Implementing Vimes - the broker

component.
Eric D. Schabell Bas van Gils
erics@s.ru.nl basvg@s. r u. nl

University of Nijmegen, Computing Science Institute, P.O. Box
9010, 6500 GL Nijmegen, The Netherlands

Abstract

This document will discuss the Vimes retrieval architecture broker com-
ponent from the research project Profile Based Retrieval Of Networked Infor-
mation Resources (PRONIR). It will provide an overview of the development
process from requirements investigations done with use cases, on to the ac-
tual design and implementation.

1 Introduction

This document will present a structured look at the Vimes retrieval architecture
broker development project for the research project Profile Based Retrieval Of
Networked Information Resources (PRONIR).

The information retrieval architecture called Vimes was briefly described
in (Gils et al., 2003b). To facilitate experimentation and validation within the
PRONIR project the Vimes retrieval architecture will have to be implemented.

The Vimes retrieval architecture will be implemented in several compo-
nents. Here we will be presenting the broker component, starting with the
results of our requirements investigation using Use Cases. These results lead
into the section where we will present our design choices. This will finish up
with a short discussion of the implementation with the reader being pointed to
the current location of the software.

Furthermore, in the rest of this paper the reader is assumed to be familiar
with at least (Gils et al., 2003a) and (Gils et al., 2004).

2 Requirements

This section will present the results of our requirements investigation based on
Use Cases.

2.1 Problem Statement

To implement the Vimes retrieval architecture as described in the introduction,
a broker component will be needed to mediate between the user, the transfor-

mation component and the search component.

2.2 Statement of work

The realization of the broker component will be considered completed when
each and every use case has been implemented. An analysis of the require-
ments will be made using use cases, which will function as the contract with
which we determine completion of the broker component.

2.3 Stakeholders

The following have been identified as stakeholders in this project:

* Basvan Gils - primary researcher who will be validating his research with
the Vimes retrieval architecture.

¢ Erik Proper - suppervisor for the PRONIR research project of which Bas

van Gils research is a part of.

2.4 Actors

The following list includes all actors that are the initiation point for a use case:
® User (provides search query requests).
® Searcher (component that inputs search results).

¢ Transformer (component that inputs transformations).

2.5 Defined use cases
The following table shows a listing of use cases as defined for completing the
Vimes broker functionality:

® Process user request.

* Send search request.

* Send transform request.

® Process search results.

® Process transform results.

® Process queue.

* Send user results.

2.5.1 Process user request

This use case deals with the incoming data for the users query. It will need to
be registered, queued and processed. Furthermore, the eventual results will
need to be returned to the Vimes user interface component.

Use Case Name:

Process user request

Description: The broker will provide a mechanism for pro-
cessing user retrieval requests from the user in-
terface component.

Actors: User

1. Broker is reachable for User.

Preconditions: 2. Database is reachable for the broker

(queue).
Triggers: User requests a search be completed by submit-

ting a query through the user interface compo-
nent.

Basic Course of Events:

1. The User submits a search request through
the user interface component.

2. The request is queued by the broker.

3. The User is notified that the request is ac-

cepted.
Exceptions:
1. Request for searching has been accepted
Postconditions: and is in the queue.

2. User has been notified.

2.5.2 Send search request

The broker will need to interact with theVimes search component. This use case
deals with sending user requests on to the search component for processing.

Use Case Name:

Send search request

Description: The broker will provide a mechanism for send-
ing eventual requests on to the search compo-
nent.

Actors: Searcher

1. Searcher is reachable for broker.

Preconditions:

2. Database is reachable for broker (queue).

Triggers: A queue run (processing the queued search

queries).

Basic Course of Events:

1. Broker has job from the queue that needs
to be sent to Searcher.

2. Send job to Searcher for processing.

3. Job queue is updated to reflect being sent
to Searcher.

Exceptions:

Postconditions:

1. Job has been sent to the Searcher.

2. Job queue has been updated.

2.5.3 Send transform request

The broker will need to interact with theVimes transformation component. This
use case details the passing of transformation requests on to the transformation
component.

