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1.1	 Advances	in	medical	imaging

Diagnosis and therapy of disease have undergone significant improvement, especially in the 

field of medical imaging �1�. In the last decades, large scale research has sparked impressive 

progression in both technical possibilities and clinical knowledge �2�. Unfortunately, these two 

factors have not always evolved in parallel. The discrepancy between technical advances 

and supporting evidence has been particularly large in the field of medical imaging �3�. 

Experimental imaging may be justifiable in a research setting, but large-scale implementation 

of new techniques in clinical practice needs to be supported by proper validation, and 

scientific evidence of the benefit. The status of recent advances in the fields of molecular and 

multimodality medical imaging, with an emphasis on cancer in the head and neck area and on 

liver metastases, is discussed in this thesis.

1.2	 Imaging	modalities

Imaging has taken a prominent place in the spectrum of medical diagnostic procedures. 

Aspects of the human body can be visualized using different imaging modalities, each with 

their respective advantages and disadvantages.

Anatomical imaging

Visualization of anatomy in vivo can be performed with techniques such as conventional X-

ray, ultrasound, computed tomography �CT�, and magnetic resonance imaging �MRI�. These 

modalities all provide tools for high-resolution localization and delineation of normal organs and 

tissues as well as disease localizations, thus contributing to many diagnostic procedures, and 

to selection and planning of therapeutic procedures. Nevertheless, recognition of disease may 

be difficult using merely anatomical imaging, due to limited discrimination of tissue types.

Functional imaging

Visualization of dynamical tissue characteristics in vivo is known as functional imaging. 

Anatomical imaging modalities can be adapted to provide information about tissue 

characteristics by implementation of a dynamical component, for example CT imaging with 

multiphase intravenous contrast to provide information about local tissue perfusion �4�. Other 

examples include ultrasound using air bubbles �5� and MRI using gadolinium �6�. A disadvantage 

of contrast-enhanced anatomical imaging lies in the relatively high dose of applied contrast 

needed to provide sufficient signal for imaging. This limits the technique to molecules that are 

tolerated in very high doses, and thus are not metabolically active.

General introduction and outlines
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Molecular imaging

When biologically relevant molecules are imaged in physiological quantities, the related 

metabolical pathways can be visualized, and tissues can be characterized in vivo �7�, with 

clinical implications for many benign �8� and malignant diseases �9�.

In traditional nuclear medicine, molecules are labeled with gamma emitting radioisotopes to 

allow dynamical quantitative visualization of the biodistribution in time and place. Over the 

last decade, clinical molecular imaging has expanded further with the use of positron emitting 

radionuclides �10�. The favorable radioactive decay of a positron, providing two simultaneous 

annihilation photons in opposite directions, permits imaging using a positron emission 

tomography �PET� scanner with a relatively good spatial and temporal resolution, and with 

a superior sensitivity �11�. The technique permits in-vivo imaging of many biologically active 

molecules, such as peptides, hormones, antibodies, and pharmaceuticals, in physiological 

quantities. This allows quantitative evaluation of a wide variety of tissue parameters, such as 

metabolism, proliferation, hypoxia and receptor expression. The typical example is quantitative 

visualization of glucose metabolism using the radiopharmaceutical 18F-fluor-deoxy-glucose 

�FDG�, as a sensitive tool for the detection of cancer �figure 1.1�.

While the clinical indications for PET continue to increase, the technique is subject to further 

improvement in many areas �12�. Examples are improvement of image quality, better selection 

of indications, introduction of new radiopharmaceuticals, and integration with anatomical 

imaging modalities.

Figure	1.1
Visualization	of	cellular	
glucose	metabolism	
with	18F-fluor-deoxy-
glucose	in	PET.	Shown	
are maximum intensity 
projections	from	
anterior	from	a	normal	
healthy	person	(left),	
and	a	patient	suffering	
from	advanced	stage	
lung	cancer	(right).	
The	cancer	lesions	(in	
the	left	lung,	lymph	
nodes,	left	adrenal,	
and	multiple	bones)	
show	a	high	glucose	
metabolism,	associated	
with	tumor	growth.
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1.3	 Multimodality	imaging

Optimal selection of therapeutic strategies often requires a wide spectrum of clinical information, 

such as the activity and cellular characteristics of a disease, the number, size, and distribution 

of disease localizations, and involvement of adjacent structures. 

The joined capabilities of anatomical imaging �high-resolution anatomical localization� and 

molecular imaging �sensitive qualitative and quantitative disease detection� have led to the 

practice of combining images, as illustrated in figure 1.2. This approach may provide synergistic 

diagnostic information �13�. The correlated image sets may be acquired with separate imaging 

devices, or using an integrated scanning device. Both approaches are currently in use in 

clinical practice for the combination of PET and CT images, although both correlation strategies 

have their specific issues.

In chapter 2 the concept of multimodality PET/CT imaging is discussed, addressing both the 

implementations of software-fused separate image sets, and of an integrated hybrid scanning 

device.

The abovementioned molecular and combined imaging modalities are currently finding their 

applications in clinical diagnostic imaging. The advances in molecular imaging with PET and 

multimodality imaging with PET/CT, in malignancy in the head and neck, and to metastatic 

disease in the liver, are discussed in the following chapters.

General introduction and outlines

Figure	1.2
Illustration	of	inte-
grated	multi-modality	
imaging.	Shown	are	
transverse	(top)	and	
coronal	slices	(bottom)	
through	the	liver.	A	
liver	metastasis	(arrow)	
is	clearly	visible	on	
functional	images	from	
PET	(A),	and	anatomy	
is	well	recognizable	on	
CT	images	(B).	Image	
fusion	allows	accurate	
localization	of	the	
metastasis	within	the	
liver	(C).
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1.4	 Cancer	of	the	head	and	neck	area

Cancer of the head and neck area often poses complicated dilemmas �14�. The primary tumor 

may compromise delicate structures adjacent to it, and the disease may spread rapidly and 

extensively throughout lymph nodes in the neck, and eventually throughout the body. Selection 

of an effective and yet sparing therapeutic strategy depends on accurate determination of the 

disease stage, which relies largely on imaging of the head and neck area, with a possible role 

for both anatomical and functional imaging �15�. In the following chapters the advances of FDG-

PET imaging in cancer of the head and neck area are evaluated.

Improving clinical imaging

In chapter 3 optimization of the image quality in FDG-PET imaging of the head and neck area 

is pursued. The parameters that influence image reconstruction from detected annihilation 

photons are discussed, and optimal settings are determined for the relatively low attenuation 

of photons in the head and neck area. The impact of these improvements on the diagnostic 

accuracy for detection of primary tumors and lymph node metastases is demonstrated.

In chapter 4 the clinical application of optimized FDG-PET imaging in oncology of the head 

and neck area is discussed. Currently, patients with no apparent lymph node metastases on 

conventional anatomical imaging undergo lymph node dissection for definitive staging. This 

invasive strategy has side-effects, and in retrospect often turns out to have been unnecessary. 

The study addresses the question whether the application of FDG-PET, with improved image 

quality, can improve the selection of patients for lymph node dissection.

Optimization of image fusion

Fusion of PET images with anatomical images may further improve diagnostic value, but 

only when performed adequately. This is of significant importance in imaging of the head 

and neck area, where structures are small and erroneous correlations are easily made. This 

implies a need for image sets with identical anatomical orientation, to allow reliable correlative 

reading.

In chapter 5 the presence of a difference in image size between PET and CT is discussed. Such 

differences may complicate image fusion. The impact of correction of such a difference on the 

accuracy of image registration is discussed.

In chapter 6 the process of anatomical image registration of PET and CT images is discussed. 

Several techniques are available for optimization of anatomical image registration, each with 

a different performance in the specific situation of the head and neck area. The available 

techniques are compared and their registration accuracies are determined, in order to validate 

the process for external beam radiation therapy planning.
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Application in therapy planning

In chapter 7 the impact of multimodality PET/CT imaging on external beam radiation treatment 

planning is evaluated. Effective treatment, as well as sparing of normal tissues, depends on 

discrimination of normal and malignant tissues. Delineation of malignant tissue may be difficult 

on both anatomical and molecular images. Different techniques for delineation of a primary 

tumor in the head and neck area on integrated PET and CT images are evaluated, and an 

adequate strategy is suggested.

Improving specificity

In chapter 8 the application of 18F-fluor-deoxy-thymidine �FLT� as an alternative to FDG for 

diagnostic PET imaging in the head and neck area is discussed. FDG suffers from a rather low 

specificity for imaging of lymph node metastases, due to the visualization of metabolic activity 

in non-malignant reactive lymph nodes. FLT, as a marker of proliferation rate, may be more 

specific. The value of FLT for the detection of lymph node metastases in the head and neck 

area is evaluated, to determine the applicability for diagnosis and external beam radiation 

treatment planning.

1.5	 Liver	metastases	in	colorectal	cancer

Liver metastases from colorectal carcinoma remain a diagnostic challenge, despite ongoing 

advances in anatomical and molecular imaging methods �16�. Locoregional therapeutic strategies 

could benefit from more accurate detection, localization, and delineation of lesions in the 

liver. Combined anatomical and functional imaging with CT and PET may prove valuable, but 

anatomical registration of the image sets is complicated in the upper abdominal area due to 

breathing �17�. This applies to the correlation of separate PET and CT image sets, as well as 

integrated image sets from hybrid PET/CT.

PET/CT image fusion

In chapter 9 the specific benefits and problems of combined PET/CT imaging in the detection of 

recurrent colorectal carcinoma, and liver metastases in particular, are discussed.

In chapter 10 the approach of multimodality imaging with software-based image registration 

of stand-alone FDG-PET and CT images is evaluated. A novel organ-focused method for 

anatomical image registration of the liver is introduced and compared with several available 

methods. The accuracy in image registration is determined, in order to validate the process for 

diagnostic imaging of the liver.

In chapter 11 the approach of multimodality imaging with a hybrid PET/CT scanner is evaluated. 

This technique may be preferable over software-based image fusion for logistical reasons, but 
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bears a risk for introduction of technique-related issues. The extent and impact of these issues 

are analyzed, and are compared with software-based image fusion. Recommendations are 

formulated to minimize these problems, for optimal imaging of the liver.

Tumor localization

Novel locoregional therapies of liver metastases, such as partial liver resection or radio-

frequency ablation �RFA� of individual lesions, depends on accurate localization and delineation 

of lesions in relation to anatomical structures such as blood vessels.

In chapter 12, a novel algorithm for delineation of liver metastases on FDG-PET is presented. 

