
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34449

Please be advised that this information was generated on 2021-05-12 and may be subject to

change.

http://hdl.handle.net/2066/34449

A nalysis o f a Session-Layer P rotocol in mCRL2*
V erification o f a R eal-L ife Industrial Im plem entation

Marko van Eekelen1 Stefan ten H oedt2
René Schreurs2 Yaroslav S. Usenko3,4

1 Institute for Computing and Information Sciences, Radboud Universiteit Nijmegen,
PO Box 9102, 6500 HC Nijmegen, The Netherlands

2 Aia Software B.V.
PO Box 38025, 6503 AA Nijmegen, The Netherlands

3 Laboratory for Quality Software (LaQuSo), Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven, The Netherlands

4 Centrum voor Wiskunde Informatica,
PO Box 94079, 1090 GB Amsterdam, The Netherlands.

A bstract. This paper reports the analysis of an industrial implementa
tion of the session-layer of a load-balancing software system. This soft
ware comprises 7.5 thousand lines of C code. It is used for distribution
of the print jobs among several document processors (workers). A large
part of this commercially used software system has been modeled closely
and analyzed using process-algebraic techniques. Several critical issues
were discovered. Since the model was close to the code, all problems that
were found in the model, could be traced back to the actual code result
ing in concrete suggestions for improvement of the code. All in all, the
analysis significantly improved the quality of this real-life system.

1 In trodu ction

In th is paper we consider the following real-life industrial case study. The IT P
Docum ent P latform (developed and m arketed by Aia Software BV) enables or
ganizations to produce critical business docum ents in a scalable and personalized
environm ent. This application has a load-balancer, a process kernel th a t makes
diverse docum ent processors and clients com m unicate w ith each other, d istribu te
and execute tasks. This system has been used satisfactorily for several years (in
2007 in over 25 countries by more th an 800 custom ers). However, it comes every
now and then in an undesirable sta te . The goal of the project was to inves
tigate to w hat extent the inter-process com m unication and synchronization of
this load-balancer could be modeled and analyzed. The desired results had to be
detailed enough to give an advice on how to avoid these undesirable situations,
and to suggest concrete code changes.

* This research was supported by SenterNovem Innovation Voucher Inv053967. The
fourth author has also been supported by NWO Hefboom project 641.000.407.

The project has been perform ed in the following phases: In a discussion with
two employees of Aia Software (Stefan ten H oedt and Rene Schreurs) we obtained
the overall idea of the s truc tu re and the behavior of the software in general
and the parts to be modeled in particular. The relevant p a rts were modeled in
m CRL2 [1]. The session layer of the load-balancer protocol was modeled quite
closely to the C code. B oth the higher-level application layer and the underlying
TCP-socket layer were modeled in an abstrac t m anner. The code and the model
were reviewed by the LaQuSo-m odeler and the Aia-developer in order to achieve
the m axim al m atching. This led to a num ber of changes in the model, as well
as to a num ber of questions about the code and a num ber of concrete desired
properties th a t could be analyzed. The model was analyzed w ith the help of the
model-checking techniques of the m CRL2 toolset w .r.t. deadlock-freedom and
a num ber of o ther starvation and consistency properties th a t were form ulated
together w ith the client. This revealed 6 problem s in the C code. These problem s
were accepted by Aia Software and incorporated to the production release of the
software system.

The type of analysis presented in th is paper is as such not new. It was
perform ed before using different kinds of model checkers (e.g. im perative [2]
and declarative [1]: see also the related work paragraph below). Notew orthy
characteristics of our work are th a t the model is very close to the code, the code
is relatively large (7500 lines), the code has been running w ithin a commercial
p roduct for years and it has been improved several tim es while problem s still
kept occurring, errors have been found th a t led to code im provem ents and finally,
problem s regarding the code have not occurred since the code was corrected. This
project was done w ith a model checker based on Process Algebra [3]. I t is the
first tim e th a t a project w ith such characteristics was achieved w ith a model
checker based on Process Algebra.

Related Work M any projects study the verification of the design of a software
system. K arl Palmskog in his M aster Thesis [4] studied using the SPIN model
checker the design of a Session M anagem ent Protocol developed a t Ericsson
Research. He has discovered a design flaw. This study was done on the level of
the design w ithout looking carefully a t the im plem ented code. Also on the design
level, in [5] Janicki and He present the verification of a W ireless Transaction
Protocol design in SPIN. A nother verification project concerning model checking
of the design of a software system in m CRL2 is the parking garage project done
by M athijssen and Pretorius [6]. In [7] Brock and Jackson prove correctness of
an industrial im plem entation of a ‘fault to lerant com puter’ by creating a small
abstrac t model in CSP.

A real-life code example was recently studied by Hessel and Pettersson [8]
w ith nice results. In contrast to our project, they do not model the code bu t use
a black-box testing approach.

In [9] an application of the Verisoft model checking approach to a software
system from Lucent is presented. The model checking was applied as a p a rt of
the testing procedure during the software development. The paper reports about

a large num ber of revealed errors, m ost of which indicated incorrect variable
initializations.

A framework for C code analysis w ith CA D P [10] is presented in [11], where
the m ethods of process graph extraction and generation of an LTS for a C
program are described. In [12] the model checker M OPS was used to model
check safety properties of single-threaded C program s. This paper reports on
autom atic analysis of a million lines of code.

