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Abstract. A theory of electron states for graphene nanoribbons with a smoothly varying width is developed.
It is demonstrated that the standard adiabatic approximation allowing to neglect the mixing of different 
standing waves is more restrictive for the massless Dirac fermions in graphene than for the conventional 
electron gas. For the case of zigzag boundary conditions, one can expect a well-pronounced conductance 
quantization only for highly excited states. This difference is related to the relativistic Zitterbewegung 
effect in graphene.

PACS. 73.43.Cd Theory and modeling -  81.05.Uw Carbon, diamond, graphite -  03.65.Pm Relativistic 
wave equations

T he experim ental discovery of a tru ly  two-dimensional 
allotrope of carbon, graphene [1,2] and of the massless 
Dirac character of its electronic energy spectrum  [3,4] has 
in itia ted  an enorm ously growing in terest in this field (for 
review, see Refs. [5,6]). One of the  m ost exciting aspects 
of the  problem  is the hope to  develop novel carbon-based 
electronics. Very recently, the experim ental realization of 
quan tum  dots [5] and carbon nanoribbons [7,8] has been 
announced, the former dem onstrating  single-electron tra n 
sistor (SET) effect [5].

T he conductance quantization  in the ballistic regime [9, 
10 ,11,12 ,13] is one of the m ost im portan t physical phe
nom ena determ ining the functioning of such nanodevices. 
I t was considered recently for the case of ideal graphene 
stripe [14] and for the case of confinement due to  a sm ooth 
external electrostatic po ten tia l [15]. The experim ental sit
ua tion  [5, 7, 8] corresponds ra th e r to  the  case of electron 
confinement due to  a curvilinear shape of the graphene 
samples th an  to  an external field. The description of the 
penetra tion  of electron waves through  constrictions in the 
nanoribbons requires a different theoretical approach. Nu
m erical calculations of electronic tran sp o rt in graphene 
nanoribbons dem onstrating  a very interesting “valley fil
te r” effect have been recently published [16]. However, a 
general theoretical analysis of the situation  is still absent. 
Here we present an analytical theory  of conductance quan
tization  in graphene nanoribbons based on the adiabatic 
approxim ation [10,12]. The la tte r m eans a separation  of 
the  electron m otion in the directions perpendicular and 
along the stripe. For nonrelativistic electrons the adia
batic  approxim ation requires only the sm oothness of the 
shape of the stripe boundary  and results in the quantiza
tion  of the  conductance. For graphene, the  situation  turns 
ou t to  be essentially dependent on the boundary  condi-

tions. I t will be shown th a t for the  zigzag boundaries this 
theory  is essentially different from th a t for nonrelativistic 
electrons and, in general, there is no reason to  expect an 
adiabatic  regime and well-pronounced conductance jum ps 
for the lowest sta tes of the ribbon.

The tw o-com ponent wave function (u, v)  for charge 
carriers in graphene w ith wave vectors close to  the K  point 
is described by the Dirac equation

d , d .
- — h i —  \ u  = ikv,  
o x  ay
d d

—----- i —— v = i ku
d x  l d y } V (1)

where k  =  E / h v F , E  is the  electron energy and  vF ~  106 
m /s  is the  Fermi velocity [3,4]; for the  o ther valley K ' the 
signs before d / d y  are opposite. Let us consider first the 
case of a uniform  graphene strip  of w idth  L  along the y- 
axis, |y| <  L/ 2 .  To specify the  problem  one has to  choose 
boundary  conditions a t the edges [17].

We s ta r t w ith the case of zigzag edges where u  (y =  - L / 2 )
=  0, v (y =  L /2 ) =  0. The energy spectrum  is discrete,
Ej  =  hvF kj  where

kj  = ^~ ,  j  =  ± i , ± f , ... (2) 

and the wave functions have the form

Uj ( y)  = ~^=cosk j ( y - L / 2 ) ,

Vj (y) = ~ - j=  sin kj  (y -  L / 2 )  . (3)

Consider now the case of a sm oothly varying strip  
w idth, L  ^  L  ( x ) , IdL/dxl  ^  1. Following a general scheme [10,
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12] one can try  a solution of equation (1) as an expansion

u (x,  y ) =  E  cj (x) ujx) (y ), 
j

v ( x , y)  = ^ 2  Cj (x) v(x) (y) (4)
j

where u (x), v (x) are the  functions (3) w ith the replacem ent 
L  ^  L  ( x ) . The functions (4) satisfy by construction  the 
boundary  conditions. B y substitu ting  the expansion (4) 
into E q .(1), m ultiplying the first equation by (vj | and the 
second one by (uj  | one finds:

E
j ’

E

dcj’ /  d vj’

dcj’ , , ,\Uj\Uj') + Cj
d u j’

u‘ li h

(k -  kj ’)
j ’

co’ kvo\uo’ ) ,

^ E (k -  ko’) j ’

co’ (uo\vo’) . (5)

(Vj \Vj ' ) ~  o ^33' ^ j - j>) ,

(u j \ vj ’ ) =  (vj ’ \u j ) =
j  -  j  =  2n +  1, 

j '  -  j  =  2n,
(6)

dcj  ( x ) 
dx

2* — kj> (x)]
------2 ^  • / ------- “̂ ^ 7 -----cf W  (7)n  ^ j ’ j  +  j '

For the low-lying electron standing waves it is difficult to  
see any way to  simplify essentially the set of equations (7) 
for the coupled states.

For any function f  (z) analytical in the  upper (lower) 
complex half-plane one has

d x f (x)
1

x  -  x i  ±  i0 (8)

or, equivalently,

d x f  (x) P
x  — x i

± i n f  (xi ) . (9)

Assuming th a t Cj (x) is analytical in the lower halfplane 
as a function of complex variable j  one obtains, instead of 
E q .(7)

dcj (x )
= [k + kj  (x)} c—j ( x ) . (10)

This equation  is form ally exact. As a first step  to  the 
ad iabatic  approxim ation, one should neglect the term s
w ith ( v j  and (v,j  which is justified by the

smallness of dL/ dx ,  as in the  case of nonrelativistic elec
trons [10,12].

To proceed further we need to  calculate the overlap
L/2

integrals (<^\\$2) =  ƒ  dy4>*$2 for different basis func-
— L /2

tions:

(■U j \ u j >) =  — ( S j j /  +  5 j , - j ' ) ,

Similar, taking into account th a t c—j  (x) is analytical in 
the upper halfplane as a function of complex variable j  we 
have

dc^j  (x) 
dx

[kj  (x) -  k] cj  ( x ) . (11)

At last, differentiating E q .(10) w ith respect to  x, neglect
ing the derivatives of kj  (x) due to  the smallness of d L / d x  
and taking into account E q .(11) we find

d2cj (x) 
dx 2

+  [k2 -  kj  (x)] cj (x) =  0. (12)

where n  is integer. Substitu ting  E q .(6) into E q .(5) and ne
glecting the nonadiabatic  term s w ith the m atrix  elements 
of the operator d / d x , we ob tain  after simple transform a
tions:

where the  sum  is over all j '  such th a t j '  — j  is even.
U ntil now we did transform ations and approxim ations 

which are identical to  those used in the  case of nonrel- 
ativistic electrons. However, we still have a coupling be
tween different standing waves so we still cannot prove 
th a t  the electron transm ission through the constriction 
is adiabatic. To prove the la tte r we need one more step, 
namely, a transition  from the discrete variable j  to  real 
one and  a replacem ent of the sums by integrals in the 
right-hand-side of E q .(7): Yl'j ■■■ !  4i--- where V  is
the symbol of principle value. This step  is justified by as
suming th a t k L  ^  1, i.e., only for highly excited states.

Further analysis com pletely follows th a t for the non- 
relativistic case [10] where k 2 and k j  (x) play the roles of 
energy and potential, respectively. The poten tia l is qua- 
siclassical for the case of sm oothly varying L(x). There
fore, the  transm ission coefficient is very close to  one if 
the electron energy exceeds the energy of the j t h  level 
in the  narrow est place of the  constriction, and exponen
tia lly  small, otherwise. S tandard  argum ents based on the 
Landauer formula [9,10 ,11,12 ,13] prove the conductance 
quantization  in th is situation.

