Abstract. Task-PIOA is a modeling framework for distributed systems with both probabilistic and nondeterministic behaviors. It is suitable for cryptographic applications because its task-based scheduling mechanism is less powerful than the traditional perfect-information scheduler. Moreover, one can speak of two types of complexity restrictions: time bounds on description of task-PIOAs and time bounds on length of schedules. This distinction, along with the flexibility of nondeterministic specifications, are interesting departures from existing formal frameworks for computational security.

The current paper presents a new approximate implementation relation for task-PIOAs. This relation is transitive and is preserved under hiding of external actions. Also, it is shown to be preserved under concurrent composition, with any polynomial number of substitutions. Building upon this foundation, we present the notion of structures, which classifies communications into two categories: those with a distinguisher environment and those with an adversary. We then formulate secure emulation in the spirit of traditional simulation-based security, and a composition theorem follows as a corollary of the composition theorem for the new approximate implementation relation.
1 Introduction

Cryptographic protocols are distributed algorithms that must achieve security properties such as authentication and secret communication, while operating in environments that include adversarial components. Security and correctness of such protocols can be vital to the survival of commercial and military enterprises. However, many cryptographic protocols exhibit complex, subtle behavior, so verifying their security is not easy. Informal verification is not reliable enough; what is needed is a set of rigorous, formal verification methods that can assert protocol security and correctness, while being reasonably easy for protocol designers to use.

One of the main sources for intricacies in security analysis of these protocols is the fact that in most interesting cases security can hold only in a “computational sense”, namely only against computationally bounded adversaries, only probabilistically, and only under computational hardness assumptions. Current security analyses of protocols deal with this issue in one of two ways. One way is to first analyze the protocol in an idealized model where cryptographic algorithms are represented via symbolic operations and security assertions can be absolute rather than “computational” (e.g., [1–9]); then, additional steps are taken outside the formal model to provide security guarantees when the symbolic operations are replaced by real algorithms (e.g., [10–12]).

An alternative approach is to extend the formal model so as to directly capture “computational security” within the model itself. This requires representing within the model resource bounded, probabilistic computations as well as probabilistic relations between systems and system components. Such models include Probabilistic Polynomial-Time Process Calculus (PPC) [13–15], Reactive Simulatability (RSIM) [16–18], Universally Composable (UC) Security [19], Task-PIOA [20, 21] and Inexhaustible Interactive Turing Machine (IITM) [22]. Each of these frameworks can be decomposed into two “layers”: (i) a foundational layer, which consists of a general model of concurrent computation with time bounds, not specific to security protocols, and (ii) a security layer that typically follows the general outline of simulation-based security [23–29]. Unlike the security layer, the foundation layer varies widely across different frameworks. We summarize a few main differences below.

Description of concurrent processes. PPC is process theoretic, RSIM and Task-PIOA are based on abstract state machines, and UC and IITM are based on interactive Turing machines. In RSIM, UC and IITM, machines are purely probabilistic, meaning that their behaviors are completely determined up to inputs and coin tosses. In contrast, PPC and Task-PIOA allow nondeterministic process specifications. More detailed comparisons of Task-PIOA against PPC and RSIM can be found in the latest version of [30].

Sequential vs. non-sequential scheduling. The two ITM-based frameworks, UC and IITM, use sequential scheduling. This means machines are activated in succession, where the current active machine triggers the next one by sending
a message. RSIM machines use a similar mechanism, but with special “buffer” machines to capture message delays and “clock ports” to control the scheduling of message delivery. Hence, non-sequential scheduling may be implemented in RSIM; however, in actual protocol analysis, sequential scheduling is typically used (e.g., [31]). With the exception of its sequential variant [32], PPC implements non-sequential scheduling with scheduler functions (or Markov chains) that select the next action from a set of enabled actions. Task-PIOA is also non-sequential, using arbitrary oblivious task sequences to determine the next transition. We refer to [33] for examples showing that the choice between sequential and non-sequential scheduling leads to different notions of simulation-based security.

Complexity bounds.

In PPC, processes are finite expressions built up from a grammar that contains bounded replication operators $!_{q(k)}$, where k is the security parameter and q is a polynomial. Given any process P, $!_{q(k)}(P)$ is evaluated as $q(k)$ copies of P in parallel. It is proven in [15] that every variable-closed process expression can be evaluated in time polynomial in the security parameter. In RSIM, abstract machines are realized by Turing machines that are either polynomial time in the security parameter or in the overall length of inputs, although major results such as composition theorems are proven only for the former notion of polynomial time. In UC and IITM, ITMs may have runtime polynomial in the overall length of inputs, provided certain restrictions are observed. These restrictions make sure that the runtime of an entire system is polynomial in the security parameter.

Task-PIOA occupies an interesting middle ground in the treatment of time bounds. Each task-PIOA1 must have description bounded by a polynomial in the security parameter. This applies to the representations of states, actions, transitions, etc. In addition, the transition relation must be computable by a probabilistic Turing machine with runtime polynomial in the security parameter. However, there is no a priori bound imposed on the number of transitions that a task-PIOA may perform. Hence, a task-PIOA specification has potentially unbounded behavior. A final restriction on runtime is imposed only when we compare the behaviors of different task-PIOAs using implementation relations.

We believe it is meaningful to consider these two types of time bounds separately, since they express limitations of different nature. For example, in modeling long-lived security protocols [34], limitations on what a machine can do in one step (or in a bounded amount of time) are quite different from limitations on the total lifetime of the machine.

Also, as illustrated in [33], this separation of time bounds allows us to define unbounded forwarders without any additional mechanism, such as the input guards of [32, 22]. (As shown in [32], the existence of forwarders has a great impact on the relationships between different notions of simulated-security.) Nor do we need to face the usual hassles associated with ITMs that are polynomial time in the overall length of inputs. That is, we do not need to impose special

1 Technically, we should refer to task-PIOA families. We omit “families” for simplicity.
restrictions, such as those in UC and IITM, to make sure that computation resources are not “created” excessively as machines send inputs to each other.

1.1 Composability of Secure Emulation

A notable advantage of simulation-based security is its potential security preserving composability properties. Indeed, one of the main motivations behind the PPC, RSIM and UC frameworks was to obtain a very general composition operation that is provably security-preserving.

In a previous case study [20], we followed closely the setup of simulation-based security, and, in a more recent paper [33], we gave a generic formulation of secure emulation in the Task-PIOA framework. The main goal of this paper is to prove a polynomial composition theorem for our notion of secure emulation. While such theorems have been obtained in many of the aforementioned frameworks [19, 14, 35, 22], our version is interesting in its own right.

First of all, as pointed out in [33], the choice between sequential and non-sequential scheduling schemes gives rise to incomparable notions of security. In other words, even if we use the same high-level formulation of security, there exist protocols that are secure under sequential scheduling but not under non-sequential scheduling, and vice versa. Since Task-PIOA uses non-sequential scheduling, our composition theorem is not a simple transposition of composition theorems in sequential frameworks.

Secondly, our secure emulation is defined in terms of a new approximate implementation relation ($\leq_{\text{strong neg pt}}$) for task-PIOAs. As a result, our composition proof consists of two layers: we first prove a polynomial composition theorem for $\leq_{\text{strong neg pt}}$, and the composition theorem for secure emulation follows as a corollary. Interestingly, the typical hybrid argument\(^2\) is used in proving compositionality of $\leq_{\text{strong neg pt}}$, which is completely independent of our formulation of secure emulation.

Finally, since the task-PIOA framework allows nondeterministic specifications with potentially unbounded behavior, we must handle two additional layers of quantifications while constructing a hybrid argument. (One of these involves schedule length bounds, while the other involves the resolution of nondeterminism.) In fact, compared to the definition of approximate implementation given in [20, 21], the definition of $\leq_{\text{strong neg pt}}$ has a number of features inspired by the general structure of hybrid arguments. We refer to Section 3 for further discussions.

We now outline our formulation of secure emulation. Following [35], we introduce the notion of structures, which classifies communications into two categories: those with a distinguisher environment and those with an adversary. The former can be likened to I/O tapes in ITM-based frameworks and service ports in RSIM, while the latter can be likened to communication tapes and forbidden ports. We then define secure emulation to say roughly the following: a protocol ρ securely emulates a protocol ϕ if, for every adversary Adv for ρ, there is an

\(^2\) Hybrid arguments are used widely in cryptography to handle polynomial growth in the number of composed protocols. We refer to [36] for an original description.
adversary Sim for ϕ such that the composition $\rho \parallel Adv$ implements the composition $\phi \parallel Sim$ in the sense of $\leq_{\text{strong neg.pt}}$. Note that every task-PIOA mentioned here has polynomially bounded description, but potentially unbounded runtime. The quantification over runtime bounds (i.e., schedule length bounds) are encapsulated in the definition of $\leq_{\text{strong neg.pt}}$. Moreover, the communications between ρ and Adv and between ϕ and Sim are hidden from the environment.

We prove that secure emulation, thus defined, is indeed compositional under a polynomial number of substitutions. This follows essentially as a corollary of the composition theorem for $\leq_{\text{strong neg.pt}}$. We also prove that secure emulation is transitive and preserved under hiding. These three properties, as well as invariant assertion and simulation relation techniques developed in [20, 37, 21, 30], are very beneficial for the scalability of computational analysis. For example, the composition theorem delineates situations in which multiple security protocols are run in parallel and we would like to prove that the security guarantees of individual component protocols are preserved in some appropriate sense. Also, we may specify protocols at different levels of abstraction, and use simulation relations to relate formally probability distributions on states (or executions) at adjacent levels. Such techniques make up a practical discipline of verification, since real-life security protocols operate not in isolation, but in the context of larger systems.

Overview Section 2 summarizes the task-PIOA framework presented in [37, 21]. In Section 3, we review the approximate implementation definition proposed in [20, 21], and introduce a new, stronger version of this definition, for which we present a polynomial composition theorem. We then provide a generic template for the use of task-PIOAs in cryptographic protocol specification, by defining the notions of structure and adversary for structures in Section 4. Equipped with these definitions, we define secure emulation in Section 5, and show it is preserved under polynomial composition.

2 Task-PIOAs

In this section, we review basic definitions in the Task-PIOA framework [37, 30]. We begin with the PIOA framework, which is a simple combination of I/O Automata [38] and Probabilistic Automata [39]. This is then augmented with a partial-information scheduling mechanism based on tasks. Finally, we bring in the notion of time bounds and its extension to task-PIOA families.