The Java Pathfinder tool is described in [13] as a tool th a t is used to find
deadlocks and o ther behavioral properties in java program s. The tool has been
used to analyse software system s a t NASA. It is also used as the back-end model
checker of the B andera project [14]. The B andera project uses abstraction tech
niques based on abstraction-based program specialization: a com bination of ab
s trac t in terp re ta tion and p artia l evaluation.

Research a t Microsoft C orporation led by Thom as Ball has shown significant
results for a restricted subset of program s: device drivers. Using an autom atic
analysis engine - called SLAM - th a t combines model checking w ith symbolic
execution for the language C, they have successfully found m any errors in m any
real-life industrial device drivers [15]. They do not support analysis of m ulti
th readed systems.

Probably, the m ost related work is perform ed by Holzm ann and Sm ith in [16].
Using SPIN they followed the developm ent of a piece of telephone call processing
software of about 1600 lines of C code. T hey verified successfully so-called feature
requirem ents. T hey found m any errors in different stages of the development.

Organization o f the paper The paper is organized as follows. Section 2 presents
the case study and the problem s th a t were to be investigated. Section 3 presents
the m CRL2 language and the toolset and the way they were used in the modeling
of the case study. Section 4 presents details on the analysis w ith the mCRL2
toolset and the issues th a t were detected. Section 5 contains conclusions and
possibilities for future work. In the Appendix a p a rt of the C code and the
corresponding p a rt of the m CRL2 model are presented. The whole m CRL2 model
can be found in the A ppendix of [17].

2 In telligent T ext P rocessin g (IT P) and its L oad-B alancer

The Intelligent Text Processing system is used to prepare large quantities of
docum ents to be printed. Sometimes it is done in an interactive way, where
additional inform ation is being asked from the client during the processing. In
the early versions of the IT P software the clients could d irectly com m unicate
to the document processors, b u t w ith the increased com plexity of the process
ing jobs a coordinating m echanism was needed. The task of the load-balancer is
to d istribu te the jobs of the clients to the available docum ent processors, w ith
out actually changing the application layer of the client-server com m unication
protocol too much (see Figure 1).

Due to the evolutionary way the IT P software was developed in the late
nineties, the load-balancer has been im plem ented in C on the W indows platform

Fig. 1. ITP and a Load-Balancer in it.

m aking use of the W indows Socket Library. The possibility of using a standard
solution for load-balancing, like the Linux virtual server, has not been used for
a num ber of reasons.

A typical use-case scenario of the load-balancer deploym ent is presented as
a Message Sequence C hart on Figure 2. There, a client of the load-balancer
com m unicates w ith the client object and a docum ent processor com m unicates
w ith the docum ent processor object. The client sends a request to prin t and the
docum ent processor sends a request for work. After th a t the docum ent processor
object asks the client object for work and gets the answer. At th is point the
client and the docum ent processor objects are linked together by a partnersh ip
link. Further, the docum ent processor asks for additional d a ta and goes to a
sleeping sta te . The client object gets the d a ta from the client and wakes up the
docum ent processor object. The docum ent processor object transfers the d a ta
to the docum ent processor.

2.1 Issu es an d A rtifa c ts

The load-balancer software was developed in the late nineties and has been tested
b o th a t AIA and a t clients’ environm ents since th a t tim e. The system has been
in use in production for quite some tim e now. During testing and m aintenance
a num ber of issues w ith the software have been fixed, bu t some item s rem ained
unsolved till the beginning of our project.

Most of these ‘difficult’ issues could be classified as follows:

— the load-balancer would get to a sta te where it did not respond a t all to the
requests of neither clients nor docum ent processors;

— the load-balancer would ignore the docum ent processors th a t were free and
willing to accept jobs;

Client Client object Document processor object Document processor
request to print

work?

work?

yes! (partners)

wake-up : get data

get data

data

wake-up : data ready

process data

Fig. 2 . A typical use-case scenario of the load-balancer.

— a client would not get any response from the load-balancer about the sta tu s
of its jobs.

These issues occurred in rare situations, m ostly on particu lar hardw are configu
rations. R eproducing such errors was very difficult or impossible. R estarting the
system solved the issue bu t it could occur again somewhere in the future.

The com pany provided the source code in C for W indows (7681 lines) and
the application layer protocol docum entation. Further inform ation was commu
nicated during meetings, via phone calls and e-mail. Analysis of the artifacts re
vealed th a t the system was a m ulti-threaded W indows application using m utual
exclusion prim itives (mutexes, sem aphores) and m ultiple event synchronization
(W aitForM ultipleO bjects). For the asynchronous I /O and the network commu
nication the W indows Socket A dm inistration and call-back functions were used.
The reverse engineering of the design revealed the s tructu re of the load-balancer
(see Figure 3). Here each client and each docum ent processor object has a request
queue and a partnersh ip link to a possible partner. Each such object im plem ents
a finite sta te m achine th a t first waits for one of the two events, either a network
socket event or a wake-up event from a partner. A fter th a t, a certain action is
perform ed and the object proceeds to a new state.

Based on the source code and the revealed architecture of the load-balancer
the following properties were considered to be im portan t for the further analysis.

