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Abstract. The ephemeral pairing problem requires two or more specific

physical nodes in a wireless broadcast network, that do not yet know each

other, to establish a short-term relationship between them. Such short-

lived pairings occur, for example, when one pays at a check-out using a

wireless wallet. This problem is equivalent to the ephemeral key exchange

problem, where one needs to establish a high-entropy shared session key

between two nodes given only a low bandwidth authentic (or private) com-

munication channel between the pair, and a high bandwidth shared broad-

cast channel.

We study this problem for truly anonymous broadcast networks, discuss

certain impossible scenarios and present several protocols depending on

the type of communication channel between the nodes.

Keywords: Authentication, identification, pairing, key exchange, anonym-

ous networks.

1 Introduction

The ephemeral pairing problem (introduced in [Hoe04]) consists of establishing a

short-term relationship between two or more specific physical nodes in a wireless

broadcast network that do not yet know each other. Ephemeral pairings occur,

for example, when one pays at a check-out using a wireless wallet. As opposed to

paying with a smart card by inserting it into a specific terminal, using a wireless

connection (like Bluetooth1 or IrDA2) gives no guarantee that two physical nodes

that want to communicate with each other are actually talking to each other.

Without any countermeasures one might end up paying for the customer at the

check-out next to you.

To achieve such short-lived pairings, we do not wish to rely on any secret

information shared a priori among the nodes. For the large scale systems where

we expect the ephemeral pairings to play a part, such a secure initialisation might

be costly and carry a huge organisational burden. Instead, we allow the nodes in

the system to exchange small amounts of information reliably and/or privately.

⋆ Id: pairing.tex,v 2.6 2005/01/05 13:13:33 jhh Exp
1 See http://www.bluetooth.com.
2 See http://www.irda.org.

http://www.bluetooth.com
http://www.irda.org
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Two typical application scenarios may help to understand the issues in-

volved.

Consider for example the case where someone wishes to pay using a wireless

wallet at a checkout counter of a large supermarket. There are many checkouts,

and many customers paying simultaneously. To pair the wallet with the right

checkout counter, the counter could generate a small random number every time

a new customer arrives, and show this number on its display. Subsequently, the

customer enters this number on his wallet to initiate the pairing. In this case,

the customer knows the source of the random number and uses the number

displayed by the counter at which it wants to pay. In other words, the random

number is authentic. However, eavesdroppers may also be able to read the num-

ber from the display, and hence the number is not private. If eavesdropping is

made impossible, the communication is both authentic and private.

As an example for the private case3 consider the following. Instead of a dis-

play at each counter, the supermarket installs a single ticket dispenser ahead of

all the counters (similar to systems used to assign waiting numbers to custom-

ers in e.g., a large post office). The ticket dispenser provides the customer with

a ticket on which the random number is printed, together with the number of

the counter to pay at. Authenticity of the information cannot be assumed, for

instance because attackers may reinsert old or forged tickets in the machine.

However, the information can be considered private (provided the user does not

drop the ticket on the floor right after entering it on his wallet).

Because the devices are human operated, and the operators are involved in

the exchange of the information, the numbers of bits that can be transferred

is low (comparable to the size of typical passwords), and certainly much less

than the number of bits required for strong cryptographic keys. Therefore, one

cannot expect to be able to use such private or authentic communication mech-

anisms (called channels from now) to establish cryptographic keys directly. We

do note that typically the numbers transferred over these channels are machine

generated. Several realistic methods for implementing such private or authentic

low bandwidth channels exist [Hoe04].

In more abstract terms then, this problem can be phrased as an ephem-

eral key exchange (denoted by ϕKE) problem: given a low bandwidth authentic

(or private) communication channel between two nodes, and a high bandwidth

broadcast channel, can we establish a high-entropy shared secret session key

between the two nodes without relying on any a priori shared secret informa-

tion? Here, the low bandwidth channel models the (implicit) authentication and

limited information processing capabilities of the users operating the nodes.

There are numerous applications that require a solution to the ephemeral

pairing problem, e.g., connecting two laptops in a business meeting, exchanging

electronic business cards using PDAs, buying electronic tickets at a box office

and checking them at a venue, unlocking doors using a wireless token (making

sure the right door is unlocked), etc. In most of these applications, indeed by the

3 This example is admittedly slightly more contrived — indeed authentic communica-

tion appear to occur more naturally in real applications.
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very nature of the problem, the cooperation of the user/owner of the device is

required to successfully establish a pairing. For instance, the user may be asked

to select a pattern from a list that corresponds to the pattern shown on the re-

mote device. Alternatively, the user may be asked to copy and enter a passcode.

