Measurement of the $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 1.96$ TeV using Lepton + Jets Events with Lifetime b-tagging

We present a measurement of the top quark pair (tt) production cross section (σtt) in pp collisions at √s = 1.96 TeV using 230 pb⁻¹ of data collected by the DØ experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the tt purity of the selected sample. For a top quark mass of 175 GeV, we measure σtt = 8.6⁻¹⁺⁵ (stat. +syst.) ± 0.6 (lumi.) pb, in agreement with the standard model expectation.

PACS numbers: 13.85.Lg, 13.85.Qk, 14.65.Ha

The top quark was discovered at the Fermilab Tevatron Collider by the CDF and DØ collaborations [1] in pp collisions at √s = 1.8 TeV based on about 50 pb⁻¹ of data per experiment. The increased statistics and higher collision
energy of $\sqrt{s} = 1.96$ TeV of Tevatron Run II allow more precise measurements of top quark properties, including its production and decay characteristics. Theoretical calculations performed within the framework of the standard model (SM) predict the $t\bar{t}$ production cross section ($\sigma_{t\bar{t}}$) with an uncertainty of less than 15% [2]. A significant deviation from this prediction would signal the presence of physics beyond the SM, such as $t\bar{t}$ resonant production [3]. The CDF and D0 collaborations have previously reported measurements of $\sigma_{t\bar{t}}$ at $\sqrt{s} = 1.8$ TeV [4]. Recent measurements at $\sqrt{s} = 1.96$ TeV by the CDF [5] and D0 [6] collaborations agree with the SM prediction within their experimental uncertainties.

In the SM, the top quark decays to a W boson and b quark with a branching ratio of $\approx 100\%$. The lepton+jets final state results from the leptonic decay of one of the W bosons and the hadronic decay of the other. The event signature is one lepton with high transverse momentum, large transverse energy imbalance (E_T) due to the undetected neutrino, and four jets, two of which result from hadronization of the b quarks.

In this Letter, we report the measurement of $\sigma_{t\bar{t}}$ in the lepton (electron or muon) plus jets channel using b-jet identification (b-tagging) techniques exploiting the long lifetime of B hadrons. The data were collected by the D0 experiment from August 2002 through March 2004, and correspond to an integrated luminosity of 226 ± 15 pb$^{-1}$ (229 ± 15 pb$^{-1}$) in the electron (muon) sample.

The D0 detector includes a tracking system, calorimeters, and a muon spectrometer [7]. The tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located inside a 2 T superconducting solenoid. The tracker design provides efficient charged particle measurements in the pseudorapidity region $|\eta| < 3$ [8]. The SMT strip pitch of 50–80 μm allows a precise reconstruction of the primary interaction vertex (PV) and an accurate determination of the impact parameter of a track relative to the PV [9], which are the key components of the lifetime-based b-jet tagging algorithms. The PV is required to be within the SMT fiducial volume and consist of at least 3 tracks. The calorimeter consists of a central section (CC) covering $|\eta| < 1.1$, and two end calorimeters (EC) extending the coverage to $|\eta| \approx 4.2$. The muon system surrounds the calorimeter and consists of three layers of tracking detectors and two layers of scintillators [10]. A 1.8 T iron toroidal magnet is located outside the innermost layer of the muon detector. The luminosity is calculated from the rate for pp inelastic collisions detected using two hodoscopes of scintillation counters mounted close to the beam pipe on the front surfaces of the EC calorimeters.