2.1 PIOAs

A probabilistic I/O automaton (PIOA) A is a tuple $\langle Q, q, I, O, H, \Delta \rangle$, where: (i) Q is a countable set of states, with start state $q \in Q$; (ii) I, O and H are countable and pairwise disjoint sets of actions, referred to as input, output and internal actions, respectively; (iii) $\Delta \subseteq Q \times (I \cup O \cup H) \times \text{Disc}(Q)$ is a transition relation, where $\text{Disc}(Q)$ is the set of discrete probability measures on Q. An action
is enabled in a state q if ⟨q, a, µ⟩ ∈ Δ for some µ. The set Act := I ∪ O ∪ H is called the action alphabet of A. If I = ∅, then A is said to be closed. The set of external actions of A is I ∪ O and the set of locally controlled actions is O ∪ H. Any sequence β of external actions is called a trace.

We require that A satisfies the following conditions.

- **Input Enabling**: For every q ∈ Q and a ∈ I, a is enabled in q.
- **Transition Determinism**: For every q ∈ Q and a ∈ A, there is at most one µ ∈ Disc(Q) such that ⟨q, a, µ⟩ ∈ Δ.

Parallel composition for PIOAs is based on synchronization of shared actions. PIOAs A₁ and A₂ are said to be compatible if Act₁ ∩ H₁ = O₁ ∩ O₂ = ∅ whenever i ≠ j. In that case, we define their composition A₁∥A₂ to be

\[\langle Q₁ \times Q₂, \langle \bar{q}_1, \bar{q}_2 \rangle, (I₁ ∪ I₂) \setminus (O₁ ∪ O₂), O₁ ∪ O₂, H₁ ∪ H₂, \Delta, \rangle,\]

where Δ is the set of triples (⟨q₁, q₂⟩, a, µ₁ × µ₂) such that (i) a is enabled in some qᵢ and (ii) for every i, if a ∈ Aᵢ then ⟨qᵢ, a, µᵢ⟩ ∈ Δᵢ, otherwise µᵢ assigns probability 1 to qᵢ (i.e., µᵢ is the Dirac measure on qᵢ, denoted δ(qᵢ)). Note that this definition of composition can be generalized to any finite number of components.

A hiding operator is also available: given A = ⟨Q, q, I, O, H, Δ⟩ and S ⊆ O, hide(A, S) is the tuple ⟨Q, \bar{q}, I, O', H', Δ⟩, where O' = O \setminus S and H' = H ∪ S. Due to the compatibility requirement for parallel composition, the hiding operation prevents any other PIOA from synchronizing with A via actions in S.

2.2 Task-PIOAs

To resolve nondeterminism, we make use of the notion of tasks [38, 37]. Formally, a task-PIOA is a pair (A, R) such that (i) A is a PIOA and (ii) R is a partition of the locally-controlled actions of A. With slight abuse of notation, we use A to refer to both the task-PIOA and the underlying PIOA. The equivalence classes in R are referred to as tasks. Unless otherwise stated, we will use terminologies inherited from the PIOA setting. The following axiom is imposed on task-PIOAs.

- **Action Determinism**: For every state q ∈ Q and every task T ∈ R, there is at most one action a ∈ T that is enabled in q.

In case some a ∈ T is enabled in q, we say that T is enabled in q.

Given compatible task-PIOAs A₁ and A₂, we define their composition to be ⟨A₁∥A₂, R₁ ∪ R₂⟩. Note that R₁ ∪ R₂ is an equivalence relation because compatibility requires disjoint sets of locally controlled actions. It is also easy to check that action determinism is preserved under composition. The hiding operator for PIOAs extends in the obvious way: given a set S of output actions, hide(A, R, S) is simply hide(A, S, R).

A task schedule for a closed task-PIOA ⟨A, R⟩ is a finite or infinite sequence ρ = T₁.T₂.T₃... of tasks in R. This induces a well-defined run of A as follows:

- (i) from the start state \(\bar{q}\), we consider the first task \(T₁\);
- (ii) due to action- and transition-determinism, \(T₁\) specifies at most one transition from \(\bar{q}\);
(iii) if such transition exists, it is taken, otherwise nothing happens;
(iv) repeat with remaining T_i's.
Such a run gives rise to a unique trace distribution of A (which is a probability
distribution on the set of traces). The set of trace distributions induced by all
possibly task schedules for A is denoted $\text{TrDists}(A)$, while the trace distribution
induced by the task schedule ρ for A is denoted $\text{tdist}(A, \rho)$. We refer to [30] for
more details on trace distributions.

2.3 Time Bounds and Task-PIOA Families

In order to carry out computational analysis, we consider task-PIOAs whose
operations can be represented by a collection of Turing machines with bounded
run time. This is the Time-Bounded Task-PIOA model introduced in [21, 20].

We assume a standard bit-string representation for various constituents of a
task-PIOA, including states, actions, transitions and tasks. Let $p \in \mathbb{N}$ be given.
A task-PIOA A is said to have p-bounded description just in case:

(i) the representation of every constituent of A has length at most p;
(ii) there is a Turing machine that decides whether a given bit string is the
representation of some constituent of A;
(iii) there is a Turing machine that, given a state and a task of A, determines
the next action;
(iv) there is a probabilistic Turing machine that, given a state and an action of
A, determines the next state of A;
(v) all these Turing machines can be described using a bit string of length at
most p, according to some standard encoding of Turing machines;
(vi) all these Turing machines return after at most p steps on every input.

Thus, p limits the size of action names, the amount of available memory and the
number of Turing machine steps taken at each transition of A. It, however, does
not limit the number of transitions that are taken in a particular run.

Suppose we have a compatible set \{\(A_i\)|\(1 \leq i \leq b\)} of task-PIOAs, where each
\(A_i\) has description bounded by some \(p_i \in \mathbb{N}\). It is not hard to check that the
composition \(\bigotimes_{i=1}^{b} A_i\) has description bounded by \(c_{\text{comp}} \cdot \sum_{i=1}^{b} p_i\), where \(c_{\text{comp}}\) is a
fixed constant. (The proof of this result in an immediate extension of the binary
case described in [20, Lemma 4.2]).

To reason about the hiding operator in a setting with time bounds, we need
the notion of p-time recognizable sets. Given a set S of binary strings and $p \in \mathbb{N}$, we say that S is p-time recognizable if there is a probabilistic Turing machine M
satisfying: (i) in time at most p, M decides if a binary string a is in the set S, and
(ii) the description of M has at most p bits under some standard encoding.
If $S \subseteq \text{Act}_A$ for some PIOA A, then we say that S is p-time recognizable
if the set of binary representations of actions in S is p-time recognizable. We
claim there exists a constant c_{hide} such that, for any task-PIOA with p-bounded
description and any p'-time recognizable set S of output actions of A, the task-
PIOA $\text{hide}(A, S)$ has $c_{\text{hide}}(p + p')$-bounded description [20, Lemma 4.4].
A *task-PIOA family* \mathcal{A} is an indexed set $\{A_k\}_{k \in \mathbb{N}}$ of task-PIOAs. The index k is commonly referred to as the *security parameter*. We say that \mathcal{A} has *p-bounded description* for some $p : \mathbb{N} \to \mathbb{N}$ just in case: for all k, A_k has $p(k)$-bounded description. If p is a polynomial, then we say that \mathcal{A} has *polynomially-bounded description*. The notions of compatibility, parallel composition and hiding are defined pointwise. Time bound results for composition and hiding extend easily to the setting of families.

3 Approximate Implementation

In [21, 20], we propose an approximate implementation relation for task-PIOA families, expressing the idea that every behavior of one family is computationally indistinguishable from some behavior of another family. Following a traditional approach in cryptography, this definition compares acceptance probabilities of a distinguisher environment that runs in parallel with the task-PIOAs in question. Moreover, it encapsulates additional quantification over schedule length bounds and the choices of task schedules. These types of quantification are new challenges, presented by the fact that we do not impose *a priori* bounds on schedule lengths (and hence on overall runtime) and that we allow nondeterministic specifications.

We shall first present the approximate implementation relation of [21, 20] and state a composition theorem for single substitution. Then we discuss the difficulties in generalizing to a polynomial number of substitutions. This leads to a new, stronger definition of approximate implementation, for which we prove a polynomial composition theorem.

3.1 The Weak Variant

We begin with the notions of acceptance probabilities and closing environment. Let \mathcal{A} be a closed task-PIOA with a special output action acc and let ρ be a task schedule for \mathcal{A}. The *acceptance probability* of \mathcal{A} under ρ is defined to be:

$$P_{\text{acc}}(\mathcal{A}, \rho) := \Pr[\beta \text{ contains } \text{acc} : \beta \overset{R}{\leftarrow} \text{tdist}(\mathcal{A}, \rho)],$$

that is, the probability that a trace drawn from the distribution $\text{tdist}(\mathcal{A}, \rho)$ contains the action acc. Now suppose \mathcal{A} is any task-PIOA, not necessarily closed. A task-PIOA Env is an *environment* for \mathcal{A} if it is compatible with \mathcal{A} and $\mathcal{A}\parallel\text{Env}$ is closed. Throughout this paper, we assume that every environment has acc as an output, so that we may speak of acceptance probabilities of $\mathcal{A}\parallel\text{Env}$.

Implementation relations are defined on task-PIOAs with the same external interface. More precisely, \mathcal{A}_1 and \mathcal{A}_2 are said to be *comparable* if $I_1 = I_2$ and $O_1 = O_2$. Observe that comparability implies \mathcal{A}_1 and \mathcal{A}_2 have the same set of environments, up to renaming of internal actions. Suppose \mathcal{A}_1 and \mathcal{A}_2 are indeed comparable. Let $\mathbb{R}_{\geq 0}$ denote the set of non-negative reals and let $\epsilon \in \mathbb{R}_{\geq 0}$ and $p, q_1, q_2 \in \mathbb{N}$ be given. We define $\mathcal{A}_1 \leq_{p,q_1,q_2,\epsilon} \mathcal{A}_2$ as follows: given any

3 As a convention, we use variable p for description bounds and variable q for schedule length bounds.
environment Env with p-bounded description and any q_1-bounded task schedule ρ_1 for $A_1 \parallel Env$, there exists a q_2-bounded task schedule ρ_2 for $A_2 \parallel Env$ such that $|P_{acc}(A_1 \parallel Env, \rho_1) - P_{acc}(A_2 \parallel Env, \rho_2)| \leq \epsilon$. In other words, from the perspective of an environment with p-bounded description, A_1 and A_2 “look almost the same” provided $A_2 \parallel Env$ may take q_2 many steps whenever $A_1 \parallel Env$ takes q_1 many steps.

