The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/33230

Please be advised that this information was generated on 2018-12-17 and may be subject to change.
Cataclysmic variables from a ROSAT/2MASS selection – I. Four new intermediate polars

B. T. Gánsicke,1* T. R. Marsh,1 A. Edge,2 P. Rodríguez-Gil,1,3 D. Steeghs,4 S. Araujo-Betancor,5 E. Harlaftis,6 O. Giannakis,7 S. Pyrzas,8 L. Morales-Rueda9 and A. Aungwerojwit1

1Department of Physics, University of Warwick, Coventry CV4 7AL
2Department of Physics, University of Durham, South Road, Durham DH1 3LE
3Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
4Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-67, Cambridge, MA 02138, USA
5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
6Institute of Space Applications and Remote Sensing, National Observatory of Athens, PO Box 20048, Athens 11810, Greece
7Institute of Astronomy, National Observatory of Athens, PO Box 20048, Athens 11810, Greece
8Department of Physics, Section of Astrophysics, Astronomy & Mechanics, University of Thessaloniki, 541 24 Thessaloniki, Greece
9Department of Astrophysics, Radboud University Nijmegen, PO Box 9010, 6500GL, Nijmegen, the Netherlands

Accepted 2005 April 18. Received 2005 April 15; in original form 2005 April 1

ABSTRACT

We report the first results from a new search for cataclysmic variables (CVs) using a combined X-ray (ROSAT)/infrared (2MASS) target selection that discriminates against background active galactic nuclei. Identification spectra were obtained at the Isaac Newton Telescope for a total of 174 targets, leading to the discovery of 12 new CVs. Initially devised to find short-period low-mass-transfer CVs, this selection scheme has been very successful in identifying new intermediate polars. Photometric and spectroscopic follow-up observations identify four of the new CVs as intermediate polars: 1RXS J063631.9+353537 (P_{orb} = 201 min, P_{spin} = 1008.3408 s or 930.5829 s), 1RXS J070407.9+262501 (P_{orb} ~ 250 min, P_{spin} = 480.708 s), 1RXS J173021.5-055933 (P_{orb} = 925.27 min, P_{spin} = 128.0 s), and 1RXS J180340.0+401214 (P_{orb} = 160.21 min, P_{spin} = 1520.51 s). RX J1730, also a moderately bright hard X-ray source in the INTEGRAL/IBIS Galactic plane survey, resembles the enigmatic AE Aqr. It is likely that its white dwarf is not rotating at the spin equilibrium period, and the system may represent a short-lived phase in CV evolution.

Key words: accretion, accretion discs – binaries: close – novae, cataclysmic variables.

1 INTRODUCTION

The evolution of cataclysmic variable stars (CVs) is driven by the need for the mass-donor stars to fill their Roche lobes. This is ensured by angular momentum loss (AML), through gravitational wave radiation and magnetic braking via a stellar wind, which gradually decreases the binary orbital period P_{orb}. The standard theory of CV evolution assumes that magnetic braking ceases once the systems reach P_{orb} ~ 3 h (e.g. Rappaport, Joss & Verbunt 1983). With gravitational wave radiation being a much less efficient AML mechanism than magnetic braking, CVs with P_{orb} < 3 h have much lower mass transfer rates and longer evolution time-scales than those with P_{orb} > 3 h (Kolb & Stehle 1996). Initially the mass donor shrinks in response to mass loss causing the orbital period to decrease. Eventually the mass donor becomes so low in mass (<0.08 M\odot) that fusion dies out and the star evolves towards a degenerate state. Its radius then starts to increase upon mass loss, leading to an increase in the orbital period of the CV (Paczyński & Sienkiewicz 1983). Up to this point the decreasing period is compensated by the reduced mass of the donor bringing about a near-constant mass loss rate. After the period minimum (observationally found near 80 min), however, the simultaneous reduction in the mass of the donor and the increase in orbital period act to reduce AML resulting in a precipitous drop in the mass loss rate, and a further slowing of the evolution of the CV. Consequently, the vast majority (~99 per cent) should have periods <2 h, and a large fraction of all CVs (~70 per cent) should have passed through the period minimum (Kolb 1993; Howell, Rappaport & Politano 1997).

The apparent lack of observed short-period CVs in general and "post-period-bounce" CVs in particular is a major embarrassment for our understanding of compact binary evolution (e.g. Gánsicke,
Selection effects are an obvious and generally welcomed explanation for this discrepancy – about half of all known CVs have been found because of strong variability, i.e. displaying outbursts (Gänsicke 2005). As the absolute magnitudes of CVs during outburst are a function of their orbital period, but not their mean mass transfer rate (Warner 1987), there is no obvious reason why post-period-bounce systems should not be found unless they very rarely or never go into outburst. Observationally, a number of systems are known that have very infrequent outbursts (e.g. WZ Sge, GW Lib, or LL And), or have had no observed outbursts (e.g. BW Sco, GD 552, HS 2331+3905, or GP Com). In fact, disc instability theory predicts that outburst activity may cease completely below a certain mass transfer rate (Meyer-Hofmeister, Meyer & Liu 1998). Thus, if the predicted large number of short-period low-mass-transfer CVs exists, they must be discovered by other means than variability. Spectroscopic surveys have demonstrated the ability to find such objects (the Hamburg Quasar Survey (Gänsicke et al. 2002b), the Sloan Digital Sky Survey (Sköyder et al. 2005 and references therein), and the 2dF Quasar Survey (Marsh et al. 2002)), but the number of new short orbital period CVs discovered in this way also falls short of the predictions. We have therefore initiated a new search for CVs based on one apparently common feature of low-mass-transfer systems: X-ray emission – of the six systems named above, WZ Sge, BW Sco, GD 552, and GP Com are noticeable X-ray sources (Voges et al. 1999), indeed, BW Sco was discovered in X-rays (= RXJ2353.0–3852, Abbott, Fleming & Pasquini 1997). Here we report the first results from this search – the discovery of four new intermediate polars (IPs).

2 Target Selection

X-ray identification work has led to the discovery of various CVs not found by any other method (e.g. Schwpe et al. 2002) and the ROSAT All-Sky Survey (RASS, Voges et al. 1999) still contains a large number of optically unidentified sources, particularly at intermediate Galactic latitudes (4° < |b| < 30°). The identification of CVs is complicated by the fact that they are rare and have similar optical magnitudes and colours to the more numerous active galactic nuclei (AGN). However, when near-infrared photometry from 2MASS is also considered there is a clear discrimination between the bulk of the AGN and CVs or white dwarfs (Fig. 1). We have drawn the X-ray sources for this project from the ROSAT Bright Source Catalogue (Voges et al. 1999), limiting the selection to count rates from 0.05 to 0.2 count s⁻¹, a regime not systematically explored to date. There are over 10 000 such sources, but applying limitations on galactic latitude (|b| > 5°) to avoid confusion, infrared colours (J − K < 1 consistent with galactic sources) and infrared magnitude (K > 11 to exclude the majority of coronal stellar sources) leaves 399 sources. This drops to 300 with the additional restriction of R < 17 to allow identification work with 2-m-class telescopes. Since some 50 of these are known objects, mainly CVs or white dwarfs, 250 unidentified targets remain.