We stress that in all these cases, the number of bits that can be handled by the

user is very limited and that these bits do not have enough entropy to secure the

communications directly. This is the main motivation for the model and the prob-

lem statement of establishing a high bandwidth secure communication channel

between two nodes using only a low bandwidth authentic/private channel.

1.1 State of the art

Stajano and Anderson [SA99] introduced the (long-lived) pairing problem that

occurs when separate devices need to establish a long term relationship that

allow one of the devices to exert control over the other (e.g., a remote control and

the corresponding TV set). These pairings are supposed to exists over prolonged

periods of time, and therefore the setup of such a pairing is allowed to be quite

involved.

In [Hoe04] it was shown that solutions to the ephemeral pairing problem

can sometimes be based on Encrypted Key Exchange (EKE) [BM92] protocols,

suggesting a relationship between these two problems. An extended discussion

on this, and a review of the state of the art regarding EKE is also presented there.

The solutions of [Hoe04] only apply to non-anonymous broadcast networks.

In this paper we study ephemeral pairing on anonymous broadcast networks.

The difference between the anonymous and non-anonymous case is the follow-

ing. In the non-anonymous case, participants only need to receive messages from

a identified sender. If no such message is received, or if the adversary forged a

sender identity (which is detected in subsequent stages of the protocol), the

protocol simply aborts. In the anonymous case, participants may receive many

messages, and it is not a priori clear which messages are intended for them.

Therefore, they have to collect all messages they receive, and based on their

content decide which message to accept (if any). This influences the design of

the protocols. One could, in principle, use the ’secure’ point-to-point channel

for coordinating a session identifier directly, but in order to save this limited

resource only for the purpose of key-exchange we choose not to do so. We note

that the power of the adversary is the same in both models (it can arbitrarily

change the source and destination in the non-anonymous model, and doesn’t

have to in the anonymous case).

Balfanz et al. [BSSW02] study essentially the same problem, but assume that

the low-bandwidth communication channel is large enough to pre-authenticate

public keys (either by sending whole keys, or hashes of these keys), that can sub-

sequently be used in a standard public key authentication protocol. Gehrmann

et al. [GMN04, GN04] describe the ISO/IEC standards for manual authentica-

tion of wireless devices, that allow for smaller bandwidth on the communication

channel, but require the channel to be private.
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A more rigorous and formal treatment of the security of EKE protocols was

initiated by Lucks [Luc97], and expanded on by several authors [BMP00, BPR00,

Sho99, CK01, GL03]. Due to space constraints the security proofs in this paper

are informal, but will be based on Bellare et al. [BPR00] in the full version.

1.2 Summary of results

In this paper we present several ephemeral key exchange protocols for com-

pletely anonymous broadcast networks, for different combinations of the point-

to-point communications channels between the two nodes. These are presen-

ted in Sect. 4. Before that, we describe the model in Sect. 2, and present some

impossibility results for certain types of point-to-point channels in Sect. 3. We

conclude with directions for further research in Sect. 5.

2 Model and problem statement

Consider n physically identifiable nodes communicating over a public and in-

secure broadcast network, each attended by a human operator. The operators

(and/or the nodes they operate) can only exchange small amounts of informa-

tion reliably and/or in private. The ephemeral pairing problem requires two or

more nodes (to be determined by their operators) to securely establish a shared

secret.

As discussed in [Hoe04], this problem can be seen in more abstract terms

as an ephemeral key exchange (ϕKE) problem. Consider Alice and Bob, connec-

ted through a high bandwidth broadcast network. In this paper, the broadcast

network is completely anonymous. Alice and Bob also share a low bandwidth

communication channel over which they can exchange at most η bits of inform-

ation per message. This channel is either

authentic, meaning that Bob is guaranteed that a message he receives actually

was sent by Alice (but this message may be eavesdropped by others), or

private, meaning that Alice is guaranteed that the message she sends is only

received by Bob (but Bob does not know the message comes from Alice).

Given these connections, Alice and Bob are required to establish an authenticated

and shared σ bits secret (where σ ≫ η). They do not share any secrets a priori,

and do not have any means to authenticate each other, except through the low

bandwidth channel.

