PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/32711

Please be advised that this information was generated on 2019-03-20 and may be subject to change.
Measurement of the Λ^0 lifetime in the decay $\Lambda^0 \to J/\psi \Lambda^0$ with the DØ Detector

We present measurements of the A^0 lifetime in the exclusive decay channel $A^0 \rightarrow J/\psi A_0$, with $J/\psi \rightarrow \mu^+\mu^-$ and $A_0 \rightarrow \pi^+\pi^-$, the B^0 lifetime in the decay $B^0 \rightarrow J/\psi K^0_S$ with $J/\psi \rightarrow \mu^+\mu^-$ and $K^0_S \rightarrow \pi^+\pi^-$, and the ratio of these lifetimes. The analysis is based on approximately 250 pb$^{-1}$ of data recorded with the D0 detector in $p+p$ collisions at $\sqrt{s}=1.96$ TeV. The A^0 lifetime is determined to be $t(A^0) = 1.22^{+0.18}_{-0.17}\,(\text{stat}) \pm 0.04\,(\text{syst})$ ps, the B^0 lifetime $t(B^0) = 1.40^{+0.11}_{-0.10}\,(\text{stat}) \pm 0.04\,(\text{syst})$ ps, and the ratio $t(A^0)/t(B^0) = 0.87^{+0.14}_{-0.15}\,(\text{stat}) \pm 0.05\,(\text{syst})$. In contrast with previous measurements using semileptonic decays, this is the first determination of the A^0 lifetime based on a fully reconstructed decay channel.

Calculations based on a simple quark-spectator model [1] predict that the lifetimes of all b hadrons are equal. When non-spectator effects are taken into account, they give rise to a lifetime hierarchy of $\tau(B^+) \geq \tau(B^0) \approx \tau(A^0_b) > \tau(B_s^+) \approx \tau(B_s^0)$ [2]. Measurements of b-hadron lifetimes therefore provide means to determine the importance of non-spectator contributions in b-hadron decays. For comparison with theory, measure-
ments of lifetime ratios are preferred over individual lifetimes. The ratio \(\tau(A_0) / \tau(B^0) \) has been the source of theoretical study since early calculations [3] predicted a value greater than 0.90, almost two sigma away from the measurement average [4], 0.800 ± 0.053. Recent calculations [5] of this ratio that include higher order effects have reduced this difference. A current compilation [4] of lifetime ratio data for b hadrons is consistent with early calculations [6] that include non-spectator effects.

Previous measurements of \(\tau(A_0) \) used semileptonic decay channels that suffer from uncertainties arising from undetected neutrinos. A measurement of the lifetime using fully reconstructed \(A_0 \) decays is free from the neutrino ambiguities. The Tevatron Collider at Fermilab is the only operating accelerator where \(A_0 \) baryons are being produced and studied.

In this Letter we report a measurement of the \(A_0 \) lifetime in the decay channel \(A_0 \to J/\psi \Lambda^0 \), and its ratio to the \(B^0 \) lifetime from the \(B^0 \to J/\psi K_S^0 \) decay channel. This \(B^0 \) decay channel is chosen because of its similar topology to the \(A_0 \) decay. The \(J/\psi \) is reconstructed in the \(\mu^+ \mu^- \) decay mode, the \(\Lambda^0 \) in \(p\pi^- \), and the \(K_S^0 \) in \(\pi^+\pi^- \); throughout this Letter the appearance of a specific charge state will also imply its charge conjugate. The data used in this analysis were collected during 2002-2004 with the D0 detector in Run II of the Tevatron Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of approximately 250 pb\(^{-1}\).

The components of the D0 detector [7] most relevant for this measurement are the charged-particle tracking systems and the muon detector. The D0 tracker consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) that are surrounded by a superconducting solenoid magnet that produces a 2 T central magnetic field. The SMT has approximately 800,000 individual strips, with a typical pitch of 50–80 \(\mu m \), and a design optimized for tracking and vertexing capability for \(|\eta| < 3 \) (\(\eta = -\ln[\tan(\theta/2)] \)) and \(\theta \) is the polar angle. The system has a six-barrel longitudinal structure interspersed with sixteen disks. Each barrel consists of four layers arranged axially around the beam and the disks are placed perpendicular to the beam. The CFT has eight thin coaxial barrels, each supporting two doublets of overlapping scintillating fibers of 0.835 mm diameter, one doublet being parallel to the collision axis, and the other alternating by ±3° relative to the axis. For charged particles, the resolution for the distance of closest approach as provided by the tracking system is approximately 50 \(\mu m \) for tracks with \(p_T \approx 1 \text{ GeV}/c \), and improves asymptotically to 15 \(\mu m \) for tracks with \(p_T \geq 10 \text{ GeV}/c \). \(p_T \) is the component of the momentum perpendicular to the beam pipe. Preshower detectors and electromagnetic and hadronic calorimeters surround the tracker. A muon system is located beyond the calorimeter, and consists of multilayer drift chambers and scintillation trigger counters preceding 1.8 T toroidal magnets, followed by two similar layers beyond the toroids. Muon identification for \(|\eta| < 1 \) relies on 10 cm wide drift tubes, while 1 cm mini-drift tubes are used for \(1 < |\eta| < 2 \).