3 Observations: Spectroscopy

Identification spectroscopy of the target sample and time-resolved follow-up spectroscopy of newly identified CVs was obtained with four different telescopes. A brief account of the used instrumentation and the data reduction procedures is given below.

3.1 Isaac Newton Telescope Identification Spectroscopy

The initial identification spectroscopy of ROSAT/2MASS CV candidate targets was carried out with the Intermediate Dispersion Spectrograph (IDS) on the Isaac Newton Telescope (INT), located at the Observatorio del Roque de los Muchachos on La Palma during several nights in 2002 August and seven nights in 2003 March (Table 1). The spectra were obtained using the R400V grating on the 235-mm camera in conjunction with a 1.6-arcsec slit and a 4k pixel wide EEV CCD, resulting in a spectral coverage of 3900–7900 Å at a resolution of ≈3.5 Å at the central wavelength. Standard data reduction (de-biasing, flat-fielding, optimal extraction, wavelength and flux calibration) was done using FIGARO within the Starlink suite and the PAMELA/MOLLY packages.

While the 2002 run was done under nearly perfect conditions, the 2003 observations were seriously affected by bad weather, resulting in a number of candidates not being observed. A total of 174 targets were observed, leading to the discovery of 12 new CVs, including 1RXS J063631.9+353537, 1RXS J070407.9+262501, 1RXS J173021.5–055933 and 1RXS J180340.0+401214 (henceforth RXJ0636, RXJ7040, RXJ1730 and RXJ1803, which are discussed in this paper). The remaining new CVs as well as a list of all ROSAT source identifications will be published elsewhere. Coordinates, X-ray, optical and infrared properties of the four systems are given in Table 2, and finding charts are shown in Fig. 3 below. The INT/IDS identification spectra of RXJ0636, RXJ7040, RXJ1730 and RXJ1803 all display Balmer and helium emission lines (Fig. 2), identifying them as CVs. The moderate-to-strong He ii λ4686 emission detected in their spectra indicates the presence of high-energy photons in these systems, typically a signature of magnetic CVs, high-mass-transfer nova-like variables and post-novae. RXJ0636, RXJ7040 and RXJ1730 have an equivalent width ratio He ii λ4686/Hβ > 0.5 (Table 2), which strongly suggests a magnetic nature of these systems. All three systems were confirmed to be magnetic CVs indeed by the detection of He ii λ4686 emission.
coherent short-period optical variability, the hallmark of IPs, RXJ1803 has a relatively low He/H ratio for being a magnetic system, but our photometry clearly identifies this object as an IP as well.

Table 1. Log of the observations.

<table>
<thead>
<tr>
<th>Date</th>
<th>UT</th>
<th>Obs</th>
<th>Filter/Grism</th>
<th>Exp.</th>
<th>Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 Mar 17</td>
<td>21:22</td>
<td>INT</td>
<td>R400V</td>
<td>900</td>
<td>1</td>
</tr>
<tr>
<td>2004 Oct 21</td>
<td>02:42-03:33</td>
<td>KY</td>
<td>clear</td>
<td>30</td>
<td>195</td>
</tr>
<tr>
<td>2004 Oct 22</td>
<td>06:07-07:43</td>
<td>KY</td>
<td>clear</td>
<td>20</td>
<td>510</td>
</tr>
<tr>
<td>2004 Oct 22</td>
<td>23:46-03:50</td>
<td>KY</td>
<td>clear</td>
<td>20</td>
<td>317</td>
</tr>
<tr>
<td>2004 Oct 23</td>
<td>23:12-00:37</td>
<td>KY</td>
<td>clear</td>
<td>20</td>
<td>187</td>
</tr>
<tr>
<td>2005 Jan 02</td>
<td>00:25-05:42</td>
<td>WHT</td>
<td>R600B/R316R</td>
<td>930</td>
<td>20</td>
</tr>
<tr>
<td>2005 Feb 21</td>
<td>20:46-00:52</td>
<td>KY</td>
<td>clear</td>
<td>45</td>
<td>254</td>
</tr>
<tr>
<td>2005 Feb 23</td>
<td>17:46-01:43</td>
<td>KY</td>
<td>clear</td>
<td>45</td>
<td>484</td>
</tr>
<tr>
<td>2005 Feb 24</td>
<td>17:16-22:17</td>
<td>KY</td>
<td>clear</td>
<td>45</td>
<td>352</td>
</tr>
<tr>
<td>2005 Mar 03</td>
<td>17:55-23:53</td>
<td>KY</td>
<td>clear</td>
<td>45</td>
<td>342</td>
</tr>
</tbody>
</table>

3.2 Isaac Newton Telescope follow-up spectroscopy

Time-resolved follow-up spectroscopy of RXJ1730 and RXJ1803 was obtained at the INT in 2003 April/May using the R632V grating on the 235-mm camera with a 1.5-arcsec slit, covering the range 4640–6980 Å with a spectral resolution of ~2 Å (Table 1). Arc-lamp calibration exposures were interleaved after every three object spectra to account for the flexure of the instrument. The follow-up spectra were processed in a standard fashion using the long-slit reduction packages within IRAF. The dispersion solutions were calculated by fitting a low-order polynomial to the arc data, and the pixel-to-wavelength relations for the target spectra were obtained from interpolating between the bracketing arc-lamp exposures.

3.3 Calar Alto 2.2-m

Additional time-resolved spectroscopy of RXJ 1730, RXJ 1803 and RXJ0704 was obtained at the Calar Alto 2.2-m telescope in 2003 April–June and in 2005 February using the Calar Alto Faint Object Spectrograph (CAFOS) equipped with the standard 2k × 2k pixel Site CCD and the G-100 grating. Using a 1.2-arcsec slit the observations covered the range 4240–8300 Å at a resolution of ~4.1 Å (Table 1). Regular arc-lamp exposures were taken to ensure an accurate wavelength calibration. The reduction of the CAFOS data was carried out using FIGARO, PAMELA and MOLLY as described in Section 3.1.

3.4 Magellan

RXJ 1730 was also observed with the B&C spectrograph on the 6.5-m Magellan–Clay telescope at Las Campanas Observatory in 2003 June under excellent seeing conditions (0.5–0.8 arcsec). The 600 grating blazed at 5000 Å in conjunction with a 0.85-arcsec long slit provided a wavelength coverage of 3890–7075 Å at 1.55 Å pixel−1 on a 2048 × 515 Marconi CCD detector. The 58 target exposures (Table 1) were reduced and calibrated using the recipe described in Section 3.1 using regular arc-lamp exposures and nightly observations of the spectrophotometric flux standard LTT9239.

