
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/34901

 

 

 

Please be advised that this information was generated on 2019-10-20 and may be subject to

change.

http://hdl.handle.net/2066/34901


Dependability for high-tech systems: an industry-as-laboratory approach∗

Ed Brinksma
Embedded Systems Institute, Eindhoven

University of Twente, Enschede
The Netherlands

ed.brinksma@esi.nl

Jozef Hooman
Embedded Systems Institute, Eindhoven

Radboud University Nijmegen
The Netherlands

jozef.hooman@esi.nl

To appear in the Proceedings of Design, Automation & Test in Europe 2008 (DATE’08)

Abstract

The dependability of high-volume embedded systems,
such a consumer electronic devices, is threatened by a
combination of quickly increasing complexity, decreasing
time-to-market, and strong cost constraints. This poses
challenging research questions that are investigated in the
Trader project, following the industry-as-lab approach. We
present the main vision of this project, which is based on
a model-based control paradigm, and the current status of
the project results.

1. Introduction

High-tech systems by definition are constructed using
cutting edge technology, and consequently embedded sys-
tem technology plays a major and often even decisive role
in such systems, whether they are mobile phones, HDTVs,
medical equipment, cars, airplanes, etc. The integration of
embedded hardware and software into larger systems has
lifted the issue of dependability of the embedded compo-
nents to the level of the embedding high-tech system. At
that level the integral system dependability is not only af-
fected by the dependability of its individual components,
but mainly an emergent quality of the interactions between
these components and the system environment. Control-
ling the complexity of these interactions is one of the major
challenges of high-tech system design, and the presence de-
pendability problems in almost all application domains is a
well-documented fact of life.

In this paper we want to report on a model-based ap-
proach to system dependability. Although model-based de-
sign has already been advocated for a considerable time by
∗This work has been carried out as part of the Trader project under the

responsibility of the Embedded Systems Institute. This project is partially
supported by the Dutch Ministry of Economic Affairs under the Bsik pro-
gram.

(mainly) the academic community as a way forward to ad-
dress complex embedded systems engineering tasks, the in-
dustrial uptake is lagging behind. To ensure the practical
relevance of the research, it is being carried out following
an industry-as-laboratory approach [5]. This means that
concrete cases are studied in their industrial context to pro-
mote the applicability and scalability of solution strategies
under the relevant practical constraints.

The concrete case that we discuss is based on the collab-
orative research project Trader of the Embedded Systems
Institute (ESI) with NXP and other academic and industrial
partners on system dependability for high-volume systems.
High-volume systems are characterized by the fact that be-
cause of their production in large quantities, the cost per
item should be (very) low. This seriously restricts the pos-
sibility to address dependability by classical means, such as
over-dimensioning of critical components. One of the main
ideas in the project is to use concepts from model-based
control to achieve dependability.

The rest of the paper is organized as follows: Sect. 2 con-
tains an outline of the project, Sect. 3 outlines the model-
based philosophy of the project, and Sect. 4 reports of the
current status of the results. We draw our conclusions and
list some future work in Sect. 5.

2. Outline of the Trader Project

In the Trader project, academic and industrial partners
collaborate to optimize the dependability of high-volume
products, such as consumer electronic devices. The project
partners involved are: NXP Semiconductors, NXP Re-
search, ESI, TASS, IMEC (Belgium), Twente University,
the Technical University of Delft, the University of Leiden,
and the Design Technology Institute (DTI) at the Eindhoven
University of Technology. The project started September
2004, with a duration of five years, and includes seven PhD
students and two postdocs. The so-called Carrying Indus-
trial Partner (CIP) of this project is NXP Semiconductors,



providing the project with a focus on multimedia products.
NXP has provided the problem statement and proposes rel-
evant case studies, which in the case of Trader are taken
from the TV domain. The problem statement is based on
the observation that the combination of increasing complex-
ity of consumer electronic products and decreasing time-to-
market will make it extremely difficult to produce totally
reliable devices that meet the dependability expectations of
customers.