Fig. 3. Architecture of the load-balancer.

— The software should be free from deadlocks.
— C ertain log messages are considered to be of critical im portance. These

should never occur as they indicate th a t there is som ething fundam entally
wrong w ith the system.

— The partnersh ip links should be consistent, e.g., if the partn er of A is B > 0
(0 m eans no partner), then the partn er of B is either A or 0.

— W aiting for a partner should only be done if the partner link is not 0. This
boils down to the fact th a t a docum ent processor m ay not be in a sleeping
sta te if it has no partn er (except when a request is pending to it).

— The num ber of tim es a th read acquires a lock should be lim ited. In case a
lock is acquired a m ultiple num ber of tim es it has to be released the same
num ber of times. If a th read acquires a lock in a loop, a certain bound
induced by the operating system can be reached, resulting in an undesired
behavior. Moreover, a high num ber of nested lock acquisitions m ay indicate
a logical error in the program .

— The num ber of requests th a t are pending in the system should be limited.

3 M odeling in m CRL2

To check the desired properties p a rt of the system had to be formally modelled in
a language th a t supports model-checking. For the reasons of available expertise
we decided to use m CRL2 and its toolset.

m CRL2 [1] is a process algebraic language th a t includes d a ta and tim e. I t is an
extension of the language /¿CRL [18] w ith m ulti-actions, built-in d a ta types and
local com m unication functions instead of a single global one. m CRL2 is basically
intended to study description and analysis techniques for (large) d istribu ted sys
tem s. The abbreviation m CRL2 stands for milli Common Representation Lan
guage 2.

An m CRL2 specification consists of two parts. The first p a rt specifies the
d a ta types, the second p a rt defines the processes. D ata are represented as term s
of some sort, for example 2, c o s (p i) , and co n ca t(L 1 ,L 2) could be term s of sort
n a tu ra l num ber, real num ber and list, respectively.

The process equations are defined in the following way. S tarting from a set
Act of actions th a t can be param eterized w ith data , processes are defined by
means of guarded recursive equations and the following operations.

F irst, there is a constant 6 (6 ^ Act) th a t cannot perform any action and is
called deadlock or inaction.

Next, there are the sequential com position operation • and the alternative
com position operation + . The process x • y first behaves as x and if x successfully
term inates continues to behave as y. The process x + y can either do an action
of x and continue to behave as x or do an action of y and continue to behave as
y.

Interleaving parallelism is modeled by the operation ||. The process x || y is
the result of interleaving actions of x and y, except th a t actions from x and y
also synchronize to m ultiactions. So a || b = a • b + b • a + a | b. The com m unication
operation r allows m ultiactions to communicate: param eterized actions a(d) and
b(d') in r{ a|b ^ c|(a (d) | b(d ')) com m unicate to c(d), provided d = d'.

To enforce th a t actions in processes x and y synchronize, we can prevent
actions from happening on their own, using the encapsulation operator dH . The
process dH (x) can perform all actions of x except th a t actions in the set H are
blocked. So, in d{a 5}(I{ a|b ^ c}(x || y)) the actions a and b are forced to syn
chronize to c. A nother way to restric t process behaviour is the allow operation.
By specifying a list of m ultiactions one can prohibit all o ther m ultiactions by
renam ing them to S. So V{a|b|(a || b) = a | b.

We assume the existence of a special action t (t ^ Act) th a t is in ternal and
cannot be directly observed. The hiding operator t j renam es the actions in the
set I to t . By hiding all in ternal com m unications of a process only the external
actions rem ain.

The following two operators combine d a ta w ith processes. The sum operator
J2d-D P(d) describes the process th a t can execute the process p(d) for some value
d selected from the sort D. The conditional operator _ ^ _o _ describes the i f -
then-else. The process b ^ x o y (where b is a boolean) has the behavior of x if
b is tru e and the behavior of y if b is false. The expression b ^ x is a syntactic
sugar representing the i f -then construction. It is an abbreviation to b ^ x o S.

3.1 D e sc r ip tio n o f th e m C R L 2 la n g u a g e

3.2 T h e m C R L 2 T o o lse t

The m CRL2 toolset (h t tp : / /w w w .m c r l2 .o rg) has been developed a t Technical
University of Eindhoven to support formal reasoning about system s specified in
mCRL2. It is based on term rew riting techniques and on formal transform ation
of process-algebraic and d a ta term s. At the m om ent it allows to generate sta te
spaces, search for deadlocks and particu lar actions, perform symbolic optim iza
tions for m CRL2 specifications and sim ulate them .

The toolset is constructed around a restricted form of mCRL2, nam ely the
Linear Process Specification (LPS) form at. An LPS contains a single process
definition of the linear fo r m :

p ro c P(x:D) = ^ ^ C i(x,yi) ^ a j(x ,y j) • P (g (x ,y*))
i£ i yi'-Ei

i n i t P(do);

where d a ta expressions of the form d (x i , . . . , x n) contain a t m ost free variables
from {x1, . . . , x n }, I is a finite index set, and for i G I the following are:

— ci (x ,y i) are boolean expressions representing the conditions,
— a i(x ,y i) is a m ultiaction a 1(fi1(x, yi)) | ••• | ani (f ”1 (x ,y i)), where f k (x ,y i)

(for 1 < k < n i) are the param eters of action nam e ak,
— gi (x, yi) is an expression of sort D representing the next sta te of the process

definition P ;
— d0 is a closed d a ta expression;
— 2 Pi is a shorthand for p 1 + • • • + p n , where I = { 1 , . . . , n}.