A liver metastasis appears on PET as a blurry hotspot, of which the apparent size depends 

on both the intensity of FDG-uptake and the real size of the lesion. An iterative thresholding 

technique is introduced, and compared with other available methods for tumor demarcation 

on PET.

In chapter 13 this novel demarcation method is applied to a series of clinical images, and the 

results are compared with conventional delineation techniques on PET and CT, with evaluation 

at pathology as a gold standard. An optimal strategy for delineation and measurement of liver 

metastases from colorectal cancer using FDG-PET is derived, and is validated against the CT 

imaging and histopathological examination.
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Abstract

In the past decade, the integration of anatomic imaging and 
functional imaging has emerged as a new and promising 
diagnostic tool. Developments in software have provided 
methods to integrate various modalities, such as PET, CT, 
MRI, and MR spectroscopy. The introduction of combined 
PET/CT scanners has boosted image fusion in this specific 
field and raised high expectations.

Image fusion can be performed at 3 different levels: visual 
fusion, software fusion, and hardware fusion, each having 
strengths, weaknesses, and issues inherent to technique. 
Visual fusion is the traditional side-by-side reviewing of 
2 separate modalities. Software image fusion provides 
evaluation of 2 modalities in 1 integrated image set. True 
hardware fusion of PET and CT does not exist at present. 
Currently, hardware fusion refers to a PET/CT scanner that 
consists of separate scanners, which are positioned in line at 
a fixed distance, with automatic projection of the PET image 
over the CT image.

The suggested superiority of hardware fusion with these 
so-called hybrid PET/CT scanners over software fusion has 
sparked debate. Because scientific data that unequivocally 
show that state-of the-art software fusion is less accurate 
than hardware fusion �as provided in hybrid PET/CT scanners� 
are unavailable, the primacy of a combined PET/CT scanner 
over stand-alone PET and CT is more a matter of belief than 
of science.

Further research comparing the overall performance of PET/
CT scanners with that of separate scanners with software for 
image fusion is much needed. The continuous development of 
better software for image fusion and respiratory and cardiac 
gating is also needed, not only for PET and CT imaging but 
also for fusion of PET with MRI and CT with MRI.

Chapter 2
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2.1	 Introduction

In the past decade, functional imaging with 18F-FDG PET has been the fastest growing diagnostic 

modality in oncology. The high sensitivity for depicting increased metabolism in a wide variety 

of malignancies adds significant accuracy to many diagnostic regimens compared with anatomic 

imaging only �CT, MRI, ultrasound�. For several reasons, anatomical and functional imaging 

have been integrated into one diagnostic modality that is known as image fusion.

Image fusion can be performed at 3 different levels: visual fusion, software fusion, and 

hardware fusion. In traditional visual image fusion, the physician compares 2 separate imaging 

modalities viewed next to each other. The fusion takes place in his or her mind. In soft- and 

hardware image fusion, the results of both procedures are overlaid in an integrated set of 

images. It is the suggested superiority of hardware fusion in hybrid PET/CT scanners over 

software fusion that has sparked current discussions.

Software for image fusion has been developed by various vendors and is universally applicable 

to all sorts of image sets. True hardware fusion of PET and CT does not exist at present. It 

would require the use of a single detector system that registers 2 image sets at the same time 

�e.g., 511-keV γ-rays from 18F-FDG and x-rays from CT�. An alternative solution is a combined 

device with separate CT and PET scanners positioned in line. Several companies adopted this 

principle, and so-called hybrid PET/CT scanners are now widely available commercially.

Although hybrid PET/CT scanners are advertised extensively as the latest achievement in 

modern technology and as “state-of-the-art” and “must-haves”, independent research on real 

benefits has only just begun. At this moment, few objective results have been produced that 

show the necessity of a combined PET/CT scanner or its advantages over software fusion. 

The current debate is mainly led by commercial companies and individual physicians’ expert 

opinions. Therefore, comments and concerns are justified. Objective and independent grounds 

and arguments are discussed here, both for and against the use of image fusion in the modern 

daily clinical practice of diagnostic imaging and including both soft- and hardware fusion.

Anatomical imaging

Imaging modalities such as CT and ultrasound adequately reflect normal anatomy and 

anatomical changes. MRI has similar or even better potential for depicting anatomy and 

also provides additional tools for functional imaging. In recent years, the spatial resolution 

of these techniques has improved greatly, now significantly <1 mm. This permits accurate 

recognition and delineation of organs and structures, especially with the use of contrast-

enhancing agents. These procedures are widely available and hold a solid position in the 

diagnostic algorithm of many disease entities. Despite these advances, anatomical imaging 

PET-CT: Panacea or redundancy?
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may be unable to differentiate between normal and pathological tissues with similar densities. 

It provides relatively little information about the viability or metabolic activity of organs and 

lesions, thus lacking sufficient sensitivity and specificity to answer a number of important 

clinical questions. Well-known problems are the differentiation of viable tumor from scar tissue 

after external beam radiation or chemotherapy, the detection of isodense metastases in the 

liver �in particular in a deformed liver after surgical procedures or in liver cirrhosis�, and the 

detection of metastases in normal-size lymph nodes.

Functional imaging

Functional imaging with 18F-FDG PET scanning permits differentiation of viable malignant tissue 

or active infection from normal tissue and from nonviable remnants by direct visualization 

of metabolic activity in vivo. Other tracers currently under development may prove useful 

in visualizing other important parameters, such as DNA synthesis, mitotic activity, protein 

synthesis, local ischemia, and expression of tumor-specific receptors. Despite high contrast 

resolution, major drawbacks of PET scanning are the relatively low spatial resolution of 

images �at present in the range of 4–6 mm and physically limited to about 1-2 mm� and poor 

recognition and delineation of anatomical structures. This may result in uncertainty or even 

failure in correctly localizing detected abnormalities. Recognized examples are lesions in the 

upper abdomen, situated near the border of organs, or between adjacent organs. Advanced 

MR techniques such as dynamic MRI and MR spectroscopy �MRS� are now available. These 

techniques also show functional aspects, such as 

vascularity, blood perfusion, oxygenation, and 

biochemical information. Moreover, MR contrast 

agents have been developed to label specific tissues. 

For example, ultrasmall superparamagnetic iron 

oxide particles specifically visualize macrophages 

and enable the differentiation of normal lymph 

node tissue from metastases �1�.

Chapter 2

Figure	2.1
Example of software fusion of 18F-FDG	PET	and	CT	
images	for	lesion	localization.	(A)	18F-FDG	PET	clearly	
showed	a	pathological	lesion	somewhere	in	the	upper	
thoracic	aperture.	More	precise	localization	was	not	
possible	due	to	lack	of	anatomic	information.	(B)	The	
lesion	was	not	found	retrospectively	on	diagnostic	CT	
images	using	visual	fusion.	(C)	Software	image	fusion	
localized	the	lesion	in	a	rib	near	the	costovertebral	
joint.
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2.2	 Benefits	of	image	fusion

The limitations in separate CT and PET imaging may be compensated for when the 2 modalities 

are used in a complementary way. High-resolution anatomical information produced by CT adds 

significant information to tissue characterization delivered by PET. In addition, fusion of high-

resolution MRI anatomical and functional information with PET will provide an extra dimension. 

When applying the integration of different imaging modalities, image fusion becomes an issue. 

Adequate anatomical alignment of both image sets permits convenient visualization of all 

information in one study.

Diagnostic effect

Improved lesion characterization and localization will result in increased diagnostic accuracy, 

which is recognized as a beneficial diagnostic effect. However, better accuracy in staging 

and restaging of disease is only relevant when it leads to changes in patient management 

�e.g., by decreasing the number of indications for invasive procedures�. Also, improved lesion 

localization may lead to better results in other successive diagnostic procedures �e.g., easier 

CT-guided biopsy�. Figure 2.1 is an example of improved lesion localization with software 

image fusion.

Integration of multiple functional imaging techniques, such as PET studies with various tracers 

or functional MRI with contrast enhancement and MRS, results in comprehensive in vivo tissue 

characterization.

Effect on therapy

PET images can be implemented in radiotherapy treatment planning and may be of particular 

value for high-precision techniques, such as intensity-

modulated radiotherapy �IMRT�. With IMRT, different dose 

prescriptions can be delivered to multiple target sites with 

PET-CT: Panacea or redundancy?

Figure	2.2
Example of software fusion of 18F-FDG	PET	and	CT	images	
of primary laryngeal carcinoma for IMRT field planning. 
Patient	was	scanned	for	both	18F-FDG PET and CT on a flat 
bed,	in	a	personalized	rigid	radiotherapy	mask	covering	
head	and	shoulders	to	prevent	positioning	differences.	A	
lymph	node	in	neck	that	was	only	marginally	enlarged	on	CT	
proved	pathologic	on	18F-FDG	PET	and	was	included	in	the	
radiotherapy field. (A) Transverse slice through the pathologic 
lymph	node.	(B)	Coronal	slice.	(C)	Sagittal	slice.
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extremely high dose gradients between tumor and normal tissues. This places demands on 

the ability of conventional imaging techniques to localize and delineate tumors. PET scanning 

can detect additional lesions or may provide complementary information to facilitate the 

interpretation of equivocal CT findings �e.g., marginally enlarged lymph nodes�. Consequent 

adjustments of the radiotherapy target volume will have a direct effect on the chances of cure, 

and on the risk and level of side effects and on complications.

In addition, functional PET imaging may identify tumors or regions within tumors with increased 

radioresistance. Examples are tumor hypoxia and areas of very active tumor cell proliferation 

that can be detected by specific tracers �2�. A next step in the development of IMRT will be the 

integration of anatomical and functional information into a biological target volume �3�. Using 

the ability of IMRT to deliver nonuniform dose patterns, biological dose conformality can be 

pursued, creating higher doses to areas of increased radioresistance, and lower doses in areas 

of high radiosensitivity. Figures 2.2 and 2.3 demonstrate the use of software image fusion 

in IMRT planning. Figure 2.4 is an example of a resulting IMRT field. MRI and dynamic and 

spectroscopic MR information also can be used to target IMRT and have been shown to very 

accurately localize prostate cancer �4,5�. Fusion of this functional MR information with CT has 

also been shown to be possible �6�.

The potential value of combined modalities is easy to recognize. Joined information may 

prove synergistic. It allows accurate differentiation between pathological and normal tissue, 

with excellent resolution and localization, and it creates opportunities for further optimization 

of treatment. The question that remains to be 

answered is whether only a combined PET/CT 

scanner can live up to this expectation.