At the  same tim e, for the lowest energy levels the  re
placem ent of sums by integrals in E q .(10) cannot be jus
tified and thus the sta tes w ith different j ’s are in general 
coupled even for a sm ooth constriction ( |d L / d x | ^  1). 
Therefore electron m otion along the stripe is strongly cou
pled w ith th a t in the  perpendicular direction and different 
electron standing waves are essentially entangled. In this 
situa tion  there is no general reason to  expect sharp  jum ps 
and well-defined plateaus in the energy dependence of the 
conductance. This m eans th a t  the  criterion of adiabatic 
approxim ation is more restrictive for the case of Dirac 
electrons th an  for the nonrelativistic ones. The formal rea
son is an overlap between com ponents of the  wave func
tions w ith different pseudospins or, equivalently, between 
hole com ponent of the  sta te  j  w ith the electron compo
nent of the s ta te  j '  =  j . This coupling is a reminiscence
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of the Z itterbew egung of Dirac electrons determ ining the 
finite conductivity  and anom alous shot noise in graphene 
in the lim it of small charge carrier concentration [18,19]. 
Effectively, it works as a kind of intrinsic “disorder” and 
therefore it is not surprising th a t it destroys the ballis
tic regime near the  D irac point. Interestingly, the kinetic 
equation th a t takes into account the Z itterbew egung ef
fects also contains some “P -te rm s” which are absent in 
the stan d ard  B oltzm ann equation; these term s become ir
relevant for large enough Fermi energy [20].

Consider now the case of arm chair edges. The bound
ary  conditions are coupled the com ponents of Dirac spinors 
a t K  valley u, v w ith  those a t K '  valley u, v :

u ( —L /2) = u ( —L /2),
v ( - L / 2 )  = v ( - L / 2 ) ,  

u ( L / 2) =  e27Til'v, ( L / 2 ) , 

v ( L / 2 )  = e2vilJv ( L / 2 ) , (13)

where v  =  0, ± 2 /3 , depending on the num ber of rows in 
the  s trip  [17]. The eigenmodes in th a t case are ju s t plane 
waves [17]

(y ) =  - i v j  (y ) =
1

a/ 2 I
exp ( i k j y ) ,

Uj (y) = - i v j  (y) = - j =  exp ( - i k jV) , (14)

kj  =  (j +  v ) n / L ,  j  =  0, ± 1 , ± 2 ,. . .  (15)

A general solution satisfying the boundary  conditions (13) 
can be probed as

u (x, v)  =  E  cj (x) exp [ikj  (x) y],  
j

v ( x , y)  =  i E bj (x) exp [ikj (x) y] , 
j

W (x , y) = ^ 2  Cj  (x) exp [ikj (x) (L -  y ) \ , 
j

v (x, y) = i ^ 2  bj  (x ) exP likj  (x ) (L  ~  v)\ ■ (16) 
j

Substitu ting  th is into the Dirac equation (1) one obtains

exp [ikj (x) y ] { ^  + (kbj ~  kjCj) +  y Cj 1 = 0 ,  j  dx  dx

exp [ikj (x) y \ i d̂  + (kjbj -  kcj)  + i ^ y b j  j =  0. 
j  dx  dx

(17)

Let us neglect first the  nonadiabatic  term s propor
tional to  in these equations. T hey will be satisfied 
for sure if all coefficients a t the plane waves vanish, which 
is equivalent to  the set of equations 

d (cj  +  bj )3 3 +  (k +  kj )  (bj -  Cj) — 0,

+  (kj  -  k) (cj  +  bj ) =  0. (18)

dx
d (bj  — cj )

dx

Differentiating them  w ith respect to  x  and neglecting, 
again, the derivatives of kj  we find the effective Schrodinger 
equation (12) and the same equation for bj . Thus, in con
tra s t w ith the case of zigzag edges, for the arm chair edges 
a stan d ard  picture of conductance quantization  should be 
valid for all states, sim ilar to  nonrelativistic electron gas.

However, there is ano ther problem  which makes the 
adiabatic  approxim ation for this case problem atic. The 
wave num bers (15) can depend on x  not only due to  the 
stripe length bu t also due to  different num ber of rows in 
the stripe which makes d v / d x  a source of sharp  random  
potential. I t is very difficult to  investigate th is effect an
alytically in the framework of the approach under con
sideration. I t was argued recently based on num erical re
sults and qualitative considerations th a t th is kind of ran 
domness should be of crucial im portance for the graphene 
nanoribbons w ith the arm chair edges [21].

It would be very interesting to  check experim entally 
the possible difference in the conductance behavior for the 
nanoribbons w ith zigzag and arm chair edges. For the  for
m er case, the  theory  predicts essential difference of behav
ior a t the crossing of low-lying and highly excited energy 
levels in the quantum  point contact situation , th a t is, for 
a narrow  constriction of the graphene nanoribbons.
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