Primary vertex (PV) candidates are determined for each event by minimizing a \(\chi^2 \) function that depends on all the tracks in the event and a term that represents the beam spot constraint. The beam spot is the run-by-run average beam position, where a run typically lasts several hours. The beam spot is stable during the periods of time when the proton and antiproton beams are kept colliding continuously and can be used as a constraint for the primary vertex fit. The initial primary vertex candidate and its \(\chi^2 \) are obtained using all tracks. Next, each track used in the \(\chi^2 \) calculation is removed temporarily and the \(\chi^2 \) is calculated again; if the \(\chi^2 \) decreases by 9 or more, this track is discarded from the PV fit. This procedure is repeated until no more tracks can be discarded. Additional primary vertices are obtained by applying the same algorithm to the discarded tracks until no more vertices are found.

We base our data selection on defined objects such as charged tracks and muons. Although we do not require any specific trigger to select our sample, most of the events selected fire dimuon or single muon triggers. Preliminary selection of dimuon events requires the presence of at least two muons of opposite charge reconstructed in the tracker and the muon system. We require that at least one of the muon candidates consists of a central track, defined by hits in the SMT and CFT, matched with muon track segments in all three layers of the muon system. For the second muon, we require a central track matched with hits in at least the innermost layer of the muon system. The sample of \(J/\psi \to \mu^+\mu^- \) candidates consists of events with at least two muons, with trajectories constrained in a fit to a common vertex. The fit must have a \(\chi^2 \) probability greater than 1%, and the invariant mass of the dimuons must be in the range \(2.80 < M_{\mu\mu} < 3.35 \text{ GeV}/c^2 \). To reconstruct \(A_0 \) and \(B^0 \) candidates, the \(J/\psi \) events are examined for \(A_0 \) and \(B^0 \) candidates. The data are used for \(1 < |\eta| < 2 \).

We reconstruct the \(A_0 \) and \(B^0 \) by performing a constrained fit to a common vertex for either the \(A_0 \) or \(K_S^0 \) and the two muon tracks, with the latter constrained to the \(J/\psi \) mass of 3.097 GeV/c\(^2\) [4]. Because of their long decay lengths, a significant fraction of \(\Lambda^0 \) and \(K_S^0 \) will decay outside the SMT. Therefore, to maintain good ef-
iciency, no SMT hits are required on the tracks of the decay particles. To reconstruct the $\Lambda_c^0 (B^0)$, we first find the $\Lambda^0 (K^0_S)$ decay vertex, and then extrapolate the momentum vector of the ensuing particle and form a vertex with it and the two muon tracks belonging to the J/ψ. The precision of the $\Lambda_c^0 (B^0)$ vertex position is dominated by the two muon tracks from the J/ψ. If more than one candidate is found in the event, the candidate with the best χ^2 probability is selected as the $\Lambda_c^0 (B^0)$ candidate.

We determine the lifetime of a Λ_c^0 or B^0 by measuring the distance traveled by each b-hadron candidate in a plane transverse to the beam direction, and then applying a correction for the Lorentz boost. We define the transverse decay length as $L_{xy} = \frac{L_{xy}}{P_T} = \frac{cM_B}{P_T}$, where L_{xy} is the vector that points from the primary to the secondary vertex and P_T is the transverse momentum vector of the b hadron. The proper decay length (PDL) for a b-hadron candidate is then given by:

$$PDL = \frac{L_{xy}}{(\beta\gamma)} = \frac{L_{xy}}{cM_B} \frac{1}{P_T}, \quad (1)$$

where $(\beta\gamma)^\prime_B$, and M_B are the transverse boost and the mass of the b hadron, respectively. In our measurement, the value of M_B in Eq. 1 is set to the PDG mass value of Λ_c^0 or B^0 [4]. In our final selection of Λ_c^0 and B^0 candidates, we require an error of less than 100 μm on the PDL and we also require a total momentum greater than 5 GeV/c.