Chapter 2

Figure	2.3
Example of software fusion of 18F-FDG	PET	and	CT	
images	of	primary	non–small	cell	lung	cancer	with	a	
lymph node metastasis in mediastinum for IMRT field 
planning.	The	patient	was	scanned	for	both	18F-FDG	
PET and CT on a flat scanning bed, with the arms 
up	in	a	rigid	customized	support	system	to	minimize	
positioning	differences.	CT	images	were	acquired	
during	free	tidal	breathing,	accounting	for	huge	
artifacts.	18F-FDG	PET	images	were	also	acquired	
during	free	tidal	breathing	but	show	much	more	
reliable	delineation	of	tumor	tissue.	(A)	Transverse	
slice.	(B)	Coronal	slice.
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2.3	 Levels	of	image	fusion

When reading two image studies such as PET and CT, three levels of image fusion are possible: 

visual, software, and hardware fusion. When two studies need to be correlated, what level of 

image fusion is preferred or needed?

Often no need for image fusion

A PET scan without a CT scan is not useless. On the contrary, most PET scanners today 

operate as stand alones and perform quite well. In most cases, PET images contain enough 

information to answer relevant clinical questions. Additional information necessary to interpret 

the images should be retrieved from the referring physician or from previous imaging, such as 

CT, ultrasound, or MRI.

Visual fusion

The reviewer traditionally has a film print or digital display of a previously recorded CT scan next 

to PET images, and overlays the images in his or her mind while reviewing. This is called visual 

fusion. Based on clinical experience, Jager et al. �7� estimated that there is a need to look at 

CT images in only about 20% of cases. They also stated that, in the majority of these selected 

cases, visual fusion gives sufficient information with no actual need for or additional value from 

soft- or hardware image fusion. Others emphasize the necessity of an extensive review of CT 

images in all cases. These 2 opinions, neither founded on evidence-based data, serve as a 

source of controversy.

PET-CT: Panacea or redundancy?

Figure	2.4
Sample IMRT field planning of 
oropharyngeal	squamous	cell	
carcinoma.	Different	levels	of	
radiation	dose	are	drawn	in	
red	in	a	3-dimensional	space.	
Painted	in	blue	is	the	spinal	cord	
that	will	be	spared.	Reverse	
planning	was	used	to	calculate	
the	optimal	shape	and	intensity	
of	7	beams.
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Software fusion

Integration of separate PET and CT image sets into a single study can be achieved with software 

fusion. Several commercial packages have been developed for this purpose. These packages 

share a similar set of functions for fusion and visualization.

The most elementary method of image fusion is manual positioning of one scan relative 

to the other in a 3-dimensional space, with 9 free parameters for adjustment of position, 

size, and rotation in 3 directions each. This is a very time-consuming procedure and, more 

important, is highly operator dependent and not very accurate. Marking of recognizable points 

in both scans �so-called landmarks, either anatomic or artificial� was introduced initially for 

optimization, but lack of such anatomic points on PET and low correlation of external fiducial 

markers with internal organ positions limits the applicability of this technique. The true 

power of these software packages lies in the use of automatic optimization algorithms, which 

eliminate operator dependency and increase accuracy by considering all parts of both scans 

simultaneously. Numerous algorithms have been developed for this purpose. Examples include 

count difference, shape difference, mutual information, normalized mutual information, and 

others. All currently used algorithms produce fused images, but the results vary in accuracy. It 

is unclear which algorithm performs best in a specific situation. However, mutual information is 

generally accepted as the most robust procedure. Both PET emission and transmission images 

�or even a combination of those in a given ratio� may be considered when optimizing �8�. Only 

rigid transformation algorithms are currently commercially available and widely used. In the near 

future, elastic transformation 

will become available, possibly 

allowing automatic correction 

of small breathing artefacts and 
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Figure	2.5
Example of software fusion 
procedure	for	18F-FDG	PET	and	
CT	images.	(A)	After	loading	both	
scans	in	fusion	software,	a	large	
shift exists. PET transmission 
images	in	CT	are	displayed	
for	easier	recognition	of	body	
outlines.	(B)	Optimized	fusion	
after	automatic	registration	with	
mutual	information	algorithm.	
(C)	Final	result	with	18F-FDG-PET	
emission	images	displayed	in	CT.
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positioning differences �9,10�. Still, it is unlikely that advanced techniques in software fusion will 

ever be able to correct for extreme positioning differences and motion artifacts. Furthermore, 

patient logistics and network connectivity are relevant issues when performing software image 

fusion, because each may lead to additional delay.

The software fusion process typically consists of several steps. First, 2 image sets must be 

loaded into the computer system running the fusion application. If all geometric parameters 

are correctly defined, both image sets will appear in an integrated image set with a certain 

displacement and possibly a small rotation along 3 axes. A quick correction of the most 

obvious displacement may be performed manually. Additional optimization must be achieved 

by automatic registration, which also will be fast. The resulting integrated image set may 

be viewed or saved to a picture archiving and communication system. Figure 2.5 shows an 

example of the procedure.

Hardware fusion

As stated previously, true hardware image fusion of PET and CT is not yet possible. The 

term hardware fusion currently refers to a PET/CT scanner, which includes separate scanners 

positioned in line at a fixed distance. In fact, current combined PET/CT scanners can be 

described as expensive patient positioning systems that facilitate obtaining a dedicated CT 

and a dedicated PET in one session with minimal patient movement, at the cost of occupation 

of the CT while scanning PET and vice versa. The acquired image sets are calibrated to be 

overlaid correctly within a certain error but are not routinely corrected for breathing artefacts 

or accidental positioning changes between the 2 scans. Because of these inaccuracies, CT-

based attenuation correction for the PET images, advocated for its speed of acquisition, will 

introduce certain artefacts. Software for optimization or correction of these errors in hybrid 

PET/CT images is not used currently.

Nevertheless, the use of a combined PET/CT scanner has several definite advantages over 

separate scanners. The patient lies on the same bed in the same position. Therefore, the 

image fusion procedure logistics are easier and probably less prone to artefacts resulting 

from positioning differences. In addition, total scanning time is shorter when using the CT for 

attenuation correction of PET data.

A point of controversy

The required level of image fusion remains open for debate. It is unclear whether the increased 

scanning speed and somewhat easier image fusion �when needed� are sufficient compensation 

for the higher radiation exposure and high cost of a combined PET/CT scanner. No studies have 

yet addressed this problem as a whole.

PET-CT: Panacea or redundancy?
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Lardinois et al. �11� studied hardware image fusion compared with CT alone, PET alone, and 

visual correlation, with histopathology as a gold standard in staging 49 patients with non–

small cell lung cancer. Software image fusion was not performed in this study. The authors 

found integrated PET/CT significantly more accurate in staging the primary tumor than CT 

alone, PET alone, or visual image fusion. They reported improved accuracy in staging lymph 

nodes compared with PET alone, but no significant difference in accuracy was found between 

integrated PET/CT and visually correlated images. Integrated PET/CT provided additional 

information over visual fusion in 41% of cases, including more exact localization of tumor sites, 

precise evaluation of chest wall or mediastinal involvement, and differentiation between tumor 

and peritumoral inflammation or atelectasis. However, the key questions, how this related to 

the performance of software fusion and whether and to what extent patient management or 

therapy outcomes were changed, were not addressed.

2.4	 Problems	and	limitations

When using image fusion in daily clinical practice, a certain level of accuracy in positioning one 

image set relative to the other must be achieved or, better, guaranteed. Does hardware image 

fusion perform better than software fusion?

Accuracy

The maximum achievable accuracy in image fusion depends on several factors. Most important 

are patient positioning differences, internal organ movements �e.g., breathing and motion of 

the heart�, attenuation correction artefacts, and errors in the fusion procedure. Figure 2.6 

shows the potential results of some of these effects. To a certain degree, these factors �except 
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Figure	2.6
Example of failed software image fusion in a patient with B-cell 
lymphoma.	CT	images	were	acquired	during	breathhold	at	deep	
inspiration	with	the	arms	up.	18F-FDG	PET	images	were	acquired	
during	free	tidal	breathing	with	the	arms	down.	The	fusion	
images show major inaccuracies in upper thorax aperture, 
where	pathological	lymph	nodes	are	mispositioned	in	the	lung,	
and	in	region	of	diaphragm,	which	is	misaligned.	(A)	Transverse	
slice.	(B)	Coronal	slice.
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for CT-based attenuation correction artefacts� are present in both soft- and hardware fusion. 

The presence of these errors must be checked and corrected when possible. This can be done 

with image registration software.

Patient positioning and movement

Patient positioning should be identical during the PET and CT scans. This implies scanning 

with the arms either up or down in both scans, with identical support material under the head 

and neck and with similarly shaped scanning beds. The choice of arm position depends on the 

purpose of the scan. In most diagnostic procedures, CT scans are acquired with the arms up. 

PET scans are usually acquired with the arms down for patient comfort during the relatively 

long scanning period. Compromises may be unavoidable in image fusion.

Patient movement should be minimized during and between scans by instructions and 

additional support material. Various types of custom-molded support cushions are available 

for this purpose. When very high accuracy is needed �e.g., in radiotherapy of the head and 

neck� customized head support devices and immobilizing masks are recommended. Despite 

best efforts, patient movement can never be ruled out as a source of error.

Patient positioning and motion errors are possible when imaging with separate scanners as 

well as with integrated PET/CT scanners, although the chance of large positioning differences 

between scans seems significantly lower in the latter. This problem requires more attention 

when using separate scanners but can be largely overcome when handled appropriately. 

Equipment suppliers should facilitate this by providing the same bed for PET and CT.

Organ movement

Because of the duration of the scan, PET is acquired during free tidal breathing. This implies 

continuous movement of the thoracic wall, lungs, mediastinum, diaphragm, and upper abdominal 

organs, leading to displacement �up to several centimeters�, rotation, and deformation of 

organs. Therefore, diagnostic CT scans are usually acquired during deep inspiration breath 

hold. Standard PET and CT, then, will inevitably contain major differences. The only available 

solution is the acquisition of the CT scan during free breathing �with the introduction of serious 

artefacts on CT� or during breath hold in a fixed position. Goerres et al. �12� reported the best 

match of CT and PET when scanning CT in unforced expiration but also recognized the inability 

of most patients to hold this position during a whole-body CT. A compromise suggested by 

Beyer et al. �13� allowed the patient to breathe free at the beginning and end of the CT scan 

and advocated unforced expiration during scanning of the lower lung and upper abdominal 

region. This procedure provides an acceptable although still not perfect result in image fusion. 