The form of the sum m and as described above is sometimes presented as the
condition-action -effect rule. In a particu lar s ta te d and for some d a ta value e
the m ultiaction a i (d, e) can be done if condition ci (d, e) holds. The effect of the
action on the s ta te is given by the fact th a t the next sta te is gi (x ,y i).

The tool m c rl2 2 lp s checks w hether a certain specification is a well formed
m CRL2 and a ttem p ts to transform it into a linearized (i.e. LPS) form (See [19]
for the detail of the linearization). All o ther tools use th is linearized form at as
their s ta rting point (see Figure 4).

These tools come in four kinds:

1. a tool (xsim) to step through the process specified in the LPS;
2. a tool (l p s 2 l t s) to generate the labeled transition system (LTS) underlying

a given LPS;
3. several tools to optim ize the LPSs:

(a) lp s re w r, normalizes an LPS by rew riting the d a ta term s in it;
(b) lp sc o n s te lm , removes d a ta param eters th a t are constant th roughout

any run of the LPS;
(c) lp sp a re lm , reduces the sta te space of the transition system by removing

the d a ta param eters and sum variables th a t do not influence the behavior
of the system,

(d) lp s s t r u c te lm , expands variables of com pound d a ta types;
4. a tool (lp sp p) to prin t the linearized specification.

http://www.mcrl2.org

.mcrl2

mcrl22lps
lpsrewr
lpsconstelm
lpsparelm
lpsdataelm
lpssumelm
lpsconfelm
lpsinvelm
lpsupdate
lpsstructelm

lps2pbes

m C R L 2

L P S

form ula checking

lpsformcheck (e q -B D D -b a se d prover)
lpsconfcheck
lpsinvcheck

sim ulation

sim xsim lps2torx

(s ta te -sp a c e generation , dead lock checking, action sea rch , confluence re d u c tio n)F L T S
lts --- 1 ltsmin (comparison, minimization)

ltsupdate (renaming of actions)

model checking

evaluator (CADP) ltspp + dot (graphviz)
ltsview noodleview tracepp

Fig. 4. The mCRL2 Toolset (www.mcrl2.org)

3.3 T h e L o ad -B a lan cer in m C R L 2

For the m odeling we concentrated on the session layer of the load-balancer pro
tocol. This layer is responsible for controlling the connections w ith the clients
and the docum ent processors, e.g., establishing, breaking the connection, han
dling non-expected connection breaks and network errors. Sending and receiving
of d a ta goes th rough this layer as well.

The lower-level interface (back-end) of the session layer protocol goes to the
W indows Socket A dm inistration (WSA) library. This lib rary is a p a rt of the
operating system and is responsible for sending and accepting network socket
events from the application. In our m CRL2 model W SA is modelled as a part
of the environm ent.

The high-level interface (front-end) of the session layer perform s calls to the
application layer of the protocol. This happens when a certain p a rt of d a ta is
received from a client or a docum ent processor in a sta te when d a ta is expected,
or a connection is broken and th is fact has to be noticed by the application
layer (sometimes the session layer can close the session itself and no action from
the application layer is required). The code of the application layer happens to
be a ra ther large piece of homogeneous code, a large case d istinction so to say.
We modelled it by m aking an over-approxim ation of all possible behaviors and
choosing them in a non-determ inistic way. B y doing th is we ended up w ith less
th an ten alternatives for the application layer.

The model of the session layer follows the C code in a way to make it as precise
as possible. The model resembles the request handling and the network events
handling in m ost details, following the s ta te-transition paradigm im plem ented in

http://www.mcrl2.org

the code. A ppendix B presents a p a rt of the m CRL2 models th a t corresponds to
the request handling session layer p a rt of the C -im plem entation in A ppendix A.
The model and the code in these appendices follow each other ra th e r closely.
The sizes of the two specifications are more or less the same.

The shared variables and arrays th a t are used for in ter-th read communi
cations are modelled by separate processes. P arts of the operating system are
modelled by processes as well. Below an m CRL2 process for the m utual exclusion
prim itive of W indows (MSDN M utex objects) is presented. A th read can acquire
a m utex a m ultiple num ber of tim es and has to release it the same num ber of
times.

Lock(ow ner:N at, count:N at) =

(owner = = 0 V owner = = tid) ^ lock(tid) • Lock(tid, count + 1)
t id :Pos

+ (owner > 0) ^ unlock(N at2Pos(ow ner))•

Lock(if (count = = 1, 0, owner), In t2N at(coun t — 1))

+ (count > nM axLock) ^ _error(M axLock) • 6;

The process Lock has two n a tu ra l num bers as param eters. The first one repre
sents the id of the th read th a t owns the m utex, or is equal to 0 if the m utex
is free. The second param eter is used to count how m any tim es the m utex has
been acquired.