We perform an unbinned likelihood fit to measure the Λ_c^0 and B^0 lifetimes. The inputs for the fit are the mass, PDL and PDL error of the candidates. Candidates with invariant masses in the range of 5.1 to 6.1 GeV/c^2 for the Λ_c^0 and 4.9 to 5.7 GeV/c^2 for the B^0 are selected; these ranges include sideband regions that are used to model the PDL distributions of backgrounds. The likelihood function, L, is defined by:

$$L = \prod_{j=1}^{N} \left[f_s S_M(M_j)S_L(\lambda_j, \sigma_j) + (1-f_s) B_M(M_j)B_L(\lambda_j, \sigma_j) \right], \quad (2)$$

where N is the total number of selected events, f_s is the fraction of signal events in the sample, S_M and B_M are the probability distribution functions used to model the mass distributions for signal and background, respectively, and S_L and B_L model the distributions of proper decay lengths for signal and background. The likelihood function, L, is defined by:

$$L = \prod_{j=1}^{N} \left[f_s S_M(M_j)S_L(\lambda_j, \sigma_j) + (1-f_s) B_M(M_j)B_L(\lambda_j, \sigma_j) \right], \quad (2)$$

where N is the total number of selected events, f_s is the fraction of signal events in the sample, S_M and B_M are the probability distribution functions used to model the mass distributions for signal and background, respectively, and S_L and B_L model the distributions of proper decay lengths for signal and background. The mass for signal is modeled by a Gaussian distribution and the mass for background is described by a second-order polynomial. The PDL distribution for signal is described by the convolution of an exponential decay, whose decay constant is one of the parameters of the fit, with a resolution function represented by a single Gaussian function:

$$G(\lambda_j, \sigma_j) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp \left(-\frac{(\lambda_j - \lambda_j^0)^2}{2(\sigma_j^0)^2} \right), \quad (3)$$

where λ_j and σ_j represent the PDL and its error respectively for a given event j, and the s parameter is introduced in the fit to account for a possible misestimate of σ_j. The PDL distribution for background is described by a sum of a resolution function representing the zero-lifetime component, negative and positive exponential decay functions modeling combinatorial background, and an exponential decay that accounts for long-lived heavy flavor decays. We minimize $-2\ln L$ to extract the parameters: $c_T(A_{c}^0) = 366^{+45}_{-54}$ μm and $c_T(B^0) = 419^{+32}_{-20}$ μm. From the fits, we get $s = 1.27 \pm 0.10$ and $s = 1.39 \pm 0.05$ for the Λ_c^0 and B^0 respectively; and the number of signal events 61 ± 12 Λ_c^0 and 291 ± 23 B^0. Figs 1 and 2 (Figs 3 and 4) show the mass and proper decay length distributions for the $\Lambda_c^0 (B^0)$ candidates, respectively, with the results of the fits superimposed.

Table I summarizes the systematic uncertainties on our measurements. The contribution from the uncertainty on the detector alignment is estimated by reconstructing the B^0 sample with the positions of the SMT sensors shifted outwards radially by the alignment error in the radial position of the sensors and then fitting for the lifetime. We estimate the systematic uncertainty due to the resolution on the PDL by using two Gaussian functions for the resolution model. The contribution to the systematic uncertainty from the model describing background PDLs is studied by varying the parametrizations of the different components: (i) the exponential functions are replaced by exponentials convoluted with the resolution function of Eq. 3, (ii) a uniform background is added to account for outlier events (this has only a negligible effect), and (iii) the positive and negative short-lived lifetime components are forced to be symmetric. To study the systematic uncertainty due to the model for the mass distributions, we vary the shapes of the mass distribu-
Proper decay length (cm)

FIG. 2: Distribution of proper decay length for Λ_0^b candidates. The points are the data, and the solid curve is the sum of the contributions from signal (gray) and the background (dashed-dotted line).

FIG. 4: Distribution of proper decay length for B^0 candidates. The points are the data, and the solid curve is the sum of the contributions from signal (gray) and the background (dashed-dotted line).

Proper decay length (cm)

FIG. 3: Invariant mass distribution for B^0 candidate events. The points represent the data, and the curve represents the result of the fit. The mass distribution for the signal is shown in gray.

The lifetime of the long-lived component of the background varies with mass. This results in an uncertainty in the decay constant of the background under the mass peaks. We obtain the systematic uncertainty due to this effect by modelling the long-lived background with two exponentials instead of a single exponential. The decay constant of one of the two exponentials is determined from a fit in the low-mass sideband, and the other decay constant is determined from the high-mass sideband. The low-mass sideband is defined as the mass window 4.900-5.149 GeV/c^2 for B^0 and 5.100-5.456 GeV/c^2 for Λ_0^b and the high-mass sideband as 5.389-5.700 GeV/c^2 and 5.768-6.100 GeV/c^2 respectively. We perform the fit incorporating the linear combination of exponentials with the decay constants fixed to the values obtained in the low- and high-mass sidebands fits and allowing the coefficients of the linear combination to float. The systematic uncertainty quoted is the difference between the values we get from this fit and the nominal.