Use Case Name: Send transform request
Description: The broker will be able to send transformation
requests based on user preferences (form/for-
mat).
Actors: Transformer
1. Transformer is reachable for broker.
P ditions:
reconditions 2. Database is reachable for broker (queue).
Triggers: A queue run.
1. Broker has job from queue that needs to be
sent to the Transformer.
Basic Course of Events: 2. Send job to Transformer for processing.
3. Job queue is updated to reflect being sent
to Transformer.
Exceptions:
1. Job has been sent to the Transformer.
Post diti :
ostconditions 2. Job queue has been updated.

2.5.4 Process search results

The broker will need to interact with theVimes search component. This use
case will detail the process of processing the users search request results that

the search component returns.

Use Case Name:

Process search results

Description: The broker will provide a mechanism for receiv-
ing search results from the search component.
Actors: Searcher
1. Broker component is reachable for
Preconditions: Searcher.
2. Database is reachable for broker (queue).
Triggers: Broker receives the results of a search query from

the Searcher.

Basic Course of Events:

1. Broker receives results of a search query job
from the Searcher.

2. Response is cached if appropriate.

3. Response is evaluated to determine if it
completes the related job or not.

4. Job entry in queue is updated to show new

status.
Exceptions: None.
1. Results of a job has been registered in the
.. queue.
Postconditions:

2. Results of ajob can result in updated cache.

2.5.5 Process transform results

The broker will need to interact with theVimes transformation component. This
use case handles the processing of transformation results from the transforma-

tion component.

Use Case Name:

Receive transform results

Description: The broker will provide a mechanism for receiv-
ing transformation results from the transform
component.

Actors: Transformer

1. Broker component is reachable for Trans-
- former.

Preconditions:

2. Database is reachable for broker (queue).

Triggers: Broker receives the results of a transformation re-

quest from the Transformer.

Basic Course of Events:

1. Broker receives results of a transformation
request from the Transformer.

2. Response is evaluated to determine if it
completes the related job or not.

3. Job entry in queue is updated to show new
status.

Exceptions:

None.

Postconditions:

Results of a transformation request has been reg-
istered in the queue.

2.5.6 Process queue

This use case will describe the processing of the jobs that are still awaiting some
action. These actions can be transformations, search query results or completed
results that need to be returned to the user interface component.

Use Case Name:

Process queue

Description:

The user submitted search request jobs are pro-
cessed after being submitted into the job queue.
The broker is responsible for all logic involved
with processing the search jobs and for resolving
them into finished results to be sent back to the
user interface component.

Actors:

Searcher, Transformer, User

Preconditions:

1.
2.

Database is reachable for broker (queue).

Queue is not empty.

Triggers:

Process user request.
Process search results.

Process transform results.

Basic Course of Events:

Broker retrieves job from queue.

Broker checks for job dependencies (all
completed?).

As needed, (dependent) job triggers send
search request.

As needed, (dependent) job triggers send
transform request.

As needed, job status in queue updated.
Job completed, triggers send user results.

Repeat until end of queue reached.

Exceptions:

2.
3.

Searcher is unreachable, re-queue job.
Transformer is unreachable, re-queue job.

User is unreachable, re-queue job.

Postconditions:

Job queue processed, resulting in updated
queue.

2.5.7 Send user results

This use case deals with returning the resulting data from a users query. It will
need to be returned to the user and the queue cleaned out.

Use Case Name:

Send user results

Description: The broker will be able to send results of user
queries back to the user.
Actors: Searcher, Transform
1. User is reachable for the broker.
Preconditions: 2. Database is reachable for the broker
(queue).
Triggers: Job reaches completed status in the queue.

Basic Course of Events:

1. A job in the queue has reached completed
status.

2. The user search results are returned to the
User.

3. The request is dequeued by the broker.

Exceptions:

None.

Postconditions:

1. Requested search result has been returned
to User.

2. Job (all traces) has been removed from the
queue.

2.6 Scenarios

Here you will find each use case description with as many scenarios as needed
to quantify the individual use cases.

2.6.1 Process user request

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: | Process user request

1. User submits a validated search query to Vimes.
2. Data is processed into a request that is queued:
(a) keywords
(b) forms

Use Case Steps: (c) formats
(d) limits

(e) email
3. Broker queues request.