The adversary may eavesdrop, insert and modify packets on the broadcast

network, and may eavesdrop on the authentic channel or insert and modify pack-

ets on the private channel. Note that, by assumption, the adversary cannot insert

or modify packets on the authentic channel. Also, the adversary may subvert any

number of nodes and collect all the secret information stored there.

Security of our protocols is defined as in the encrypted key exchange model

developed by Bellare et al. [BPR00], where the adversary is given the task to
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distinguish an actual session key from an arbitrary random value for any instance

of the protocol run of his choice.

In our analysis we will bound the advantage of the adversary for a particular

protocol using s, t and the number of active attacks (denoted by q) performed by

the adversary. Here, s and t are the security parameters of the ϕKE protocol. s

roughly corresponds to the size of the session key to be established, and determ-

ines the advantage of a passive adversary. t roughly corresponds to the capacity

of the channel between two principals, and mostly determines the advantage

of an active adversary. Actually, q corresponds to the number of instances that

are attacked actively by the adversary (and that involve one or more message

insertions or modifications).

We work in the random oracle model, and assume hardness of the Compu-

tational Diffie Hellman problem.

We use the following notation throughout the paper. In the description of the

protocols, ac is the authentic channel, pc is the private channel, and bc is the

broadcast channel. Assignment is denoted by := Receiving messages from the

channel or the broadcast network can be done in a blocking fashion (indicated

by receive) or in a non-blocking fashion (indicated by on receiving).

In message flowcharts,
m

−−−−−→ denotes sendingm on the private or authentic

channel, while
m

=====⇒ denotes broadcasting m on the broadcast channel. The

receiving party puts the message in the indicated variable v at the arrowhead.

3 Impossibility results

In this section we show a few straightforward impossibility results. The ϕKE

problem4 cannot be solved using only a single uni-directional point-to-point

channel between Alice and Bob that is either authentic or private. Even an au-

thentic channel from Alice to Bob and a private channel from Bob to Alice is

not strong enough. An authentic channel from Alice to Bob and another private

channel from Alice to Bob is strong enough however (even though there is no

point-to-point channel from Bob to Alice, see Sect.4.3).

Theorem 3.1. The ϕKE problem cannot be solved using a single private channel

from Alice to Bob and a single authentic channel from Bob to Alice.

Proof. Suppose there is a protocol solving theϕKE problem using a single private

channel from Alice to Bob and a single authentic channel from Bob to Alice. Now,

instead of Alice, let the adversary start a session with Bob. Because Alice and Bob

do not a priori share any secret information, and because the adversary can use

the private channel to Bob and the authentic channel from Bob in exactly the

same way as Alice does, Bob cannot distinguish the adversary from Alice in this

session. This contradicts the requirement that at the end of the session Alice

and Bob share a secret session key.

4 To be more precise, the following results only hold for the general (two-sided) version

of the problem, not the one-sided version (see [Hoe04] for the difference between

these two).
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The following two facts are easy corollaries of this theorem.

Corollary 3.2. TheϕKE problem cannot be solved using a single private channel

from Alice to Bob.

Corollary 3.3. TheϕKE problem cannot be solved using a single authentic chan-

nel from Bob to Alice.

4 ϕKE protocols for anonymous networks

In this section we present three ϕKE protocols. In the first protocol Alice and

Bob are connected by a bidirectional private channel. The second protocol covers

the case where Alice and Bob are connected by a bidirectional authentic channel.

In the third protocol there are two channels, one authentic and the other private,

both running from Alice to Bob. All protocols assume an anonymous broadcast

network.

In all protocols, Alice and Bob are required to generate a (small entropy)

password to be exchanged over the low bandwidth communication channel. We

stress that this password is machine generated, at random, at the start of each

protocol run, and hence that these passwords can be assumed to statistically

independent. It is only the transmission of these passwords over the low band-

width channel that requires (in the application of this model in a practical setting)

human intervention. It is also this same human handling of these passwords that

requires them to have only a small number of bits.

The main problem handling an anonymous broadcast network is to ensure

that a participant in the protocol can immediately reject messages that are ob-

viously not intended for it. Without such precautions, even honest but ignorant

nodes can easily disrupt the protocol through the messages they themselves le-

gitimately send over the broadcast network. The protocols to be presented next

try to derive a common session identifier as soon as possible, to be used as a

header on messages on the broadcast channel. Note that simply transmitting

such session identifiers on the point-to-point communication channel is not a

good option, as it wastes bits to be used for authenticating the shared session

key.