The relation $\leq_{p,q_1,q_2,\epsilon}$ can be extended to task-PIOA families in the obvious way. Let $\mathcal{A}_1 = \{(A_1)_k\}_{k \in \mathbb{N}}$ and $\mathcal{A}_2 = \{(A_2)_k\}_{k \in \mathbb{N}}$ be (pointwise) comparable task-PIOA families. Given $\epsilon : \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $p, q_1, q_2 : \mathbb{N} \to \mathbb{N}$, we say that $\mathcal{A}_1 \leq_{p,q_1,q_2,\epsilon} \mathcal{A}_2$ just in case $(A_1)_k \leq_{p(k),q_1(k),q_2(k),\epsilon(k)} (A_2)_k$ for every k.

Restricting our attention to negligible error and polynomial time bounds, we obtain the approximate implementation $\leq_{neg,pt}$. Formally, a function $\epsilon : \mathbb{N} \to \mathbb{R}^{\geq 0}$ is said to be negligible if, for every constant $c \in \mathbb{N}$, there exists $k_0 \in \mathbb{N}$ such that $\epsilon(k) < \frac{1}{k^c}$ for all $k \geq k_0$. (That is, ϵ diminishes more quickly than the reciprocal of any polynomial.) We say that $\mathcal{A}_1 \leq_{neg,pt} \mathcal{A}_2$ if: $\forall p, q_1 \geq q_2, \epsilon \mathcal{A}_1 \leq_{p,q_1,q_2,\epsilon} \mathcal{A}_2$, where p, q_1, q_2 are polynomials and ϵ is a negligible function.

The following binary composition theorem for $\leq_{p,q_1,q_2,\epsilon}$ and $\leq_{neg,pt}$ is proven in [20].

Theorem 1. Let $\epsilon : \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $p, p_3, q_1, q_2 : \mathbb{N} \to \mathbb{N}$ be given. Let $\mathcal{A}_1, \mathcal{A}_2$, and \mathcal{A}_3 be task-PIOA families satisfying: \mathcal{A}_1 and \mathcal{A}_2 are comparable, and \mathcal{A}_3 has p_3-bounded description and is compatible with both \mathcal{A}_1 and \mathcal{A}_2. Then the following holds.

1. If $\mathcal{A}_1 \leq_{c_{comp}(p+p_3),q_1,q_2,\epsilon} \mathcal{A}_2$, where c_{comp} is the constant factor associated with description bounds in parallel composition, then $\mathcal{A}_1 \parallel \mathcal{A}_3 \leq_{p,q_1,q_2,\epsilon} \mathcal{A}_2 \parallel \mathcal{A}_3$.
2. If $\mathcal{A}_1 \leq_{neg,pt} \mathcal{A}_2$ and p_3 is a polynomial, then $\mathcal{A}_1 \parallel \mathcal{A}_3 \leq_{neg,pt} \mathcal{A}_2 \parallel \mathcal{A}_3$.

Observe that, by induction, Theorem 1 generalizes to any constant number of substitutions.

3.2 Towards Polynomial Composition

For cryptographic applications, it is desirable to generalize Theorem 1 even further, to any polynomial number of substitutions. We now identify and discuss a few issues associated with this generalization.

Let us first examine the logical structure of the definition of $\leq_{neg,pt}$.

$$\mathcal{A}_1 \leq_{neg,pt} \mathcal{A}_2 \iff \forall p, q_1 \geq q_2, \epsilon \quad \mathcal{A}_1 \leq_{p,q_1,q_2,\epsilon} \mathcal{A}_2$$

$$\iff \forall p, q_1 \geq q_2, \epsilon \quad \forall k, Env, \rho_1 \geq \rho_2$$

$$\quad |P_{acc}((A_1)_k \parallel Env, \rho_1) - P_{acc}((A_2)_k \parallel Env, \rho_2)| \leq \epsilon,$$

where p, q_1, q_2 are polynomials, ϵ is a negligible function, Env is an environment for A_1 with $p(k)$-bounded description, ρ_1 is a $q_1(k)$-bounded task schedule for $A_1 \parallel Env$, and ρ_2 is a $q_2(k)$-bounded task schedule for $A_2 \parallel Env$.
The outermost quantifiers, $\forall p, q_1 \exists q_2, \epsilon$, capture computational requirements: p bounds the description of a distinguisher environment, q_1 bounds the total number of steps that can be executed by A_1 and an environment, q_2 bounds the total number of steps that can be executed by A_2 and the same environment, and ϵ bounds the difference in acceptance probabilities. Intuitively, ϵ represents the degree to which A_1 and A_2 are indistinguishable, and we want to allow ϵ to depend on the computation power of the distinguisher environment. Since task-PIOAs do not have a priori bounds on the number of execution steps, we need the quantification $\forall q_1, q_2$ to determine the number of steps that can be taken by $A_1 \parallel Env$ and $A_2 \parallel Env$, respectively. Note that the computation power of the environment is bounded by $p \cdot q_1$, therefore we allow ϵ to depend on both p and q_1. Moreover, the schedule length bound q_2 may be larger than q_1, giving A_2 some freedom to perform more internal steps.

The innermost quantifiers, $\forall p_1, q_1 \exists p_2$, deal with nondeterministic choices in A_1 and A_2. We require that every schedule for $A_1 \parallel Env$ can be matched by some schedule for $A_2 \parallel Env$. Here “matching” means the acceptance probabilities differ by at most ϵ.

We would like to obtain a polynomial composition theorem, which would roughly say the following: given a polynomial b and two sequences of task-PIOA families $\mathcal{A}_1^1, \mathcal{A}_1^2, \ldots$ and $\mathcal{A}_2^1, \mathcal{A}_2^2, \ldots$ with $\mathcal{A}_1 \leq_{\text{neg, pt}} \mathcal{A}_2$ for all i, the family \mathcal{A}_1 defined by $(\mathcal{A}_1)_k := (\mathcal{A}_1^1)_k \ldots (\mathcal{A}_1^{b(k)})_k$ is again related by $\leq_{\text{neg, pt}}$ to the family \mathcal{A}_2 defined by $(\mathcal{A}_2)_k := (\mathcal{A}_2^1)_k \ldots (\mathcal{A}_2^{b(k)})_k$. Such a theorem is proven in [35], with the assumption that errors in acceptance probabilities are uniformly bounded; that is, the same ϵ applies to \mathcal{A}_1^i and \mathcal{A}_2^i all i. The proof uses a typical hybrid argument, where, for each security parameter k, a sequence of $b(k) + 1$ hybrids are constructed. The 0-th hybrid is $(\mathcal{A}_1)_k$, and the $i + 1$th hybrid is obtained from the i-th hybrid by replacing $(\mathcal{A}_1^{i+1})_k$ with $(\mathcal{A}_2^{i+1})_k$. It is then argued that, since the error between each successive pair of hybrids is at most $\epsilon(k)$, the error between the 0-th and $b(k)$-th hybrids is at most $b(k) \cdot \epsilon(k)$. This is sufficient because the $b(k)$-th hybrid is precisely $(\mathcal{A}_2)_k$ and the function $b \cdot \epsilon$ is negligible whenever ϵ is negligible and b is polynomial.

In our setting, such a hybrid argument is much more difficult to construct, due to the additional quantification over schedule length bounds and choices of task schedules. To ensure that ϵ is independent of i, the uniformity condition becomes: $\forall p, q_1 \exists q_2, \epsilon \forall i \mathcal{A}_1^i \leq_{p, q_1, q_2, \epsilon} \mathcal{A}_2^i$. Unfortunately, this does not appear sufficient for the hybrid argument, because, in order to guarantee the same error bound ϵ at each consecutive pair of hybrids, we would have to invoke the uniformity condition with the same p and q_1. This cannot be achieved because we have a new schedule length bound q_2, which need not be the same as q_1.

To be more concrete, let us fix a security parameter k and consider, for example, the 0-th hybrid $(\mathcal{A}_1^1)_k \ldots (\mathcal{A}_1^{b(k)})_k$. Let Env denote $(\mathcal{A}_1^1)_k \ldots (\mathcal{A}_1^{b(k)})_k$. Suppose we apply the uniformity condition with some appropriate p and q_1, obtaining q_2 and ϵ such that every $q_1(k)$-bounded schedule for $(\mathcal{A}_1)_k \parallel Env$ can
be matched by some $q_2(k)$-bounded schedule for $(A_2)_k \parallel Env$. Then, in order to do the next replacement (i.e., replacing $(A_1)_k$ with $(A_2)_k$), we would have to instantiate the uniformity condition with q_2, leading to a possibly different error bound ϵ'.

This suggests the outermost quantification $\forall p, q_1 \exists q_2, \epsilon$ in $A_1 \leq_{neg, pt} A_2$ does not capture correctly the idea that A_1 and A_2 are indistinguishable by the same environment. Indeed, the schedule length bound $q_2(k)$ applies to the composite $(A_1)_k \parallel Env$, which may allow Env to take more steps than it does in the composite $(A_1)_k \parallel Env$.

These observations inspire several changes to strengthen the definition of $\leq_{neg, pt}$. We would like to make sure that the new bound q_2 applies only to the newly substituted component and not to the environment, and that the choice of q_2 does not depend on the computation power of the environment. Moreover, we require that the tasks controlled by the environment are preserved at each substitution. These changes lead to a new approximate simulation relation, $\leq_{strong, pt}$, for which the uniformity condition can be invoked with the same bounds at each step of the hybrid argument.

3.3 The Strong Variant

In order to implement the changes suggested above (in particular, to have separate schedule length bounds for the components and the environment), we need a notion of projection on task schedules. Suppose we have compatible task-PIOAs A_1 and A_2 with $A_1 \parallel A_2$ closed. Given a task schedule ρ for $A_1 \parallel A_2$, $\text{proj}_1(\rho)$ is defined to be the restriction of ρ to tasks in R_1. Similarly for $\text{proj}_2(\rho)$.

Using this projection operator, we define a new implementation relation.