4. Broker notifies user request has been accepted.

i 1. Broker notifies user that request has not been ac-
Alternative Path: cepted, with back button.

10

2.6.2 Send search request

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: | Send search request

1. Broker retrieves a queued request.

2. Broker sends request to Search component:
(a) request.id
(b) keywords
(c) forms

Use Case Steps:
(d) formats

(e) limits

3. Broker annotates request as sent to Search com-
ponent.

4. Broker queues request.

) 1. Broker is unable to send request to Search compo-
Alternative Path: nent, just re-queue request unannotated.

11

2.6.3 Send transform request

The following scenario details an example usage of the use case including rel-

evant data.

Use Case Name:

Send transform request

Use Case Steps:

1. Broker retrieves a queued request.

2. Broker sends request to Transform component:
(a) request.id
(b) results

(c) forms

(d) formats

3. Broker annotates request as sent to Transform
component.

4. Broker queues request.

Alternative Path:

1. Broker is unable to send request to Transform
component, just re-queue request unannotated.

12

2.6.4 Process search results

The following scenario details an example usage of the use case including rel-
evant data.

Use Case Name: | Process search results

1. Broker receives a completed search query form
the Searcher:

(a) request_id

(b) search results

Use Case Steps:
2. Broker caches response.
3. Broker annotates request in queue as Search com-
pleted.
Alternative Path: 1. None.

13

2.6.5 Process transform results

The following scenario details an example usage of the use case including rel-

evant data.

Use Case Name:

Process transform results

1. Broker receives a completed transformation re-
sults form the Transformer:

(a) request_id

(b) search results

Use Case Steps: (c) transform_results
2. Broker caches response.
3. Broker annotates request in queue as Transform
completed.
Alternative Path: 1. None.

14

2.6.6 Process queue

The following scenario details an example usage of the use case including rel-

evant data.

Use Case Name:

Process queue

Use Case Steps:

1.
2.

Broker receives process request queue.

Broker processes each queued request for status
changes.

Requests processes search results:
(a) Requests back from Searcher but marked for

transformations are sent to Transformer.

(b) Requests back from Searcher not needing
transformations are marked completed.

(c) Requests marked completed are sent back
with results to User via provided email.
Requests processes transform results:
(a) Requests back from Transformer are marked
as completed.
(b) Requests marked completed are sent back

with results to User.

Any completed results are removed from the
queue.

Alternative Path:

Any problems related to requests in the queue al-
ways results in the request not being altered and
left in queue.

15

2.6.7 Send user results

The following scenario details an example usage of the use case including rel-

evant data.

Use Case Name:

Send user results

1. Broker retrieves request from queue that has com-
pleted.

2. Broker sends request results to User:

Use Case Steps: (a) request.id
(b) search results
(c) email
3. Broker removes completed request from queue.
1. Should Broker be unable to send completed re-
Alternative Path: quest results to User, then request remains in

completed status in queue.

16

3 Design

This section will present an overview of our design choices for the Vimes broker
component.

3.1 Class diagrams

An overview of the used classes is given in an general diagram without any de-
tails presented in the classes themselves. Following this, the individual classes
will be presented in more detail with attributes and methods being shown.

MysqlQueueManager

! «interface»
«interface»
ogge

«interface»

MySq

Figure 1: Class diagram overview

17

3.1.1 Broker

Manager implementation that is responsible for providing services to coordi-
nate all interaction with the Vimes retrieval architecture and the User. The Broker
will ensure that requests are processed and that results are provided to the

User.

A\
\
\
\
\

\

Broker
+ __construct(manager : string) : Broker
+ doSearch(request : Request) : bool
+ doTransform(request : Request) : bool
+ processQueue()
+ replyUser(request : Request) : bool
+ requestQueued(request : Request) : bool
+ requestRemoved(request : Request) : bool
+ showRequests()
+ requestResultsUpdated(request : Request) : bool
+ requestStatusUpdated(request : Request) : bool

/

Figure 2: Broker class diagram

18

40

41

42
43
44
45

4 Implementation

The implementation of the Broker is to be done in PHP (version 5), using object
oriented design principles. We have a running prototype with only limited
access at:

http://osiris.cs. kun.nl/vinmes/vines_ui/vinmes. php

For the complete overview of all generated class documentation we refer
you to the online documentation at:

http://osiris.cs. kun.nl/vimes/vines_classdocs

4.1 Broker implementation

Listing 1: Broker Class

<?