In all protocols we use the following. G is a group of order at least 22s with

generator g for which the Computational Diffie Hellman (DDH) problem is hard.

A possible candidate is the subgroup of order q in Z∗p for p,q prime and p =

2q + 1. Naturally, exponentiations like gx are computed in the group G.

Passwords are selected uniformly at random from a set P , of size 2t .

Furthermore, we use several hash functions hi with varying domains and

ranges, which are modelled as random oracles. The domain and range of hash

functionsh1, h2 is specified for each protocol separately. All protocols useh3, h4, h5 :

G 7→ {0,1}σ , and h6 : G 7→ I (where I is a suitably large session identifier set). We

use the following property
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Alice (client) Bob (server)

pick random x pick random y
gx

=====⇒ receive v

receive u
gy

⇐=====
h4(u

x)
========⇒ receive m

verify m = h4(v
y)

receive m′
h5(v

y )
⇐========

verify m′ = h5(u
x)

k := h3(u
x) k := h3(v

y)

Fig. 1. Diffie-Hellman key exchange with key validation.

Property 4.1. Let G, A and B be groups. Let X be a uniformly distributed random

variable over G, let h : G 7→ A and h′ : G 7→ B be random oracles and let a ∈ A

and b ∈ B be arbitrary. Then

Pr
[

h(X) = a|h′(X) = b
]

= Pr [h(X) = a] = 2|A| .

We write bcs for the broadcast channel restricted to only carry messages with

session identifier s: if a messages m is received from bcs , it was sent with that

session identifier5.

Consider the Diffie-Hellman key exchange with validation6 in Fig. 1, with G of

order at least 22s andh3,h4, andh5 as defined above. Then under the assumption

that the Computational Diffie Hellman problem over G is hard we have [BPR00,

Sho99]

Proposition 4.2. The advantage of any adversary attacking the Diffie-Hellman

key exchange with key validation in Fig. 1 — i.e., distinguishing h3(g
ab) from

a random element of {0,1}2s , when given ga, gb, h4(g
ab), h5(g

qb) — is at most

O(2−s).

4.1 ϕKE for a bidirectional private channel

The ϕKE protocol for a bidirectional private channel (see Prot. 4.1 for the pro-

tocol and Fig. 2 for the corresponding message exchange graph) proceeds in

five phases: authenticate, commit, synchronise, exchange and validate. In the

exchange phase, Alice and Bob use a Diffie-Hellman type key exchange [DH76]

to establish a shared session key. This key is then used to derive a session

5 We stress that this doer not guarantee that only an honest party generated this mes-

sage: s is public, and hence the adversary can generate messages with that identifier

as well.
6 The validation phase only prevents a man-in-the-middle attack if somehow the shares

gx and/or gy are authenticated. This principle is used in our protocols later on.
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Authenticate

H := ∅

pick random x

pick random p

send p on pc

receive π from pc

Commit

broadcast h1(g
x , π) on bc

for c milliseconds do

on receiving m from bc do

if |H| < z

then H := H + {m}

abort if |H| = ∅

Synchronise

broadcast p on bc

receive q from bc

abort if q ≠ π

Key exchange

u := ⊥

broadcast gx on bc

for c milliseconds do

on receiving m from bc do

if h1(m,p) ∈ H then u :=m

abort if u = ⊥

Key validation

ι := h6(u
x)

k := ⊥

j :=







0 if client

1 if server

broadcast h4+j(u
x) on bcι

receive m from bcι
if h5−j(u

x) =m

then k = h3(u
x)

else abort

Protocol 4.1: ϕKE for bidirectional private channel.

identifier ι (to distinguish relevant messages on the broadcast network)7. Both

parties engage in a verification phase to ensure that they share the same session

key [BPR00].

To identify and authenticate the share sent by the other party, Alice and Bob

exchange random passwords through the bidirectional private channel in the

authenticate phase. Alice hashes the password received together with her own

share, and broadcasts the resulting hash on the network, to commit to the value

of the share to be exchanged later on. They use the hash function h1 : G×P 7→ G

in this phase.

The commit and exchange phase have to be separate, or else the adversary

can still perform a dictionary attack to retrieve the exchanged password and

substitute a suitable share of his own choice in both the commitment (that also

serves to authenticate the share) and the share itself. Because Alice and Bob

cannot reliably setup a session identifier at or before the exchange phase, Bob

cannot distinguish Alice’s commitment from other commitments broadcast on

the network. Therefore, Bob accepts at most z of them.

