The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/35475

Please be advised that this information was generated on 2019-10-04 and may be subject to change.
Rotationally inelastic scattering of OH ($^2\Sigma_{3/2}, v=0, J=3/2, f$) by HBr ($^1\Sigma, v=0, J<4$)

A. Moise and R. Cireasa
Department of Applied Molecular Physics, Institute for Molecules and Materials, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

D. H. Parker
Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

J. J. ter Meulen
Department of Applied Molecular Physics, Institute for Molecules and Materials, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

(Received 10 July 2006; accepted 20 September 2006; published online 30 November 2006)

Relative state-to-state cross sections of OH molecules in the $^2\Pi_{3/2}, v=0, J=3/2, M_J=3/2, f$ state have been determined for transitions up to $^3\Pi_{3/2}, v=0, J=11/2, f$ and $^3\Pi_{1/2}, v=0, J=7/2, f$ states by collisions with HBr molecules ($^1\Sigma, v=0, J<4$) at 750 cm$^{-1}$ collision energy. In order to investigate features of the anisotropy of the OH–HBr potential energy surface, the steric asymmetries, which account for the effect of the OH orientation with respect to the collision partner, have been measured. A comparison with other systems previously studied shows strong similarities with the OH–HCl system. © 2006 American Institute of Physics. [DOI: 10.1063/1.2363377]

I. INTRODUCTION

Reactions of the OH radical with hydrogen halides (HCl, HBr, HI) play a crucial role in the atmospheric chemistry as the produced halogen atoms contribute significantly to the destruction of ozone. Various kinetic studies on these systems have been reported, resulting in the determination of reaction rate constants as a function of temperature. The intermolecular potentials are, however, less well known. Among these systems the OH–HCl one has been studied most extensively. We recently performed state-to-state inelastic scattering measurements in which the OH radical was either oriented or not with respect to the HCl molecule. The obtained state-to-state cross sections were compared with the results of reduced dimensionality calculations using a two-dimensional (2D) or four-dimensional (4D) potential energy surface (PES). A more accurate ab initio PES was published recently by Wormer et al.

In this article, we report measurements on (non-) oriented OH radicals in collisions with HBr. Compared to the interaction of OH with HCl, HBr is predicted to be more reactive, presenting a rate constant at room temperature about one order of magnitude larger, 1.1 \times 10$^{-11}$ cm3 s$^{-1}$, and a two times higher exothermicity, 131.5 kJ/mol. Clary et al. reported quantum scattering calculations using rotating bond approximation and treating explicitly the bending vibration and local OH stretching vibration in H$_2$O, the vibration of HBr and rotation of OH. For both reactants in the ground electronic and vibrational state and also ground rotational state for the hydroxyl radical, the resulting OH+HBr reaction cross section was 28 Å2 at a collision energy of 0.09 eV; at a similar collision energy the vibrational population of the H$_2$O product was predicted to be (1,1), (0,2), (2,1), (1,2) in order of decreasing cross sections, where the first quantum number refers to the bending vibration and the second to both stretching types. These results were found to be in general agreement with the vibrational distribution of the H$_2$O product measured by IR chemiluminescence by Butkovskaya and Setser. The calculations of Clary et al. were based on an approximate PES. The authors found a strong dependence of the cross sections with the rotational quantum number of the OH molecule. In a direct dynamics study Liu et al. found that the OH+HBr reaction proceeds via a hydrogen bounded complex and subsequently a transition state. An energy barrier of about 310 cm$^{-1}$ was obtained in contrast to Clary et al. and Nizamov et al. who found a potential well instead of a reaction barrier, equal to 601.6 and 622.6 cm$^{-1}$, respectively. Regarding the inelastic channel no calculations have been reported thus far.