3.5 William Herschel Telescope

Time-resolved spectroscopy of RXJ0636 was carried out with the 4-m William Herschel Telescope (WHT) on La Palma in 2005 January, using the ISIS double-arm spectrograph with the R600B grating and a 4k × 2k pixel EEV detector in the blue and the R316R grating and a 4.5k × 2k pixel Marconi detector in the red. Both arms were operated with a 1.2-arcsec slit, resulting in a spectral resolution of ~0.9 Å covering the ranges 3600–5000 Å and 6100–8900 Å. Arc-lamp and flat-field exposures were taken at regular intervals to ensure an accurate wavelength calibration and correct for CCD fringing in the red arm. The reduction of the WHT spectroscopy was done using FIGARO, PAMELA and MOLLY as described in Section 3.1.

4 OBSERVATIONS: PHOTOMETRY

Whereas the INT/IDS spectroscopy suggested a possible magnetic CV nature for all four systems (Section 3.1), the identification and confirmation of the IP nature of RXJ0636, RXJ0704, RXJ1730 and RXJ1803 has been derived from CCD time series obtained at five different telescopes. For all photometric data, instrumental

Table 2. X-ray, optical and infrared properties of the four new CVs.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1RXS J0636+353537</td>
<td>06h 36m 32s 55</td>
<td>+35° 35' 43.3</td>
<td>5.0 ± 1.4</td>
<td>0.71 ± 0.25</td>
<td>0.33 ± 0.29</td>
<td>8</td>
<td>16</td>
<td>47</td>
<td>15.7</td>
<td>15.9</td>
<td>15.4</td>
<td>15.2</td>
<td>15.1</td>
</tr>
<tr>
<td>1RXS J0704+262501</td>
<td>07h 04m 08s 67</td>
<td>+26° 25' 10.9</td>
<td>19.4 ± 3.3</td>
<td>-0.40 ± 0.14</td>
<td>0.55 ± 0.26</td>
<td>9</td>
<td>11</td>
<td>24</td>
<td>16.7</td>
<td>16.3</td>
<td>16.4</td>
<td>16.4</td>
<td>16.1</td>
</tr>
<tr>
<td>1RXS J1730-055933</td>
<td>17h 30m 21s 79</td>
<td>-05° 59' 32.7</td>
<td>58.2 ± 4.1</td>
<td>0.86 ± 0.03</td>
<td>-0.05 ± 0.07</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>16.3</td>
<td>15.4</td>
<td>14.4</td>
<td>13.9</td>
<td>13.6</td>
</tr>
<tr>
<td>1RXS J1803+401214</td>
<td>18h 03m 39s 67</td>
<td>+40° 12' 20.6</td>
<td>17.5 ± 1.5</td>
<td>-0.18 ± 0.08</td>
<td>-0.02 ± 0.12</td>
<td>18</td>
<td>66</td>
<td>52</td>
<td>18.0</td>
<td>17.1</td>
<td>15.2</td>
<td>14.8</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Notes. The coordinates and the B and R magnitudes were taken from the USNO-B Catalog (Monet et al. 2003), the ROSAT PSPC count rates and hardness ratios HR1 and HR2 have been obtained from the ROSAT All Sky Survey Bright Source Catalogue (Voges et al. 1999), the Hα, Hβ and He λ 5876 Å equivalent widths were measured from the INT/IDS identification spectra (Fig. 2) using the integrate/line task in MIDAS, and the J, H, and K magnitudes were taken from the 2MASS All Sky Survey.

Figure 2. INT/IDS identification spectra of RX J0636, RX J0704, RX J1730 and RX J1803. The spectra have been smoothed with a three-point boxcar.

magnitudes of the target and two comparison stars (labelled ‘C1’ and ‘C2’ in Fig. 3) were extracted from the images, and differential light curves computed with respect to the comparison star ‘C1’. Constant brightness of the primary comparison star and changes in the observing conditions were checked by inspecting the differential light curves ‘C1’–‘C2’. The details on the adopted comparison stars are given in Table 3. A brief description of the instrumentation at the different telescopes and the data reduction procedures is given below.

4.1 Kryoneri
Filterless CCD photometry of RX J0636, RX J0704 and RX J1730 was obtained at Kryoneri Observatory with the 1.2-m telescope using a Photometrics SI-502 516 × 516 pixel camera (Table 1). The images were de-biased, dark-current-subtracted, and flat-fielded within MIDAS and aperture photometry was performed using SExtractor (Bertin & Arnouts 1996). A full account of the employed reduction pipeline is given by Gänsicke et al. (2004).
Four new intermediate polars

4.2 Jacobus Kapteyn Telescope

The 1.0-m Jacobus Kapteyn Telescope (JKT) on La Palma was used in 2003 May to obtain R-band photometry of RX J1730 and V-band photometry of RX J1803 using a SIFe 2k × 2k pixel CCD (Table 1). The reduction was carried out as described in Section 4.1.

4.3 Isaac Newton Telescope

The Wide Field Camera (WFC), an array of four EEV 2k × 4k pixel CCDs, was used on the INT in 2005 January to obtain filterless photometry of RX J0704. The read-out time of the WFC is 42 s, resulting in a somewhat increased granularity of the observed light curves. The data were processed in an analogous way as described in Section 4.1.

4.4 Telescope Nazionale Galileo

We obtained g' CCD photometry of RX J0704 on the 3.6-m Telescope Nazionale Galileo (TNG), located at the Observatorio del Roque de los Muchachos on La Palma, in 2005 January (Table 1). We used DOLORES equipped with a Loral 2k × 2k pixel CCD. The reduction was carried out as described in Section 4.1.

4.5 Optical Ground Station

The 1-m Optical Ground Station (OGS) located at the Observatorio del Teide on Tenerife was used in 2003 July to obtain filterless and V-, R-, and I-band photometry of RX J1730. The telescope was equipped with a Thomson 1k × 1k pixel CCD camera. The images were bias and flat-field corrected and aligned within IRAF. Instrumental magnitudes of the CV and the comparison star ‘C1’ were

Table 3. Comparison stars used for the differential CCD photometry.

<table>
<thead>
<tr>
<th>System</th>
<th>USNO reference</th>
<th>B</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX J0636</td>
<td>1200.04969236</td>
<td>15.7</td>
<td>15.9</td>
</tr>
<tr>
<td>‘C1’</td>
<td>1200.04968961</td>
<td>15.7</td>
<td>14.5</td>
</tr>
<tr>
<td>‘C2’</td>
<td>1200.04968814</td>
<td>17.3</td>
<td>16.0</td>
</tr>
<tr>
<td>RX J0704</td>
<td>1125.04825852</td>
<td>16.3</td>
<td>16.2</td>
</tr>
<tr>
<td>‘C1’</td>
<td>1125.04824886</td>
<td>16.1</td>
<td>14.2</td>
</tr>
<tr>
<td>‘C2’</td>
<td>1125.04825384</td>
<td>18.0</td>
<td>16.2</td>
</tr>
<tr>
<td>RX J1730</td>
<td>0825.1060993</td>
<td>16.5</td>
<td>15.8</td>
</tr>
<tr>
<td>‘C1’</td>
<td>0825.10607901</td>
<td>16.9</td>
<td>15.5</td>
</tr>
<tr>
<td>‘C2’</td>
<td>0825.1061801</td>
<td>15.8</td>
<td>13.7</td>
</tr>
<tr>
<td>RX J1803</td>
<td>1275.09738647</td>
<td>17.3</td>
<td>17.2</td>
</tr>
<tr>
<td>‘C1’</td>
<td>1275.09739056</td>
<td>15.1</td>
<td>14.1</td>
</tr>
<tr>
<td>‘C2’</td>
<td>1275.09737883</td>
<td>17.9</td>
<td>16.7</td>
</tr>
</tbody>
</table>

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
5 ANALYSIS AND RESULTS

5.1 1RXS J063631.9+353537

The INT/IDS identification spectrum of RX J0636 (Fig. 2) is characterized by narrow Balmer and He emission lines superimposed on a blue continuum. The detection of relatively strong He II λ4686 suggests a potential magnetic CV nature for this system. No obvious signature of the donor star is detected in the spectrum.