To separate the commit and exchange phase, and to ensure that no commits

will be accepted when the other party starts the key exchange phase, a separ-

ate synchronisation phase is introduced. In this phase, both parties reveal their

password over the broadcast channel, and the other party only starts the ex-

change phase if it receives the same password as in the authentication phase.

7 Note that it is not possible to use h6(π) (with π as exchanged through the private

channel) as a session identifier: this session identifier could then be used to verify all

tries for the password in a dictionary attack.
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Alice (client) Bob (server)

Authenticate

HA := ∅ HB := ∅

pick random x pick random y

pick random pA pick random pB
pA

−−−−−→ receive πB

receive πA
pB

←−−−−−

Commit

h1(g
x ,πA)

==========⇒ receive m

HB := HB + {m} if |HB| < z

receive m′
h1(g

y ,πB)
⇐==========

HA := HA + {m
′} if |HA| < z

Synchronise

pA
=====⇒ receive qB

check qB = πB

receive qA
pB

⇐=====

check qA = πA

Key exchange

gx

=====⇒ receive v if

h1(v,pB) ∈ HB

receive u if
gy

⇐=====

h1(u,pA) ∈ HA

Key validation

h4(u
x)

========⇒ receive m

verify m = h4(v
y)

receive m′
h5(v

y )
⇐========

verify m′ = h5(u
x)

k := h3(u
x) k := h3(v

y)

Fig. 2. Message flow of ϕKE for bidirectional private channel.

Observe that a password has lost all value once the commit phase for which it

is used as authenticator is closed.

In the key exchange phase, Bob only accepts a share that together with Bob’s

own password hashes to a value in the set of commitments received previously.

Because Bob only accepts z commitments, an active adversary may plant at most

z commitments for its own share (using z different guesses for the password sent

by Alice), thus limiting its chances to attack the protocol. For all our protocols

a good value for z is one that allows some honest concurrent activity on the

broadcast channel, while still limiting the advantage of the adversary.
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Obviously, by limiting the number of commitments that Bob accepts, we al-

low the adversary to preempt the protocol by filling all commitment slots with

garbage. This prevents Alice from successfully pairing with Bob. However, as this

is but one of the many possible (and easier) denial of service attacks, we will not

consider this issue further here.

Analysis It is easily shown that using Prot. 4.1, honest Alice and Bob can ex-

change a shared session key. Next, we prove security of the protocol in the pres-

ence of an active and/or passive adversary.

Theorem 4.3. The advantage of an adversary attacking Prot. 4.1 mounting at

most q active attacks is at most

O(1− e−zq/2
t

)+O(2−s) .

Proof. We split the proof in two cases. We first consider the case where the

session key k generated by an oracle8 is not based on a share ga sent by the

adversary, but instead derived from a value x of his own choosing, and then

consider the case where the adversary manages to convince the oracle to use

such a share of his own choosing.

If the session key generated by an oracle is not based on a share ga sent by

the adversary, but instead derived from a value x of his own choosing, then k

depends on private random values x,y unobserved by the adversary and pub-

licly exchanged shares gx and gy using a Diffie-Hellman (DH) key exchange. Any

adversary attacking Prot. 4.1 can be converted to an adversary attacking a DH

key exchange with validation (see Prop. 4.2) as follows. Given a run over the basic

DH key exchange, generate random passwords pA and pB , and insert h1(g
x , pA)

and h1(g
y , pB), pA and pB at the appropriate places in the run of the DH key

exchange with validation before analysing the run. Hence the advantage of the

adversary to distinguish the session key cannot be higher than its advantage

in breaking the Diffie-Hellman key exchange with validation, which is at most

O(2−s) by Prop. 4.2.

In the other case, in order to convince an oracle of A to use the share ga of

the adversary in the second phase of the protocol, the adversary must ensure

that h1(g
a, pA) ∈ HA for values HA, pA used in this oracle A. Note that due to

the properties of the private channel, pA is unknown to the adversary. Hence the

adversary has probability 2−η to guess it right and authenticate its own share ga

using h1(g
a, p) in the commit phase. As |HA| ≤ z, the adversary can try at most

z different values for p. Hence the total probability that a share of the adversary

is accepted is at most z2−η.