[*

* @uthor Eric Schabell <erics@s.ru.nl>
* @opyright Copyright 2005, GPL

* @ackage VI MES

*/

/1 const defines.
/1
require_once("const.inc");

IEX:
* Broker class - deals with user requests and nmakes use of the rest of
the Vines
* framework for searching and transfornming retrieval results. This
cl ass
* is a sub-class of Manager.
* @ccess public
*
* @ackage VI MES
@ubpackage Manager

*

*/
cl ass Broker extends Manager
{
[**
Constructor - initialize the Broker.

@ccess public

@aram string Type is Broker.
@eturn Broker Broker object.

*

*

*

*

*

*/

public function __construct($nanager="Broker")
{

parent:: __construct($manager);

[**
* doSearch - sends a request off to the Search conponent for
* processing and updates status of the request. Should the

Br oker

* be unable to contact the Search component (returns false)
t hen

* the job will remain in the queue and the status will not be
changed.

@ccess public

@ar am Request The request object to be sent.
@eturn bool True if request search done, otherw se Fal se.

E R

19

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77

78
79

80
81

82
83
84

85
86

87
88
89
90
91

92

93
94

95
96
97
98
99

*/
public function doSearch($request)

$dat aArray = $request - >get Request Dat a() ;

/'l pass request off to the search component.
I

$gsm = new Googl eSear chManager ;

/'l set our search info.

/1

$gsm >set Key(" 6KDTj CDf y0oQ / n+QC7GZQsvelkQa8bT") ;
$gsm >set QueryString($dataArray[’ keywords']);
$gsm >set MaxResul ts($dataArray[’'limts']);

$gsm >set Saf eSear ch(TRUE);

/1 do the search.

I/

$search_results = $gsm >doSearch();
if (!'$search_results)

{
/'l errors occurred.
I
parent::setError Msg($gsm >getError());
return FALSE;
}
el se
{
/'l success, set status to search, save results
and update status.
I
$request - >set Request St at us(REQUEST_SEARCH) ;
$request - >set Request Resul t s(array(
$search_results));
if (! $this->requestStatusUpdated($request)
)
{
parent::set ErrorMsg("Search conpleted
but unable to set status to
searched, |eaving in queu narked
as queued...");
return FALSE;
}
elseif (! $this->requestResul t sUpdat ed(
$request))
{
parent::setErrorMsg("Search done, but
unabl e to save results, |eaving
in queue marked as search..");
return FALSE;
el se
{
$r equest - >set Request St at us(
REQUEST_SEARCHED) ;
if (! $this->requestStatusUpdated(
$request))
{
parent::setErrorMg("Search
conpl eted, set results,
but unable to set status
to final searched status
),
return FALSE;
}
}
/] search conpleted, results saved, status on final
sear ched.

20

100
101
102
103
104
105

106

107

108

109
110
111
112

113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130

131
132
133

134
135

136
137

138
139

140
141
142
143

144

145
146

147

11
return TRUE,

}
[**
» doTransform - sends a request off to the Transform conponent
for
* processing and updates status of the request. Should the
Br oker
* be unable to contact the Transform conponent (returns false)
t hen
* the job will remain in the queue and the status will not be
changed.
* @ccess public
*
* @aram Request The request object to be sent.
* @eturn bool True if request transformati on done, otherw se
Fal se.
*/
public function doTransforn($request)
{

/'l pass request off to the search conponent.
/1

$transform = new Transf or mvanager;
$transformresults = $transform >doTransforn($request

)i
if (!'$transformresults)

// errors occurred.

/1

parent::setErrorMsg($transform>getError());
return FALSE;

el se

/'l check success, set status to transforned,
updat e status,

/'l requeue request.