Definition 1. Let A_1 and A_2 be comparable task-PIOAs and let $\epsilon \in \mathbb{R}^{\geq 0}$ and $p, q, q_1, q_2 \in \mathbb{N}$ be given. We define $A_1 \leq_{q_1, q_2, p, q, \epsilon} A_2$ as follows: given any environment Env with p-bounded description and any task schedule ρ_1 for $A_1 \parallel Env$ such that:

- $\text{proj}_{A_1}(\rho_1)$ is q_1-bounded, and
- $\text{proj}_{Env}(\rho_1)$ is q-bounded,

there is a task schedule ρ_2 for $A_2 \parallel Env$ such that:

- $\text{proj}_{A_2}(\rho_2)$ is q_2-bounded,
- $\text{proj}_{Env}(\rho_1) = \text{proj}_{Env}(\rho_2)$, and
- $|\text{P}_{acc}(A_1 \parallel Env, \rho_1) - \text{P}_{acc}(A_2 \parallel Env, \rho_2)| \leq \epsilon$.

This definition strengthens $\leq_{p, q_1, q_2, \epsilon}$ by requiring that the tasks controlled by Env are not affected by the substitution. Moreover, the schedule length bounds for the components and for the environment are considered separately, using projections of task schedules.

The relation $\leq_{q_1, q_2, p, q, \epsilon}$ can be extended to task-PIOA families in the same way as for $\leq_{p, q_1, q_2, \epsilon}$, and we claim that $\leq_{q_1, q_2, p, q, \epsilon}$ is transitive and preserved under hiding, with certain adjustments to errors and time bounds. Precise statements appear in Appendix A.
We use \(\leq_{q_1,q_2,p,q,\epsilon} \) to define the strong approximate implementation relation.

Definition 2. Suppose \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are comparable task-PIOA families. We say that \(\mathcal{A}_1 \leq_{\text{strong}} \mathcal{A}_2 \) if \(\forall q_1 \exists q_2 \forall p, q \exists c \mathcal{A}_1 \leq_{q_1,q_2,p,q,\epsilon} \mathcal{A}_2 \), where \(q_1, q_2, p, q \) are polynomials and \(\epsilon \) is a negligible function.

Notice that, unlike in the definition of \(\leq_{\text{neg.pt}} \), the schedule length bound \(q_2 \) for \(\mathcal{A}_2 \) no longer depends on the environment bounds \(p \) and \(q \). This is crucial for the hybrid argument in the composition proof for \(\leq_{q_1,q_2,p,q,\epsilon} \) (Lemma 2).

More precisely, because of this property, the same \(q_2 \) bound applies at each substitution, even though the schedule length bound of the environment may change due to previous substitutions.

We now proceed to prove the polynomial composition theorem for \(\leq_{\text{strong}} \). Lemma 1 gives a description bound for the composition of \(b \) task-PIOAs, assuming the description bounds of the individual task-PIOAs are bounded by a non-decreasing function.

Lemma 1. Let \(b \in \mathbb{N} \) and a sequence of task-PIOAs \(\mathcal{A}^1, \mathcal{A}^2, \ldots, \mathcal{A}^b \) be given. Suppose there exists a non-decreasing function \(r : \mathbb{N} \rightarrow \mathbb{N} \) such that, for all \(i \), \(\mathcal{A}^i \) has description bounded by \(r(i) \). Then \(\| \mathcal{A}^i \| \) has description bounded by \(c_{\text{comp}} \cdot b \cdot r(b) \), where \(c_{\text{comp}} \) is the constant factor for composing task-PIOAs in parallel.

Proof. Since \(r \) is non-decreasing, we have \(c_{\text{comp}} \cdot \sum_{i=1}^{b} r(i) \leq c_{\text{comp}} \cdot b \cdot r(b) \). \(\square \)

Lemma 2 is essentially the hybrid argument in the polynomial composition theorem for \(\leq_{\text{strong}} \) (Theorem 2). It shows that \(\leq_{q_1,q_2,p,q,\epsilon} \) is “preserved” under \(b \)-ary composition, provided the time bounds and errors are calibrated appropriately.

Lemma 2. Let \(b \in \mathbb{N} \) and two sequences of task-PIOAs \(\mathcal{A}^1_1, \mathcal{A}^1_2, \ldots, \mathcal{A}^b_1 \) and \(\mathcal{A}^1_2, \mathcal{A}^2_2, \ldots, \mathcal{A}^b_2 \) be given. Assume that, in each sequence, all task-PIOAs are pairwise compatible. Suppose there exist a non-decreasing function \(r : \mathbb{N} \rightarrow \mathbb{N} \) such that, for all \(i \), both \(\mathcal{A}^i_1 \) and \(\mathcal{A}^i_2 \) have description bounded by \(r(i) \).

Let \(q_1, q_2, q_2', p, q, q' \in \mathbb{N} \) and \(\epsilon, \epsilon' \in \mathbb{R}^\geq 0 \) be given. Assume the following.

1. \(p = c_{\text{comp}} \cdot (b \cdot r(b) + p') \), where \(c_{\text{comp}} \) is the constant factor for composing task-PIOAs in parallel.
2. \(q_2 = q_1 + b \cdot q_2' \); \(q = q_1 + b \cdot q_2 + q' \); and \(\epsilon' = b \cdot \epsilon \).
3. For all \(i \), \(\mathcal{A}^i_1 \) and \(\mathcal{A}^i_2 \) are comparable and \(\mathcal{A}^i_1 \leq_{q_1,q_2,p,q,\epsilon} \mathcal{A}^i_2 \).

Then we have \(\| \sum_{i=1}^{b} \mathcal{A}^i_1 \| \leq_{q_1,q_2',p,q',\epsilon'} \| \sum_{i=1}^{b} \mathcal{A}^i_2 \| \).

\(^4\) Recall that, in a single step of the hybrid argument, the environment is the parallel composition of the original environment and all protocol instances that are not being replaced in the current step.
Before diving into the proof of Lemma 2, we take a moment to dissect the assumptions. First, we note that Assumption (3) is the uniformity condition, saying that the same time bounds and error can be used for every index i. To explain Assumptions (1) and (2), we need to briefly outline our proof strategy.

To prove $\|\|_{i=1}^{b} A_{1} \leq q_{1}, q_{2}, p', q', \epsilon, \epsilon' \|\|_{i=1}^{b} A_{2}$, we take an environment Env for both $\|\|_{i=1}^{b} A_{1}$ and $\|\|_{i=1}^{b} A_{2}$. The description bound of Env is p'. In each step of the hybrid argument, we perform exactly one substitution, with all other components fixed. We may then view the composition of Env with all fixed components as an environment Env' for the component being substituted. The description of Env' is therefore bounded by $p = c_{\text{comp}} \cdot (b \cdot r(b) + p')$, as in Assumption (1).

Now, q_{1} is the schedule length bound for $\|\|_{i=1}^{b} A_{1}$. Since we don’t know how the tasks are distributed among the b components, we use a conservative estimate: the schedule length bound for each A_{1} is also q_{1}, as in Assumption (3). Then, at each step of the hybrid argument, the schedule length increases by at most q_{2}, hence the schedule length bound for $\|\|_{i=1}^{b} A_{2}$ is $q_{2}' = q_{1} + b \cdot q_{2}$, as in Assumption (2). Similarly, the schedule length bound for Env' at each step of the hybrid argument must be at least $q = q_{1} + b \cdot q_{2} + q'$, as in Assumption (2). Finally, the errors accumulate at each step, so we multiply ϵ with a factor of b to obtain ϵ', as in Assumption (2).

Proof (Lemma 2). Let \hat{A}_{1} and \hat{A}_{2} denote $\|\|_{i} A_{1}$ and $\|\|_{i} A_{2}$, respectively. Unwinding the definition of $\leq q_{1}, q_{2}, p', q', \epsilon, \epsilon'$, we need to prove: for every environment Env with p'-bounded description and task schedule ρ_{1} for $\hat{A}_{1}||Env$ such that

- $\proj_{\hat{A}_{1}}(\rho_{1})$ is q_{1}-bounded, and
- $\proj_{\hat{A}_{2}}(\rho_{1})$ is q'-bounded,

there exists task schedule ρ_{2} for $\hat{A}_{2}||Env$ such that

- $\proj_{\hat{A}_{2}}(\rho_{2})$ is q_{2}'-bounded,
- $\proj_{\hat{A}_{2}}(\rho_{2}) = \proj_{\hat{A}_{2}}(\rho_{1})$,
- $|\proj_{\hat{A}_{1}}(\rho_{1}) - \proj_{\hat{A}_{2}}(\rho_{1})| < \epsilon'$.

Let such Env and ρ_{1} be given. For $1 \leq i \leq b - 1$, let H_{i} denote the i-th hybrid automaton: $A_{1}^{i} \ldots || A_{2}^{i+1} \ldots || A_{2}^{b}$. Consider $i = 1$ and let $Env_{1} := A_{2}^{1} \ldots || A_{2}^{b}||Env$. Clearly, Env_{1} is an environment for both A_{1}^{1} and A_{2}^{1} and, by Lemma 1 and Assumption (1), Env_{1} has p-bounded description. By the choice of ρ_{1}, we know that $\proj_{A_{1}^{1}}(\rho_{1})$ is q_{1}-bounded and $\proj_{Env_{1}}(\rho_{1})$ is $(q_{1} + q')$-bounded. By Assumption (2), $\proj_{Env_{1}}(\rho_{1})$ is q'-bounded.

Now we apply Assumption (3) and choose task schedule ρ_{2} for $H_{1}||Env$ such that

- $\proj_{A_{1}^{1}}(\rho_{2})$ is q_{2}-bounded,
- $\proj_{Env_{1}}(\rho_{2}) = \proj_{Env_{1}}(\rho_{2})$, and
- $|\proj_{A_{1}^{1}}(\rho_{1}) - \proj_{A_{2}^{1}}(\rho_{1}) - \proj_{H_{1}}(\rho_{2})| < \epsilon$.