For each active attack then the probability of success is z2−η. Success with

one instance is independent of success in any other instance. Hence, with q

attempts, the probability of success becomes (cf. [Fel57])

1− (1− z2−η)q ≈ 1− e−z2−ηq

8 In the Bellare et al. [BPR00] model, the participants in the protocol are modelled as

oracles to which the adversary has access. We use the same terminology here.
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Commit

H := ∅

pick random x

broadcast h1(g
x) on bc

for c milliseconds do

on receiving m from bc do

if |H| < z

then H := H + {m}

send close on ac

receive close from ac

abort if |H| = ∅

Authenticate

send h2(g
x) on ac

receive β from ac

ι := β

ω := h2(g
x)

Key exchange

u := ⊥

broadcast gx on bcω
receive m from bcι
if h1(m) ∈ H and h2(m) = β

then u :=m

else abort

Key validation

k := ⊥

j :=







0 if client

1 if server

broadcast h4+j(u
x) on bcω

receive m from bcι
if h5−j(u

x) =m

then k = h3(u
x)

else abort

Protocol 4.2: Anonymous ϕKE for bidirectional authentic channel.

With t = η this proves the theorem. ⊓⊔

4.2 ϕKE for a bidirectional authentic channel

This protocol (see Prot. 4.2 and Fig. 3) again proceeds in four phases: commit,

authenticate, exchange and validate (but with the first and second phase chan-

ging order). The exchange and verification phase are essentially equal to that of

the previous protocol, except that Alice and Bob use session identifiers ι and ω

derived from the authentication messages exchanged earlier.

To avoid man-in-the-middle attacks, the shares used in the key exchange

phase must be authenticated. However, the capacity of the authentic channel is

too small to do so directly. Instead, it is used to authenticate a small hash of the

share to be used later on. This is not enough to ensure security: the adversary

can trivially (in an expected 2η−1 number of tries) find a share of his own that

matches the authenticator that will be sent by Alice. Therefore, Alice and Bob

must first commit to a share using a much larger hash value (against which it is

infeasible to find collisions) but that has to be sent over the broadcast channel.

The hash functions used for this are h1 : G 7→ G and h2 : G 7→ {0,1}η.

But even then a problem remains. For the adversary may try to commit to 2η

shares, corresponding to a specific authenticator value9. After the commit phase,

when Alice reveals the authenticator a, the adversary simply reveals the share

9 The adversary can easily do this by spending an expected 2η−1 amount of work to find

a candidate for each possible authenticator value, thus using a total expected 22η−1

amount of work.
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Alice (client) Bob (server)

Commit

HA := ∅ HB := ∅

pick random x pick random y
h1(g

x)
========⇒ receive m

HB := HB + {m} if |HB| < z

receive m′
h1(g

y )
⇐========

HA := HA + {m
′} if |HA| < z

close
−−−−−−→ wait until received

wait until received
close

←−−−−−−

Authenticate

h2(g
x)

−−−−−−−−→ receive βB

receive βA
h2(g

y )
←−−−−−−−−

Key exchange

gx

=====⇒ receive v until

h1(v) ∈ HB and h2(v) = βB

receive u until
gy

⇐=====

h1(u) ∈ HA and h2(u) = βA

Key validation

h4(u
x)

========⇒ receive m

verify m = h4(v
y)

receive m′
h5(v

y )
⇐========

verify m′ = h5(u
x)

k := h3(u
x) k := h3(v

y)

Fig. 3. Message flow of ϕKE for a bidirectional authentic channel.

w with h2(w) = a. This scenario can be prevented10 by limiting the number of

commitments accepted to a constant z≪ 2η.

In Prot. 4.2, the security parameters are determined by the size of the session

key established and the capacity of the authentic channel. We set s = σ and t = η.

Analysis It is straightforward to show that in an honest execution of Prot. 4.2, if

Alice and Bob want to exchange a key, at the end of the protocol they do actually

share the same key.

Security of Prot. 4.2 is proven as follows.