Besides the chemical nature and collision energy, the internal energy and the impact geometry are factors that determine the output of a scattering process. Taking advantage of the polar properties and $^2\Pi$ symmetry of the hydroxyl radical, electrostatic field methods can be used to select and spatially focus only the molecules in a specific internal state, in the present case $X^2\Pi_{3/2}, v=0, J=3/2, M_J=3/2, f$. This enables the study of state-to-state rotational excitation. In addition, it is possible by using electrostatic fields to orient these molecules with either the O or H side directed towards...
the collision partner. In this article we present state-to-state inelastic cross sections and steric asymmetries for the oriented scattering, measured by saturated laser induced fluorescence (LIF) of the OH $A(\Sigma^+)-X(\Pi)$, (0-0) band. The results are compared with the previously obtained cross sections and steric asymmetries for the OH+HCl system.

II. EXPERIMENTAL PROCEDURE

A detailed description of the experimental setup is given in previous reports. Briefly, a crossed beam machine pumped to $10^{-7}-10^{-8}$ Torr is provided with two 50 μs (full width at half maximum) molecular pulses (Jordan) at a repetition rate of 10 Hz. The OH beam is produced by expanding 3% H$_2$O in Ar through one of these valves with a nozzle opening of 0.2 mm diameter. The backing pressure is 600 Torr. At 15 mm from the nozzle a stainless steel ring with an inner diameter of 3 mm is kept at -4 kV, producing an electrical discharge in the expanding mixture. After passing a skimmer with an opening of 2.5 mm diameter and at a voltage of -300 V to deflect the ions formed in the discharge, the beam molecules enter a double hexapole state selector. The hexapole voltage is set to focus the OH molecules in the states $Ω=3/2$, $J=3/2$, $M_J=3/2$, f into the region of collisions with the secondary beam. A 2 mm diameter beam stop is placed on the molecular beam axis in front of the state selector to block the molecules, which fly along the central axis and do not experience any field for the selection. Half way in the state selector the OH molecules in the $J=3/2$, $M_J=3/2$ state are focused for the first time. This enables the blocking of OH molecules in the other low field seeking states (mainly $J=3/2$, $M_J=1/2$) by inserting a diaphragm with a diameter of 3.5 mm. As a result, the distribution of the hydroxyl radical population in the collision region is 94% in the $Ω=3/2$, $J=3/2$, f state, 4% in the $Ω=3/2$, $J=5/2$, f state, and less than 0.5% in each other rotational state. The measured cross section for the transition to the $Ω'=3/2$, $J'=5/2$, f final state has been corrected for the initial population of this state assuming that the relative depletion of population by out-scattering is the same for $J=3/2$ and $J=5/2$ states.

The secondary beam is formed in the supersonic expansion of 1 bar pure HBr gas through a 0.5 mm diameter nozzle. At 30 mm downstream of the nozzle and 60 mm before the collision center a 3 mm diameter skimmer is located. Analysis of resonance enhanced multiphoton ionization (REMPI) spectra of various rotational branches of the excitation transitions to the $g^3Σ^-$ (0-0), $τ^3Δ_2$ (0-0), and $I^1Δ_2$ (0-0) states revealed a rotational cooling of the $X^1Σ^+$, $ν=0$ state down to 19±3 K, as shown in Fig. 1. The isotope shifts corresponding to H79Br (50.7%) and H81Br (49.3%) are not resolved. The backing pressure of the secondary beam gas has been chosen to cause not more than 10% out-scattering of the initial population of OH in the $Ω=3/2$, $J=3/2$, f state, in order to maintain a single collision regime. The collision energy of OH seeded in Ar colliding at a right angle with the pure HBr beam is estimated to be 750±190 cm$^{-1}$.

For the measurements of the steric asymmetries an orientation field is created in the collision region by four parallel rods biased in pairs in order to induce a 7.5 kV/cm field parallel or antiparallel to the relative velocity vector of the molecular beams. By means of the Stark effect the combination of the electrostatic fields of the hexapole and the orientation rods assures that for one polarity of the four rods the OH side of the molecules is oriented towards the HBr molecules and the H side for the reversed polarity. Preference for one of these orientations results in a larger measured scattering cross section. A detailed description of the theory of the OH state selection and subsequent orientation is given in other preceding reports.