We select data samples in the electron and muon channels by requiring an isolated electron with $p_T > 20$ GeV and $|\eta| < 1.1$, or an isolated muon with $p_T > 20$ GeV and $|\eta| < 2.0$. More details on the lepton identification as well as trigger requirements are reported elsewhere [6]. In both channels, we require E_T to exceed 20 GeV and not be collinear with the lepton direction in the transverse plane. These W boson candidate events must be accompanied by one or more jets with $p_T > 15$ GeV and rapidity $|y| < 2.5$ [8]. Jets are defined using a cone algorithm with radius $\Delta R = 0.5$ [11]. We classify the selected events according to their jet multiplicity. Events with 3 or ≥ 4 jets are expected to be enriched in $t\bar{t}$ signal, whereas events with only 1 or 2 jets are expected to be dominated by background. We use the former to estimate $\sigma_{t\bar{t}}$, and the latter to verify the background normalization procedure.

The main background in this analysis is the production of W bosons in association with jets (W+jets), with the W boson decaying leptonically. In most cases, the jets accompanying the W boson originate from light (u, d, s) quarks and gluons (W+light jets). Depending on the jet multiplicity, between 2% and 14% of W+jets events contain heavy flavor jets resulting from gluon splitting into $b\bar{b}$ or $c\bar{c}$ ($Wb\bar{b}$ or $Wc\bar{c}$, respectively), while in about 5% of events, a single c quark is present in the final state as a result of the W boson radiated from an s quark from the proton’s or antiproton’s sea (Wc). A sizeable background arises from strong production of two or more jets ("multijets"), with one of the jets misidentified as a lepton and accompanied by large E_T resulting from mismeasurements of jet energies. Significantly smaller contributions to the background arise from single top, Z+jets, and weak diboson (WW, WZ and ZZ) production. Only a small fraction of the background events contain b or c-quark jets in the final state. As a consequence, the signal-to-background ratio is significantly enhanced when at least one jet is identified as a b-quark jet.

We use a secondary vertex tagging (SVT) algorithm to identify b-quark jets. Secondary vertices are reconstructed from two or more tracks satisfying the following requirements: $p_T > 1$ GeV, ≥ 1 hits in the SMT layers and impact parameter significance $d_0/\sigma_{d_0} > 3.5$ [9]. Tracks identified as arising from K_S^0 or Λ decays or from γ conversions are not considered. If the secondary vertex reconstructed within a jet has a decay length significance $L_{xy}/\sigma_{L_{xy}} > 7$ [12], the jet is tagged as a b-quark jet. Events with exactly 1 (≥ 2) tagged jets are referred to as single-tag (double-tag) events. We treat single-tag and double-tag events separately because of their different signal-to-background ratios.

Secondary vertices with $L_{xy}/\sigma_{L_{xy}} < -7$ appear due to finite resolution of their characteristics after reconstruction, and define the “negative tagging rate”. The negative tagging rate is used to estimate the probability for misidentifying a light flavor (u, d, s quark or gluon) jet as a b-quark jet (the “mis-tagging rate”).

We estimate both the b-tagging efficiency and the mis-tagging rate using jets with ≥ 2 tracks satisfying less stringent requirements than those for SVT. In particular,
the p_T cut is reduced from 1 GeV to 0.5 GeV for all but the highest p_T track, and no cut on d_{ca}/σ_{dca} of the tracks is made. These requirements have an efficiency per jet $> 80\%$ for $p_T > 30$ GeV and integrated over y. We measure the b-tagging efficiency in a data sample of dijet events with enhanced heavy flavor content by requiring a jet with an associated muon at high transverse momentum relative to the jet axis. By comparing the SVT and muon-tagged jet samples, the tagging efficiency for semileptonic b-quark decays ("semileptonic b-tagging efficiency") can be inferred. We make use of a Monte Carlo (MC) simulation to further correct the measured efficiency to the tagging efficiency for inclusive b-quark decays. We estimate the c-tagging efficiency from the same simulation, corrected by a scale factor defined as the ratio of the semileptonic b-tagging efficiency measured in data to that measured in the simulation. The tagging probability for a particular process depends on the flavor composition of the jets in the final state as well as on the overall event kinematics. We estimate it by applying the tagging rates measured in data to each jet in the simulation, taking into consideration its flavor, p_T, and y. In the case of W+jets events, we also use the simulation to estimate the fraction of the different W+heavy flavor subprocesses.