The actions lock and unlock are param eterized by positive num bers repre
senting the id of the locking/unlocking thread. Such a th read would perform a
corresponding Jock or .unlock action param eterized w ith its id. The two corre
sponding actions (w ith and w ithout the underscore) are then forced to synchro
nize by the process defining the entire system.

The first sum m and of the process Lock says th a t it can be acquired (by
perform ing a Jock action) by a th read w ith its id represented by the variable
tid . This is allowed for a th read w ith any id in case the m utex is free (condition
owner = = 0), or for the owner th read (owner = = tid). After this acquisition
the lock is owned by the th read identified by tid and the acquisition num ber
counter is increm ented.

The second sum m and says th a t a non-free m utex can be unlocked by the
owner. Here we use N at2Pos to cast the value of the n a tu ra l variable owner to
the positive num ber. This function m aps 0 to 0 and any num ber bigger th an 1 to
itself. Given the condition owner > 0, this cast is always the iden tity m apping.
The function In t2N at is used to cast the integral value of count — 1 to the natu ra l
num ber. I t m aps the negative integers to 0 and does not change the non-negative
integers. I t can be shown th a t owner > 0 = ^ count > 0 is an invariant of the
Lock process. Therefore, th is cast is also an identity m apping.

The th ird sum m and lets the process perform an _error action if the value of
count reaches a certain lim it nM axLock . In this way, by checking for absence
of _error actions, one can prove th a t the m utex is acquired in a nested way less
th an nMaxLock num ber of times.

3.4 M o d e lin g th e P r o p e r tie s

It tu rned out th a t all the desired properties (except for the deadlock absence)
could be modeled as safety properties and checked by adding _error actions to
the model and check for them . For example, the partn er consistency property
from Section 2.1 is m odelled as the following sum m and in the SharedConnection
process:

E E (n = 0 A getpartner(connections .n) = 0 A
cid:Nat n : N a t , , / ,• \ / ■ i\getpartner (connections .n) = cid) ^

setConnectionPartner(cid ,n) • _error(W rongPartners) • 6

Here getpartner (connections .n) gives the current p artn er link value for the con
nection n. Once an a ttem p t to change the partn er of connection cid to the
value n is perform ed by one of the th reads (by perform ing the correspond
ing _setConnectionPartner action w ith the actual param eters), the condition is
checked and if it is true, the error action is enabled. The condition says th a t
neither n nor the partn er of connection n is 0 (meaning ‘no p a rtn e r’) and the
partner of n is not cid . The la tte r condition m eans the actual partnersh ip link
inconsistency between n and c id .

4 A nalysis and Issues

The model has been analyzed for the absence of deadlocks and for validity of
certain properties. These properties were incorporated in the model itself so
th a t an _error action would occur if the p roperty is violated. In th is way the
verification is perform ed by the explicit generation of the entire state-space and
by looking for the _error actions and the deadlocks. Once one of th is is found in
a particu lar s ta te , a m inim al trace to this s ta te gives a counterexam ple.

Perform ing the analysis takes only a few steps th a t can be activated from
the com m and line. To give the reader an idea how th is is done in practice,
we give the actual com m ands w ith their actual param eters and options. As
the first step, the linearization of the model takes place: w ith the com m and
m c rl2 2 lp s IT P p a tch ed .m crl2 IT P p a tc h e d .lp s th a t produces the linearized
version of the model. Next, we apply the optim ization steps on the LPS: lp s re w r
IT P p a tc h e d .lp s | lp s c o n s te lm > IT P p a tc h e d _ o p t.lp s . The actual genera
tion of the transition system and checking for the properties is done w ith the
com m and l p s 2 l t s -v rD t - a _ e r r o r -R j i t t y c IT P p a tc h e d _ o p t.lp s where
the -D option enables deadlock checking and - a _ e r r o r enables checking for
_error actions. The - t option enables generation of trace files. In case a deadlock
or an _error action is found, a trace file is generated w ith one of the shortest
traces to th a t deadlock sta te or a s ta te where the _error action is possible. The
trace files can be p rin ted out w ith t r a c e p p or sim ulated in the xsim sim ulator.

4 .1 E x p er im en ts and R e su lts

The analysis has been perform ed by an exhaustive generation of the underlying
sta te space using the m CRL2 toolset. The experim ents were carried out on a

com puter w ith 2.6GHz 64 bit AMD C PU s and 128Gb RAM running Linux.
The execution tim es and the resulting num bers of sta tes and transitions are
presented in Table 1. The m CRL2 s ta te space generator uses the depth-first
search algorithm (by default), and the levels are the levels of dep th reached by
perform ing the search. The cases w ith the to ta l num ber of clients+docum ent
processors larger th an 4 could not be fully analyzed.

clients DPs time levels states transitions
1 1 7m 38s 237 368k 796k
1 2 1h 42m 365 9.8m 21m
2 1 4h 52m 442 28m 61m
1 3 36h 480 209m 455.6m
2 2 7d6h 550 1.5b 31.9b
3 1 9d3h 637 1.8b 38.9b

Table 1. Execution time (days, hours, minutes and seconds), number of levels, number
of states and number of transitions (thousands, millions and billions) for different
numbers of clients and document processors (DPs).