Reliability in the diaphragmatic region remains poor. Novel respiratory-gated PET scanning 

techniques are being developed but are not yet clinically used �14�. This problem is not solved, 

and it persists in both integrated PET/CT and separate scanners.
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Considerable motion and displacement of internal organs are often problematic in scans of the 

pelvic region. This is mainly caused by variations in bladder and rectal filling, which in turn 

can affect prostate and uterus position. This problem is probably best solved by keeping the 

interval between the scans as short as possible.

Although combined PET/CT scanning delivers readily aligned image sets, it is not perfect 

by default. The scans may be slightly misaligned as a result of a calibration error in the 

relative CT and PET scanner positions. Minor differences in patient positioning may occur, and 

differences in diaphragm position will exist. A minimal error of several millimeters is considered 

unavoidable. However, variations in positioning and initial misalignment will be larger when 

using separate scanners.

Scanner resolution and inaccuracy

The minimal error that can be visualized and corrected, either manually or with automatic 

registration, is limited by the resolution of both scans. For PET and CT this implies an error of 

approximately 5 mm in the transverse plane and at least 5 mm along the longitudinal axis, 

depending on the thickness of CT slices. Automatic registration may achieve a somewhat 

higher accuracy by considering all slices at the same time, but this is difficult to prove.

The total inaccuracy of fusion consists of the added inaccuracies caused by positioning 

differences, motion artefacts, and the fusion procedure itself. As a rule of thumb, the total 

minimal theoretic error can be estimated at approximately 10 mm in all directions and probably 

twice that in the diaphragmatic region. The minimal error may be less in rigid body parts, 

such as the brain. The minimal error is unavoidable in image fusion, whether a separate or 

combined PET/CT scanner is used. Many soft- and hardware solutions claim higher accuracy in 

image fusion, up to 1–2 mm in all directions. Such claims are based on phantom studies and 

disregard the specific problems inherent when scanning living subjects.

Acceptable inaccuracy

The required accuracy of image fusion depends on the clinical question that needs to be 

answered. To correctly distinguish 2 lesions, the error must be smaller than the size of the 

lesions. The smallest lesion that can be detected with PET is just below 1 cm in diameter. 

Therefore the maximum level of accuracy that can be achieved, and is required, is also in the 

range of 1 cm in all directions.

In radiotherapy of the head and neck area, with optimal positioning and immobilization, the 

error in dose delivery is in the order of 2 mm or less �15�. Such degree of accuracy cannot be 

achieved with a PET scanner with 5-mm spatial resolution. The total error of PET/CT fusion 

must be considered when defining the target volume in radiotherapy. As a consequence, the 

target volume will increase. On the other hand, the interobserver variations in contouring tumor 
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volumes can be significantly reduced because of the higher specificity of PET information �16�. 

These factors must be weighed against the benefits of higher sensitivity of tumor detection 

and the availability of additional functional information. It opens a whole new field of research 

and development.

Because additional error has direct consequences for the size of radiation volumes, every 

effort must be made to achieve the highest possible accuracy. This means that all imaging, 

as well as the actual radiotherapy, must be performed with the patient locked in a rigid mask 

that prevents any movement or variation in positioning. In radiotherapy field planning of the 

lungs and mediastinum, the CT scan is recorded during free breathing to mimic the situation 

during radiotherapy. Under these conditions, the CT has an effective total error of several 

centimeters. Here, the PET scan is considered to have a better resolution, as illustrated in 

figure 2.3. New developments in radiotherapy treatment planning and delivery address this 

problem. The use of multiple, so-called “slow” CT scans, which use long sampling times for 

image registration, allows better capture of tumor movement and generates more reproducible 

target volumes �17�. The precision of dose delivery can be improved with respiratory-gated 

radiotherapy, where dose delivery is adjusted to the breathing motion of organs. Again, for 

these issues, no significant difference exists between the use of 2 separate scanners and a 

combined PET/CT scanner.

All errors mentioned here are theoretic estimates. Unfortunately, the real error made in 

image fusion cannot be assessed objectively, because no gold standard is available. However, 

methods to evaluate the quality of image fusion have been developed and are used in research 

settings �18�. The human eye is the only available instrument to recognize specific errors in 

individual cases. This means that for both soft- and hardware solutions, image fusion has no 

“guaranteed” accuracy—only estimated minimal errors.

2.5	 Attenuation	correction

Advantages

Most institutions perform a transmission scan to correct the emission scan for photon 

attenuation. The time needed for the transmission scan using radioactive sources is about 

30%–40% of the total scanning time. The CT scan of a PET/CT study can also be used to 

correct the PET emission for attenuation, thus decreasing the total PET scanning time. It is 

obvious that such reduction in scanning time will not be achieved when 2-dimensional emission 

data alone are used to read the PET images.

Another advantage of CT-based attenuation correction is a lower noise level in the CT images 

compared with that in traditional transmission images, resulting in corrected PET images with 

less noise.

PET-CT: Panacea or redundancy?
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Disadvantages

Using CT data to correct PET emission data to reduce total scanning time is tempting. However, 

significant additional errors may be introduced. As indicated previously, positioning and 

breathing protocol differences between the CT and PET scans will result not only in image fusion 

errors but also will introduce quite serious artefacts in the attenuation-corrected PET images, 

especially in the diaphragm region where lesions may be projected in the wrong organ �19�. 

The use of lower energy x-rays instead of a 511-keV transmission source also will result in 

more artefacts in the area of metallic implants. Overcorrection will result in false hotspots, 

unless the attenuation correction algorithm is specifically adapted to this problem �20�. Serious 

distortion effects have been demonstrated on PET near dental implants and prostheses �21,22�. 

Dizendorf et al. �23� reported that contrast fluids have some effect but that this did not lead to 

serious misinterpretations. Uncorrected PET images should be viewed when using CT-based 

attenuation correction, thereby avoiding serious misinterpretations. In theory, it is possible 

to use CT data for attenuation correction of PET data as acquired on a separate PET scanner. 

However, such a procedure is considered cumbersome because of logistic implications and the 

very high risk of artefacts.

2.6	 Additional	arguments

The clinical and technical arguments mentioned previously are perhaps the most important, 

but the discussion is certainly not limited to these. Several other factors with regard to PET/CT 

should be considered.

CT image quality

CT scans acquired with a combined PET/CT scanner may not be of the best diagnostic quality. 

Because the main purpose of the CT scan in this combination is coregistration and attenuation 

correction, a single-slice, low-energy CT scan with relatively low contrast and resolution and 

a relatively large slice thickness is sufficient. In some modern scanners a high-resolution, 

multislice diagnostic CT scanner is available, but in most cases the patient has already 

undergone a high-quality diagnostic CT scan before referral for PET. This limits the need for a 

second state-of-the-art CT scan.

Radiation dose

In PET/CT scanning, the patient undergoes a CT scan, regardless of whether a diagnostic CT 

scan is already available. This implies a second radiation dose. A standard PET emission scan 

delivers a radiation dose to the body of 5–10 mSv. A traditional germanium-based transmission 

scan delivers no significant dose to the patient. When using a modern multislice CT with 
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diagnostic settings, the received dose may be up to 10 mSv for the head, 20 mSv for the chest, 

and 20 mSv for the abdomen. This would be a significant increase in total radiation to the 

patient for PET scanning. This extra radiation dose can be decreased by using lower-energy x-

rays and thicker slices that are sufficient for CT-based attenuation correction and simple lesion 

localization in PET/CT scanning. Nevertheless, a total-body CT dose of 10 mSv added to the 

normal PET emission dose is very common. In nuclear medicine, a trade-off between scanning 

speed and radiation dose always exists but usually is not that significant.

It is also worth considering that a combined PET/CT scanner delivers a CT scan with every PET 

scan, needed or not. The CT scan then should be used for diagnosis. It would be poor radiation 

safety practice to acquire a wholebody CT scan for faster attenuation correction only and not 

even look at the inherent diagnostic information afterwards. Eventually, implementation of 

PET/CT as a common tool in diagnosis may lead to an adaptation of the diagnostic strategy. 

In certain situations, obtaining a diagnostic CT before PET/CT may not be necessary. Such a 

strategy is currently under investigation for the diagnostic work-up of patients with suspected 

lung cancer, and some institutions have already implemented this in routine clinical practice 

for this diagnosis.

Combination with other modalities

The combination of PET and CT may be attractive, but the integration of PET with imaging 

modalities other than CT can have additional important advantages. MRI is superior to CT 

in visualization and delineation of soft tissue anatomy. The combination of PET with imaging 

modalities that do not contribute to radiation dose, such as MRI, would be preferable in terms 

of radiation safety. The fact that PET/CT is the only available integrated combination right now 

does not make it a panacea. In the near future, image fusion of PET with other modalities is 

certain to become an issue, and it would be unwise to direct all attention, efforts, and available 

budget to a single option. This may even slow down development in other important areas of 

image fusion.

Economy

The purchase of a combined PET/CT scanner is quite costly and must be adequately justified. 

The difference in price between a PET/CT unit and a dedicated PET scanner is sufficiently 

large to warrant considering spending the budget on other, more urgently needed items. This 

becomes even more of an issue when taking into account the fact that the high-end CT included 

in a PET/CT scanner will be operated for only 1 min per patient, for a total of only 10–20 min 

per day. The combination of 2 advanced imaging devices in 1 machine at least doubles the 

chance of technical failure. Personnel dually trained in PET and CT techniques are needed to 

adequately operate such a machine. Such factors increase the total costs of ownership.

PET-CT: Panacea or redundancy?
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Competence issues

When a nuclear medicine department begins using a CT scanner, competence issues may 

arise with the radiology department. Are the CT images used for localization and attenuation 

correction only? Are nuclear medicine physicians allowed to review the CT and use it as a 

diagnostic tool as well? Can these findings end up in the PET report? Should a radiologist 

always look at the CT images? Can this be done separately, or is a joined image reading 

session mandatory? On the other hand, the radiotherapy department may want to use a 

PET/CT scanner to improve radiation treatment planning. Competence and responsibilities of 

nuclear medicine physicians, radiologists, and radiation oncologists need to be defined.

2.7	 Conclusions

Without reservation, the answer to the question of whether we need CT in combination with 

PET is yes. However, questions about the required level of image fusion are far from settled. 

In the authors’ opinion, side-by-side reading of PET and CT �meaning visual image fusion� is 

sufficient and adequate in many cases. Moreover, scientific data are unavailable to demonstrate 

unequivocally that state-of-the-art software fusion is less accurate than the hardware fusion 

provided in current PET/CT scanners. Suggesting the primacy of a combined PET/CT scanner 

over stand-alone PET and CT is more a matter of belief than of science.