We also study the contamination of the Λ_0^b sample by B^0 events that pass the Λ_0^b selection. From Monte Carlo studies, we estimate that 19 B^0 events are reconstructed as Λ_0^b events. The invariant masses of the B^0 events entering the Λ_0^b sample are distributed almost uniformly across the entire mass range, and do not peak at the Λ_0^b mass. Their proper decay lengths therefore tend to be incorporated in our model of the long-lived heavy-flavor component of the background. To estimate the systematic uncertainty due to this contamination, we fit the mass and proper decay length distributions of the misidentified events in the MC samples, add this contribution to the likelihood with fixed parameters, and perform the fit again. The difference between the two results is quoted as the systematic uncertainty due to the contamination.

The fitting procedure is tested for the presence of biases by generating 1000 Monte Carlo experiments, each with the same statistics as our data samples. For the generated events, the PDL errors are taken from data, and the mass and PDL distributions are described by the probability distribution functions used in data, with parameters obtained from the fit. The fits performed on these Monte Carlo experiments indicate that there is no bias inherent in the procedure.

We also perform several cross-checks of the lifetime measurements. In particular, a fit is done where the back-
TABLE I: Summary of systematic uncertainties in the measurement of τ for Λ_c^0 and B^0 and their ratio. The total uncertainties are also given combining individual uncertainties in quadrature.

<table>
<thead>
<tr>
<th>Source</th>
<th>Λ_c^0 (\mu m)</th>
<th>B^0 (\mu m)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>5.4</td>
<td>5.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Model for PDL resolution</td>
<td>6.7</td>
<td>2.7</td>
<td>0.010</td>
</tr>
<tr>
<td>Model for PDL background</td>
<td>2.7</td>
<td>3.1</td>
<td>0.005</td>
</tr>
<tr>
<td>Model for signal mass</td>
<td>0.2</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Model for background mass</td>
<td>2.5</td>
<td>6.2</td>
<td>0.007</td>
</tr>
<tr>
<td>Long-lived components</td>
<td>1.5</td>
<td>0.1</td>
<td>0.003</td>
</tr>
<tr>
<td>Contamination</td>
<td>8.8</td>
<td>0.8</td>
<td>0.023</td>
</tr>
<tr>
<td>Total</td>
<td>12.9</td>
<td>9.2</td>
<td>0.028</td>
</tr>
</tbody>
</table>

The ground is modeled using only sideband regions, the J/ψ vertex is used instead of the b-hadron vertex, the mass windows are varied, the reconstructed b-hadron mass is used instead of the Particle Data Group [4] value, and the sample is split into different pseudorapidity regions or different regions of azimuth. All results obtained with these variations are consistent with our central values.

The results of our measurement of the Λ_c^0 and B^0 lifetimes are summarized as:

$$\tau(\Lambda_c^0) = 1.22^{+0.22}_{-0.18} \text{ (stat)} \pm 0.04 \text{ (syst)} \text{ ps},$$

$$\tau(B^0) = 1.40^{+0.11}_{-0.10} \text{ (stat)} \pm 0.03 \text{ (syst)} \text{ ps}.$$

These can be combined to determine the ratio of lifetimes:

$$\frac{\tau(\Lambda_c^0)}{\tau(B^0)} = 0.87^{+0.17}_{-0.14} \text{ (stat)} \pm 0.03 \text{ (syst)},$$

where we determine the systematic uncertainty of the ratio by varying each parameter in the two samples simultaneously and quoting the deviation in the ratio as the systematic uncertainty due to that source.

In conclusion, we have measured the Λ_c^0 lifetime in the fully reconstructed exclusive decay channel $J/\psi \Lambda^0$. This is the first time that this lifetime has been measured in an exclusive channel. The measurement is consistent with the world average, $1.229 \pm 0.080 \text{ ps}$ [4], and the Λ_c^0 to B^0 ratio of lifetimes is also consistent with theoretical predictions [3, 5, 6].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à l’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Education and Science, Agency for Atomic Energy and RF President Grants Program (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), Departments of Atomic Energy and Science and Technology (India), Colciencias (Colombia), CONACyT (Mexico), KRF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), Natural Sciences and Engineering Research Council and WestGrid Project (Canada), BMBF and DFG (Germany), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, and the Alexander von Humboldt Foundation.

[*] Visitor from University of Zurich, Zurich, Switzerland.
[\[Visitor from Institute of Nuclear Physics, Krakow, Poland.