10 This allows for an obvious denial-of-service attack. However, as the adversary is also

capable of blocking any value sent by Alice, he already has the power to prevent Alice

from connecting to Bob.
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Client (Alice):

Authenticate (1)

HA := ∅

pick random x

pick random p

send p on pc

Commit

broadcast h1(g
x) on bc

for c milliseconds do

on receiving m from bc do

if |HA| < z

then HA := HA + {m}

abort if |HA| = ∅

Authenticate (2)

send h2(g
x) on ac

Synchronise

send close on ac

receive q from bc

abort if q ≠ p

Key exchange

u := ⊥

broadcast gx on bc

receive m from bc

if h′1(m,p) ∈ HA
then u :=m

else abort

Key validation

broadcast h4(u
x) on bc

receive m from bc

if h5(u
x) =m

then k = h3(u
x)

else abort

Server (Bob):

Authenticate (1)

HB := ∅

pick random y

receive πB from pc

Commit

broadcast h′1(g
y , πB) on bc

for c milliseconds do

on receiving m from bc do

if |HB| < z

then HB := HB + {m}

abort if |HB| = ∅

Authenticate (2)

receive βB from ac

Synchronise

receive closed from ac

broadcast πB on bc

Key exchange

v := ⊥

broadcast gy on bc

receive m from bc

if h1(m) ∈ HB and h2(m) = βB
then v :=m

else abort

Key validation

broadcast h5(v
x) on bc

receive m from bc

if h4(v
x) =m

then k = h3(v
x)

else abort

Protocol 4.3: ϕKE for a private plus an authentic channel.

Theorem 4.4. The advantage of an adversary attacking Prot. 4.2 mounting at

most q active attacks is at most

O(1− e−zq/2
t

)+O(2−s) .

Proof. We split the proof in two cases. We first consider the case where the

session key k generated by an oracle is not based on a share ga sent by the

adversary and derived from a value a of his own choosing, and then consider

the case where the adversary manages to convince the oracle to use such a share

of his own choosing.
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Alice (client) Bob (server)

Authenticate (1)

HA := ∅ HB := ∅

pick random x pick random y

pick random pA
pA(private)

−−−−−−−−−−−−→ receive πB

Commit

h1(g
x)

========⇒ receive m

HB := HB + {m} if |HB| < z

receive m′
h′1(g

y ,πB)

⇐==========

HA := HA + {m
′} if |HA| < z

Authenticate (2)

h2(g
x)(auth)

−−−−−−−−−−−−→ receive βB

Synchronise

close(auth)
−−−−−−−−−−−→ wait until received

receive qA
πB

⇐=====

check qA = pA

Key exchange

gx

=====⇒ receive v until

h1(v) ∈ HB and h2(v) = βB

receive u if
gy

⇐=====

h′1(u,pA) ∈ HA

Key validation

h4(u
x)

========⇒ receive m

verify m = h4(v
y)

receive m′
h5(v

y )
⇐========

verify m′ = h5(u
x)

k := h3(u
x) k := h3(v

y)

Fig. 4. Message flow of ϕKE for a private plus an authentic channel.

If the session key generated by an oracle is not based on a share ga sent by

the adversary and derived from a value a of his own choosing, then the proof is

almost equal to that of theorem 4.3.

In the other case, in order to convince an oracle ofA to use the share ga of the

adversary in the third phase of the protocol, the adversary must ensure that both

h1(g
a) ∈ HA, and h2(g

a) = βA holds for values HA, βA used in this oracle. Note

that βA is unknown in the commit phase. Moreover, property 4.1 guarantees it is

independent of values exchanged during the commit phase. Therefore, for each
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value ga committed by the adversary in the commit phase, the probability that

h2(g
a) = βA is 2−η. As |HA| ≤ z, the adversary can commit at most z shares

with different hash values for h2. Hence the total probability that a share of the

adversary is accepted is at most z2−η. With the same estimate as used in the

proof of Theorem 4.3, and with t = η, this proves the theorem. ⊓⊔

4.3 ϕKE for a private channel plus an authentic channel

In [Hoe04], it was shown that a single channel that is both authentic and private

can be used to solve theϕKE problem straightforwardly using an Encrypted Key

Exchange (EKE) protocol [BM92, KOY01, Jab96] as a building block. A combin-

ation of techniques from the previous two protocols can be used to show that

with two channels both from Alice to Bob, one of which is authentic while the

other is private, one can implement ϕKE. The complete protocol is shown in

Prot. 4.3 and Fig. 4. The analysis is very similar to the previous two protocols,

and is therefore omitted here.

5 Conclusions and further research

We have shown that the ephemeral pairing problem, and the corresponding

ephemeral key exchange problem can also be solved in completely anonymous

broadcast networks. Generalisations of the ephemeral pairing problem to larger

groups of nodes need to be investigated, as well as the possibilities to weaken

the cryptographic assumptions and to simplify the protocols.
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