We compute the $t\bar{t}$ acceptance for events with a true electron or muon arising from a $W \rightarrow \ell\nu \ (\ell = e, \mu, \tau)$ decay, corresponding to total branching fractions of 17.10% and 17.03% [18], respectively, in the electron and muon channels. In the electron channel, the total acceptance before tagging is estimated to be $(10.8 \pm 0.8)\%$ and $(14.2 \pm 1.7)\%$, for events with 3 and those with ≥ 4 jets, respectively. The corresponding numbers for the muon channel are $(9.9 \pm 1.0)\%$ and $(14.1 \pm 1.9)\%$. The estimated single-tag efficiencies are $(43.4 \pm 1.2)\%$ and $(45.3 \pm 1.0)\%$ for events with 3 and those with ≥ 4 jets, respectively. The corresponding double-tag efficiencies are $(10.4 \pm 1.0)\%$ and $(14.2 \pm 1.3)\%$.

We estimate the number of multijet events from the data for each jet multiplicity using the matrix method described in Ref. [6], separately for the samples before and after tagging. Smaller contributions from single top, Z+jets, and diboson production (collectively referred to as "other bkg") are estimated from the simulation, normalized to the next-to-leading order theoretical cross sections [19, 20]. We also include under "other bkg" the contribution from $t\bar{t}$ with both W bosons decaying leptonically, assuming the same $\sigma_{t\bar{t}}$ as for $t\bar{t} \rightarrow \ell\nu$-jets. We determine the number of tagged W+jets events as the product of the number of W+jets events in data before tagging and the average tagging probability for W+jets events (e.g. $\approx 4\%$ for single-tag and $\approx 0.4\%$ for double-tag events with ≥ 4 jets). The number of W+jets events before tagging is computed as a difference between the number of selected events and the estimated contribution from the rest of processes (multijets, $t\bar{t}$, and "other bkg").

Tables I and II summarize the sample composition for single-tag and double-tag events, respectively, assuming $\sigma_{t\bar{t}} = 7.0$ pb. Figure 2 shows the observed and expected number of events for each jet multiplicity. We interpret the excess over the background expectation in the third and fourth jet multiplicity bins as the $t\bar{t}$ signal. The good agreement between observation and expectation in the first and second jet multiplicity bins validates the background estimation procedure.

![FIG. 1: Measured b-tagging efficiency (circles) and mis-tagging rate (triangles), and estimated c-tagging efficiency (solid line) as a function of jet p_T.](image-url)
We calculate σ_{tt} by maximizing a likelihood function including a Poisson term for each of the eight independent channels considered: 3 and ≥ 4 jets, for single- and double-tag events in the electron and muon channels. At each step in the maximization, the multijet background in these eight tagged samples, and the corresponding samples before tagging, is constrained within errors to the amount determined by the matrix method. In addition, we include a Gaussian term for each of the systematic uncertainties considered, following the procedure described in Ref. [21]. In this approach, each source of systematic uncertainty is allowed to affect the central value of the cross section during the maximization procedure, thus yielding a combined statistical and systematic uncertainty on σ_{tt}. Assuming a top quark mass (m_t) of 175 GeV, we measure

$$\sigma_{tt} = 8.6^{+1.6}_{-1.5} \text{ (stat. + syst.)} \pm 0.6 \text{ (lumi.) pb},$$

in good agreement with the SM prediction of $6.77^{+0.42}_{-0.44} \text{ pb}$ [2].