The A-doublet state resolved population distribution is probed by saturated LIF by exciting the $A(\Sigma^+)-X(\Pi)$ transition at 308 nm. The second harmonic generation of a Nd:YAG (yttrium aluminum garnet) laser with 5 ns pulse and 10 Hz repetition rate is used to pump a dye laser (Lambda Physik model Scanmate 2) operating with Sulforhodamine SR 640; the doubled output is set at 0.5–0.8 mJ/pulse in order to prevent line broadening and still saturate the absorption. The laser bandwidth is 0.45 cm$^{-1}$, which allows the spectral resolution of all measured OH transitions except for the Q_2 (2) and Q_2 (3) transitions. The spatial spreads of the OH and HBr beams at the collision and detection region are 2 and 9 mm, respectively. The laser beam size is 4 mm in diameter at the crossing of the molecular beams. The Q_1 and P_1 transitions are used to probe the population of the $^3Π_{3/2}$, $J=3/2–11/2$, f and $J=3/2–9/2$, e states, respectively, whereas the P_2 and Q_2 transitions are used for the $^3Π_{1/2}$, $J=3/2$, $5/2$, f and $J=1/2–7/2$, e states, respectively; for the population of the $^3Π_{1/2}$, $J=1/2$, f state the P_{13} (1) line has been used. A system
of two lenses and a UG-11 filter is used to collect the fluorescent light onto the photomultiplier tube (EMI 9235 QB). The laser beam is passed through light baffles before and after the detection region and is dumped into a Wood's horn in order to reduce the background due to laser beam. Gated boxcar signals are accumulated over 2000 shots with secondary valve modulation every 128 shots during which the gas pulse is delayed or not by 1 ms with respect to the other beam. Subtraction of the modulated signals gives the effect of the collisions: an in- or outscattering signal. For the oriented scattering a measurement cycle of 1000/2000/1000 shots is applied with alternating polarity between the rods, +/−+/− or −/+/−, in order to compensate for the experimental drifts in laser energy and alignment. 10–80 measurements have been used for each rotational level to deduce the mean value and its accuracy by weighted averaging (Fig. 2).

III. RESULTS AND DISCUSSION

A. State-to-state cross sections

The differences in final internal state energies do not imply significant differences in the residence time of the OH molecules in the detection volume. In the geometry of these experiments the flux-to-density transformation for the LIF signal to molecular density conversion has been considered negligible within the experimental accuracy. In order to correct for the different degeneracy factors of the initial and final states the fluorescence signal was divided by the excitation rate.²

\[
ER = \frac{(2J'_\text{main} + 1) + (2J''_\text{sat} + 1)}{(2J'_\text{main} + 1) + (2J''_\text{sat} + 1) + (2J'' + 1)},
\]

where the labels main and sat refer to the main or satellite spectroscopic lines excited together within the laser bandwidth and \(J' \) and \(J'' \) designate the total angular momentum quantum numbers for the fluorescent excited state and the ground state, respectively. In the absence of the calculated cross sections to scale with, the relative state-to-state inelastic cross sections for the transitions \(\Omega'', J'', \varepsilon'' \rightarrow \Omega', J', \varepsilon' \) have been determined using the following formula:

\[
\sigma_{\text{rel}}(\Omega', J', \varepsilon') = \frac{\text{Inscattering}(\Omega', J', \varepsilon')}{\text{Outscattering}(\Omega'', J'', \varepsilon'')},
\]