The possession of a PET/CT scanner does not automatically upgrade an institution to the top 

of its class, and, perhaps more important, an institution with a state-of-the-art PET scanner, 

state-of-the-art CT scanner, and state-of-the-art software for image fusion is definitely not 

second class. High quality should be defined by state-of-the-art PET, CT, adequate software 

for image fusion, and knowledgeable multidisciplinary interpretation. Those institutions 

starting with clinical PET can perform very well with a stand-alone, dedicated PET scanner, in 

combination with software fusion when needed. The extra expense of a PET/CT scanner should 

be weighed against other, possibly more urgent, needs.

Additional research comparing the overall performance of PET/CT scanners with that of 

separate scanners with software for image fusion is much needed. Furthermore, the continuous 

development of software for image fusion and respiratory and cardiac gating is not only needed 

for combined PET and CT imaging but also for fusion of PET with MRI and CT with MRI. For 

these reasons, it is counterproductive when only PET/CT scanners receive the full attention of 

the nuclear medicine community.
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Abstract

Reconstruction parameters are an important factor in PET 
image quality. In the head and neck area, where the level 
of photon attenuation is relatively low, standard whole-body 
reconstruction �SWR� parameters may lead to suboptimal 
results. The purpose of this study was to evaluate the impact 
of optimised head and neck reconstruction �OHR� parameters 
on image quality and diagnostic accuracy, using pathology as 
the gold standard.

Methods: SWR parameters consisted of 2 iterations, 8 
subsets and a 6-mm Gaussian filter. Predetermined OHR 
parameters were 4 iterations, 16 subsets and a 5-mm 
Gaussian filter, generating images with increased spatial and 
contrast resolution but also with increased noise. SWR- and 
OHR-based FDG-PET images of 28 patients with malignancies 
in the head and neck area were evaluated for primary tumor 
and pathological lymph nodes. Diagnostic accuracy was 
determined by histopathological verification after lymph 
node dissection.

Results: Using OHR, sensitivity for detection of a primary 
tumor increased from 92% to 100%. Eleven additional 
lymph nodes were visualised in eight patients, resulting in an 
increased sensitivity for lymph node metastases from 11% 
to 44%. Specificity decreased from 89% to 74% owing to 
visualisation of small reactive lymph nodes. In total, using 
OHR, FDG-PET diagnosis improved in six patients �21%� 
at the expense of three additional false positives for lymph 
node metastasis �11%�. Primary tumor SUVmax increased by 
42%, indicating enhanced contrast resolution.

Conclusion: Image reconstruction adapted to low photon 
attenuation in the head and neck area may improve image 
quality and the diagnostic value of FDG-PET, despite a 
slightly higher false positive rate attributable to the fact that 
visualisation of FDG accumulation in benign reactive lymph 
nodes is also enhanced.
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3.1	 Introduction

Primary tumors in the head and neck area are often small at the time of discovery, especially 

when located in the oral cavity. Lymph node metastases tend to be small and multiple in number. 

Among patients without clinically apparent lymph node metastasis �staged cN0�, pathological 

examination after lymph node dissection shows occult metastases in up to 40% �1�. Accurate 

staging of the primary tumor and lymph nodes is essential for determination of prognosis and 

appropriate selection of therapeutic strategies.

Positron emission tomography with 18F-fluor-deoxy-glucose �FDG-PET� provides high contrast 

resolution and high sensitivity for the detection and staging of a wide variety of malignant 

diseases. In the head and neck area, some authors have reported a high accuracy of FDG-

PET for the detection of primary tumors and lymph node metastases �2-5�. However, others 

have reported a low sensitivity for the detection of lymph node metastases, especially 

micrometastases �6�.

A major drawback of FDG-PET is its relatively limited image quality, expressed in a low spatial 

resolution and a tendency to produce noisy images. In PET scanning, image quality can be 

influenced by parameters such as injected dose, acquisition mode and acquisition times. 

Furthermore, it is reduced by physical limitations, such as annihilation photon non-colinearity, 

off-axis detector penetration, Compton scatter, and positron range in tissue �7,8�. Patient motion 

may also play a role in adversely affecting image quality.

Image reconstruction

An additional important factor with impact on image quality is the image reconstruction 

procedure. The choice of an image reconstruction algorithm and its parameters affect contrast 

resolution, spatial resolution, and level of noise. All three factors influence the measured 

standardised uptake values �SUVs� and clinical reporting �9�. Optimum values depend mainly 

on scanner characteristics and the level of attenuation. Specifically in the head and neck 

area, attenuation is much lower as compared to the central body. This results in better count 

statistics and lower noise levels by default. Less filtering is needed and more iterations may 

be used without creating unacceptable noise. Standard whole-body reconstruction �SWR� 

parameters, however, are optimised for the patient as a whole, and disregard particular issues 

relating to specific body parts such as the head and neck area.

The actual diagnostic benefit of optimised reconstruction algorithms for the head and neck 

area remains unconfirmed. The aim of this study was to assess the impact of better image 

quality from optimised head and neck reconstruction �OHR� images on diagnostic yield in the 

staging of malignancies in the head and neck area.

Optimised PET of head and neck
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3.2	 Materials	and	methods

Twenty-eight patients with newly diagnosed malignancies in the oral cavity were included 

�table 3.1�. None of the patients had clinical signs of lymph node metastases, and none had 

evidence of lymph node metastases on ultrasonographic evaluation of the neck, including fine-

needle aspiration of visible lymph nodes when appropriate. None of the patients had a history 

of diabetes mellitus, and fasting glucose levels were within the normal range.

FDG-PET acquisition

All PET scans were acquired using a full-ring dedicated PET scanner �Siemens ECAT Exact 47, 

Siemens AG, Germany�, with a voxel size of 5.15 mm in all directions. One hour after injection 

of 250 MBq FDG �Tyco-Mallinckrodt, Petten, The Netherlands�, emission images were acquired 

in 3D mode. 68Ge-based transmission imaging was performed for attenuation correction. The 

acquisition time per bed position was 5 min for emission and 3 min for transmission.
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Table	3.1
Characteristics	of	patients	included	
in	the	study.	F	=	female,	M	=	male.

Patients: Tumor characteristics at pathology

Sex
Age 
�y�

Tumor location Primary

1 F 76 Left oral tongue T4

2 F 79 Right oral tongue T2

3 F 55 Right floor of mouth T1

4 F 55 Ventral floor of mouth T4

5 F 71 Right floor of mouth T2

6 F 58 Ventral floor of mouth T2

7 M 55 Right floor of mouth T2

8 M 30 Left oral tongue T2

9 F 66 Left oral tongue T1

10 F 77 Left oral tongue T2

11 M 79 Ventral floor of mouth T2

12 M 47 Ventral floor of mouth T1

13 F 58 Left oral tongue T3

14 F 82 Right oral tongue T2

15 M 53 Right oral tongue T1

16 M 52 Right oral tongue T3

17 M 50 Right oral tongue T1

18 M 64 Ventral floor of mouth T1

19 F 71 Left oral tongue T2

20 M 45 Left oral tongue T1

21 F 59 Right oral tongue T2

22 M 47 Right oral tongue T1

23 M 55 Left oral tongue T3

24 M 66 Left oral tongue �excision biopsy� T1

25 F 72 Left trigonum retromolare T2

26 M 79 Right oral tongue T3

27 M 42 Right oral tongue T2

28 F 70 Right oral tongue T3

Avg 61
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Image reconstruction

All PET scans were reconstructed using an iterative 2D ordered subset expectation maximisation 

�OSEM� algorithm �10�. For SWR, parameters were left unchanged for normal whole-body 

imaging �i.e. 2 iterations, 8 subsets and a three-dimensional Gaussian filter of 6 mm�. 

Attenuation correction was based on segmented transmission images. Average reconstruction 

processing time for a whole-body study was 3 min.

In addition, the head and neck area was reconstructed a second time using the OHR 

parameters. These parameters were determined beforehand, by three observers who reached 

a consensus in visual analysis of multiple reconstructions. The best results in respect of spatial 

resolution, contrast resolution, noise level, blurring and observer confidence were achieved 

on our system when using 4 iterations, 16 subsets and a three-dimensional Gaussian filter of 

5 mm. Attenuation correction was based on non-segmented transmission images. With these 

settings, the average calculation time for two bed positions was 10 min. Examples of FDG-

PET scans of the head and neck area generated with different reconstruction parameters are 

shown in figure 3.1. In contrast, these values were clearly not suitable for the central body, as 

illustrated in figure 3.2. 

Optimised PET of head and neck

Figure	3.1
Effects	of	different	reconstruction	parameters	on	image	quality.	From	left	to	right,	reconstructions	
with (A) an increasing number of iterations, using fixed 16 subsets and no filter; (B) an increasing 
number of subsets, with fixed 4 iterations and no filter; and (C) an increasing Gaussian filter size, 
with fixed 4 iterations and 16 subsets. Note the changes in visibility of the small lymph node in the 
dorsal	nasopharyngeal	wall,	as	well	as	better	contour	detection	of	the	primary	tumor.
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Image analysis

All SWR- and OHR-reconstructed FDG-PET images were read independently by two experienced 

nuclear medicine physicians blinded to the final histopathological diagnosis. Differences 

between readers were settled by consensus. The visualisation, location, and additional 

properties of the primary tumor and the number and location of lesions suspected to represent 

lymph node metastases were evaluated. SUVmax and SUVmean values were measured for all 

visualised primary tumors, using an automatic 2D region growing algorithm �Hermes, Nuclear 

Diagnostics, Sweden�. Differences in SUV values of the primary tumor were evaluated using 

a paired t-test.

Histopathological verification

After FDG-PET, all patients but one underwent resection of the primary tumor and 

supraomohyoidal lymph node dissection of the neck within 30 days �average 14 days�, providing 

pathological findings as a gold standard. Patient 26 underwent neck dissection 49 days 

after FDG-PET. The neck dissection specimens were subjected to standard histopathological 

examination. All lymph nodes were examined by standard sectioning and haematoxylin and 

eosin staining. Using the outcome of histopathological staging, the sensitivity, specificity and 

predictive values for the detection of lymph node metastases by FDG-PET were calculated for 

both the SWR and the OHR algorithm.

3.3	 Results

A summary of the imaging results as compared with histological diagnosis is shown in table 

3.2. Subjectively, the OHR images were easier to read. The moderately higher noise level was 

outweighed by improved spatial resolution and recognition of details in both normal tissue and 

pathological lesions. Overall, the reviewers judged the OHR images to be of better quality and 

expressed a higher confidence in the reading.