5.1.1 Photometry

The CCD photometry of RX J0636 obtained at Kryoneri observatory in 2004 October and 2005 February/March (Table 1, Fig. 4) displays substantial variability on time-scales of ~15 min, superimposed on longer-term modulations. Fig. 5 shows a Scargle (1982) periodogram computed from the combined photometric data, using the MIDAS/TSA context. The suspected presence of a coherent short-period modulation is confirmed by the detection of a relatively strong signal at ~85.7 d⁻¹, with a 1-d alias of similar strength at ~84.7 d⁻¹. A second cluster of signals peaks at ~92.9 d⁻¹ and ~91.9 d⁻¹. The periods corresponding to the highest peaks of each cluster of signals are 1008.3408(19) s and 930.5829(40) s, respectively, where the errors have been determined from fitting a sine wave to the photometric data. In order to facilitate a future improvement in the accuracy of the spin period, we have fitted a sine wave with the period fixed to the best value determined from the entire data set to each individual night of photometry, and report in Table 4 the times of spin maxima determined from these fits. Folding the photometric data over the 1008-s period results in a quasi-sinusoidal modulation with an average amplitude of 0.03 mag (Fig. 6). Given the possible magnetic nature of RX J0636 suggested by its spectroscopic appearance, we tentatively interpret these two signals as the white dwarf spin frequency (period) ω (P_spin) and an orbital side-band (beat) frequency ω ± Ω, with Ω the orbital frequency, as the detection of these signals is the hallmark of the magnetic IPs. The optical photometry alone does not provide sufficient information to unambiguously identify the two signals, as both spin and beat dominated IPs are known. If the two photometric signals were indeed ω and ω ± Ω, RX J0636 is expected to have an orbital period of ~201 min. No significant power is detected at the orbital period or its harmonic. The strong signal near 4 d⁻¹ appears only in the 2005 data, and its nature is not clear. Shown on top of the figure is the window function of the data set, shifted to ω.

Table 4. HJD of the spin maxima (RX J0636, RX J0704, RX J1803) or spin minima (RX J1730), obtained from sine fits to each individual night of photometric data.

<table>
<thead>
<tr>
<th>System</th>
<th>HJD</th>
<th>System</th>
<th>HJD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX J0636</td>
<td>245 3299.564084</td>
<td>RX J1730</td>
<td>245 2769.552687</td>
</tr>
<tr>
<td></td>
<td>245 3300.499631</td>
<td></td>
<td>245 2780.528206</td>
</tr>
<tr>
<td></td>
<td>245 3301.491248</td>
<td></td>
<td>245 2828.411952</td>
</tr>
<tr>
<td></td>
<td>245 3302.470448</td>
<td></td>
<td>245 2829.411925</td>
</tr>
<tr>
<td></td>
<td>245 3423.366908</td>
<td></td>
<td>245 2830.397171</td>
</tr>
<tr>
<td></td>
<td>245 3425.234453</td>
<td></td>
<td>245 2830.397133</td>
</tr>
<tr>
<td></td>
<td>245 3426.214890</td>
<td></td>
<td>245 2836.385213</td>
</tr>
<tr>
<td></td>
<td>245 3433.240185</td>
<td></td>
<td>245 2837.395621</td>
</tr>
<tr>
<td>RX J0704</td>
<td>245 3346.611013</td>
<td>RX J1803</td>
<td>245 2781.436952</td>
</tr>
<tr>
<td></td>
<td>245 3372.526833</td>
<td></td>
<td>245 2867.257081</td>
</tr>
<tr>
<td></td>
<td>245 3376.482737</td>
<td></td>
<td>245 2868.260431</td>
</tr>
</tbody>
</table>

Table 5. Orbital and spin periods of the four new IPs.

<table>
<thead>
<tr>
<th>System</th>
<th>P orb (min)</th>
<th>P spin (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX J0636</td>
<td>201</td>
<td>1008.3408(19) or 930.5829(40)</td>
</tr>
<tr>
<td>RX J0704</td>
<td>250</td>
<td>480.7080(44)</td>
</tr>
<tr>
<td>RX J1730</td>
<td>925.27(14)</td>
<td>127.999909(49)</td>
</tr>
<tr>
<td>RX J1803</td>
<td>160.21(12)</td>
<td>1520.510(66)</td>
</tr>
</tbody>
</table>

much longer than the orbital period estimated from the beat period, and independently from the time-resolved spectroscopy discussed below. Additional photometric observations will be necessary to confirm that this 360-min periodicity is a coherent and repeating characteristic of RX J0636.

5.1.2 Time-resolved spectroscopy

In order to test our hypothesis of RX J0636 being a CV with an orbital period near 201 min we have obtained 5.3-h time-resolved spectroscopy at the WHT (Table 1). Radial velocity measurements were carried out using a single Gaussian fit to Hα, the strongest emission line, fixing the full-width at half-maximum (FWHM) to 200 km s$^{-1}$. The resulting radial velocity curve clearly shows a quasi-sinusoidal modulation with an amplitude of ~ 25 km s$^{-1}$ (Fig. 7). A Scargle periodogram computed from the radial velocity measurements shows a broad peak centred at 7.3 d$^{-1}$, corresponding to 200 km s$^{-1}$. The resulting radial velocity curve clearly shows a broad peak centred at 7.3 d$^{-1}$, corresponding to 200 km s$^{-1}$.

The INT/IDS identification spectrum of RX J0704 (Fig. 2) is overall similar to that of RX J0636, with the difference of displaying somewhat broader lines. No signature of the secondary star is detected.