Note that, since A_{2}^{1} is part of Env_{1}, $\proj_{A_{2}^{1}}(\rho_{1}) = \proj_{A_{2}^{1}}(\rho_{2})$. Therefore, $\proj_{A_{2}^{1}}(\rho_{2})$ is q_{1}-bounded. Similarly, $\proj_{H_{1}}(\rho_{2})$ is $(q_{1} + q_{2})$-bounded and ρ_{2} is $(q_{1} + q_{2} + q')$-bounded.
Now consider \(i = 2 \) and let \(\text{Env}_2 := \mathcal{A}_2^{||} \mathcal{A}_2^3 \ldots \mathcal{A}_2^3 \mathcal{A}_2^{||} \text{Env} \). As before, \(\text{Env}_2 \) is an environment for both \(\mathcal{A}_2^3 \) and \(\mathcal{A}_2^3 \), and it has \(p \)-bounded description. Moreover, \(\text{proj}_{\mathcal{A}_2^3}^i(\rho_2) \) is \(q_1 \)-bounded and, since \(\rho_2 \) is \((q_1 + q_2 + q')\)-bounded, \(\text{proj}_{\text{Env}_2}(\rho_2) \) is also \((q_1 + q_2 + q')\)-bounded. By Assumption (2), \(\text{proj}_{\text{Env}_2}(\rho_2) \) is \(q \)-bounded.

Again, we apply Assumption (3) and choose task schedule \(\rho_3 \) for \(H^2 \| \text{Env} \) such that

\[
\begin{align*}
- \text{proj}_{\mathcal{A}_2^3}(\rho_3) & \text{ is } q_2 \text{-bounded}, \\
- \text{proj}_{\text{Env}_2}(\rho_2) & = \text{proj}_{\text{Env}_2}(\rho_3), \text{ and} \\
- |\text{proj}_{\text{Env}_2}(\rho_2)| & < \epsilon.
\end{align*}
\]

Note that, since \(\mathcal{A}_1^3 \) is part of both \(\text{Env}_1 \) and \(\text{Env}_2 \), we have \(\text{proj}_{\mathcal{A}_1^3}(\rho_3) = \text{proj}_{\mathcal{A}_1^3}(\rho_3) = \text{proj}_{\mathcal{A}_1^3}(\rho_1) \). Therefore, \(\text{proj}_{\mathcal{A}_1^3}(\rho_3) \) is \(q_1 \)-bounded. Similarly, \(\text{proj}_{\mathcal{H}^2}(\rho_3) \) is \((q_1 + 2 \cdot q_2)\)-bounded and \(\rho_3 \) is \((q_1 + 2 \cdot q_2 + q')\)-bounded.

Repeating the same argument for all hybrid automata, we obtain

\[
|\text{proj}_{\text{Env}_1}(\rho_1) - \text{proj}_{\text{Env}_2}(\rho_2)| < \epsilon.
\]

Moreover, since \(\text{Env} \) is part of \(\text{Env}_i \) for every \(i \), we know that \(\text{proj}_{\text{Env}}(\rho_{b+1}) = \text{proj}_{\text{Env}}(\rho_i) \). Finally, we have that \(\text{proj}_{\mathcal{A}_1^3}(\rho_{b+1}) \) is bounded by \(q'_2 = q_1 + b \cdot q_2 \).

This completes the proof that \(\mathcal{A}_1^3 \leq_{\text{neg}, \text{pt}} q_1, q_2, q', q' \), \(\mathcal{A}_2 \). \(\square \)

Theorem 2 now follows as a corollary of Lemma 2. Essentially, we expand the definition of \(\leq_{\text{neg}, \text{pt}} \) and instantiate the time bounds and error with appropriate values.

Theorem 2 (Polynomial Composition Theorem for \(\leq_{\text{neg}, \text{pt}} \)). Let two sequences of task-PIOA families \(\mathcal{A}_1^1, \mathcal{A}_1^1, \ldots, \mathcal{A}_2^3, \mathcal{A}_2^3, \ldots \) be given, with \(\mathcal{A}_1^1 \) comparable to \(\mathcal{A}_2^3 \) for all \(i \). Assume further that, in each sequence, all task-PIOA families are pairwise compatible.

Suppose there exist polynomials \(r, s : \mathbb{N} \to \mathbb{N} \) such that, for all \(i, k \), both \((\mathcal{A}_1^1)_k\) and \((\mathcal{A}_2^3)_k\) have description bounded by \(r(i) \cdot s(k) \). Assume that \(r \) is non-decreasing. Assume further that

\[
\forall q_1, \exists q_2 \forall p, q \exists \epsilon \forall i, \mathcal{A}_1^i \leq_{\text{neg}, \text{pt}} q_1, q_2, p, q, \epsilon \mathcal{A}_2^i, \tag{1}
\]

where \(q_1, q_2, p, q \) are polynomials and \(\epsilon \) is a negligible function. (This is a strengthening of the statement \(\forall i, \mathcal{A}_1^i \leq_{\text{strong}} \mathcal{A}_2^i \).)

Let \(b \) be any polynomial. For each \(k \), let \(\hat{\mathcal{A}}_1^i \) denote \(\mathcal{A}_1^i || \ldots || \mathcal{A}_1^{h(k)} || \).

Similarly for \((\hat{\mathcal{A}}_2^3)_k\). Then we have \(\mathcal{A}_1^i \leq_{\text{neg}, \text{pt}} \mathcal{A}_2^3 \).
Proof. By the definition of $\leq_{\text{neg,pt}}$, we need to prove:

$$\forall q_1' \exists q_2' \forall p', q' \exists \epsilon' \hat{A}_1 \leq_{q_1',q_2',p',q',\epsilon'} \hat{A}_2,$$

where q_1', q_2', p', q' are polynomials and ϵ' is a negligible function.

Let polynomial q_1' be given and set $q_1 := q_1'$. Choose q_2 according to Assumption (1) in the theorem statement. Set $q_2' := q_1 + b \cdot q_2$. Let polynomials p' and q' be given. Define:

(i) $p := c_{\text{comp}} \cdot (p' + b \cdot (r \circ b))$, where c_{comp} is the constant factor for composing task-PIOAs in parallel;

(ii) $q := q_1 + b \cdot q_2 + q'$.

Now choose ϵ using q_1, q_2, p, q and Assumption (1), and define $\epsilon' := b \cdot \epsilon$.

Let $k \in \mathbb{N}$ be given. Observe that

- the task-PIOAs $(A_1^1)_k, \ldots, (A_1^k)_k, (A_2^1)_k, \ldots, (A_2^k)_k$,
- the function $s(k) \cdot r$ and
- the numbers $b(k), q_1(k), q_2(k), q_2'(k), p(k), p'(k), q(k), q'(k), \epsilon(k), \epsilon'(k)$ satisfy the assumptions in the statement of Lemma 2. Therefore we may conclude that $(A_1)_k \leq_{q_1(k),q_2'(k),p'(k),q'(k),\epsilon(k)} (A_2)_k$. Since $q_1 = q_1'$, this completes the proof.

To conclude this section, we obtain the constant composition theorem for $\leq_{\text{neg,pt}}$ (Corollary 1) as a corollary of Theorem 2. For this special case, we need not assume a uniformity condition, because we can consider maximum time bounds and maximum errors. We use the fact that $\leq_{q_1,q_2,p,q,\epsilon}$ is preserved if we relax the time bound q_2 and the error bound ϵ.

Lemma 3. Let A_1 and A_2 be comparable task-PIOAs and let $q_1, q_2, p, q \in \mathbb{N}$ and $\epsilon \in \mathbb{R}_{\geq 0}$ be given. Assume $A_1 \leq_{q_1,q_2,p,q,\epsilon} A_2$. For any $q_2' \geq q_2$ and $\epsilon' \geq \epsilon$, we have $A_1 \leq_{q_1,q_2',p,q,\epsilon'} A_2$.

Corollary 1. Let $B \in \mathbb{N}$ and two sequences of task-PIOA families $A_1^1, A_2^1, \ldots, A_1^B$ and $A_2^1, A_2^2, \ldots, A_2^B$ be given, with A_1^i comparable to A_2^i for all i. Suppose there exists polynomial $s : \mathbb{N} \rightarrow \mathbb{N}$ such that, for all i, k, both $(A_1^i)_k$ and $(A_2^i)_k$ have description bounded by $s(k)$. Assume further that $\hat{A}_1^i \leq_{\text{neg,pt}} \hat{A}_2^i$ for all $1 \leq i \leq B$.

For each k, let $(\hat{A}_1)_k$ denote $((\hat{A}_1^1)_k) \ldots ((\hat{A}_1^B)_k)$. Similarly for $(\hat{A}_2)_k$. Then we have $\hat{A}_1 \leq_{\text{neg,pt}} \hat{A}_2$.

Proof. We claim that Assumption (1) in Theorem 2 is satisfied. Let polynomial q_1 be given. For each i, choose polynomial q_2^i using the assumption $A_1^i \leq_{\text{neg,pt}} A_2^i$. Let q_2 be any polynomial upperbound of q_2^1, \ldots, q_2^B.

Let polynomials p and q be given. For each i, choose negligible function ϵ^i using q_1, q_2^i, p, q and the assumption $A_1^i \leq_{\text{neg,pt}} A_2^i$. Let ϵ be max($\epsilon^1, \ldots, \epsilon^B$).

Now we have $\hat{A}_1^i \leq_{q_1,q_2^i,p,q,\epsilon^i} \hat{A}_2^i$ for all i. By Lemma 3, this implies $\hat{A}_1 \leq_{q_1,q_2,p,q,\epsilon} \hat{A}_2$, which is precisely Assumption (1) in Theorem 2.

Finally, let b be the constant polynomial B and let r be the constant polynomial 1. We apply Theorem 2 to conclude that $\hat{A}_1 \leq_{\text{neg,pt}} \hat{A}_2$. \QED
4 Structures

In the previous sections, we defined and established properties of our model of concurrent computation, which is not specific to cryptographic protocols. On top of this “foundational layer”, this section introduces our “security layer”.

In the spirit of [17], we first define structures, which we use to specify protocols. To this purpose, we classify external actions of a task-PIOA into two categories: environment actions and adversary actions. Intuitively, environment actions are used to model the functional input/output interface of a protocol, whereas adversary actions are used to model network communications. This allows us to impose syntactic constraints on adversary task-PIOAs so that they do not have immediate access to protocol inputs and outputs.

Definition 3. A structure π is a pair $\langle A, EAct \rangle$, where A is a task-PIOA and $EAct$ is a subset of the external actions of A, called the environment actions. The set of adversary actions is defined to be $AAct := (I \cup O) \setminus EAct$. For convenience, we also define: (i) $EI := EAct \cap I$ (environment inputs), (ii) $EO := EAct \cap O$ (environment outputs), (iii) $AI := AAct \cap I$ (adversary inputs) and (iv) $AO = AAct \cap O$ (adversary inputs).

The notion of structure suggests the following definition of an adversary that may interact with a structure.