Figure	3.2
The	effects	of	OHR	on	
image	quality	in	more	
attenuated	parts	of	the	
body.	A	transverse	slice	of	
a	normal	upper	abdomen	
is	shown.	(A)	Normal	SWR	
images.	(B)	OHR	images	
are	uninterpretable	due	to	
increased	noise.
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Primary tumors

In one patient, who had undergone an excision biopsy of the primary tumor, FDG-PET showed no 

focal pathology. SWR-based images visualised 25 primary tumors in the remaining 27 patients, 

demonstrating a sensitivity of 92%. Both missed tumors were staged T1 on histopathological 

examination. On the OHR scans, all 27 primary tumors were visualised, demonstrating a 

sensitivity of 100%. Figure 3.3.A shows an example of improved visualisation of a primary 

tumor in the head and neck with OHR images.

As shown in table 3.3, on the SWR images the mean of the SUVmean of all detected primary 

tumors was 3.8 �range 0.9–8.2� and the mean of the SUVmax was 5.2 �range 1.0–11.7�. On the 

OHR images, the mean of the SUVmean was 5.1 �range 1.1–11.1� and the mean of the SUVmax 

was 7.4 �range 1.2–21.3�.

Using OHR, the SUVmean increased by 34% �P<0.0001� and the SUVmax increased by 42% 

�P<0.0001�. As shown in figure 3.4, there was a strong linear correlation between the SUVmean 

values derived from SWR and OHR images �r=0.96�, and between the SUVmax values derived 

from SWR and OHR images �r=0.94�.

Table	3.2
The	number	of	
primary	tumors	and	
pathological	lymph	
nodes	visualised	with	
FDG-PET	on	SWR	
images	and	OHR	
images. The final nodal 
stage	was	provided	
by	histopathological	
examination.

Primary tumor Lymph node metastases

SWR OHR SWR OHR
Nodal 
stage

Nodes �diameter�

1 + + 0 0 pN0 0
2 + + 0 0 pN0 0
3 + + 0 0 pN0 0
4 + + 0 0 pN0 0
5 + + 0 0 pN0 0
6 + + 0 0 pN1 1 �2 mm�
7 + + 0 3 pN0 0
8 + + 0 1 pN0 0
9 + + 0 0 pN0 0
10 + + 0 0 pN0 0
11 + + 0 0 pN0 0
12 ----- + 0 0 pN1 1 �5 mm�
13 + + 0 0 pN0 0
14 + + 0 1 pN1 1 �1 mm�
15 + + 0 0 pN1 1 �2 mm�
16 + + 1 1 pN0 0
17 + + 0 1 pN1 1 �7 mm� 
18 + + 0 0 pN0 0
19 + + 0 1 pN0 0
20 ----- + 0 0 pN0 0
21 + + 1 2 pN0 0
22 + + 0 0 pN0 0
23 + + 0 0 pN0 0
24 ----- ----- 0 0 pN0 0
25 + + 1 3 pN2b 7 �1 – 8 mm�
26 + + 0 1 pN2b 5 �3 – 5 mm�
27 + + 0 0 pN1 1 �4 mm�
28 + + 0 0 pN1 1 �5 mm�

Optimised PET of head and neck
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Lymph nodes

The SWR-based images visualised three lymph nodes in three patients, of which only one was 

confirmed as a lymph node metastasis on pathological examination. The OHR-based images 

showed 14 lymph nodes in nine patients �in other words, 11 additional nodes in eight patients�. 

Four of these patients were confirmed to have metastatic lymph nodes in the specified region. 

Figure 3.3.B illustrates the improved visualisation of lymph node metastases in the head and 

neck on OHR images.

When calculated on a patient basis �e.g. accuracy for presence of lymph node metastases 

or not�, sensitivity increased from 11% to 44% when using OHR images, while specificity 

decreased from 89% to 74%. The positive predictive value of the diagnostic procedure 

increased from 33% to 44% and the negative predictive value increased from 68% to 74%. The 

diagnostic performance of SWR and OHR images for the detection of lymph node metastases 

is summarised in table 3.4. With both reconstruction methods, specificity was relatively high, 

mainly because of a large number of true negatives. All missed lymph node metastases were 

very small, with a maximum diameter of 5 mm or less.

The values were calculated separately for detection of lymph nodes on an involved neck side 

basis �e.g. having lymph node metastases on either the left or the right side�. When calculated 

on the basis of the involved neck side, sensitivity increased from 9% to 45% when using OHR 

images, while specificity decreased from 96% to 87%. The positive predictive value of the 

diagnostic procedure increased from 33% to 45% and the negative predictive value increased 

from 81% to 87%.
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Figure	3.3
Examples illustrating the 
improvement	in	image	quality	
between	reconstructions	with	SWR	
and	OHR	parameters	in	the	head	
and	neck	area.	(A)	Patient	with	a	
T1	carcinoma	of	the	left	ventral	
tongue.	On	the	SWR	images	the	
tumor	was	not	distinguishable	
from	physiological	tongue	muscle	
activity.	It	was	visible	on	the	OHR	
images	(arrow).	(B)	Patient	with	
suspicion	of	one	vague	lymph	
node	metastasis	(arrow)	on	the	
SWR	images.	On	the	OHR	images,	
multiple	nodes	were	visible	
(arrows).	Note	that	physiological	
structures	such	as	the	tonsils	are	
also	more	clearly	visualized.
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Figure	3.4
The	relation	between	
measured	SUVs	of	detected	
primary	tumors	in	the	head	
and	neck	area,	on	SWR	and	
OHR	images.	There	is	a	
strong	correlation	between	
the	values	on	SWR	and	OHR	
images,	though	the	OHR	
values	are	markedly	higher	
than	the	SWR	values.	Left,	
SUVmax;	right,	SUVmean.

Table	3.3
SUVs	measured	in	visualised	
primary	tumors,	in	SWR	
images	and	in	OHR	images.

Primary tumor

SUV(max)

Primary tumor

SUV(mean)

SWR OHR Increase SWR OHR Increase

1 7,6 10,0 32 % 5,9 7,9 34 %
2 3,9 6,2 59 % 2,8 3,8 36 %
3 2,8 4,4 57 % 2,5 3,6 44 %
4 11,0 21,3 94 % 6,3 11,1 76 %
5 1,0 1,2 20 % 0,9 1,1 22 %
6 1,9 2,6 37 % 1,8 2,3 28 %
7 2,9 4,5 55 % 2,5 3,4 36 %
8 3,2 3,1 -3 % 3,1 2,8 -10 %
9 2,7 4,1 52 % 2,5 3,5 40 %
10 6,4 10,0 56 % 4,0 7,1 78 %
11 11,7 16,1 38 % 8,2 10,3 26 %
12 No SUV measurable
13 3,2 4,9 53 % 2,6 3,8 46 %
14 6,1 7,7 26 % 4,2 5,0 19 %
15 3,0 3,8 27 % 2,3 2,9 26 %
16 4,4 6,1 39 % 3,2 4,2 31 %
17 1,7 2,7 59 % 1,6 2,4 50 %
18 4,9 7,7 57 % 3,4 4,6 35 %
19 2,8 4,8 71 % 2,3 3,1 35 %
20 No SUV measurable
21 2,6 4,1 58 % 2,1 3,1 48 %
22 3,6 4,2 17 % 3,0 3,5 17 %
23 9,9 12,1 22 % 7,8 9,7 24 %
24 No SUV measurable
25 8,3 9,5 14 % 4,9 6,4 31 %
26 10,9 11,7 7 % 7,0 8,6 23 %
27 5,8 9,0 55 % 4,1 5,4 32 %
28 8,5 12,4 46 % 6,4 7,6 19 %
Avg 5,2 7,4 42 % 3,8 5,1 34 %
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Overall, when considering primary tumors and lymph node metastases on a patient basis, the 

FDG-PET diagnosis was improved by using the OHR protocol in six patients �21%�. The FDG-

PET diagnosis worsened in three patients �11%�, in all cases owing to visualisation of lymph 

nodes without metastasis.

3.4	 Discussion

This study shows that a general reconstruction algorithm for whole-body studies may be less 

suitable for staging malignancies in the head and neck region. Using the SWR protocol, the 

sensitivity for the presence of lymph node metastases was only 11%, which is considerably 

lower than the findings reported by some other groups �2–5�. The presented results are therefore 

probably specific for our situation, reflecting, for example, the type of PET scanner and the 

standard reconstruction parameters used. Factors such as the aforementioned may also 

partially explain the variable results found in literature.

Using the OHR protocol we observed an increase in sensitivity for the detection of primary 

tumors, as well as an increase in sensitivity and specificity for the detection of lymph node 

metastases. From a clinical point of view, the most important improvements when using OHR 

were the increases in positive predictive value and negative predictive value for the presence 

of lymph node metastases. Where FDG-PET is used for staging, this will limit the number of 

missed N+ stages. The benefit is even more clearly expressed by the enhanced performance 

for the detection of the involved neck side, as this may have a direct impact on patient 

management when used for selection of lymph node dissection. Although not investigated in 

the current studies, similar effects may apply for relapse detection, re-staging and therapy 

monitoring. Perhaps equally as important as the better objective parameters is the possible 

subjective gain in reviewer confidence in image reading.

These beneficial effects may partially be explained by the higher spatial resolution of OHR-

reconstructed FDG-PET images. Current clinical PET scanners have a spatial resolution of 

4–7 mm full-width at half-maximum. The detection limit for small lesions is in the range of 
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Table	3.4
Diagnostic	performance	of	
FDG-PET	in	the	detection	
of	lymph	node	metastases	
on	SWR	images	and	OHR	
images.

Patient basis Involved neck sides

SWR ORH SWR ORH

Sensitivity �%� 11 44 9 45

Specificity �%� 89 74 96 87

Positive predictive value �%� 33 44 33 45

Negative predictive value �%� 68 74 81 87
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4–10 mm, depending on scanner characteristics, localisation of the lesion, and degree of FDG 

uptake by the lesion �11–13�. Although we have not evaluated objective changes in scanner 

spatial resolution, all lymph node metastases that were additionally detected with OHR had 

a diameter of 7 mm or smaller. Another important explanation for the benefits is the higher 

contrast resolution, as a better tumor to background ratio facilitates visual detection of lesions. 

This effect was quantitatively demonstrated by a statistically significant increase in SUV.