4 .2 D e te c te d Issu es

An early analysis of the model revealed m ultiple modeling problems. A fter resolv
ing these initial modeling problems, the model was com pared w ith the original
C code by bo th the m odeler and the au thor of the C code working together.
This revealed some essential difference between the code and the model. Once
these differences were resolved, the m CRL2 tools were applied and the following
issues were detected.

— Issu e 1. In one case partn er links were inconsistent. This was due to the
fact th a t in one place in the C code the ‘forw ard’ partner link was set to 0
and the ‘backw ard’ one was forgotten. This piece of code was found ‘unclear’
during the model-code com parison activity, and la ter was confirmed to be
erroneous by the m CRL2 toolset finding a shortest trace to the property
violation.

— In two cases a docum ent processor could end-up in a sleeping s ta te w ithout
having a partner.

• Issu e 2. In one case this happened because the client’s p artner link was
set to 0 before actually waking up the docum ent processor (happened
due to an earlier bug ‘fix’). This problem was found by the model-code
com parison and la ter confirmed by the m CRL2 toolset.

• Issu e 3. In another case it was sim ply forgotten to wake-up the doc
um ent processor. This problem can be clearly explained by a use-case
scenario in Figure 5. This use-case scenario is sim ilar to the one pre
sented in Figure 2, w ith the difference th a t after sending a request for
d a ta to the client this client disconnects, instead of providing the actual
data . This problem was found using the tools.

— I t also happened th a t critical logs could occur in the program:

• Issu e 4 . A client could send a request to disconnect to itself in a wrong
s ta te , because changing of a s ta te was forgotten;

• Issu e 5. Request to wake up could lead to an inappropria te s ta te change
when a docum ent processor was in the m iddle of a disconnection (found
to be non-critical).

— Issu e 6. The num ber of requests sent to a client could exceed the preset
lim it and could possibly be unbounded. This happened when a docum ent
processor sent a request to disconnect to its partn er client and did not break
the partnersh ip afterwards.

These issues were analyzed and accepted by Aia and led to modifications of the
original C code. The corresponding modifications, fixing the problem s m entioned
above, were also brought into the model. The subsequent analysis of the model
revealed no more property violations.

Most of the issues were detected in the case of 1 client and 1 docum ent
processor, while the rest in 1-2 or 2-1 situations. Analysis of the situations w ith
more clients and docum ent processors did not lead to detection of new issues.

Client Client object Document processor object Document processor
request to print

work?

work?

yes! (partners)

wake-up : get data

get data

disconnect

wake-up : client went away

Fig. 5. A faulty scenario.

5 C onclusions and Future W ork

We m odelled the session layer of the IT P load-balancer in m CRL2 such th a t the
model is close to the actual C code. A num ber of properties were verified using
the m CRL2 toolset. This led to the discovery of 6 issues th a t were easily traced
back to the actual C code. The code was repaired and also the corrections were
brought into the model. The resulting model was verified w ith respect to the
desired properties by checking the entire s ta te space for several configurations.

m CRL2 could be used successfully in th is industrial setting of a load-balancer
for docum ent production. A p a rt of the operating system services (sockets, locks,
events, etc.) could also be modeled. U nfortunately the verification could only be
done on a restricted setting, so an im provem ent of the toolset is required for
bigger cases. Also an autom atic conformance checking of the model w .r.t. the
code could be of interest.

L esson s Learned: The case study gave the researchers more confidence
th a t real-life examples can actually be dealt w ith using a close-to-code model. It
increases the m otivation to further improve the power of the analysis tool and
to s ta r t investigating code generation from the model (the proxim ity to the code
m ay simplify code generation).
Aia released the new version w ith the improved code about half a year ago.
W hile previously it happened now and then th a t their system s infrastructure
came to a standstill and had to be resta rted again, th is situation never occurred
anymore w ith the new release. The infrastructure (which has the load-balancer
as the m ost critical p art) kept running all the time.
They have now a working reference model in m CRL2 of a crucial p a rt of their
load-balancer software. In principle, they are able to incorporate code changes
into the model and check w hether the properties still hold for the new version. In
practice, they probably need assistance of the researchers in the beginning. Aia
has acquired an increased in terest in using formal models for analyzing software
quality aspects, in particu lar for the m ost critical p a rts of their system.

F u tu re W ork: In the future an im provem ent of the toolset could lead to
model checking of bigger cases. Analyzing more properties of the session layer
(e.g. verifying client notification of docum ent processor failures) could lead to
certification of the software. If we w ant to improve the relation between the
model and the code, we can consider code generation d irectly from the model.

R eferences

1. Groote, J.F., Mathijssen, Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The formal specification language mCRL2. In: Proc. Methods for Modelling
Software Systems. Number 06351 in Dagstuhl Seminar Proceedings (2007)

2. Holzmann, G.J.: Software model checking with spin. Advances in Computers 65
(2005) 78-109

3. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Else
vier (2001)

4. Palmskog, K.: Verification of the session management protocol. M aster’s thesis,
School of Computer Science and Communication, Royal Institute of Technology,
Stockholm (2006)

5. He, Y.T., Janicki, R.: Verifying protocols by model checking: a case study of the
wireless application protocol and the model checker spin. In: CASCON ’04: Pro
ceedings of the 2004 conference of the Centre for Advanced Studies on Collaborative
research, IBM Press (2004) 174-188