5.2 1RXS J070407.9+26250

The first brief photometric data set obtained at Kryoneri (Table 1) displayed substantial short-term variability with a peak-to-peak amplitude of ~ 0.3 mag. A Scargle periodogram computed from those data contained a strong signal at ~ 360 d$^{-1}$, identifying RX J0704 as an IP candidate with a rather short white dwarf spin period. Fig. 8 shows the more extensive photometry obtained at the INT and TNG (Table 1), which revealed a modulation with a period of ~ 4h in addition to the spin variability. The strongest peak in a Scargle periodogram calculated from the entire data set is found at a period of 4 min (Fig. 9), consistent with the earlier Kryoneri result. However, the larger data set shows also power at 480 s, which we subsequently interpret as the white dwarf spin. The 240-s period is then the first harmonic of the spin, most likely due to the changing aspect of two accreting regions on/close to the white dwarf (i.e. the accretion funnels and white dwarf pole caps, see e.g. Hellier 1995). The periodogram around P_{spin} and 2P_{spin} is severely plagued by aliases, caused by the sparse data coverage over the baseline of one month. The 240-s signal displays two nearly equally strong aliases; their periods determined from sine fits to the photometric data are 240.3540(22) s and 240.5329(22) s, and we adopt $P_{\text{spin}} = 480.7080(44)$ s as the putative white dwarf spin. Table 4 lists the times of spin maxima for each night of photometry, determined from fitting a sine wave to the individual data sets (where the period was fixed to the value determined from the entire data set). As the two maxima per spin cycle are almost equal, there is the chance of a 0.5 cycle mismatch. We have detrended the ~ 4h modulation from the photometric data by means of a 30-point boxcar, and show in

![Figure 6](image_url)
Figure 6. Spin-folded light curves of RX J0636, assuming $P_{\text{spin}} = 1008.3408$ s. Top panel: all individual data points (Table 1). Variability on longer time-scales has been removed from each individual night by subtracting the light curve smoothed by a 30-point boxcar. Bottom panel: data binned into 30 phase slots. Plotted as the dashed line is a sine fit to the binned and folded data.

![Figure 7](image_url)
Figure 7. Radial velocity (RV) variation of Hα measured from the time-resolved WHT spectroscopy of RX J0636 (Table 1). Plotted as the dashed line is a sine fit to the data, resulting in a period of 201(8) min. The dotted line indicates the systemic velocity determined from the sine fit, $\gamma = -4(2)$ km s$^{-1}$.

![Figure 8](image_url)
Figure 8. Sample light curves of RX J0704 obtained with the INT/WFC (top panel) and the TNG/DOLORES (bottom panel). The light curves are dominated by a modulation at twice the white dwarf spin period ($P_{\text{spin}} = 480.708$ s) and a longer-period modulation with $P \sim 4$h, which we tentatively identify as the orbital period. A sine fit to the TNG data gives $P_{\text{orb}} = 254.7(1.1)$ min (dashed curve).
Figure 9. Scargle periodogram computed from the combined photometric data of RX J0704 (Table 1). Bottom panel: full frequency range. Middle panels, left to right: enlargement around the orbital, the white dwarf spin, and twice the white dwarf spin frequencies. Top panels: the window function calculated from the temporal sampling of the data, shifted to the assumed orbital (Ω), spin (ω), and first harmonic of the spin 2ω frequencies. The corresponding periods are ~250 min, 480.708 s, and 240.354 s, respectively.

Figure 10. Spin-folded light curves of RX J0704 using $P_{\text{spin}} = 480.708$ s. Top panel: all individual data points (Table 1). The putative orbital modulation has been removed prior to phase-folding by means of a 30-point boxcar. Bottom panel: data binned into 30 phase slots. Plotted as the dashed line is a sine fit to the binned and folded data.

The ~4-h modulation (especially conspicuous in the TNG light curve, Fig. 8 bottom panel) is reflected by the second strongest signal in the periodogram of the combined photometric data (Fig. 9). Formally this implies $P = 228.73(5)$ min, but the severe aliasing prevents a unique identification of the true period. A sine fit to the TNG data alone results in $P = 254.7(1.1)$ min. The close-up of the periodogram around the white dwarf spin frequency ω (Fig. 9, top middle panel) shows substantial power excess with respect to the window function in the form of two clusters of aliases at frequencies below ω. The separation between these signals and ω is 5.68 d^{-1} and 11.24 d^{-1}. If interpreted as the beat frequencies $\omega - \Omega$ and $\omega - 2\Omega$, which are commonly detected in IPs, these signals imply an orbital period of ~250 min. This falls well within the alias structure of the low-frequency signal, and is consistent with the period derived from the best (TNG) photometric data set.

5.2.2 Time-resolved spectroscopy

A single 5.6-h run of time-resolved spectroscopy of RX J0704 was obtained at Calar Alto in 2005 February (Table 1), with the aim to derive a dynamical estimate of the orbital period. The radial velocity variation of Hα was measured using a double Gaussian convolution (Schneider & Young 1980) with a separation of 1000 km s$^{-1}$ and a FWHM of 400 km s$^{-1}$. This Hα radial velocity curve displays a quasi-sinusoidal modulation with a semi-amplitude of ~110 km s$^{-1}$ (Fig. 11). The Scargle periodogram computed from these data contains a broad peak near 5.7 d$^{-1}$ (253 min). Fitting a sine wave to the radial velocity data gives $P = 242(7)$ min, which agrees well with the period estimate derived from the TNG photometry.

We conclude on the basis of the spectral, photometric, and X-ray properties of RX J0704 that this object is an IP with an orbital period of ~250 min and a spin period of 480.708 s. The strong power at the first harmonic of the spin period suggests that both accretion regions contribute to a similar extent to the optical light.
July (Table 1). Sample light curves of this run are shown in Fig. 12. The periodogram computed from the OGS data displays three distinct clusters of signals centred on 4.2 d$^{-1}$, 675 d$^{-1}$ and 1350 d$^{-1}$ (Fig. 13). The nature of the low-frequency signal will be discussed below together with the time-resolved spectroscopy.

The high-frequency signals unambiguously identify RX J1730 as an IP. We interpret the detection of the two commensurate signals as the white dwarf spin frequency and its first harmonic, suggesting that both accretion regions contribute to the observed photometric modulation. Combining the OGS and JKT data, we determine $P_{\text{spin}} = 127.999\,909(49)$ s. However, the two neighbouring aliases at 128.002 689 s and 127.997 256 s cannot be excluded. Table 4 lists the times of spin minima (which can be unambiguously identified) for each night of photometry, determined from fitting two sine waves to the individual data sets (where the periods were fixed to P_{spin} and ω).

Comparing the amplitudes of the spin signal in the filtered photometry obtained at the OGS in 2003 July ($I: 0.03\,\text{mag}, R: 0.035\,\text{mag}, V: 0.057\,\text{mag}$) suggests that the spectrum of the 128-s variability is blue, as expected for the emission from a hot pole cap/accretion funnel. Additional data in B and U would be desirable to estimate a colour temperature for the spin modulation.

5.3.2 Time-resolved spectroscopy

The main purpose of obtaining time-resolved spectroscopy of RX J1730 was to determine the orbital period of the system. The first set of INT data (2003 April, Table 1) suggested a rather long period, prompting additional spectroscopic follow-up at the INT, Calar Alto and Magellan. All spectra were binned on the dispersion of the lowest-resolution data (Calar Alto), corrected for the heliocentric velocity of the Earth, and continuum-normalized around Hα (not covered by the 2003 April data), Hβ and He ii λ 4686. Radial velocity measurements were carried out by means of correlating either a single Gaussian or a double Gaussian (Schneider & Young 1980), using a variety of widths (and separations in the case of the double Gaussian method). The radial velocity measurements were then subjected to a Scargle periodogram calculation. Whereas the analysis of the Balmer lines did not provide any conclusive result, the radial velocities measured from the He ii λ 4686 wings using a double-Gaussian convolution with a FWHM = 200 km s$^{-1}$ and a separation of 1200 km s$^{-1}$ yielded a well-defined signal at 1.556 d$^{-1}$ in the periodogram (Fig. 15). A period of 925.27(14) min is derived from a sine fit to the He ii radial velocity data, which we interpret as the orbital period of the system. Fig. 16 shows the He ii radial velocities folded over the orbital period. Inspecting the
Figure 15. Scargle periodogram computed from the radial velocity variation of the He\textsc{ii} λ 4686 line wings in RX J1730. The inferred orbital period is $P_{\text{orb}} = 925.27$ min.