A current high-end TV is already a very complex device
which can receive analog and digital input from many pos-
sible sources and using many different coding standards. It
can be connected to various types of recording devices and
includes many features such a picture-in-picture, teletext,
sleep timer, child lock, TV ratings, emergency alerts, TV
guide, and advanced image processing. Moreover, there is
a growing demand for features that shared with other do-
mains, such as photo browsing, MP3 playing, USB, games,
databases, and networking. As a consequence, the amount
of software in TVs has seen an exponential increase from 1
KB in 1980 to more than 20 MB in current high-end TVs.

Also the hardware complexity is increasing rapidly, for
instance for the support of real-time decoding and process-
ing of high-definition images for large screens and multiple
tuners. To meet the hard real-time requirements a TV is
designed as a system-on-chip with multiple processors, var-
ious types of memory, and dedicated hardware accelerators.

At the same time, there is a strong pressure to decrease
time-to-market. To be able to realize products with many
new features quickly, components developed by others have
to be incorporated. This includes so-called third-party com-
ponents, e.g., for audio and video standards. Moreover,
there is a clear trend towards the use of downloadable com-
ponents to increase product flexibility and to allow new
business opportunities (selling new features, games, etc.).
Given the large number of possible user settings and types
of input, exhaustive testing is impossible. Also, the product
must be able to tolerate certain faults in the input. Cus-
tomers expect, for instance, that products can cope with de-
viations from coding standards or bad image quality.

Although companies invest a lot of attention and effort
to avoid faults in released products, it is expected that with-
out additional measures both internal and external faults
are serious threats to product dependability. The cost of
non-quality, however, is high, because it leads to many re-
turned products, it damages brand image, and reduces mar-
ket share.

The main goal of the Trader project is to improve the
user-perceived dependability of high-volume products. The
aim is to develop techniques that can compensate and mask
faults in released products, such that they satisfy user ex-
pectations. The main challenge is to realize this without in-
creasing development time and, given the domain of high-

volume products, with minimal additional hardware costs
and ithout degrading performance. Hence, classical fault-
tolerance techniques that rely a lot on additional redundancy
and resources (e.g., duplication or even triplication of hard-
ware and software) are not suitable in this domain.

In our presentation the terminology of [1]is adopted. A
failure of a system with respect to an external specification
is an event that occurs when a state change leads to a run
that no longer satisfies the external specification. An error
is the part of the system state that may lead to a failure.
For instance, a wrong memory value or a wrong message
in a queue. A fault is the adjudged or hypothesized cause
of an error which is not part of the system state. Examples
of faults are programming mistakes (e.g., divide by zero) or
unexpected input.

3. Model-Based Approach

Looking at a number of failures of consumer electronic
devices, it is often the case that a user can immediately ob-
serve that something is wrong, whereas the system itself is
completely unaware of the problem. Systems are often real-
ized in a way that corresponds to the open-loop approach in
control theory; for a certain input, the required actions are
executed, but it is never checked whether these actions have
the desired effect on the system and whether the system is
still in a healthy state.

The main approach of the Trader project is to “close the
loop” and to add a kind of feedback control to products. By
monitoring the system and comparing system observations
with a model of the desired behaviour at run-time, the sys-
tem gets a form of run-time awareness which makes it pos-
sible to detect that its customer-perceived behavior is (or is
likely to become) erroneous. In addition, the aim is to pro-
vide the system with a strategy to correct itself.

The main ingredients of such a run-time awareness and
correction approach are depicted in Fig. 1.

output

correctionsystem state

input

system

run-time awareness
model of

desired behaviour

compare
model and

system
diagnosis

recovery 

error

output

correctionsystem state

input

system

run-time awareness
model of

desired behaviour

compare
model and

system
diagnosis

recovery 

error

Figure 1. Adding awareness at run-time

We discuss the main parts, giving examples from the TV



domain:

• Observation: observe relevant inputs, outputs and
internal system states. For instance, for a TV we
may want to observe keys presses from the remote
control, internal modes of components (dual/single
screen, menu, mute/unmute, etc), load of processors
and busses, buffers, function calls to audio/video out-
put, sound level, etc.

• Error detection: detect errors, based on observations
of the system and a model of the desired system be-
haviour.