Definition 4. An adversary for the structure $\pi = \langle A, EAct \rangle$ is a task-PIOA Adv satisfying the following conditions: (i) Adv is compatible with A, (ii) $AI \subseteq AAct_{Adv}$, and (iii) $AAct_{Adv} \cap EAct = \emptyset$.

In other words, Adv is a compatible task-PIOA that interacts with π via adversary actions only, and Adv provides all adversary inputs to π.

Two structures π_1 and π_2 are said to be comparable if $EI_1 = EI_2$ and $EO_1 = EO_2$. Notice, unlike comparability for task-PIOAs, comparability for structures ignores differences in adversary actions.

Two structures π_1 and π_2 are compatible if A_1 and A_2 are compatible task-PIOAs and $A_1 \cap A_2 = EAct_1 \cap EAct_2$. That is, every shared action must be an environment action of both structures. Composition is straightforward: given compatible π_1 and π_2, their composition $\pi_1 \parallel \pi_2$ is the structure $\langle A_1 \parallel A_2, EAct_1 \cup EAct_2 \rangle$. This definition can be extended to any finite number of components. We observe that an adversary for a composition of structures is also an adversary for each of the component structures. A proof of this result is given in Appendix C.

Finally, we consider hiding for structures. Given a structure $\langle A, EAct \rangle$ and a set S of output actions of A, we define $\text{hide}(\langle A, EAct \rangle, S)$ to be the structure $\langle \text{hide}(A, S), EAct \setminus S \rangle$.

Time Bounds A structure $\pi = (A, EAct)$ is said to have p-bounded description if A has p-bounded description and $EAct$ is p-time recognizable. We observe that the composition of bounded structures has a description bound linear in the sum of component bounds. Similarly, the hiding operator increases the description bound by a fixed constant factor. More details about these results are available in Appendix B.
Structure Families
Given a family \(\pi \) of structures and a function \(p : \mathbb{N} \to \mathbb{N} \), we say that \(\pi \) has \(p \)-bounded description if \(\pi_k \) has \(p(k) \)-bounded description for every \(k \). If \(p \) is a polynomial, then we say that \(\pi \) has polynomially-bounded description.

The notions of comparability, compatibility and parallel composition are defined pointwise. Similarly for the notion of an adversary family.

If \(S = \{ S_k \}_{k \in \mathbb{N}} \) is a family of sets of actions, we say that \(S \) is polynomial-time recognizable if there is a polynomial \(p \) such that every \(S_k \) is \(p(k) \)-time recognizable. It is not hard to check that, given any family \(\pi \) with polynomially-bounded description and a polynomial-time recognizable family \(S \) of sets of actions, the family \(\text{hide}(\pi, S) \) is again polynomial time-bounded. Those results are detailed in Appendix B.

5 Secure Emulation

Equipped with the notions of polynomial-time-bounded structure and adversary families, we have now enough machinery to formulate our secure emulation notion. To this purpose, we follow the standard definition of universal composability/simulatability [19, 17].

Definition 5 (Secure Emulation). Suppose \(\phi \) and \(\psi \) are comparable structure families. We say that \(\phi \) emulates \(\psi \) (denoted \(\phi \leq_{SE} \psi \)) if, for every adversary family \(\text{Adv} \) for \(\phi \) with polynomially bounded description, there is an adversary family \(\text{Sim} \) for \(\psi \) with polynomially bounded description such that:

\[
\text{hide}(\phi \parallel \text{Adv}, \text{AAct}_\phi) \leq_{\text{strong neg}, \text{pt}} \text{hide}(\psi \parallel \text{Sim}, \text{AAct}_\psi).
\]

Transitivity of \(\leq_{SE} \) follows immediately from transitivity of \(\leq_{\text{neg}, \text{pt}}^{\text{strong}} \).

Dummy Adversaries
Observe that, in the definition of \(\leq_{SE} \), the adversary actions of \(\phi \) and \(\psi \) are hidden, which prevents an environment from synchronizing on those actions. At first sight, this limits the amount of information available to the environment and hence reduces its distinguishing power. However, one can show that no power is actually lost, because there exist adversaries that behave simply as forwarders between \(\text{Env} \) and the protocols. These are the so-called dummy adversaries and below we give a canonical construction.

Let \(\phi \) be a structure family and, for each \(k \in \mathbb{N} \), let \(f_k \) be a bijection from \(\text{AAct}_\phi_k \) to a set of fresh action names. We refer to \(f = \{ f_k \}_{k \in \mathbb{N}} \) as a renaming of adversary actions for \(\phi \), and we write \(f(\phi) \) for the result of applying \(f_k \) to \(\phi_k \) for every \(k \). Consider the adversary \(\text{Adv}(\phi_k, f_k) \) defined in Figure 1.

The following lemma shows that dummy adversaries have transparent behavior. This fact is used in the proof of our main composition theorem (Theorem 3).

Lemma 4. Let \(\text{Adv}(\phi, f) \) denote the family \(\{ \text{Adv}(\phi_k, f_k) \}_{k \in \mathbb{N}} \). Note that \(f(\phi) \) and \(\text{hide}(\phi \parallel \text{Adv}(\phi, f), \text{AAct}_\phi) \) are comparable. Let \(A \) be a task-PIOA family compatible with both \(f(\phi) \) and \(\text{hide}(\phi \parallel \text{Adv}(\phi, f), \text{AAct}_\phi) \). Assume that, for all \(k \), \(f(AI_{\phi_k}) \subseteq \text{Act}_A \). Then \(f(\phi) \parallel A \leq_{\text{neg}, \text{pt}}^{\text{strong}} \text{hide}(\phi \parallel \text{Adv}(\phi, f), \text{AAct}_\phi) \parallel A \).
Adv(φk, f_k)

Signature
Input:
\(AO_{φ_k} \cup f_k(AI_{φ_k}) \)
Output:
\(f_k(AO_{φ_k}) \cup AI_{φ_k} \)

Tasks
\(\text{forward} := f_k(AO_{φ_k}) \cup AI_{φ_k} \)

States
\(\text{pending} \in AO_{φ_k} \cup f_k(AI_{φ_k}) \cup ⊥ \), initially \(⊥ \)

Transitions:
\(a \in AO_{φ_k} \cup f_k(AI_{φ_k}) \)
Effect:
\(\text{pending} := a \)

\(b \in f_k(AO_{φ_k}) \)
Precondition:
\(b = f_k(\text{pending}) \)
Effect:
\(\text{pending} := ⊥ \)

\(b \in AI_{φ_k} \)
Precondition:
\(f_k(b) = \text{pending} \)
Effect:
\(\text{pending} := ⊥ \)

Fig. 1. Task-PIOA Code for Dummy Adversary

Proof. Let \(q_1 \) be any polynomial and set \(q_2 := 2q_1 \). Let \(p, q \) be any polynomials and \(ε \) be the constant polynomial 0. Fix \(k \in \mathbb{N} \) and let \(Env \) be an environment for \(f_k(φ_k)\|A_k \) and for \(φ_k\|Adv(φ_k, f_k)\|A_k \). Let \(ρ \) be a task schedule for \(f_k(φ_k)\|A_k\|Env \) such that \(\text{proj}_{f_k(φ_k)\|A_k}(ρ) \) is \(q_1(k) \)-bounded and \(\text{proj}_{Env}(ρ) \) is \(q(k) \)-bounded.

We construct a task schedule \(ρ' \) for \(φ_k\|Adv(φ_k, f_k)\|A_k\|Env \) as follows: given any task \(T \) that is not locally controlled by \(Env \), we replace \(T \) with \(T.\text{forward} \). Note that, by construction, \(\text{proj}_{\text{hide}(φ_k\|Adv(φ_k, f_k), AAct_{φ_k})}(ρ') \) is \(q_2(k) \)-bounded and \(\text{proj}_{Env}(ρ) = \text{proj}_{Env}(ρ') \). Moreover, we have by assumption that \(f(AI_{φ_k}) \subseteq Act_{A_k} \), hence we have sufficiently many forward tasks to guarantee

\[P_{\text{acc}}(f_k(φ_k)\|A_k\|Env, ρ) = P_{\text{acc}}(\text{hide}(φ_k\|Adv(φ_k, f_k), AAct_{φ_k})\|A_k\|Env, ρ'). \]

\(\Box \)

Composition We now prove that \(≤_{SE} \) is preserved under polynomial-sized composition, provided certain uniformity assumptions are satisfied.

Theorem 3. Let two sequences of pairwise compatible structure families \(φ^1, φ^2, \ldots \) and \(ψ^1, ψ^2, \ldots \) be given, with \(φ^i \) comparable to \(ψ^i \) for all \(i \).

Suppose there are renamings \(f^1, f^2, \ldots \) and polynomials \(r, s : \mathbb{N} \to \mathbb{N} \) such that the following hold.
(1) \(r \) is non-decreasing.
(2) For all \(i, \phi^i \| \text{Adv}(\phi^i, f^i) \) has description bounded by \(r(i) \cdot s \). (The family \(\text{Adv}(\phi^i, f^i) \) is a dummy adversary family, as in Lemma 4.)

(3) There exist adversary families \(\text{Sim}^1, \text{Sim}^2, \ldots \) for \(\psi^1, \psi^2, \ldots \) such that:

(a) for all \(i, \psi^i \| \text{Sim}^i \) has description bounded by \(r(i) \cdot s \), and

(b) \(\forall q_1 \exists q_2 \forall p, q \exists \epsilon \forall i \)

\[
\text{hide}(\phi^i \| \text{Adv}(\phi^i, f^i), A\text{Act}_{\phi^i}) \leq_{q_1, q_2, p, q, \epsilon} \text{hide}(\psi^i \| \text{Sim}^i, A\text{Act}_{\psi^i}),
\]

where \(q_1, q_2, p, q \) are polynomials and \(\epsilon \) is a negligible function.

Let \(b \) be any polynomial. For each \(k \), let \(\phi_k \) denote \(\phi_k \| \ldots \| \phi_k^{b(k)} \). Similarly for \(\psi_k \). Then we have \(\phi \leq_{SE} \psi \).

Proof. Let \(\text{Adv} \) be an adversary family for \(\phi \) with polynomially bounded description. We need to construct an adversary family \(\text{Sim} \) for \(\psi \) with polynomially bounded description such that:

\[
\text{hide}(\phi \| \text{Adv}, A\text{Act}_{\phi}) \leq_{\text{neg, pt}} \text{hide}(\psi \| \text{Sim}, A\text{Act}_{\psi}).
\]

Observe that the renamings \(f^1, f^2, \ldots \) induce a renaming for \(\phi \) in the obvious way: for each \(k \), \(f_k := f_k^1 \cup \ldots \cup f_k^{b(k)} \). This is well defined because the compatibility definition for structures requires the sets of adversary actions to be pairwise disjoint.