I

if ($request->get Request Status() ==
REQUEST_TRANSFORM)

{

$r equest - >set Request St at us(
REQUEST_TRANSFORMED) ;

if (! $this->request StatusUpdated(
$request)

parent::setErrorMg("
Transf orm conpl eted, but
unabl e to queue status to
searched, |eaving in queue
wi th nothing updated...")

ret UI: n FALSE;

[*

/] TODO inplenment update once we
actually do sonmething... think it
will not be here but in Transform
cl ass.

elseif (! $this->
request Resul t sUpdat ed($request)

/1l need to roll back status
updat e.
/1

21

148

149

150
151

152

153
154
155
156

157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

190

191

192

193

194

195

196

197

198
199

$request - >set Request St at us(
REQUEST_SEARCHED) ;
if (! $this->
request St at usUpdat ed(
$request))

/1 somet hi ng wrong,
don’t set errorMsg
as we are

/1 interested in what
the nmethod call ed
has to say

/| about this error.

return FALSE;

parent::setErrorMg("
Transformunabl e to save
results, rolled back queue
to searched status...");
return FALSE;
}
*/
}

/1 transform processed, results saved, status final
transf or ned.

I

return TRUE,

}

[**
repl yUser - send results to user via email provided.
@ccess public

@ar am Request The request to be sent to user.
@eturn bool True if sent, otherw se Fal se.

*

*

*/

public function replyUser($request)
{

/1 get email.

/1

$dat aArray = $request->get Request Dat a();
$emai | = $dataArray[’ email’];

/'l get results array.
/1

$resul t sArray
$search_resul t

$request - >get Request Resul ts() ;
$resul tsArray[0];

/1 build emsil.

/1

$nessage = "Results fromyour Vinmes Retrieval
request:\n\n";

$nmessage .= " Request nunber: " . $request->
get RequestID() . "\n";

$nmessage .= " Keywords: " . $dataArray[’
keywords’] . "\n";

$nessage .= " Forms: " . $dataArray[’forns’]
Co"\ng

$nmessage .= " Formats: " $dat aArray[’ fornats
"] "\n";

$nessage .= " Limts: " . $dataArray[’'limts
T . "\n\n";

$nmessage .= "

/'l now add the results el enents.

I

$re = $search_resul t->get Resul t El ement s();
foreach($re as $el enent)

22

200
201
202

203

204

205

206

207

208

209

210
211
212
213

214

215
216
217
218

219

220
221

222
223
224
225
226
227
228
229
230

231

232

233
234
235
236
237

238
239
240
241
242
243

244

245
246
247
248

}

[**

$nessage .= "\n\n";
$nessage .= " Title: "
$el ement->get Title() . "\n";
$nessage .= " URL: "
$el ement->get URL() . "\n";
$message .= " Sni ppet: "
$el enment - >get Sni ppet () . "\n";
$nessage .= " Summary: "
$el enent - >get Summary() . "\n";
$message . =" Host Nane: "
$el enent - >get Host Name() . "\ n";
$message .= "Related Info Present: " .
$el ement - >get Rel at edl nf or mati onPresent ()
"\'n";
$nessage .= " Cached Size: "
$el enent - >get CachedSi ze() . "\n";
$message .= " Directory Title: " .
$el ement->getDirectoryTitle() . "\n";

$dircat = $el ement->get Di rect oryCat egory();

$message .= " Full Viewable Nane: " . $dircat
->get Ful | Vi ewabl eName() . "\n";
$nessage .= " Speci al Encoding: " . $dircat
- >get Speci al Encoding() . "\n";
}
/1 send to user.
$headers = "From Vinmes Retrieval Architecture
prototype <basvg@s.ru.nl>\r\n";
if (!'mail($email, "Vimes Retrieval Results Report",
$nmessage, $headers))
{
parent::setErrorMsg("Unable to send user mail
with results, |eaving request in queue
retufﬁ-FAL’SE;
}
/1 set to finished and renove from queue.
I

$request - >set Request St at us(REQUEST_FI NI SHED) ;
if (! $this->requestStatusUpdated($request))
{

$msg = "Mail sent to user with results, but
unable to ";

$msg . = "update request nunber '" . $request->
get Request 1 () ;

$msg .= "'to status FIN SHED, |eaving in queue

par eﬁf :- : sét ErrorMsg($nsg);
return FALSE;

}

Il results returned, status updated, renpved from
queue.