• Diagnosis: in case of an error, find the most likely
cause of the error.

• Recovery: correct erroneous behaviour, based on the
diagnosis results and information about the expected
impact on the user.

Important part of the approach depicted in Fig. 1 is the
use of models at run-time. Note that for complex systems
it will be infeasible to include a complete model of desired
system behaviour, but the approach allows the use of partial
models, concentrating on what is most relevant for the user.
Moreover, we can apply this approach hierarchically and in-
crementally to parts of the system, e.g., to third-party com-
ponents. Typically, there will be several awareness monitors
in a complex systems, for different components, different
aspects, and different kinds of faults.

The analogy between self-controlling software and con-
trol theory has already been observed in [10]. Garlan et
al [9] have developed an adaptation framework where sys-
tem monitoring might invoke architectural changes. Us-
ing performance monitoring, this framework has been ap-
plied to the self-repair of web-based client-server systems.
Related work that also takes cost limitations into account
can be found in the research on fault-tolerance of large-
scale embedded systems [13]. They apply the autonomic
computing paradigm to systems with many processors to
obtain a healing network, also using a kind of controller-
plant feedback loop. Related work on adding a control loop
to an existing system is described in the middleware ap-
proach of [14] where components are coupled via a publish-
subscribe mechanism.

4. Current Status of Trader

In this section, we give a brief description of the re-
search activities and the current status of the Trader project.
First we discuss the research on the ingredients of the
global awareness vision depicted in Fig. 1: observation,
(Sect. 4.1), modeling system behaviour (Sect. 4.2), error
detection (Sect. 4.3), diagnosis (Sect. 4.4), and recovery

(Sect. 4.5). Finally, we mention research on reliability
improvements during development and user perception in
Sect. 4.7 and Sect. 4.6, respectively.

4.1. Observation

To observe relevant aspects of the system, both hardware
and software techniques are investigated. Hardware-related
work in Trader currently aims at exploiting mechanisms al-
ready available in hardware, such as the on-chip debug and
trace infrastructure, to monitor values for range checking,
call stacks (functions, parameters, and result values), and
memory arbiters. The observation of software behaviour is
mainly done by code instrumentation using aspect-oriented
techniques, partly based on results from ESI-project Ide-
als project [6, 7]. A specialized aspect-oriented framework
called AspectKoala [19] has been developed on top of the
component model Koala which is used at NXP.

4.2. Modeling Desired System Behaviour

Important part of the model-based approach described in
Sect. 3 is the use of a model of desired system behaviour at
run-time. Experience in Trader and other ESI projects indi-
cates that such models are usually not available in industry
and that it is often difficult to obtain such models. In indus-
trial practice, system requirements are usually distributed
over many documents and databases. Hence, part of the
ESI research in Trader explicitly addresses the construction
of a high-level system model.

Since the TV domain is the main source of case studies in
Trader, we have developed a high-level model of a TV from
the viewpoint of the user. It captures the relation between
user input, via the remote control, and output, via images on
the screen and sound. A few first experiments indicated that
the use of state machines leads to suitable models for the
control behaviour of the TV. But it also revealed that it was
very easy to make modeling errors, for instance, because
there are many interactions between features. Examples are
relations between dual screen, teletext and various types of
on-screen displays that remove or suppress each other.

To allow quick feedback on the user-perceived behaviour
and to increase the confidence in the fidelity of the model,
Matlab/Simulink [11] is used to obtain executable mod-
els. Stateflow is exploited for the control part, whereas the
streaming part of a TV is modeled by means of the Image
and Video Processing toolbox of Simulink. External events
can be generated by clicking on a picture of a remote con-
trol. Output is visualized by means of Matlab’s video player
and a scope for the volume level. This visualization of the
user view on input and output of the model turned out to be
very useful to detect modeling errors and undesired feature
interactions. In addition, we investigate the possibilities of



formal model-checking and test scripts to improve model
quality.

4.3. Error Detection

Various techniques for error detection are investigated
such as hardware-based deadlock detection and range
checking. An approach which checks the consistency of
internal modes of components turned out to be successful
to detect teletext problems due to a loss of synchronization
between components [17].