Although the OHR protocol delivers higher sensitivity for the detection of lymph node 

metastases, it results in a lower specificity due to visualisation of a larger number of small 

reactive lymph nodes. FDG accumulates in inflammatory cells such as activated granulocytes 

and macrophages �14�, and this inherent characteristic of FDG will be difficult if not impossible 

to circumvent. Although false positive in oncological staging, from a pathophysiological point 

of view these lymph nodes are true positive. One can argue that intentional use of suboptimal 

image quality is not the preferred method to discriminate between reactive lymph nodes and 

metastases.

Several algorithms can be used for image reconstruction, such as filtered back-projection 

�FBP� or iterative ordered subset expectation maximisation �OSEM�. The choice of image 

reconstruction algorithm and parameters influences the contrast resolution, spatial resolution 

and noise level. Nowadays, most investigators acknowledge that iterative reconstruction such 

as iterative OSEM yields the best image quality �15–18�, although some discussion continues �19�. 

We limited this study to optimisation of iterative reconstruction, since FBP reconstruction has 

nearly been abandoned in clinical practice.

In iterative reconstruction, three parameters are relevant: the number of iterations, the 

number of iteration subsets and the strength of the filter �20�. Essentially, increasing the number 

of iterations �and/or iteration subsets� improves spatial resolution and contrast resolution 

at the expense of higher noise levels and increased calculation time. Increasing the filter 

strength reduces noise at the expense of reduced spatial resolution and contrast resolution. 

Reconstruction parameters are not generally applicable to all PET systems, as the results 

depend on camera characteristics, scanning mode, injected dose, the purpose of the scan and 

the personal preferences of the reviewer. Thus, optimisation of the diagnostic yield of FDG-PET 

should be pursued by assessing on-site improvement of reconstruction parameters.

Noise in PET images is mainly caused by photon attenuation and scatter, which strongly 

depend on the amount of attenuation �i.e. the patient’s weight�. The standard reconstruction 

parameters are chosen to render an optimal balance between noise levels, spatial resolution 

and contrast resolution, for an average patient. In the current study, more noise was observed 

in the OHR images by the reviewers. The somewhat higher increase in SUVmax as compared 
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to SUVmean also reflects increased statistical noise. This did not hinder adequate reporting, as 

was demonstrated by the improved diagnostic values. An increase in lesion SUV seems to 

improve the sensitivity for small lesions, especially in the range of the detection limit. This 

applies not only to FDG scanning: lesions with a poor SUV are likely to be present when using 

radiopharmaceuticals with a relatively low target-to-background ratio, such as 18F-fluor-deoxy-

thymidine �FLT� �21� or 18F-misonidazole. In these cases the improved algorithm may also be 

of value.

The head and neck region is not the only area where improvement may be achieved. Adaptation 

of reconstruction parameters may also improve image quality in other situations with relatively 

low attenuation, e.g. in thin body parts �such as arms, legs and feet� or in patients with low 

body weight �cachectic patients, young children�. An important difference, however, is the 

variable attenuation within these patients, as compared with the relatively uniform and stable 

size of the adult head and neck. This implies that a standard reconstruction protocol would 

be less desirable, but instead different parameters need to be investigated to optimise image 

quality.

3.5	 Conclusion

Routine whole-body PET reconstruction parameters may prove inadequate for the head and 

neck area. By using image reconstruction parameters adapted to lower photon attenuation, 

major improvements may be achieved in image quality and diagnostic yield for the detection 

of small lesions. These improvements were shown to have an impact on staging and patient 

management. Additional separate reconstruction of the head and neck area with optimised 

parameters for specific clinical questions is advisable. This may also apply to image 

reconstruction of other small body parts or to whole-body studies in children.
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Abstract

With improved diagnostic imaging techniques, it remains 
difficult to reduce occult metastatic disease in oral squamous 
cell carcinoma �SCC� to less than 20%. Therefore, 
supraomohyoid neck dissection �SOHND� still is a valuable 
staging procedure in these patients.

Methods: Patients with clinically and ultrasonographically 
staged cN0 SCC of the oral cavity underwent FDG-PET before 
SOHND. Histologic examination of neck dissection specimens 
was used as a “gold standard.”

Results: Twenty-eight consecutive patients were included, 
representing 30 necks. Occult metastatic disease was found 
in 30% of SOHND specimens. Average diameter of metastatic 
deposits was 4.3 mm. Sensitivity, specificity, and accuracy of 
FDG-PET was 33%, 76%, and 63%, respectively.

Conclusions: In patients with cN0 SCC of the oral cavity, 
FDG-PET does not contribute to the preoperative workup, 
and cannot replace SOHND as a staging procedure.
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4.1	 Introduction

The oral cavity is one of the cancer sites in the head and neck that is accompanied by a 

high incidence of occult regional metastases. Because the presence of cervical lymph node 

metastasis significantly reduces survival, this important prognostic factor remains an issue 

for scientific debate. In these discussions, the changing necessity, diagnostic value, and 

therapeutic role of a selective neck dissection of levels I through III, also called supraomohyoid 

neck dissection �SOHND�, is often addressed. In 1980, Hanley summarizes the opinion at that 

time about SOHND as a well-recognized, although generally unaccepted form of treatment 

in patients with oral cavity cancer �1�. He compared SOHND with the standard radical neck 

dissection in 62 patients with oral cavity tumors and found “similar and no worse results for 

the SOHND.” He felt that less than radical neck dissection required further exploration. Since 

then, the opinion about SOHND has gradually changed �2�2��. SOHND has been popularized over 

the years and has become a generally accepted staging procedure for the clinically negative 

neck in patients with oral cancer �3,4�. In cases of limited nodal disease on histopathologic 

examination, some consider it therapeutic �5�.

Several studies have shown that even with improved diagnostic imaging techniques, it still 

remains difficult to reduce occult metastatic disease in oral cavity cancer to less than in 20% 

of the patients �3,4�. The 20% threshold is considered important because elective treatment of 

the neck remains indicated when the probability of occult neck metastases exceeds 20% �6�. 

Palpation of the neck, with a sensitivity and specificity of 60% to 80%, is not a very accurate way 

to search for cervical metastases. Computed tomography �CT�, magnetic resonance imaging 

�MRI�, ultrasonography �US�, sentinel lymph node biopsy �SLNB�, and ultrasound-guided fine 

needle aspiration cytology �USgFNAC� have been shown to be superior to palpation, with 

the latter being the most accurate way of investigation. However, in patients with a clinically 

negative neck, even USgFNAC is reported to have a sensitivity of no more than 48% to 76%, 

most likely explained by the limited tumorload �7,8�. USgFNAC of the sentinel node does not 

seem to increase sensitivity �9�. With these results in mind, the risk of occult metastatic disease 

remains between 15% and 25% �9,10�.

Positron emission tomography �PET� with 18F-fluoro-deoxy-glucose �FDG� is increasingly used 

in preoperative staging of cancer patients. FDG depicts the increased metabolism of malignant 

cells as compared with normal cells. Reports on the value of FDG-PET in detecting occult 

metastatic disease have been contradictory, with a reported sensitivity ranging from 0 to 

100% and specificity from 92 to 100% �11-13�. The added value of FDG-PET to the clinical and 

ultrasonographic evaluation of the neck in oral carcinoma has not been properly investigated. 

FDG-PET in the clinically negative neck
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We conducted a study to evaluate whether further reduction of occult metastatic disease in 

oral carcinoma can be achieved by adding FDG-PET scanning to the preoperative workup. With 

21% reported occult metastatic disease in oral carcinoma after a negative ultrasonographic 

investigation in our hospital �10�, this could implicate that a diagnostic SOHND would no longer 

be indicated.

4.2	 Methods

This prospective study was performed at the Radboud University Nijmegen Medical Centre 

between June 2001 and December 2003. All patients planned for SOHND as part of the 

treatment for a clinically N0 �cN0� squamous cell carcinoma �SCC� of the oral cavity were 

included in the study, and were offered a FDG-PET scan. A cN0 neck is defined as a neck 

staged N0 by preoperative palpation by an experienced ear, nose and throat surgeon, oral 

and maxillofacial surgeon, or radiotherapist and a standard preoperative US performed 

with USgFNAC on indication. FNAC of enlarged lymph nodes was performed in nodes with a 

diameter >0.5 cm. In case of a cN-positive neck, the patient was offered a modified radical 

neck dissection �MRND� and was excluded from the study. The study was approved by the 

local medical ethics committee. Informed consent was obtained from all patients. No patient 

experienced cancer within 5 years before this study, or was previously treated by radiotherapy 

or chemotherapy.

FDG-PET

A dedicated PET-scanner �ECAT-EXACT 47, Siemens/CTI, Knoxville, TN� was used for data 

acquisition. Before FDG injection, patients fasted for at least 6 hours. Intake of sugar-free 

liquids was permitted. Immediately before the procedure, the patients were hydrated with 

500 mL of water. One hour after intravenous injection of 220 to 250 MBq FDG �Mallinckrodt 

Medical, Petten, The Netherlands� and 20 mg furosemide, emission and transmission images of 

the head and neck area were acquired �2–3 bed positions, 5 minutes emission and 3 minutes 

transmission per bed position�. The images were corrected for attenuation and reconstructed 

using the ordered-subsets expectation maximization �OSEM� algorithm, with 4 iterations, 16 

subsets, and a 5 mm 3D Gaussian filter. The reconstructed images were displayed in coronal, 
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Table	4.1
Localizations	and	clinical	T	stage	of	
the 28 tumors. * = Medial floor of the 
mouth.

Location cT stage

n T1 T2 T3 T4

Floor of the Mouth 9 3 4 1* 1*

Tongue 17 6 8 3 0

Alveolar proces 2 0 1 0 1
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transverse, and sagittal planes and evaluated by three nuclear medicine physicians. The mean 

glucose level just before PET imaging was 5.3 mmol/L; three patients had diabetes mellitus 

�glucose levels 10.3, 6.8, and 3.4 mmol/L�. For statistical analysis the sensitivity, specificity 

and accuracy of FDG-PET were calculated.

Surgical technique and pathologic examination

SOHND was performed as described by Medina et al. �2�. In case of enlarged or suspicious 

nodes found during surgery, frozen stage section �FSS� analysis was performed. If positive, 

the neck dissection was extended to a MRND. The neck dissection specimen was marked 

anatomically by the surgeon and sent for pathologic examination consisting of node count, 

evaluation of malignancy in any of the nodes, and extracapsular spread. Standard sectioning 

and hematoxylin & eosin staining were performed on all lymph nodes. Lymph node metastases 

were defined as micrometastasis when a metastatic deposit had a largest diameter of less 

than 4 mm.

4.3	 Results

Thirty patients �15 male, 15 female; median age 60 years, range, 32–84 years� were enrolled. 

