s d
\]

Proof. The case \(\text{rk}A = 1 \) was already done by Drużkowski in [9]. So assume that \(\text{rk}A = 2 \). Then there are two rows \(A_{i_1} \) and \(A_{i_2} \) of \(A \) such that all other rows of \(A \) are linear combinations of \(A_{i_1} \) and \(A_{i_2} \). There are \(n - 2 \) distinct unit vectors \(e_{k_3}, \ldots, e_{k_n} \) such that the rows \(A_{i_1}, A_{i_2}, e_{k_3}^t, \ldots, e_{k_n}^t \) are independent. Replacing \(A \) by \(P^{-1}AP \) for a suitable permutation \(P \) makes that the rows \(A_{j_1}, A_{j_2}, e_{k_3}^t, \ldots, e_{k_n}^t \) are independent.

Hence the matrix with those \(n \) rows is invertible. So set

\[
T := \begin{pmatrix} A_{j_1} \\ A_{j_2} \\ e_{k_3}^t \\ \vdots \\ e_{k_n}^t \end{pmatrix}^{-1}
\]

13
Then the last \(n - 2 \) rows of \(T \) are \(e_3^T, \ldots, e_n^T \) as well. Put \(\tilde{H} = T^{-1} \circ H \circ T \), where \(H = (Ax)^d \). The components \(\tilde{H}_3, \ldots, \tilde{H}_n \) of \(\tilde{H} \) are clearly linear powers. Write \(A_i = \lambda_i A_{j_1} + \mu_i A_{j_2} \) for all \(i \). Then

\[
A = \begin{pmatrix}
\lambda_1 & \mu_1 & 0 & \cdots & 0 \\
\lambda_2 & \mu_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_n & \mu_n & 0 & \cdots & 0
\end{pmatrix} \cdot T^{-1}
\]

So the last \(n - 2 \) columns of \(A \cdot T \) are zero. It follows that \(\tilde{H}_i \in \mathbb{C}[x_1, x_2] \) for each \(i \). Hence \((x_1, x_2) + (\tilde{H}_1, \tilde{H}_2) \) is a homogeneous Keller map in dimension 2. Such maps are classified in e.g. [1]: we have either \(\tilde{H}_1 = \tilde{H}_2 = 0 \), in which case \(\tilde{H} \) is already of the form \((Bx)^d\) with \(B \) triangular, or

\[
\begin{pmatrix}
\tilde{H}_1 \\
\tilde{H}_2
\end{pmatrix} = S^{-1} \circ \begin{pmatrix}
0 \\
x_1^d
\end{pmatrix} \circ S
\]

Now \((S, x_3, \ldots, x_n)^{-1} \circ \tilde{H} \circ (S, x_3, \ldots, x_n)\) is of the form \((Bx)^d\) with \(B \) triangular.

In case \(\text{rk} A = 1 \), Drużkowski found a matrix \(B \) with \(n - 1 \) zero rows, but an argument similar as above would give a matrix \(B \) with \(n - 1 \) zero columns.

5 Some final remarks

At first, we like to mention that in [5], Cheng proves that in case \(\text{cork} A = 1 \), \(A_i = s A_j \) for some \(i \neq j \) and \(s \in \mathbb{C} \), also in the quadratic case. So the conclusion of theorem 4.4 holds for this case as well: see the proof of theorem 4.4.

The following quadratic linear map \((Ax)^2\) in dimension 6 with \(\text{rk} A = \text{cork} A = 3 \), which is, as observed in the introduction, linearly triangularizable, but without a linear triangularization that is quadratic linear as well:

\[
H = \begin{pmatrix}
0 \\
0 \\
(x_1 + x_2 + x_3 - x_4 - x_5 + x_6)^2 \\
(x_1 - x_2 + x_3 - x_4 - x_5 + x_6)^2 \\
(x_1 - x_2 - x_3 + x_4 + x_5 - x_6)^2 \\
(x_1 + x_2 - x_3 + x_4 + x_5 - x_6)^2
\end{pmatrix}
\]

In order to prove that the above quadratic linear \(H \) has no ditto linear triangularization, we need the following normalization principle for triangular power linear maps.

Proposition 5.1. Let \(H = (Ax)^d \) be lower triangular. Then there exists an \(r \) and a \(G = (Bx)^d \) which is lower triangular as well, such that \(G_1 = G_2 = \cdots = G_r = 0 \) and \(G_{r+1}, G_{r+2}, \ldots, G_n \) are linearly independent over \(\mathbb{C} \).
Proof. Assume
\[\lambda_1 H_1 + \lambda_2 H_2 + \cdots + \lambda_s H_s \]
is a linear dependence relation between the components of \(H \) with \(\lambda_s \neq 0 \). After a suitable linear transformation that does not affect the fact that \(H \) is lower triangular, we have \(H_s = 0 \). Repeating this argument, we get that all linear relations between the components of \(H \) are determined by zero components of \(H \).