To enable quick experimentation with model-based error
detection, we have developed a framework which allows the
use of models at run-time. The framework has been imple-
mented on top of Linux, to comply with the trend towards
open-source software and the use of Linux in TVs. In the
framework, one can include a particular System Under Ob-
servation (SUO) and a specification model of the desired
system behaviour. The design of the awareness framework
is shown in Fig. 2. The SUO and the awareness monitor are

IEventInfo

IOutputEvent

IControl
Output Observer

Process Boundary

SUO

IInputEvent

IControl
Input Observer

IErrorNotify

IEnableCompare

IControl

Comparator

IControl
Controller

ISpecInfo

IModelExecutor IControl

Model Executor

Awareness 
Monitor

IConfigInfoIControl

Configuration

SUO Modifications

IModelImpl

Stateflow Model 
Implementation

IEventInfo

IOutputEvent

IControl
Output Observer

Process Boundary

SUO

IInputEvent

IControl
Input Observer

IErrorNotify

IEnableCompare

IControl

Comparator

IControl
Controller

ISpecInfo

IModelExecutor IControl

Model Executor

Awareness 
Monitor

IConfigInfoIControl

Configuration

SUO Modifications

IModelImpl

Stateflow Model 
Implementation

Figure 2. Design of the awareness framework

separate processes and Unix domain sockets are used for
inter-process communication. The SUO has to be adapted
slightly, to send messages with relevant input and output
events (which may also include internal states) to Input and
Output Observers. An executable specification model of the
SUO in Stateflow can be included by using the code genera-
tion possibilities of Stateflow. The generated C-code can be
included easily, allowing quick experiments with different
models. It is executed using the Model Executer compo-
nent, based on event notifications from the Input Observer.
Information about relevant input and output events is stored
in the Configuration component. The Comparator compo-
nent compares relevant model output with system output

which is obtained from the Output Observer. The Controller
initiates and controls all components, except for the Config-
uration component which is controlled by the Model Execu-
tor.

Experiments with earlier versions of the framework in-
dicated that the Comparator should not be too eager to re-
port errors; small delays in system-internal communication
might easily lead to differences during a short time interval.
Hence, in the current framework the user of the framework
can specify, for each observable value: (1) a threshold for
the allowed maximal deviation between specification model
and system, and (2) a maximum for the number of consec-
utive deviations that are allowed before an error will be re-
ported.

Another relevant parameter is the frequency with which
time-based comparison takes place. This can be combined
with event-based comparison by specifying in the specifi-
cation model when comparison should take place and when
not (e.g., when the system is in an unstable state between
certain modes). Observe that we have to make a trade-off
between taking more time to avoid false errors and reporting
errors fast to allow quick repair.

Related to our approach is a method to wrap COTS com-
ponents and monitor them using specifications expressed as
a UML state diagrams is presented in [16]. Other related
work consists of assertion-based approaches such as run-
time verification [4]. For instance, monitor-oriented pro-
gramming [3] supports run-time monitoring by integrating
specifications in the program via logical annotations. In our
approach, we aim at minimal adaptation of the software of
the system, to be able to deal with third-party software and
legacy code. Moreover, we also monitor real-time proper-
ties, which are not addressed by the techniques cited above.
Closely related in this respect is the MaC-RT system [15]
which also detects timeliness violations. Main difference
with our approach is the use of a timed version of Lin-
ear Temporal Logic to express requirements specifications,
whereas we use executable timed state machines to promote
industrial acceptance and validation.

4.4. Diagnosis

The diagnoses techniques developed within Trader are
based on so-called program spectra [20]. The approach has
already been applied to a few examples in the TV domain.
As an illustration, we describe one of the first experiments
on TV software in which a teletext error has been injected.
First the C code is instrumented to record which blocks are
executed. In the example there were 60 000 blocks. Next,
for each sequence of key presses, a so-called scenario, for
each block it is recorded whether it has been executed or
not between two key presses. This leads to a vector, a so-
called spectrum, for each block. In our example it turns out



that during a scenario of 27 key presses 13 796 blocks were
executed. Moreover, based on some error detection mecha-
nism, it is recorded for each key press whether it leads to
error or not. In the example, this leads to an error vec-
tors of length 27. Next, the similarity between the error
vector and the spectra is computed. Finally, the blocks are
ranked according their similarity. In the particular exper-
iment with the teletext error, the block which contains the
fault appeared on the first place in the ranking. Also in other
case studies the application results of this technique are en-
couraging.