Let \(\tilde{\text{Adv}} \) and \(\tilde{\text{Sim}} \) be adversary families defined as follows: for each \(k \),

\[
\tilde{\text{Adv}}_k := \text{Adv}(\phi_k^1, f_k^1) \| \ldots \| \text{Adv}(\phi_k^{b(k)}, f_k^{b(k)}),
\]

\[
\tilde{\text{Sim}}_k := \text{Sim}_k^1 \| \ldots \| \text{Sim}_k^{b(k)},
\]

where \(\text{Sim}_1, \text{Sim}_2, \ldots \) are given as in the statement of the theorem.

We observe the following.

\[
\text{hide}(\phi \| \text{Adv}, A\text{Act}_{\phi})
\]

\[
\equiv_{\text{neg, pt}} \text{hide}(f(\phi) \| f(\text{Adv}), f(A\text{Act}_{\phi}))
\]

property of renaming

\[
\leq_{\text{neg, pt}} \text{hide}(\phi \| \tilde{\text{Adv}}_k, f(\text{Adv}), f(A\text{Act}_{\phi}) \cup A\text{Act}_{\phi})
\]

Lemma 4

\[
\leq_{\text{neg, pt}} \text{hide}(\psi \| \tilde{\text{Sim}}_k, f(\text{Adv}), f(A\text{Act}_{\phi}) \cup A\text{Act}_{\phi})
\]

Theorem 2

\[
\equiv_{\text{neg, pt}} \text{hide}(\psi \| \text{hide}(\tilde{\text{Sim}}_k, f(\text{Adv}), f(A\text{Act}_{\phi})), A\text{Act}_{\phi})
\]

property of hiding

Diagrams depicting these task-PIOAs and the communications between them are in Figure 2. We define \(\text{Sim} \) to be \(\text{hide}(\tilde{\text{Sim}}_k, f(\text{Adv}), f(A\text{Act}_{\phi})) \). This completes the proof.

Let us now compare the assumptions of Theorem 3 with the more intuitive assumption that \(\phi^i \leq_{SE} \psi^i \) for all \(i \). The latter is not sufficient for two reasons.

– We need to ensure that the composites \(\phi \) and \(\psi \) have polynomially bounded description. The same applies to the adversary families \(\tilde{\text{Adv}} \) and \(\tilde{\text{Sim}} \). Therefore we need the existence of polynomial bounds \(r \) and \(s \). Note that we do
allow the complexity to grow with i, as long as the growth in i is independent of the growth in the security parameter k. This is important because our compatibility condition requires disjoint sets of locally controlled actions: as i grows, action names need to contain more bits. (This can be thought of as the need to have distinct session IDs for different protocol instances.)

– Assumption (3b) is the so-called uniformity condition on the error in simulation. We require that the same error bound ϵ works for all instances i. This prevents the errors from growing with i, otherwise the total error may no longer be negligible.

We present two examples of applications of this composition theorem further in this section.

Hiding Our secure emulation relation is preserved when we hide any set of environment output actions of the related structures. This result can be naturally used to model the behavior of protocols privately synchronizing with sub-protocols.

Theorem 4. Suppose ϕ and ψ are comparable structure families such that $\phi \leq \text{SE} \psi$. Suppose also that $B \subset EO_{\phi}$ is a family of sets of environment output actions of ϕ. Then, $\text{hide}(\phi, B) \leq \text{SE} \text{hide}(\psi, B)$.

Proof. Suppose ϕ, ψ and B are defined as in the hypotheses. Unwinding the assumption that $\phi \leq \text{SE} \psi$, we obtain that, for every polynomial time-bounded adversary family Adv for ϕ, there is a polynomial time-bounded adversary family Sim for ψ such that $\text{hide}(\phi \| Adv, AAct_{\phi}) \leq \text{neg, pt} \text{hide}(\psi \| Sim, AAct_{\psi})$.

![Fig. 2. Diagram for the Construction of Sim](image-url)
Using the definition of adversaries, we observe that $\text{Act}_{\text{Adv}} \cap B = \text{Act}_{\text{Sim}} \cap B = \emptyset$. This guarantees that Adv is an adversary family for $\text{hide}(\phi, B)$ and that Sim is an adversary family for $\text{hide}(\psi, B)$. Now, using the hiding property of $\leq_{\text{strong neg, pt}}$, we obtain that $\text{hide}(\text{hide}(\phi \parallel \text{Adv}, A\text{Act}_\phi), B) \leq_{\text{strong neg, pt}} \text{hide}(\text{hide}(\psi \parallel \text{Sim}, A\text{Act}_\psi), B)$. Using the set intersection relations above and the fact that we only hide environment external actions, this implies $\text{hide}(\text{hide}(\phi, B) \parallel \text{Adv}, A\text{Act}_\phi) \leq_{\text{neg, pt}} \text{hide}(\text{hide}(\psi, B) \parallel \text{Sim}, A\text{Act}_{\text{hide}(\psi, B)}),$ as needed.

Applications We state two simple corollaries illustrating the use of our composition theorem: the first one considers composition for a polynomial number of copies of a single structure family, while the second considers composition for a constant number of distinct structure families. Proofs for these corollaries appear in Appendix D.

Corollary 2. Suppose ϕ and ψ are comparable polynomial-time-bounded structure families such that $\phi \leq_{\text{SE}} \psi$. Let g^1, g^2, \ldots be renaming functions, each mapping actions of ϕ and ψ to fresh names. Suppose further that applying the renaming g^i to the family ϕ or ψ does not increase their time-bounds more than by a polynomial factor in the index i.

Let b be a polynomial. For each k, let $\hat{\phi}_k$ denote $g^1(\phi_k) \parallel \cdots \parallel g^k(\phi_k)$, and similarly for $\hat{\psi}_k$. Then we have $\hat{\phi} \leq_{\text{SE}} \hat{\psi}$.

Corollary 3. Let ϕ^1, \ldots, ϕ^B and ψ^1, \ldots, ψ^B be pairwise compatible polynomial-time-bounded structure families, with $\phi^i \leq_{\text{SE}} \psi^i$ for every i. Then, we have $\phi^1 \parallel \cdots \parallel \phi^B \leq_{\text{SE}} \psi^1 \parallel \cdots \parallel \psi^B$.

6 Conclusions

In this paper, we introduced a new approximate implementation relation for task-PIOAs, the $\leq_{\text{strong neg, pt}}$ relation, and showed that it supports composition theorems for polynomially growing task-PIOA families. Building upon this $\leq_{\text{neg, pt}}$ relation, we presented a secure emulation relation, following the logical statement of universal composability/simulatability, and proved this relation is transitive and preserved under hiding. It also supports composition theorems for polynomially growing structure families. These three properties, as well as the invariant assertion and simulation relation techniques developed in [37, 21], are essential for the scalability of protocol analysis.

In future works, we would like to consider dynamic creation definitions for task-PIOAs: this would allow us to model environments (or structures) that can dynamically create new protocol instances at run time, as it is performed through the dynamic ITM invocation mechanism in the UC framework or through the bang operator “!” in the IITM framework. We believe such an enrichment to our framework would allow us to prove a stronger claim about the existence of simulators. Namely, there is a single simulator that can simulate b many protocol instances for any polynomial b.

We would also like to apply the model and methods we developed here to analyze security protocols that have not yet been the subject of much formal study, such as timing-based and long-lived security protocols, where our separation between the bounds on description and schedulers seems especially meaningful.

References

A Results for Task-PIOAs

We state the transitivity of the \(\preceq_{q_1,q_2,p,q,\epsilon} \) and \(\preceq_{\text{neg},\text{pt}} \) relations, and claim these relations are preserved when output actions of the related automata are hidden.

Lemma 5. Suppose \(A_1, A_2 \) and \(A_3 \) are comparable task-PIOAs such that \(A_1 \preceq_{q_1,q_2,p,q,\epsilon_{12}} A_2 \) and \(A_2 \preceq_{q_2,q_3,p,q,\epsilon_{23}} A_3 \). Then, \(A_1 \preceq_{q_1,q_3,p,q,\epsilon_{13}+\epsilon_{23}} A_3 \).

Lemma 6. Suppose \(\overline{A}_1 = \{(A_1)_k\}_{k \in \mathbb{N}}, \overline{A}_2 = \{(A_2)_k\}_{k \in \mathbb{N}} \) and \(\overline{A}_3 = \{(A_3)_k\}_{k \in \mathbb{N}} \) are comparable task-PIOA families such that \(\overline{A}_1 \preceq_{\text{neg},\text{pt}} \overline{A}_2 \) and \(\overline{A}_2 \preceq_{\text{neg},\text{pt}} \overline{A}_3 \). Then, \(\overline{A}_1 \preceq_{\text{neg},\text{pt}} \overline{A}_3 \).

Lemma 7. Suppose \(A_1 \) and \(A_2 \) are comparable task-PIOA families such that \(A_1 \preceq_{q_1,q_2,p,q,\epsilon} A_2 \). Suppose also that \(B \) is set of output actions of both \(A_1 \) and \(A_2 \). Then, \(\text{hide}(A_1,B) \preceq_{q_1,q_2,p,q,\epsilon} \text{hide}(A_2,B) \).
Lemma 8. Suppose $\mathcal{A}_1 = \{(A_1)_k\}_{k \in \mathbb{N}}$ and $\mathcal{A}_2 = \{(A_2)_k\}_{k \in \mathbb{N}}$ are comparable task-PIOA families such that $\mathcal{A}_1 \leq_{\text{strong}} \mathcal{A}_2$. Suppose also that $B = \{B_k\}_{k \in \mathbb{N}}$ is a family of sets of output actions of \mathcal{A}_1 and \mathcal{A}_2, that is, B_k is a set of output actions of both $(A_1)_k$ and $(A_2)_k$. Then, $\text{hide}(\mathcal{A}_1, B) \leq_{\text{neg, pt}} \text{hide}(\mathcal{A}_2, B)$.

The proof of these lemmas are similar to those appearing as [20, Lemma 4.9, 4.31, 4.11, and 4.33].

B Results for Structures

We consider the behavior of structures when they are composed.