/1

return TRUE;

* processQueue - runs the contents of the queue, processing

each request based on the

* actions still to be performed in this order; Search ->

Transform-> Reply -> Del ete.

* (@ccess public

*

* @eturn void

«/

23

249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285

286

287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303

304

305
306
307
308

public function processQueue()

{

/'l process the entire current queue
/1

$mgm = new Mysql QueueManager ;

$l og = new LogManager;

if (count($queueArray = $ngm >get Queued()) == 0)
{

/1 nothing in the queue.

I

$nsg = "Nothing in queue, nunber of entries:
. count($queueArray);

$l og->fil eLogger($nsg);

return;

}

/1 loop thru jobs, checking for states; SEARCH
SEARCHED, TRANSFORM TRANSFORMED,

/1 FI NI SHED and deal with them

I

foreach ($queueArray as $request)

switch ($request->get Request Status())
{
case 0: /1 REQUEST_START.

/1l need to do a search.

/1

if (! $this->doSearch($request))
{

/] failed, log this.

$l og->fil eLogger($this->
get ErrorMsg());

br eak;

}

/'l success, log this.

/1

$msg = "Search conpleted for this
queued request: " . $request->
get Request 1 () ;

$msg .= " / " . $request->
get Request St at us() ;

$l og->fil eLogger($nsg);

br eak;

case 1: // REQUEST_SEARCH

/1l need to do a search.

/1

if (! $this->doSearch($request))
{

// failed, log this.

$l og->fil eLogger($this->
get ErrorMsg());

br eak;

}

/'l success, log this.

/1

$msg = "Search conpleted for this
queued request: " . $request->
get Request | () ;

$msg .= " / " . $request->
get Request St at us() ;

$l og->fil eLogger($nsg);

br eak;

case 2: /| REQUEST_SEARCHED.

24

309
310
311
312

313
314
315

316
317
318
319
320
321

322

323
324
325
326
327
328
329
330

331
332
333

334
335
336
337
338
339

340

341
342
343
344
345
346
347
348
349
350
351
352

353
354
355
356
357
358

359

360
361
362
363
364

case 3:

case 4:

case 5:

/1l need to do a transform

/1

if (! $this->doTransforn{ $request)
)

// failed, log this.

$l og->fil eLogger($this->
get ErrorMsg());

br eak;

}

/'l success, log this.

/1

$nsg = "Transformconpleted for this
queued request: " . $request->
get Request 1 () ;

$msg .= " / " . $request->
get Request St at us() ;

$l og->fil eLogger($nsg);

br eak;

/1 REQUEST_TRANSFORM

/1 need to do a transform
/1
if (! $this->doTransforn{ $request)

{
// failed, log this.
$l og->fil eLogger($this->
get ErrorMsg());
br eak;

}

/] success, log this.

/1

$nmsg = "Transformconpleted for this
queued request: " . $request->
get Request | () ;

$msg .= " / " . $request->
get Request St at us() ;

$l og->fil eLogger($nsg);

br eak;

/1 REQUEST_TRANSFORMED.

/'l need to reply to user.
/1
if (! $this->replyUser($request))
{
/] failed, log this.
$l og->fil eLogger($this->
get ErrorMsg());
br eak;
}
/'l success, log this.
/1
$nmeg = "Replied to user conpleted for
this queued request: " . $request
->get Request | () ;
$msg .= " [/ " . $request->

get Request St at us();
$l og->fi |l eLogger($nsg);
br eak;

/1 REQUEST_FI NI SHED.

25

365
366
367

368
369
370

371
372
373
374
375
376

377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

399
400
401
402

403
404
405
406
407
408
409
410
411
412

413

414
415
416
417
418
419
420

421
422
423
424

/1 need to renove this job.

I
if (! $this->request Renpbved($request
))
{ _ _
/1 failed, log this.
$l og->fil eLogger($this->
get ErrorMsg());
br eak;
}
/] success, log this.
I
$msg = "Renoved request : "
$r equest >get Request | D()
$msg .= " [" $request - >
get Request St at us() " as finished
processing!'";
$l og->fil eLogger($nsg);
br eak;
}
}
}
[**
* request Queued - adds new request to request queue.
* (@ccess public
* @aram Request The request object to be added to the queue.
* @eturn bool True if request queued, otherw se Fal se.
*/
public function request Queued($request)
{
$mgm = new Mysql QueueManager ;
$l og = new LogManager;
if (! $ngm >enqueued($request))
{
parent::setErrorMsg("Unable to enqueue the
gi ven Request...");
return FALSE;
}
$msg = " Request enqueued: " . $request->get Request| ()

/" . $request->get Request Status();
$l og- il eLogger ($nsg);
return TRUE;

[**

* reqguest Renoved - del etes request fromthe request queue.