Figure 16. The He\textsc{ii} λ 4686 radial velocity (RV) measurements of RX J1730 folded over the orbital period of 925.27(14) min. Shown as a dashed line is a sine fit to the folded radial velocity data. The systemic velocity determined from the fit is $\gamma = 22(3)$ km s$^{-1}$.

periodogram computed from the photometry (Fig. 13), it is apparent that twice the spectroscopic frequency coincides well with the one of the alias clusters in the low-frequency range, which suggests that ellipsoidal modulation is responsible for low-frequency photometric variability.

5.3.3 The Magellan average spectrum

Given the long orbital period of RX J1730, one might expect to detect its secondary star at optical wavelengths. In fact, a small contribution to the optical flux is suggested by the detection of ellipsoidal modulation in the photometric data. Fig. 17 shows the average of the flux-calibrated spectra of RX J1730, which were obtained under very good atmospheric conditions. Whereas the majority of the strong absorption features are identified with diffuse interstellar bands (DIBs, Herbig 1995) or atomic interstellar absorption (Na i), weak absorption of Mg i λλ 5167,5172,5183 and the λλ 4310 G-band are detected. Considering the strength of the DIBs, it is clear that the spectrum must be significantly reddened. For the galactic position of RX J1730 the dust maps by Schlegel, Finkbeiner & Davis (1998) give an upper limit of $E(B - V) = 0.6$. An independent estimate is obtained using the neutral hydrogen maps of Dickey & Lockman (1990), which gives $N_H = 1.66 \times 10^{21}$ cm$^{-2}$ for the line of sight towards RX J1730, corresponding to an upper limit of $E(B - V) = 0.34$ (Diplas & Savage 1994). For the following discussion, we will assume $E(B - V) = 0.45$. The weakness of the Mg i triplet and the G-band indicates that the secondary star contributes only a small fraction of the optical flux. In order to estimate the spectral type of the secondary star, we have taken mid-K to mid-F stars from the Jacoby, Hunter & Christian (1984) library, subjected them to an $E(B - V) = 0.45$ reddening, and then scaled them in flux to approximately match the strength of the Mg i triplet and the G-band absorption features observed in RX J1730. The absence of the broad λλ 5000–5200 absorption band excludes a spectral type later than ~K0, and we find that spectral types in the range G6V–G0V, contributing ~15 per cent at 6800 Å, provide the best match for the observed line strengths (Fig. 17). From this exercise it appears that the accretion flow is the dominant source of optical light in RX J1730.

We conclude that RX J1730 is an IP with an orbital period of 925.27 min and a white dwarf spin period of 128.0 s, which resembles in some aspects the enigmatic system AE Aqr. Differences are that its optical spectrum is dominated by the accretion flow and not by the secondary star, and that (so far) none of the flaring episodes characteristic of AE Aqr has been observed in RX J1730.

5.4 1RXS J180340.0+401214

The IDS identification spectrum of RX J1803 (Fig. 2) shows a typical CV spectrum with a negative Balmer decrement and relatively
weak He II λ 4686 emission, suggesting a possible magnetic nature of the system. Of all four CVs presented in this paper, RXJ1803 has the lowest He II λ 4686/Hβ flux ratio (Table 2).

5.4.1 Photometry
The light curves of RXJ1803 unmistakably reveal the presence of large-amplitude pulsations with a period of ~25 min (Fig. 18). The Scargle periodogram computed from the photometric data confirms the coherent nature of these pulsations (Fig. 19). A sine fit to the five consecutive nights of Kryoneri 2003 August data results in $P = 1520.510(66)$ s. The spin-folded light curve of RXJ0636 is very well represented by a sine wave (Fig. 20). The first harmonic of this signal is detected in the periodogram. Including the single night of data obtained with the JKT in 2003 May in the time series analysis results in substantial cycle count ambiguities due to the long separation from the August data, and does not improve the period determination. Power in excess of the alias structure is detected near 47.8 d^{-1}, and to a lesser degree near 65.9 d^{-1}. We interpret the strongest signal as the signature of the white dwarf rotation ω, and the two weaker symmetrically offset signals as orbital sidebands, $\omega - \Omega$ and $\omega + \Omega$. Under this assumption, the orbital period of RXJ1803 is ≈ 159 min, i.e. in the period gap. We note that no significant photometric variability at the orbital period is detected in the periodogram. The times of spin maxima for each night of photometry, determined from fitting a sine wave to the individual data sets, are listed in Table 4 (where the period was fixed to the value determined from the entire data set).

5.4.2 Time-resolved spectroscopy
The time-resolved spectroscopy obtained at Calar Alto and at the INT (Table 1) provides the possibility for an independent orbital period determination. For this purpose, we have rebinned all spectra to a uniform wavelength scale, corrected for the heliocentric velocity of the Earth, and convolved the continuum-normalized profiles of Hα and He II λ 4686 with a double-Gaussian of fixed width (FWHM = 100 km s$^{-1}$) and separation 1400 km s$^{-1}$. A Scargle periodogram computed from the radial velocity measurements obtained in this way displays the strongest peak at $f \approx 9.0 \text{ d}^{-1}$.

Figure 18. Sample light curves of RXJ1803 obtained at Kryoneri.

Figure 19. Scargle periodogram computed from the combined photometric data of RXJ1803 (Table 1). Main panel: full frequency range. The orbital period and spin period are $P_{\text{orb}} = 160.21$ min and $P_{\text{spin}} = 1520.510$ s. Small panel: enlargement around the orbital frequency. Shown on top is the window function calculated from the temporal sampling of the data, shifted to ω.

Figure 20. Spin-folded light curves of RXJ1803, using $P_{\text{spin}} = 1520.510$ s. Top panel: all individual data points (Table 1). Bottom panel: data binned into 30 phase slots. Plotted as a dashed line is a sine fit to the binned and folded data.

Figure 21. Scargle periodogram computed from the radial velocity variation of the Hα line wings in RXJ1803, determining the orbital period to be $P_{\text{orb}} = 160.21$ min.
5-band magnitudes comparable to the newly identified CVs.