Here \(\Omega \) is the projection of the total angular momentum \(J \) onto the internuclear OH axis and \(\varepsilon \) corresponds to the \(\Lambda \)-doublet state \(e \) or \(f \) symmetry. For \(\Omega = 3/2, f \) and \(\Omega = 1/2, e \) states the half filled electronic \(t \) orbital is antisymmetric with respect to a reflection in the molecular rotation plane, \(\varepsilon \), and \(\Omega = 1/2, f \) states the orbital of the unpaired \(t \) orbital is symmetric with respect to the same reflection operation. The total parity is given by \((-1)^{J'-1/2}\) for the \(e \) states and \((-1)^{J'+1/2}\) for the \(f \) states. The quantum numbers \(\Omega'' \) and \(J'' \) are both equal to \(3/2 \) and \(\varepsilon = f \) for the initially selected state. The measured relative cross sections given by expression (2a) contain information about the absolute cross sections:

\[
\text{Inscattering}(\Omega', J', \varepsilon') \propto \int_{\text{Det Vol}} \sigma_{\text{inelastic}}(\Omega'', J'', \varepsilon'' \rightarrow \Omega', J', \varepsilon') v_{\text{relative}} n_{\text{OH}} n_{\text{HBr}} dV,
\]

\[
\text{Outscattering}(\Omega'', J'', \varepsilon'') \propto \int_{\text{Outside Det Vol}} \sigma_{\text{elastic}}(\Omega'', J'', \varepsilon'') v_{\text{relative}} n_{\text{OH}} n_{\text{HBr}} dV
\]

\[
+ \int_{\text{All space}} \left(\sum_{\Omega', J', \varepsilon'} \sigma_{\text{inelastic}}(\Omega'', J'', \varepsilon'' \rightarrow \Omega', J', \varepsilon') + \sigma_{\text{reactive}} \right) v_{\text{relative}} n_{\text{OH}} n_{\text{HBr}} dV,
\]

FIG. 2. Scheme of the rotational energy levels of the ground electronic state of OH molecule, \(X^2 \Pi \); the \(\Lambda \)-doublet splitting is magnified for clarity. The quantum numbers of the total molecular angular momentum, \(J \), and its projection on the interatomic axis, \(\Omega \), the symmetry with respect to the inversion in the molecular frame, \(p \), and the symmetry with respect the reflection into the molecular rotation plane, \(\varepsilon \), are specified for each of the rotational levels depicted.
where \(n \) is the number density, \(v_{\text{relative}} \) is the average relative velocity of the molecular beams, and \(\sigma_{\text{elastic}}, \sigma_{\text{inelastic}} \) and \(\sigma_{\text{reactive}} \) are absolute cross sections. In these expressions it is assumed that all OH molecules are in the initial state \(\Omega''', J'', e'' \). The measured inscattering \(\langle \Omega', J', e' \rangle \) signal, (2b), consists of fluorescence emitted by the molecules scattered to the final \(\Omega', J', e' \) state and activated by the resonant laser radiation. The intersection of the laser beam and scattered OH molecular beam forms the detection volume. The larger the detection volume, the smaller the contribution of the elastically scattered molecules to the outscattering signal, (2c). 10% of the initial \(\Omega''', J'', e'' \) state is outscttered by collisions. Almost all of the 10% of molecules scattered out of the initial state are detected in different rotational states. For the OH–HBr experiments at a collision energy of 920 cm\(^{-1}\), \(\sigma_{\text{rel}}(\Omega', J', e') \) for the OH–HCl system at 750 cm\(^{-1}\) collision energy and OH–HCl at 920 cm\(^{-1}\). As shown, the ratios are larger for the OH–HBr system for many of the higher excitations. Relative to the amount of molecules that are slightly deexcited to the parity changing state, the amount of molecules rotationally excited decreases with increasing rotational quantum number and this trend is very similar for both halogen hydride partners. Another similar feature is that no propensity with respect to the \(\Lambda \)-doublet parity is measured within the experimental accuracy. For most other systems studied thus far such as OH–He, -N\(_2\), CO–Ar, and CO\(_2\), a clear propensity for the \(\Omega' = 3/2, J' = 5/2, e \) state is revealed. The \(\Omega' = 3/2, f \) states correspond to the antisymmetric configuration with the unfilled electronic \(\pi \) orbital perpendicular to the molecular rotation plane. In collisions with HCl and HBr the molecules exhibit no tendency to keep this configuration above, changing it into the symmetric configuration with the unfilled orbital in the plane of molecular rotation. Probably the long-range dipole-dipole or dipole-quadrupole interactions are dominant over the short-range dispersion forces, which may differ for the symmetric and antisymmetric configurations.