4.5. Recovery

Part of the recovery research concentrates on load bal-
ancing. Project partner IMEC has demonstrated the possi-
bility to migrate an image processing task from one proces-
sor to another, which leads to improved image quality in
case of overload situations (e.g., due to intensive error cor-
rection on a bad input signal). NXP Research investigates
the possibility to make memory arbitration more flexible
such that it can be adapted at run-time to deal with problems
concerning memory access. At Twente University, a frame-
work for partial recovery has been developed which allows
independent recovery of parts of the system, the so-called
recoverable units. The framework includes a communica-
tion manager, which controls the communication between
recoverable units, and a recovery manager, which executes
the recovery actions such as killing and restarting units. To
realize these concepts, a reusable fault tolerance library has
been implemented. A few first experiments in the multi-
media domain show that after some refactoring of the sys-
tem, independent recovery of parts of the system is possible
without large overhead.

4.6. User Perception

The user perception of reliability is addressed by project
partner DTI. The aim is to capture user-perceived failure
severity, to get an indication of the level of user-irritation
caused by a product failure. By means of controlled ex-
periments with TV users, the impact of characteristics such
as product usage, user group, and function importance is
investigated. During experiments, it turned out that also
failure attribution has a significant impact. For instance,
users, when asked, rank both image quality and a motor-
ized swivel, which can be used to turn the TV, as important.
Under observation, however, users often turn out to be very
tolerant concerning bad image quality (which is attributed
to external sources), but get irritated if the swivel doesnot
work correctly.

4.7. Improvements During Development

Part of the Trader research is also related to dependabil-
ity improvements during development. This includes the
use of code analysis to prioritize the warnings of a software
inspection tool such as QA-C [2] and reliability analysis at
the architectural level [18]. The stress testing approach of
TASS artificially takes away shared resources, such as CPU
or bus bandwidth, to simulate the occurrence of errors or the
addition of an additional resource user. The study of the ef-
fect of such overload situations on the system behaviour and
its fault-tolerant mechanisms has shown to be very useful in
the TV domain. A so-called CPU eater, which consumes
CPU cycles at the application level in software, is already
included in the current development software and can be
activated by system testers.

5. Conclusion and future Work

Although the Trader project has still some time to go, it
is already clear that its particular model-based approach to
system dependability is very promising. The use of models
as system components to give the system a certain capacity
to monitor and correct its behaviour, implements ideas from
feedback control at the level of integrated systems. It con-
stitutes a paradigm switch from the best-effort, open-loop
approach that is traditional in software-related design, to
the closed-loop control-based approach. The latter is much
more suitable for the reality of high-tech systems in which
errors are unavoidable emergent features of the system com-
plexity.

The concept of model-based system level control is also
quite flexible, in the sense that one can vary between light-
weight models with limited corrective capacities, and more
elaborate models with stronger feedback mechanisms. In
the high-volume context, the constraint to minimize over-
head is limiting factor. Certainly, much more research will
be needed to obtain a more complete understanding of the
potential and limitations of this approach in the a priori vast
range of different application domains.

The choice for an industry-as-laboratory format for the
Trader project has helped a lot in focussing on techniques
and approaches that have a high potential for being ab-
sorbed by industry. Already now, some of the intermedi-
ate results have found their way into industry. We firmly
believe in the potential of this research format to achieve a
productive combination between real research and innova-
tion.