A temperature of 10000K, radial velocity data of RX J1803 folded over the orbital period is not too surprising, as ~60 per cent of all X-ray discovered CVs are to-strong Hen A, 4686 emission, suggestive of a magnetic nature - whereas these three template systems have RASS count rates and identification runs led to the discovery of 12 new CVs, representing an impressive 'hit-rate' of 7 per cent, but none of the newly identified systems resembles the short-period template systems. Whereas these three template systems have RASS count rates and B-band magnitudes comparable to the newly identified CVs (WZ Sge: 0.2 count s⁻¹, B = 15.2; BW Scl: 0.18 count s⁻¹, B = 15.6, GD 552: 0.18 count s⁻¹, B = 16.6), it may be that these three systems are not typical representatives of short-period low-mass-transfer CVs, and may exhibit a higher X-ray emission. Moreover, the optical flux of low-mass-transfer CVs is dominated by the emission of the white dwarf. For an assumed white dwarf temperature of 15000 K, our brightness cut-off of R = 17 corresponds to a maximum distance of ~125 pc. While this white dwarf temperature is appropriate for WZ Sge, it may well be that the bulk of the short-period CVs have cooler white dwarfs, for a white dwarf temperature of 10000 K, R = 17 corresponds to a maximum distance of ~85 pc only. The conclusion from our survey at its current state is that there is not a large population of quiescent nearby WZ Sge-like stars, and that a large population of low-mass-transfer CVs can only exist if they look different from WZ Sge and look-alikes. One example of a 'true' low-mass-transfer CV is the recently identified HS 2331+3905, which contains indeed a cool (~10000K) white dwarf and is not detected in the RASS, although it is at a nearby distance of ~90 pc (Araujo-Betancor et al. 2005).

A large fraction (two-thirds) of the new CVs displays moderate-to-strong He II λ4686 emission, suggestive of a magnetic nature – not too surprising, as ~60 per cent of all X-ray discovered CVs are either polars or IPs (Gänsicke 2005). What is surprising, however, is the very large fraction (one third) of new IPs identified in this sample (summarized in Table 5).

6 DISCUSSION

We initiated a search for new CVs based on the X-ray/IR selection described in Section 2 with the aim to identify low-mass-transfer CVs close to the period minimum, such as WZ Sge, BW Scl or GD 552, some of which might be period-bouncers. Our two identification runs led to the discovery of 12 new CVs, representing an impressive ‘hit-rate’ of 7 per cent, but none of the newly identified systems resembles the short-period template systems.

Whereas these three template systems have RASS count rates and B-band magnitudes comparable to the newly identified CVs (WZ Sge: 0.2 count s⁻¹, B = 15.2; BW Scl: 0.18 count s⁻¹, B = 15.6, GD 552: 0.18 count s⁻¹, B = 16.6), it may be that these three systems are not typical representatives of short-period low-mass-transfer CVs, and may exhibit a higher X-ray emission. Moreover, the optical flux of low-mass-transfer CVs is dominated by the emission of the white dwarf. For an assumed white dwarf temperature of 15000 K, our brightness cut-off of R = 17 corresponds to a maximum distance of ~125 pc. While this white dwarf temperature is appropriate for WZ Sge, it may well be that the bulk of the short-period CVs have cooler white dwarfs, for a white dwarf temperature of 10000 K, R = 17 corresponds to a maximum distance of ~85 pc only. The conclusion from our survey at its current state is that there is not a large population of quiescent nearby WZ Sge-like stars, and that a large population of low-mass-transfer CVs can only exist if they look different from WZ Sge and look-alikes. One example of a ‘true’ low-mass-transfer CV is the recently identified HS 2331+3905, which contains indeed a cool (~10000K) white dwarf and is not detected in the RASS, although it is at a nearby distance of ~90 pc (Araujo-Betancor et al. 2005).

A large fraction (two-thirds) of the new CVs displays moderate-to-strong He II λ4686 emission, suggestive of a magnetic nature – not too surprising, as ~60 per cent of all X-ray discovered CVs are either polars or IPs (Gänsicke 2005). What is surprising, however, is the very large fraction (one third) of new IPs identified in this sample (summarized in Table 5).

Figure 22. Radial velocities (RV) determined from the Hα wings in RX J1803, folded over the putative orbital period of 160.21(12) min. A sine fit to the folded radial velocities is shown as a dashed line. The systemic velocity determined from the fit is v = -100(7) km s⁻¹.

Figure 23. Centre panel: orbital and spin periods of 31 confirmed IPs. The dotted lines indicate (from top to bottom) P.spin/P.orb = 1, 0.1, 0.01, 0.001. Top panel: orbital period distribution of the known IPs, the 2–3 h period gap is shaded grey. Right panel: spin period distribution of the known IPs. The four new systems presented in this paper are shown as filled symbols.

6.1 Intermediate polars: a growing family

The census of IPs is probably the worst defined of all CV subclasses. The IP page by K. Mukai² lists 25 confirmed IPs. The latest edition (7.4) of Ritter & Kolb (2003) has 37 IPs, and Downes et al. (2001) contains 46 IPs. The defining criterion of an IP is the detection of coherent short-period variability over a sufficiently long period of time, that can be associated with the white dwarf spin – and it is the differing degrees of strictness in applying this criterion which causes the large disagreement in the head count of IPs. We adopted Mukai’s conservative classification, and updating his list with RX J0153.3+7446 (Porb = 1414 s, Haberl & Motch 1995; P.spin = 236.48 min, Thorstensen, private communication) and HS0943+1404 (Porb = 4150 s, Rodríguez-Gil et al. 2005), as well as the four new IPs presented here, the current roster of IPs encompasses 31 systems.³

Fig. 23 shows the distribution of these 31 systems in the Porb–P.spin plane, their orbital and spin period distributions, as well as the distribution in P.spin/P.orb. A large fraction of all IPs is found near P.spin/P.orb ≃ 0.1, which was first noticed by Barrett, O’Donoghue & Warner (1988), and stimulated theoretical work on the white dwarf spin equilibrium in magnetic CVs (King & Lasota 1991; Warner & Wickramasinghe 1991). Later, King & Wynn (1999) showed that

² http://heawww.gsfc.nasa.gov/users/mukai/iphome/iphome.html
³ Thus, our definition of IPs excludes systems showing coherent variability at extremely short periods that lack the definite evidence of these periods being related to the white dwarf spin (e.g. WZ Sge; Robinson, Nather & Patterson 1978 and HS2331+3905; Araujo-Betancor et al. 2005), nearly-synchronous polars, systems such as V795 Her or LS Peg, i.e. members of the SW Sex class which might contain a magnetic white dwarf (Rodríguez-Gil et al. 2001) but which lack undisputable measurements of P.spin and systems for which the presence of coherent variability is supported only by moderately small amounts of data.
spin equilibria with \(P_{\text{spin}} / P_{\text{orb}} > 0.1 \), exist. King & Wynn (1999) predicted that most IPs with \(P_{\text{spin}} / P_{\text{orb}} > 0.1 \) should have orbital periods below the period gap – which agrees with Fig. 23. 2.3. Most recently, Norton, Wynn & Sommerscales (2004) found that a large range of spin equilibria exists in the \((P_{\text{spin}} / P_{\text{orb}}, \mu_{\text{wd}}, P_{\text{orb}}) \) parameter space, where \(\mu_{\text{wd}} \) is the magnetic moment of the white dwarf. Assuming that the majority of the observed IPs are close to their spin equilibria, Norton et al. (2004) estimated their \(\mu_{\text{wd}} \) from the model calculations. Using their Fig. 2, we estimate the magnetic moments of the white dwarfs in RX J0636, RX J0704, and RX J1803 to be \(\sim 3 \times 10^{33} \, \text{G} \, \text{cm}^3 \), \(\sim 1 \times 10^{33} \, \text{G} \, \text{cm}^3 \), and \(\sim 4 \times 10^{33} \, \text{G} \, \text{cm}^3 \), respectively. In that respect, RX J0636 and RX J1803 are similar to the bulk of the previously known IPs, whereas RX J0704 resembles V405 Aur or YY Dra.