B. Effects of the molecular orientation

The oriented scattering measurements were performed using an electrostatic field along the direction of the relative velocity vector of the two molecular beams. By changing the polarity of the rods the orientation of the OH molecules was alternated such that OH collides with the HBr molecule with either the O or the H side. A quantification of the degree of orientation is given by the average value of the angle between the molecular axis and the axis of the external field.\(^{21,22}\)
Scattering of OH by HBr

FIG. 3. Ratios $\rho(J', J, e')$ (%) of the absolute state-to-state inelastic cross sections and the absolute cross section for the transition to the $\Omega'=3/2$, $J'=3/2$, e state of OH ($X^2 \Pi, v=0$, $\Omega=3/2, J=3/2, f$) in collisions with pure HBr ($\Sigma, v'=0$, $J'<4$) at 750 cm$^{-1}$ collision energy (squares) and with HCl at 920 cm$^{-1}$ collision energy (circles), for the transitions to the (a) $H'=3/2$ states and (b) $H'=1/2$ states. The error bars correspond to one standard deviation.

$\langle \cos \theta \rangle_M(E) = 2 \alpha_M(E) \beta_M(E) \frac{M_\Omega \Omega}{J(J+1)}$, (4)

where M_J is the projection of the total molecular angular momentum on the external field axis and α_M and β_M are the so-called parity mixing coefficients. The electric field dependent wave functions corresponding to each parity of the $J'=3/2$ A-doublet states, ψ_f and ψ_e, are expressed as linear combinations of the field-free wave functions denoted using the quantum numbers set $|\Omega J M J \rangle$:

$\psi_f(E) = \alpha_M(E) |\Omega J M J \rangle + \beta_M(E) |\Omega J M J \rangle$,

$\psi_e(E) = \alpha_M(E) |\Omega J M J \rangle - \beta_M(E) |\Omega J M J \rangle$. (5a)

The 7.5 kV/cm field strength used for the orientation of the state selected $\Omega'=3/2$, $J'=3/2$, M_J molecules is high enough to produce an averaged orientation $|\langle \cos \theta \rangle| = 0.55$, very close to the high field limit value of 0.6. At this field the parity mixing is weak, which allows for labeling the states still using the field-free parity notation.

The polarization of the laser beam has been set to maximize the fluorescence yield in the presence of the external electric field, which corresponds to a laser polarization at an angle different from 0 or 90° with respect to the electric field. Consequently, both $\Delta M_J=0$ and $\Delta M_J=\pm 1$ transitions are enabled and saturated, therefore allowing to infer the total population of each rotational level. The state-to-state steric asymmetries used to quantify the orientation effect on the scattering process are defined as follows:

$S(\Omega', J', e') = -\frac{\sigma_{H\phi-H\phi} - \sigma_{H\phi-H\phi}}{\sigma_{H\phi-H\phi} + \sigma_{H\phi-H\phi}} \times 100 \%$, (6)

where $\sigma_{H\phi-H\phi}$ or $\sigma_{H\phi-H\phi}$ represents the state-to-state cross section for the scattering of the OH molecules oriented with the O or the H side, respectively, towards the collision partner. A positive steric asymmetry indicates the preference for scattering at the O side and alternatively, a H side preference corresponds to a negative value of the steric asymmetry. Since both molecules involved in this experiment have a large dipole moment (0.82 D for HBr and 1.66 D for OH), a strong anisotropy of the PES is expected and thus strong steric asymmetries. The results for the measured steric asymmetries corresponding to state-to-state rotationally inelastic scattering of OH by HBr are presented in Table II. Figure 4 shows the graphical comparison with the steric asymmetries measured for scattering of OH by HCl. As it can be seen, these asymmetries are small in contrast to the expectations. For spin-orbit conserving transitions a trend to larger positive values with increasing rotational excitation is visible. An increase of the steric asymmetries with decreasing cross sections has been observed before in the case of OH–Ar and OH–CO scattering. For the spin-orbit changing transitions the experimental accuracies are low and no clear trend with J' is observed. When comparing with HCl collisions there are no significant differences except for the transitions to the $\Omega'=3/2$, $J'=5/2$ and 7/2, f states. Here relatively large negative steric asymmetries are measured for OH–HCl whereas the steric asymmetries are nearly zero for OH–HBr. A possible explanation for the negative values in the case of