The contribution due to each individual source of systematic uncertainty can be estimated by redoing the fit after fixing all but the corresponding Gaussian term and unfolding the statistical uncertainty from the resulting total uncertainty. The statistical uncertainty of $+1 \text{ pb}$ is obtained from the fit where all Gaussian terms are fixed. As shown in Table III, b-jet tagging efficiency, jet energy calibration, and background modeling are the leading sources of systematic uncertainty. In addition, a systematic uncertainty of 6.5% from the luminosity measurement [22] has been assigned. In the top quark mass

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \sigma_{tt}$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-tagging efficiency</td>
<td>$+0.6 - 0.5$</td>
</tr>
<tr>
<td>Jet energy calibration</td>
<td>$+0.5 - 0.4$</td>
</tr>
<tr>
<td>Background modeling</td>
<td>± 0.5</td>
</tr>
<tr>
<td>Lepton selections</td>
<td>$+0.5 - 0.4$</td>
</tr>
<tr>
<td>Jet identification</td>
<td>$+0.3 - 0.2$</td>
</tr>
<tr>
<td>Multijet background</td>
<td>$+0.3 - 0.2$</td>
</tr>
<tr>
<td>Mis-tagging rate</td>
<td>± 0.1</td>
</tr>
<tr>
<td>Total</td>
<td>$+1.1 - 1.0$</td>
</tr>
</tbody>
</table>
range of 160 GeV to 190 GeV, the measured cross section decreases (increases) by 0.06 pb per 1 GeV shift of \(m_t \) above (below) 175 GeV.

We used an alternative b-tagging algorithm to cross check this result. This algorithm relies on counting tracks with significant impact parameter (CSIP) with respect to the PV: a jet is tagged if \(\gamma > 2 \) (\(\gamma > 3 \)) associated tracks have \(d_{ca}/\sigma_{dca} > 3 \) (\(d_{ca}/\sigma_{dca} > 2 \)). As compared to SVT, this algorithm has a slightly higher b-tagging efficiency and about a factor of two higher mis-tagging rate. The measured cross section using the CSIP algorithm is \(\sigma_{ttt} = 7.6^{+1.7}_{-1.4} \) (stat. + syst.) \(\pm 0.6 \) (lumi.) pb, consistent with the SVT result once the existing overlap between both samples is taken into account. While we are currently not combining these two results, the fact that different b-tagging techniques are only partially correlated will be exploited in future analyses to further increase the precision of this measurement.

In summary, we have measured the \(t\bar{t} \) production cross section in \(pp \) interactions at \(\sqrt{s} = 1.96 \) TeV in the lepton+jets channel using lifetime b-tagging. Our measurement yields \(\sigma_{tt} = 8.6^{+1.6}_{-1.5} \) (stat. + syst.) \(\pm 0.6 \) (lumi.) pb, consistent with the SM prediction.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA), CEA and CNRS/IN2P3 (France), FASI, PPARC (United Kingdom), FOM (The Netherlands), PPARC (United Kingdom), Rosatom and RFBR (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), DAE and DST (India), CONICET (Colombia), CONACyT (Mexico), KRF (Korea), CONICET and UBACyT (Argentina), FOM (The Netherlands), PPARC (United Kingdom), MSMT (Czech Republic), CICA Program, CFI, NSERC and WestGrid Project (Canada), BMBF and DFG (Germany), SFI (Ireland), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, Alexander von Humboldt Foundation, and the Marie Curie Fellowships.

[8] Rapidity \(\gamma \) and pseudorapidity \(\eta \) are defined as functions of the polar angle \(\theta \) and parameter \(\beta \) as \(\gamma(\theta, \beta) \equiv \frac{1}{2} \ln[(1 + \beta \cos \theta)/(1 - \beta \cos \theta)] \) and \(\eta(\theta) \equiv \gamma(\theta, 1) \), where \(\beta \) is the ratio of a particle’s momentum to its energy.
[9] Impact parameter is defined as the distance of closest approach \(d_{ca} \) of the track to the primary vertex in the plane transverse to the beamline. Decay length significance is defined as \(L_{xy}/\sigma_{L_{xy}} \), where \(\sigma_{L_{xy}} \) is the uncertainty on \(L_{xy} \).