Future activities in the Trader project will address further
development of the awareness framework. Our Linux-based
awareness framework, has been validated by means of
model-to-model experiments. That is, we have compared a
specification model with code generated from models of the



SUO. Currently, the framework is used for awareness exper-
iments with the open source media player MPlayer [12], in-
vestigating both correctness and performance issues. Next
our approach will be applied in the TV domain at NXP,
following the industry-as-lab paradigm. Important topic of
research concerns the optimal integration of various tech-
niques for observation, error detection, diagnosis, and re-
covery.

In parallel, the model-based run-time awareness concept
is also exploited in the domain of printer/copiers at the com-
pany Océ in the context of the ESI-project Octopus [8],
which started recently.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable and Secure Com-
puting, 1(1):11–33, 2004.

[2] C. Boogerd and L. Moonen. Prioritizing software inspection
results using static profiling. In SCAM ’06: Proc. Workshop
on Source Code Analysis and Manipulation, pages 149–160.
IEEE Computer Society, 2006.

[3] F. Chen, M. D’Amorim, and G. Rosu. A formal monitoring-
based framework for software development and analysis. In
Proceedings ICFEM 2004, volume 3308 of LNCS, pages
357–372. Springer-Verlag, 2004.

[4] S. Colin and L. Mariani. Run-time verification. In Proceed-
ings Model-Based Testing of Reactive Systems, volume 3472
of LNCS, pages 525–555. Springer-Verlag, 2005.

[5] C.Potts. Software-engineering research revisited. IEEE Soft-
ware, 19(9):19–28, 1993.

[6] P. Durr, G. Gülesir, L. Bergmans, M. Aksit, and R. van
Engelen. Applying AOP in an industrial context: An ex-
perience paper. In Proc. Workshop on Best Practices in
Applying Aspect-oriented Software Development. Aspect-
Oriented Software Association, 2006.

[7] Embedded Systems Institute. The Ideals project, 2007.
http://www.esi.nl/ideals/.

[8] Embedded Systems Institute. The Octopus project, 2007.
http://www.esi.nl/octopus/.

[9] D. Garlan, S. Cheng, and B. Schmerl. Increasing system de-
pendability through architecture-based self-repair. In Archi-
tecting Dependable Systems, volume 2677 of LNCS, pages
61–89. Springer-Verlag, 2003.

[10] M. M. Kokar, K. Baclawski, and Y. A. Eracar. Control
theory-based foundations of self-controlling software. IEEE
Intelligent Software, pages 37–45, 1999.

[11] The Mathworks. Matlab/Simulink, 2007.
http://www.mathworks.com/.

[12] MPlayer. Open source media player, 2007.
http://www.mplayerhq.hu/.

[13] S. Neema, T. Bapty, S. Shetty, and S. Nordstrom. Auto-
nomic fault mitigation in embedded systems. Engineering
Applications of Artificial Intelligence, 17:711–725, 2004.

[14] J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting
autonomic capabilities onto legacy systems. Cluster Com-
puting, 9(2):141–159, 2006.

[15] U. Sammapun, I. Lee, and O. Sokolsky. Checking correct-
ness at runtime using real-time Java. In Proc. 3rd Workshop
on Java Technologies for Real-time and Embedded Systems
(JTRES’05), 2005.

[16] M. E. Shin and F. Paniagua. Self-management of COTS
component-based systems using wrappers. In Computer
Software and Applications Conference (COMPSAC 2006),
pages 33–36. IEEE Computer Society, 2006.

[17] H. Sözer, C. Hofmann, B. Tekinerdogan, and M. Aksit. De-
tecting mode inconsistencies in component-based embedded
software. In DSN Workshop on Architecting Dependable
Systems, 2007.

[18] H. Sözer, B. Tekinerdogan, and M. Aksit. Extending fail-
ure modes and effects analysis approach for reliability anal-
ysis at the software architecture design level. In Architecting
Dependable Systems IV, volume 4615 of LNCS, pages 409–
433. Springer-Verlag, 2007.

[19] P. van de Laar and R. Golsteijn. User-controlled reflection
on join points. Journal of Software, 2(3):1–8, 2007.

[20] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. van Gemund.
Diagnosis of embedded software using program spectra. In
Proc. 14th Conference and Workshop on the Engineering of
Computer Based Systems (ECBS’07), pages 213–220, 2007.