Lemma 9. There exists a constant c_{comp} such that the following holds. Suppose $\pi_1, \pi_2, \ldots, \pi_n$ are compatible structures, where, for every $1 \leq i \leq n$, the structure π_i is b_i-time bounded. Then, $\pi_1 \parallel \cdots \parallel \pi_n$ is $c_{\text{comp}}(b_1 + \cdots + b_n)$-bounded. Also, the composition of n polynomial time-bounded structures is also a polynomial time-bounded structure.

Proof. Similar to the proofs of [20, Lemma 4.2 and 4.26].

Corollary 4. Suppose $\pi = \{\pi_k\}_{k \in \mathbb{N}}$ is a family of structures, such that each π_k is the composition of $p(k)$ $q(k)$-time bounded structures. Then π is a polynomial time-bounded family of structure, bounded by the polynomial $c_{\text{comp}}pq$.

Proof. Lemma 9 guarantees that π_k is $c_{\text{comp}}(p(k)q(k))$-time bounded.

The compatibility of two structures is preserved when we compose these structures with a third one.

Lemma 10. Suppose π_1 and π_2 are comparable structures, and π_3 is a structure that is protocol-compatible with each of π_1 and π_2. Then $\pi_1 \parallel \pi_3$ and $\pi_2 \parallel \pi_3$ are comparable structures.

Proof. Write $\pi_1 = (A_1, E\text{Act}_1)$, $\pi_2 = (A_2, E\text{Act}_2)$, and $\pi_3 = (A_3, E\text{Act}_3)$. We show the two conditions in the definition of comparability:

1. $E\text{I}_1 \cup E\text{I}_3 - (E\text{O}_1 \cup E\text{O}_3) = E\text{I}_2 \cup E\text{I}_3 - (E\text{O}_2 \cup E\text{O}_3)$.
 Since π_1 and π_2 are comparable structures, we know that $E\text{I}_1 = E\text{I}_2$ and $E\text{O}_1 = E\text{O}_2$. Let $a \in E\text{I}_1 \cup E\text{I}_3 - (E\text{O}_1 \cup E\text{O}_3)$. There are two cases:
 (a) $a \in E\text{I}_1 - E\text{O}_3$. Then $a \in E\text{I}_2$, so $a \in E\text{I}_2 - E\text{O}_3$. Since $a \in E\text{I}_2$, we have $a \notin E\text{O}_2$. So $a \in E\text{I}_2 \cup E\text{I}_3 - (E\text{O}_2 \cup E\text{O}_3)$, as needed.
 (b) $a \in E\text{I}_3 - E\text{O}_1$. Then $a \notin E\text{O}_2$, so $a \in E\text{I}_3 - E\text{O}_2$. Since $a \in E\text{I}_3$, we have $a \notin E\text{O}_3$. So $a \in E\text{I}_2 \cup E\text{I}_3 - (E\text{O}_2 \cup E\text{O}_3)$, as needed.
 The converse direction is similar.

2. $E\text{O}_1 \cup E\text{O}_3 = E\text{O}_2 \cup E\text{O}_3$.
 Since $E\text{O}_1 = E\text{O}_2$, this is immediate.
Time bounds of structures evolve as those of task-PIOAs when sets of output actions are hidden.

Lemma 11. There exists a constant c_{hide} such that the following holds. Suppose π is a p-time-bounded structure, and S is a p'-time recognizable subset of the output actions of π. Then $\text{hide}(\pi, S)$ is a $c_{\text{hide}}(p + p')$-time-bounded structure.

Lemma 12. Suppose π is a polynomial-time-bounded structure, and \mathcal{S} is a polynomial-time recognizable family of subset of the output actions of π. Then $\text{hide}(\pi, \mathcal{S})$ is a polynomial-time-bounded structure.

The proofs of these result are similar to those appearing in [20, Lemma 4.3 and 4.33].

C Adversary for Composed Structures

The following lemma relates signatures of adversaries and is used in the proof of Theorem 3.

Lemma 13. Suppose ϕ and ψ are comparable structures, Adv is an adversary for ϕ, Sim is an adversary for ψ, and $\text{hide}(\phi \parallel \text{Adv}, \text{AAct}_\phi) \preceq_{\text{strong hide}} \text{hide}(\psi \parallel \text{Sim}, \text{AAct}_\psi)$. Then, $O_{\text{Adv}} - \text{AAct}_\phi = O_{\text{Sim}} - \text{AAct}_\psi$, $I_{\text{Adv}} - \text{AAct}_\phi = I_{\text{Sim}} - \text{AAct}_\psi$, and $\text{Ext}_{\text{Adv}} - \text{AAct}_\phi = \text{Ext}_{\text{Sim}} - \text{AAct}_\psi$.

Proof. Follows from the fact that ϕ and ψ are comparable structures, and that $\text{hide}(\phi \parallel \text{Adv}, \text{AAct}_\phi)$ and $\text{hide}(\psi \parallel \text{Sim}, \text{AAct}_\psi)$ must be comparable task-PIOAs.

Next we show that an adversary for the composition of several structures is an adversary of any of theses structures.

Lemma 14. Suppose π and ϕ are compatible structures, and Adv is an adversary for $\pi \parallel \phi$. Then Adv is an adversary for ϕ. Also, if π and P are compatible structure families, and Adv is an adversary family for $\pi \parallel P$. Then Adv is an adversary family for P.

Proof. Suppose π and ϕ are compatible structures, and Adv is an adversary for $\pi \parallel \phi$. We observe that the three conditions of Definition 4 are satisfied.

1. Adv is compatible with ϕ. This follows from the fact that Adv is compatible with $\pi \parallel \phi$.
2. $\text{Ext}_{\text{Adv}} \cap \text{Ext}_\phi \subseteq \text{AAct}_\phi$. Since Adv is an adversary for $\pi \parallel \phi$, we know that $\text{Ext}_{\text{Adv}} \cap (\text{Ext}_\pi \cup \text{Ext}_\phi) \subseteq \text{AAct}_\pi \cup \text{AAct}_\phi$. This implies that $\text{Ext}_{\text{Adv}} \cap \text{Ext}_\phi \subseteq \text{AAct}_\phi$. We observe now that $\text{AAct}_\pi \cap \text{AAct}_\phi = \emptyset$ and $\text{AAct}_\pi \cap \text{EAct}_\phi = \emptyset$, since π and ϕ are compatible structures. This implies that $\text{AAct}_\pi \cap \text{Ext}_\phi = \emptyset$, which in turn guarantees that $\text{Ext}_{\text{Adv}} \cap \text{Ext}_\phi \subseteq \text{AAct}_\phi$.

3. $AI_\phi \subseteq O_{Adv}$. Since Adv is an adversary for π_ϕ, we know that $(AAct_\phi \cup AAct_\psi) \cap ((I_\phi \cup I_\psi) - (O_\phi \cup O_\psi)) \subseteq O_{Adv}$. This first implies that $AAct_\phi \cap (I_\phi - (O_\phi \cup O_\psi)) \subseteq O_{Adv}$. Next, since $I_\phi \cap O_\phi = \emptyset$, we have that $AAct_\phi \cap (I_\phi - O_\psi) \subseteq O_{Adv}$. By distributivity, we also have that $AAct_\phi \cap I_\phi - AAct_\phi \cap O_\psi \subseteq O_{Adv}$. The compatibility conditions of π and ϕ now imply that $AAct_\phi \cap O_\psi = \emptyset$, which provides the relation $AAct_\phi \cap I_\phi \subseteq O_{Adv}$, as needed.

The extension to structure families and adversary families is straightforward.

D Proof for Applications of the Composition Theorem

Proof (of Corollary 2). Let us write ϕ^i and ψ^i for $g^i(\phi)$ and $g^i(\psi)$ respectively. Since the g_i functions are just renaming functions, we have $\phi^i \leq SE \psi^i$ for every i.

Consider now, for every index i, the adversary family $Adv(\phi^i, f^i)$ for ϕ^i (following the definition used in Lemma 4), where the renamings f^i are such that $\phi^i \parallel Adv(\phi^i, f^i)$ is bounded by $r_1(i) \cdot s$ where r_1 and s are polynomials. The secure emulation relations above imply that there exist polynomial-time-bounded adversary families Sim_1, Sim_2, \ldots for $\psi_1^i, \psi_2^i, \ldots$ (respectively) such that:

(a) for every i, the task-PIOA $\psi^i || Sim^i$ is bounded by $r_2(i) \cdot s$, where r_2 is a polynomial (this can be stated because the renaming functions do not increase the length of action names too much, and because all Sim^i automata can be chosen identical up to action renaming), and

(b) $\forall q_1 \exists q_2 \forall p, q \exists \epsilon \forall i$

$$\text{hide}(\phi^i || Adv(\phi^i, f^i), AAct_{\psi^i}) \leq q_1, q_2, p, q, \epsilon \text{ hide}(\psi^i || Sim^i, AAct_{\psi^i}),$$

where q_1, q_2, p, q are polynomials, and ϵ is a negligible function.

As a result, by defining r as a non-decreasing polynomial majoring r_1 and r_2, we can apply Theorem 3 and obtain that $\hat{\phi} \leq SE \hat{\psi}$, as needed.

Proof (of Corollary 3). Suppose f^1, \ldots, f^B are renaming functions for the adversary actions of ϕ^1, \ldots, ϕ^B, such that the increase of the length of the action names of ϕ^i_k through f^i is bounded by some polynomial in k. Suppose further that $Adv(\phi^1, f^1), \ldots, Adv(\phi^B, f^B)$ are dummy adversary families as defined in Lemma 4.

Since B is constant, and since $\phi^i \leq SE \psi^i$ for every $i \in [B]$, there are adversary families Sim^1, \ldots, Sim^B for ψ^1, \ldots, ψ^B such that, $\forall q_1 \exists q_2 \forall p, q \exists \epsilon \forall i$

$$\text{hide}(\phi^i || Adv(\phi^i, f^i), AAct_{\phi^i}) \leq q_1, q_2, p, q, \epsilon \text{ hide}(\psi^i || Sim^i, AAct_{\psi^i}),$$

where q_1, q_2, p, q are polynomials, and ϵ is a negligible function.

Now, the result follows of the use of Theorem 3 where r is a constant, s is a polynomial bounding the description of $\phi^i || Adv(\phi^i, f^i)$ and $\psi^i || Sim^i$ for every $i \in [B]$, and b is the constant B.

\qed