The case of RX J1730 is quite different, its very low \(P_{\text{spin}} / P_{\text{orb}} \) and long orbital period indicate that the white dwarf is rotating much faster than its equilibrium spin period, and we suggest that it is similar to AE Aqr. In AE Aqr, the rapid white dwarf spin is actually preventing accretion on to the white dwarf (Wynn, King & Horne 1997), and the mass-ejection from the system explains the large observed spin-down rate of the white dwarf (de Jager et al. 1994). Schenker et al. (2002) suggested that AE Aqr descended from a supersoft X-ray binary which only recently (\(\sim 10^5 \) yr ago) turned from a phase of extremely high (thermal time-scale) mass transfer into a (not quite) ‘ordinary’ CV. AE Aqr differs from normal CVs in having a spectral type which is too late for its orbital period, and an extreme N/C overabundance. Gänsicke et al. (2003) have shown that a substantial fraction of CVs (\(\sim 10-15 \) per cent) show evidence for enhanced N/C abundances, confirming that thermal time-scale mass transfer may represent an important CV formation channel. If RX J1730 is indeed a sibling of AE Aqr, we predict that it should show a measurable spin-down of the white dwarf rotation, and is likely to exhibit an enhanced N/C abundance ratio as well. It may also show the flaring characteristic of AE Aqr.

The class of IPs has seen a substantial growth in number over the last few years, and more than 20 per cent of all confirmed IPs were identified by us, DW Cnc (= HS0756+1624, literally a twin of V1025 Cen, Rodríguez-Gil et al. 2004, see also Patterson et al. 2004), 1RXS J062518.2+733433 (= HS0618+7336, a ‘standard’ IP; Araujo-Betancor et al. 2003), and HS0943+1404 (an IP with long \(P_{\text{orb}} \) and small \(P_{\text{spin}} / P_{\text{orb}} \); Rodríguez-Gil et al. 2005) as part of our search for CVs in the Hamburg Quasar Survey, and RX J0636, RX J0704, RX J1730 and RX J1803 in the ROSAT/2MASS selected CV sample described in this paper. These seven new IPs span a large range in orbital and spin periods, with \(0.0023 < P_{\text{spin}} / P_{\text{orb}} < 0.43 \), demonstrating a rich variety of systems among the newly identified CVs.

6.2 INTEGRAL – a bloodhound for hunting down IPs?

RX J1730 has been detected as a significant INTEGRAL source (IGR J17303-0601, 0.28 \(\pm \) 0.03 count s\(^{-1}\)) in the IBIS/ISGRI soft gamma-ray Galactic Plane Survey (GPS) (Bird et al. 2004). Masetti et al. (2004) observed three optically unidentified INTEGRAL sources, including RX J1730. Based on their single spectrum of RX J1730, which is similar to our data shown in Fig. 2, the authors suggested that the object is a low-mass X-ray binary in the Galactic bulge. However, the detection of a 128 s spin period in our optical photometry clearly identifies RX J1730 as an IP. Inspecting the IBIS GPS catalogue (Bird et al. 2004), six out of the 123 sources are CVs, of which four are IPs (1RXS J154814.4–452845, V2400 Oph, RX J1730, and V1223 Sgr), one is an asynchronous pol-
lar (V1432 Aqr) and one is a (non-magnetic) dwarf nova (SS Cyg).

Whereas the dominant population of ROSAT-discovered CVs were X-ray soft polars, the harder X-ray spectrum of IPs makes them the most prolific CV type contained in X-ray surveys of the Galactic plane, where interstellar absorption will suppress the X-ray soft polars even for relatively short distances. It appears that optical follow-up of unidentified INTEGRAL GPS sources may turn out to be a significant discovery channel for IPs.

7 CONCLUSIONS

We have initiated a search for CVs selecting targets from the ROSAT Bright Source catalogue and discriminating against AGN by using a 2MASS infrared colour-cut. Whereas our aim was to find members of the ‘missing’ population of low-mass-transfer CVs near the minimum period, we predominantly discovered new magnetic CVs, among which are four IPs: RX J0636, RX J0704, RX J1730 and RX J1803. RX J0636 (\(P_{\text{orb}} \sim 201 \) min, \(P_{\text{spin}} = 1008.3408 \) s) are rather typical IPs, except for RX J1803 being the first confirmed IP in the period gap. RX J0704 (\(P_{\text{orb}} \sim 250 \) min, \(P_{\text{spin}} = 480.708 \) s) appears to be similar to V405 Aur or YY Dra. The most striking new CV is RX J1730 (\(P_{\text{orb}} = 925.27 \) min, \(P_{\text{spin}} = 128.0 \) s), which may be a sibling of AE Aqr. RX J1730 is also a moderately bright hard X-ray source in the INTEGRAL/IBIS Galactic Plane Survey.

ACKNOWLEDGMENTS

BTG, TRM, and PRG were supported by a PPARC Advanced Fellowship, a PPARC Senior Fellowship, and a PPARC PDRA, respectively. AA thanks the Royal Society for generous funding. DS acknowledges a Smithsonian Astrophysical Observatory Clay Fellowship. Based in part on observations obtained at the German–Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut für Astronomie, Heidelberg, jointly with the Spanish National Commission for Astronomy; on observations made with the OGS telescope, operated on the island of Tenerife by the European Space Agency (ESA) in the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias (IAC); on observations made at the 1.2-m telescope, located at Kryoneri Korinthias, and owned by the National Observatory of Athens, Greece; on observations made with the William Herschel Telescope, the Isaac Newton Telescope, and the Jacobus Kapteyn Telescope, which are operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the IAC; and on observations made with the 6.5-m Magellan–Clay telescope operated at Las Campanas Observatory, Chile on behalf of the Magellan consortium; and on observations made with the Telescope Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the IAC. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We thank the referee, Coel Hellier, for his prompt report. On 2005 February 13, during the write-up of this paper, our colleague and friend Emílio Harlaftis died in an avalanche on Mt Menalon, Peloponnesse. Emílio has been a very active astronomer, working mainly on X-ray binaries and cataclysmic
variables, and he strongly promoted astronomy in Greece. He has involved many students actively in this research project through the use of Kryoneri Observatory. We have been working with Emilios for many years, and shared many moments with him. We shall miss him.

REFERENCES

This paper has been typeset from a TeX/PostTeX file prepared by the author.