<table>
<thead>
<tr>
<th>Final state Ω</th>
<th>J</th>
<th>f</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>2.6±3.7</td>
<td>1.3±2.8</td>
<td></td>
</tr>
<tr>
<td>7/2</td>
<td>−4.1±6.2</td>
<td>1.0±5.6</td>
<td></td>
</tr>
<tr>
<td>9/2</td>
<td>6.7±9.2</td>
<td>7.4±10.9</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>9.6±7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>−2.8±6.8</td>
<td>5.4±5.6</td>
</tr>
<tr>
<td>3/2</td>
<td>−2.4±7.4</td>
<td>−0.7±8.0</td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>−10.7±7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2</td>
<td></td>
<td>4.8±10.1</td>
<td></td>
</tr>
</tbody>
</table>

The $\Omega=1/2, J=3/2$ and 5/2, e state populations are probed by transitions which are not separated within the laser bandwidth.
HCl collisions is the influence of the HO–HCl van der Waals well\(^1\), which depth estimated using different levels of theory\(2,13,23,24\) is in the range of 870–1900 cm\(^{-1}\). For the HO–HBr hydrogen bond complex Liu et al. calculated a well depth of about 600 cm\(^{-1}\).\(^9\) We may attribute this less deep potential well to a weaker intermolecular interaction since HBr has a smaller electric dipole moment than HCl and is a larger molecule. Both systems exhibit H–O–H bond configurations very close to the stable water molecule geometry. Thus, OH molecules coming with the O side towards the halogen hydride are relatively more preferred for the complex formation channel. After the predissociation of the complex, the OH fragment population may undergo redistribution over rotational, symmetry and spin-orbit internal states within the available energy. This is consistent with the slight positive steric asymmetries for higher rotational excitation and several spin-orbit changing transitions. The smaller steric asymmetries for OH–HBr may be related to the shallower van der Waals well. Another interesting difference between the PESs of OH–HCl and OH–HBr is the barrier height of the reactive channel: 300–800 cm\(^{-1}\) for OH–HCl (Refs. 23–27) and 20–311 cm\(^{-1}\) (Refs. 8 and 9) or no barrier at all\(^7\) for OH+HBr. The OH+HBr collision energy overcomes by far the barrier of 311 cm\(^{-1}\). Noting the very high exothermicity one may expect a fast reactive channel. However, the higher reactivity of OH+HBr relative to OH+HCl is not reflected in the magnitude of the inelastic cross sections and it does not explain the low steric asymmetries for the OH–HBr inelastic collisions. The explanation awaits results of quantum scattering calculations and of complementary experiments. Experiments to measure the Br reaction product are in progress.

IV. SUMMARY

State-to-state rotationally inelastic cross sections of the hydroxyl radical in collisions with hydrogen bromide have been measured in a crossed molecular beam experiment. Out of the 94% pure initial state, \(^2\Pi_{3/2}, v=0, J=3/2, M_J=3/2, f\) by HBr at 750 cm\(^{-1}\) collision energy (squares) and by HCl at 920 cm\(^{-1}\) collision energy (circles).

ACKNOWLEDGMENTS

The authors wish to thank Leander Gerritsen for expert technical assistance. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

27 IUPAC database (Subcommittee for Gas Kinetics Data Evaluation), http://www.iupac-kinetic.ch.cam.ac.uk