* (@ccess public
*
*
queue.
* @eturn bool True if request is remvoed from queue,
ot herwi se Fal se.
*/
public function request Renoved($request)

$nmgm = new Mysqgl QueueManager;
if (! $mgm >dequeued($request))
{

parent::setErrorMsg("Unable to dequeue the

gi ven Request...");
return FALSE;

}
return TRUE;

26

@ar am Request The request object to be renoved fromthe

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

445
446
447
448
449
450
451
452
453

454
455
456

457

458
459
460
461
462
463

464
465
466
467

468
469
470
471
472
473

474
475
476
477
478
479
480
481
482
483

484
485

[**

* showRequests - print queue |isting.
* (@ccess public

*

* @eturn void

*/

public function showRequests()

/1 dunp queue to stdout.

/1

$ngm = new Mysql QueueManager;
$ngm >pri nt QueueToScreen() ;

return;
}
[**
* request Resul tsUpdated - updates the request results of queue
entry in
* dat abase.
* @ccess public
*
* @aram Request Request object to be updated.
* @eturn bool True if updated, otherw se false.
*
/
public function requestResul t sUpdated($request)
{

$serial _results = serialize($request->
get Request Resul ts());

$update = "UPDATE queue ";
$update .= " SET requestresults="" $serial _results
$updéte .= "\\HERE requestid = '" . $request->

get RequestID() . "';";
$db = new Mysql DB();
if (! $db->connected())
{

parent::setErrorMg("Unable to connect to
dat abase...");
return FALSE;

}

/] update returns nr affected rows, should only be one
!

/1
$results = $db->execut e($updat e);

if ($results !1=1)
{

parent::setErrorMsg("Update of request
results did not affect a single rowas it
shoul d have...");

return FALSE;

}
/'l results updated.
/1
return TRUE
}
[**
* request St atusUpdated - updates the request status from queue
entry in
* dat abase.

* @ccess public

27

486
487
488
489
490
491
492
493

494

495
496
497
498
499
500

501
502
503
504

505
506
507
508
509
510

511
512
513
514
515
516
517
518
519
520

*
* (@aram Request Request object to be updated.
* @eturn bool True if updated, otherw se false.
*/
public function request StatusUpdated($request)
{
$update = "UPDATE queue ";
$update .= " SET requeststatus = '" . $request->
get Request Status() . "' ",
$update .= "WHERE requestid = '" . $request->
get RequestID() . "';";

$db = new Mysql DB();
if (! $db->connected())
{

parent::setErrorMsg("Unable to connect to
dat abase...");
return FALSE;

}

/] update returns nr affected rows, should only be one
!

/1
$results = $db->execut e($updat e);

if ($results 1=1)

parent::setErrorMsg("Update of request status
did not affect a single rowas it should
have...");

return FALSE;

}

/] status updat ed.
/1
return TRUE;

?>

References

Gils, B. v, Proper, H., and Bommel, P. v. (2003a). A conceptual model for infor-
mation suppy. Data & Knowledge Engineering, 51:189-222.

Gils, B. v., Proper, H., Bommel, P. v., and Schabell, E. (2003b). Profile-based
retrieval on the world wide web. In Bra, P. d., editor, Proceedings of the
Conferentie Informatiewetenschap (INFWET2003), pages 91-98, Eindhoven,
The Netherlands, EU.

Gils, B. v., Proper, H., Bommel, P. v., and Vrieze, P. d. (2004). Transformation se-
lection for aptness-based web retrieval. Technical report, Radboud Univer-
sity Nijmegen Institute for Computing and Information Science. accepted
for publication in: Australian Database Conference 2005 (ADC-2005).

28

https://www.researchgate.net/publication/241046536