6. Mathijssen, A., Pretorius, A.J.: Verified design of an automated parking garage. In
Brim, L., Leucker, M., eds.: FMICS ’06: 11th International Workshop on Formal
Methods for Industrial Critical Systems. Volume 4346 of LNCS., Springer Verlag
(2007) 165-180

7. Brock, N.A., Jackson, D.M.: Formal verification of a fault tolerant computer. In:
Proc. 11th Digital Avionics Systems Conference (IEEE/AIAA). (1992) 132-137

8. Hessel, A., Pettersson, P.: Model-based testing of a wap gateway: An industrial
case-study. In Brim, L., Leucker, M., eds.: FMICS ’06: 11th International Work
shop on Formal Methods for Industrial Critical Systems. Volume 4346 of LNCS.,
Springer Verlag (2007) 116-131

9. Chandra, S., Godefroid, P., Palm, C.: Software model checking in practice: an
industrial case study. In: ICSE, ACM (2002) 431-441

10. Fernandez, J.C., Garavel, H., A. Kerbrat, R.M., Mounier, L., Sighireanu, M.:
CADP: A protocol validation and verification toolbox. In: Proceedings of the 8th
Conference on Computer-Aided Verification, New Brunswick, New Jersey, USA
(August 1996) 437-440

11. del Mar Gallardo, M., Merino, P., Sanan, D.: Towards model checking c code
with open/cæsar. In Barjis, J., Ultes-Nitsche, U., Augusto, J.C., eds.: MSVVEIS,
INSTICC Press (2006) 198-201

12. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of c code. In:
NDSS, The Internet Society (2004)

13. Visser, W., Mehlitz, P.C.: Model checking programs with java pathfinder. In
Godefroid, P., ed.: SPIN. Volume 3639 of Lecture Notes in Computer Science.,
Springer (2005) 27

14. Iosif, R., Dwyer, M.B., Hatcliff, J.: Translating java for multiple model checkers:
The bandera back-end. Formal Methods in System Design 26(2) (2005) 137-180

15. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In Berbers, Y., Zwaenepoel, W., eds.: EuroSys, ACM (2006) 73-85

16. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Technical Journal 5(2) (- 2000) 72-87

17. van Eekelen, M., ten Hoedt, S., Schreurs, R., Usenko, Y.S.: Modeling and verifying
a real-life industrial session-layer protocol in mCRL2. Technical Report ICIS-
R07014, Radboud University Nijmegen (jun 2007)

18. Groote, J.F., Ponse, A.: The syntax and semantics of ^CRL. In Ponse, A., Ver
hoef, C., van Vlijmen, S.F.M., eds.: Algebra of Communicating Processes 1994.
Workshop in Computing, Springer (1995) 26-62

19. Usenko, Y.S.: Linearization in ^CRL. PhD thesis, Eindhoven University of Tech
nology (December 2002)

1

6

11

16

21

26

31

36

41

46

51

56

61

A P art o f C code o f th e R eq uest H andling

while (Interface->Request != (REQUEST *) NULL) {
REQUEST *Req = Interface->Request;
DWORD ID = Req->Connection - Req->Connection->Interface->Connections;
switch (Req->Request){
case requestDisconnect:

/* Partner requests a disconnect */
if (Req->Connection->State != STATE_PENDING &&

Req->Connection->State != STATE_SLEEP){
if (Req->Connection->State == STATE_EVENT){

CancelEvent (Req->Connection);
} else if (Req->Connection->State != STATE_DISCONNECT&&

Req->Connection->State != STATE_BREAK){
LogMessage (ClassError ,

L"Disconnect: Forcing illegal state switch /s->/s on socket /d",
ShowConnState(Req->Connection->State) ,
ShowConnState(STATE_DISCONNECT),
ID);

} else {
/* Our own connection was already shutting down. Just confirm it. */

}
}
if (Req->Connection->State != STATE_BREAK){

Req->Connection->State = STATE_DISCONNECT;
}
break ;

case requestSend:
case requestReceive:

if (Req->Connection->State != STATE_PENDING &&
Req->Connection->State != STATE_SLEEP){

CONNECTION *Partner;
if (Req->Connection->State == STATE_BREAK ||

Req->Connection->State == STATE_DISCONNECT){
/* Lost connection to client */
LogMessage (ClassError ,

L"Remote host closed connection unexpectedly on socket /d. " ,
ID);

/* Detach our connection */
} else {

LogMessage (ClassError ,
L"Send/Receive: Forcing illegal state switch /s->/s on socket /d",

ShowConnState(Req->Connection->State) ,
ShowConnState(STATE_TRANSACTION) ,
ID);

}
// Remove our link to the partner

WaitHandle (PartnerLock);
Partner = Req->Connection->Partner;
Req->Connection->Partner = (CONNECTION *) NULL;

/* Wake the partner */
if (Partner != (CONNECTION *) NULL){

if (Partner->Partner == Req->Connection){
Partner->Partner = (CONNECTION *) NULL;

}
WakeConnection (Partner);

}
ReleaseMutex (PartnerLock);
/* And close our socket */
if (Req->Connection->State != STATE_BREAK){

Req->Connection->State = STATE_DISCONNECT;
}
break;

}
/* Start the requested operation */
Req->Connection->State = STATE_TRANSACTION;