Next, if \(H_s = 0 \), but \(H_i = 0 \) does not hold for all \(i \leq s \), then the map \(P^{-1} \circ H \circ P \) with \(P = (x_2, \ldots, x_s, x_1, x_{s+1}, \ldots, x_n) \), which is lower triangular as well, has more zero components at the beginning than \(H \) has, and the result follows by induction.

Now let \(E = (x_1, x_2, x_3 + x_4 + x_5 - x_6, x_4, x_5, x_6) \), then

\[G := E^{-1} \circ H \circ E = \begin{pmatrix} 0 \\ 0 \\ 8x_1 x_2 \\ (x_1 - x_2 + x_3)^2 \\ (x_1 - x_2 - x_3)^2 \\ (x_1 + x_2 - x_3)^2 \end{pmatrix} \]
is a triangularization of \(H \). In order to prove that \(H \) has no triangularization that is quadratic linear as well, we show that \(\tilde{G} = T^{-1} \circ G \circ T \) cannot be both lower triangular just as \(G \) and quadratic linear just as \(H \).

Assume \(\lambda^t G = 0 \). Looking at \((\frac{\partial}{\partial x_1})^2 G_i \) for all \(i \), we see that \(\lambda_4 + \lambda_5 + \lambda_6 = 0 \).

Looking at \((\frac{\partial}{\partial x_2})^2 G_i \) and \((\frac{\partial}{\partial x_3})^2 G_i \) for all \(i \) as well, we see that \(\lambda_4 = \lambda_5 = \lambda_6 = 0 \).

Since \(G_1 = G_2 = 0 \), \(\lambda_3 = 0 \) and the last four components of \(G \) are linearly independent.

Assume that \(\tilde{G} \) is lower triangular. From proposition 5.1, it follows that we may assume that \(G_1 = G_2 = 0 \). Since the last four components of \(G \), and hence those of \(G(Tx) \) as well, are linearly independent, it follows from \(0 = \tilde{G}_1 = (T^{-1})_1 G(Tx) \) that the last four coordinates of \((T^{-1})_1 \) are zero. Similarly, the last four coordinates of \((T^{-1})_2 \) are zero. Since \(\tilde{G} \) is lower triangular, we have \(\tilde{G}_3 \in \mathbb{C}[x_1, x_2] \), whence \((T^{-1})G_3 = \tilde{G}_3(T^{-1}x) \in \mathbb{C}[x_1, x_2] \) as well. Looking at \(\frac{\partial}{\partial x_3} G_i \) for all \(i \), it follows that \((T^{-1})G_3 \in \mathbb{C}[x_1, x_2] \), if and only if \((T^{-1})_3 \) is of the form

\[T_3^{-1} = (\mu_1 \mu_2 \mu_3 0 0 0) \]

Assume \(\tilde{G}_3 \) is the square of a linear form. Then \((T^{-1}G)_3 \) is such a square as well. This requires \(\mu_3 = 0 \), so the first three rows of \(T^{-1} \) are dependent. Contradiction, so \(\tilde{G}_3 \) is not the square of a linear form.

In [12, Th. 8.4.2], a special cubic linear map is given that is not linearly triangularizable; the proof follows from [12, Th 7.4.4] and [12, Th 8.3.2]. Another
power linear map that is not linearly triangularizable is

\[
H = \begin{pmatrix}
0 & 0 \\
(x_1 + x_5 - x_6 + x_7 - x_9)^2 & (x_2 + x_5 - x_6 + x_7 - x_9)^2 \\
(x_2 + x_3 - x_8)^2 & (x_3 - x_8)^2 \\
(x_4 - x_8)^2 & (x_5 - x_6 + x_7 - x_9)^2 \\
(x_1 + x_4 - x_8)^2 & (x_1 + x_4 - x_8)^2 \\
\end{pmatrix}
\]

The proof that this quadratic linear map cannot linearly be triangularized at all uses the same techniques as above, and is left as an exercise to the reader. Since for a triangular special homogeneous map \(x + H\), either the first or the last component of \(H\) is zero, triangularizability of a power linear map \(H\) implies that its components are linearly dependent over \(\mathbb{C}\). So one can ask whether the components of \(H\) need to be linearly dependent. This is not the case: in [3], the second author shows that there exists a cubic linear counterexample to this linear dependence problem in dimension 53.

References