66

71

76

81

86

91

96

101

1

6

11

16

21

26

Req->Connection->Protocol = Req->NewState;
Req->Connection->Read = (Req->Request == requestReceive);
Req->Connection->Write = (Req->Request == requestSend);
Req->Connection->Size = Req->Size;
Req->Connection->Buffer = Req->Data;
break ;

case requestWakeUp:
/* Our partner finished its operations and tries to wake us up. */
if (Req->Connection->State == STATE_TRANSACTION){

/*
* We are already awake and handling transactions.
* Don’t change anything.
*/

} else if (Req->Connection->State != STATE_PENDING &&
Req->Connection->State != STATE_SLEEP){

/* Detach our connection */
LogMessage (ClassError ,

L"Wake up: Forcing illegal state switch /s->/s on socket /d",
ShowConnState(Req->Connection->State) ,
ShowConnState(STATE_TRANSACTION),
ID);

} else {
Req->Connection->State = STATE_TRANSACTION ;
Req->Connection->Read = FALSE;
Req->Connection->Write = FALSE;

}
break;

default:
LogMessage (ClassError, L"INTERNAL ERROR: State /d. " , Req->Request);
break;

}
Interface->Request = Req->Next;
Free (Req) ;

/* Reset event flag so we won’t delay processing the requests */
SetEvent (Interface ->Pending) ;

}

B C orresponding P art o f th e m C R L2 M odel

TCP_ProcessRequests(tid:Pos,pending:Bool,nConns:Nat)=
sum reqs: List(REQUEST).

_getRequests(tid,reqs).
(reqs==[])->_unlockPartner(tid).

(pending->_setPendingEvent (tid) .
TCP_WaitEvent(tid,nConns)

<>TCP_WaitEvent(tid,nConns)
)

<>_popRequest(tid).
TCP_ProcessRequest(tid,head(reqs),nConns);

TCP_ProcessRequest(tid:Pos,req:REQUEST,nConns:Nat)=
/ first we need to get the state of the connection in the request:
sum state : STATE._getConnectionState(tid,getcid(req) ,state) .(

((getname(req)==requestDisconnect &&
(state = = STATE_BREAK | |
state==STATE_DISCONNECT)

) ||
(getname(req)==requestWakeUp &&
(state==STATE_TRANSACTION ||
state==STATE_DISCONNECT ||
state==STATE_BREAK)

)
)-> TCP_ProcessRequests(tid,true,nConns)<> / do nothing in these cases

(getname(req) ==requestDisconnect) ->(

31

36

41

46

51

56

61

66

71

76

81

86

91

(state = = STATE_PENDING | |
state==STATE_SLEEP)
-> _setConnectionState(tid,getcid(req),STATE_DISCONNECT).

TCP_ProcessRequests(tid,true,nConns)<>

/ otherwise log and force.
(state==SOCK_FREE ||
state==SOCK_ACCEPT ||
st at e = = S OCK_READING | |
state==SOCK_WRITING ||
st at e = = S OCK_ SHUTDOWN | |
state==STATE_TRANSACTION)
-> _log(tid,LogDisconnectForsingIllegalStateSwitch(getcid(req),

STATE_DISCONNECT)).
error(CriticalLog).
_setConnectionState(tid,getcid(req),STATE_DISCONNECT).
TCP_ProcessRequests(tid,true,nConns)

)<>

(getname(req) ==requestSend | |
getname(req) ==requestReceive) ->(

(state = = STATE_PENDING | |
state==STATE_SLEEP)
-> _setConnectionStateProtocolReadWrite(

tid ,
getcid(req) ,
STATE_TRANSACTION ,
getnewprotocol(req),
getname(req)==requestReceive ,
getname(req)==requestSend).

TCP_ProcessRequests(tid,true,nConns)+
(state==STATE_BREAK ||
state==STATE_DISCONNECT)
-> _log(tid,LogRemoteHostClosedUnexpectedly(getcid(req))).

TCP_ProcessRequest_Close(tid,getcid(req),nConns)+

(st at e = = STATE_EVENT | |
state==SOCK_FREE | |
state==SOCK_ACCEPT ||
st at e = = S OCK_READING | |
state==SOCK_WRITING ||
state==SOCK_SHUTDOWN ||
state==STATE_TRANSACTION)
-> _log(tid,LogSendReceiveForsingIllegalStateSwitch(getcid(req) ,

STATE_TRANSACTION)).
error(CriticalLog).
TCP_ProcessRequest_Close(tid,getcid(req),nConns)

)<>

(getname(req) ==requestWakeUp) ->(
(state = = STATE_PENDING | |
state==STATE_SLEEP)
-> _setConnectionStateReadWrite(tid,getcid(req),

STATE_TRANSACTION,false,false).
TCP_ProcessRequests(tid,true,nConns)<>

(state==STATE_BREAK ||
state==STATE_EVENT ||
state==SOCK_FREE | |
state==SOCK_ACCEPT ||
st at e = = S OCK_READING | |
state==SOCK_WRITING ||
state==SOCK_SHUTDOWN)
->_log(tid,LogWakeUpForsingIllegalStateSwitch(getcid(req),state)).

error(CriticalLog).
TCP_ProcessRequests(tid,true,nConns)

)
)