One FDG-PET scan was unevaluable as a result of significant movement of the �diabetic� patient 

during imaging. One patient had a SOHND 49 days after FDG-PET and was also excluded. 

Twenty-eight scans could be evaluated �15 women, 13 men�, representing 30 SOHNDs. The 

sites of the primary tumor and T stages are shown in table 4.1. None of the patients had any4.1. None of the patients had any. None of the patients had any 

sign of metastatic spread based on clinical examination and US of the neck. In eight patients, 

US was supplemented with USgFNAC, which resulted in negative cytology. Additionally, four 

patients had a CT of the head and neck, all without suspect nodes.

In 26 patients �28 necks�, FSS of the neck specimen was performed: 25 �89%� necks were 

negative and three �11%� were positive. All three necks positive on FSS turned out to be true-

positive and one of 25 negative FSS specimens turned false-negative during further pathologic 

investigation. In the three necks �10% of necks� with a positive FSS of the SOHND specimen, 

the SOHND was extended to a MRND. No additional metastatic nodes were found in levels 

IV and V. A total number of 555 nodes was examined in 28 patients. The total number of 

nodes found in regions I to III varied from 11 to 38. Nine of 30 necks �30%� contained occult 

metastases in a total of 16 lymph nodes; no bilateral metastases were found. The average 

diameter of the metastatic deposit was 4.3 mm �range, 0.5–8.0 mm�. Five of the malignant 

nodes showed signs of extracapsular spread, being a prognostic factor of enhanced metastatic 

spread �3�. An overview of the patients and their nodes is presented in table 4.2.

FDG-PET in the clinically negative neck
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Ultrasound-guided fine needle aspiration cytology

Three of eight patients �38%; three of nine punctured necks: 33%� in whom USgFNAC was 

negative did have lymph node metastases at pathologic examination of the SOHND specimen; 

in one case, a node in the punctured level was positive; the other two patients had one and two 

positive nodes in nonpunctured levels. In patients in whom no USgFNAC was performed, six of 

21 SOHND specimens proved to be positive for lymph node metastases �29%�.
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Table	4.2
Demographic,	clinical,	imaging,	and	pathologic	characteristics	of	the	28	patients.	US	=	ultrasound.	
FNAC = fine needle aspiration cytology. PATH = pathological examination: number of metastatic 
glands	in	level.	np	=	not	performed.

Patients Results

Nr Age M/F cT-stage US / FNAC FDG-PET PATH Diameter of metastases �mm�

1 76 F T4 Neg / np Neg Neg

2 79 F T2 Neg / np Neg Neg

3 55 F T1 Neg / np Neg Neg

4a 55 F T4 Neg / Neg Neg Neg

4b 55 F T4 Neg / Neg Neg Neg

5 71 F T2 Neg / np Neg Neg

6 58 F T2 Neg / np Neg 1 in I 2 mm

7 55 M T2 Neg / Neg 2 in II Neg

8 30 M T2 Neg / np 1 in II Neg

9 66 F T1 Neg / np Neg Neg

10 77 F T2 Neg / np Neg Neg

11 79 M T2 Neg / np Neg Neg

12 47 M T1 Neg / Neg Neg 1 in I 5 mm

13 58 F T3 Neg / np Neg Neg

14 82 F T2 Neg / np 1 in II 1 in II 1 mm

15 53 M T1 Neg / Neg Neg 1 in I 2 mm

16 52 M T3 Neg / np 1 in II Neg

17 44 F T2 Neg / Neg Neg 2 in II 4 and 2 mm

18 50 M T1 Neg / np 1 in II 1 in II 7 mm

19 64 M T1 Neg / Neg Neg Neg

20 71 F T2 Neg / np 1 in II Neg

21 45 M T1 Neg / Neg Neg Neg

22 59 F T2 Neg / np 2 in II Neg

23 47 M T1 Neg / np Neg Neg

24 55 M T3 Neg / np Neg Neg

25 66 M T1 Neg / np Neg Neg

26 72 F T2 Neg / np 3 in II
6 in II, 1 

in I
3x8, 7, 5, 4 and 1 mm

27 42 M T2 Neg / Neg Neg 1 in II 4 mm

28a 70 F T3 Neg / np Neg 1 in I 5 mm

28b 70 F T3 Neg / np Neg Neg
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FDG-PET

In one patient the FDG-PET scan showed no sign of the primary tumor because this tumor 

�tongue� was already removed by a radical excision biopsy in a secondary referral center. The 

other 27 primary tumor sites were correctly depicted. This leads to a sensitivity of 100% for 

visualizing the primary tumor. In eight cases �29%�, FDG-PET showed ipsilateral hot spots 

suspect for possible metastases; 20 scans representing 22 necks were negative. Patients 

were on average surgically treated within 14 days �range, 1–30 days; median, 12 days� after 

receiving their PET scan. Twenty-eight patients underwent 30 neck dissections �two bilateral 

as a result of a floor of the mouth tumor crossing the midline�.

FDG-PET correctly recognized three of nine �33%� afterward pathologically proven positive 

necks; these positive nodes were found in the correctly depicted level, although one patient 

had seven positive nodes divided among levels I and II; his PET scan only showed three positive 

spots in level II. In five patients, FDG-PET showed a suspect node which was not confirmed 

by pathologic examination; in one of these cases, USgFNAC was performed 3 weeks before 

FDG-PET. FDG-PET also failed to show any positive nodes in six patients while pathologically 

present, leading to a sensitivity and specificity of 33% and 76%, respectively, for 30 necks. 

Accuracy reached 63% for FDG-PET. If SOHND would only be performed when FDG-PET was 

positive for lymph nodes, the number of SOHNDs would have been reduced by 73% �from 

30 to 8�. However, this algorithm would result in six of 30 necks with unrecognized �and 

untreated� occult metastases �20%�.

4.4	 Discussion

Supraomohyoid neck dissection has shown to be a valid staging procedure in cN0 oral SCC �3�. 

It provides valuable clinical information on the status of the neck at the expense of minimal 

morbidity �31�. CT, MRI, and US lack sensitivity and specificity for diagnosing occult metastatic 

disease because micrometastases can occur in the absence of morphologic changes in lymph 

nodes, whereas these changes can be both reactive and metastatic. That is the main reason 

why USgFNAC is considered to be superior to these imaging modalities, especially when 

normal-sized and thus nonsuspicious nodes in the first echelons are punctured. 

Because the majority of patients in this study did not receive FNAC, this might explain why 

the 30% of necks with occult metastatic nodes in this study was higher than the initially 

reported 21% from our institute �10�. All metastases in the SOHND specimens were located 

in the first echelons. Because the metastatic parts of the affected nodes were very small, 

morphologic changes were unlikely to appear in the majority. Furthermore, CT scanning of 

FDG-PET in the clinically negative neck
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the head and neck is no standard preoperative staging technique in patients with a cN0 neck 

in oral SCC according to the national Dutch guideline on diagnosis and treatment of oral and 

oropharyngeal cancer.

Several studies have shown that it is possible to reduce occult metastatic disease in oral SCC 

to approximately 20% �5,10�5,10��. Because a 20% false-negative rate is considered to be the limit 

for a wait-and-see policy versus elective treatment of the neck �6�, clinicians are expected to 

be divided into two groups advocating either one of these treatment strategies. However, 

clinical studies were often retrospective or lacked sufficient power and follow-up time to show 

a survival benefit for any particular option �33–38�33–38��. Many surgeons feel that the morbidity of 

a SOHND is acceptably low and outweighs the risk of being confronted with advanced neck 

disease after a wait-and-see or wait-and-scan policy �14�. Nevertheless, if a diagnostic strategy 

would further reduce the rate of occult metastasis, SOHND could be abandoned. With this in 

mind, recent studies have mainly focused on sentinel node biopsy and FDG-PET scanning of 

the neck.

Sentinel lymph node biopsy �SLNB� in cutaneous malignant melanoma has been demonstrated 

to be a minimally invasive technique with a high degree of accuracy in detecting occult 

metastatic disease. Morton et al. �40�40��. reported a false-negative rate of SLNB in cN0 cutaneous 

malignant melanoma of the head and neck area of less than 1%. SLNB might possibly identify 

those patients who harbor occult metastatic disease in cN0 oral SCC. Ross et al. describe the 

preliminary results of a multicenter trial in patients with T1 to 2N0 oral cavity/oropharynx 

carcinoma �15�. In 93% of 134 cases, a sentinel node could be identified. In 55 cases, SLNB 

was combined with an elective neck dissection. Occult metastatic disease was present in 34%. 

Sensitivity of this technique was reported to be 93% in all oral SCC. In floor of the mouth SCC 

only, however, identification of the SLN was possible in 86% �n = 43� and sensitivity reached 

80%. Besides selection of patients for �additional� neck surgery, histopathologic evaluation of 

the sentinel node might limit cost and time-consuming pathologic evaluation by performing 

step serial sectioning and immunohistochemistry of the sentinel nodes that are most suspected 

to harbor metastases. However, skip metastases might prove to be a problem �16�. Difficulties 

identifying level I sentinel lymph nodes in oral SCC have been reported �15�. In our series, 31% 

of the metastatic nodes were located in level I. Thus, questions about whether SLNB offers a 

significant advantage over SOHND still remain. Unresolved issues regarding this technique are 

the feasibility of and efficacy in multiple-level sentinel nodes and the cost-effectiveness.

Furthermore, underestimation of occult metastatic disease with standard sectioning and 

hematoxylin & eosin staining is likely to be present in approximately 5% to 8% �17,18�17,18��. It is 

unclear if these micrometastases need more than a SOHND or if SOHND can be considered 

adequate treatment in these cases. Potential overtreatment of such limited disease with a MRND 

needs to be subject of clinical studies as stated by Pitman et al. in a review on SLNB in head 
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and neck cancer �19�. Nieuwenhuis et al. investigated the role of USgFNAC of the sentinel node 

in cT1 to 2N0 oral/oropharyngeal carcinoma �9�. Although the sentinel node could be identified 

and aspirated in 38 of 39 patients, it did not decrease the false-negative rate compared with 

USgFNAC alone. The additional value of sentinel node cytology was thus questioned.

Considerable attention has been paid to FDG-PET in the evaluation of the N0 neck in head and 

neck cancer. In our study, we have included only patients without evidence of metastatic neck 

disease in preoperative evaluation consisting of at least palpation and US and who were thus 

scheduled for surgical treatment, including a SOHND. Sensitivity in this selected patient group 

is insufficient to refrain from SOHND on the basis of FDG-PET.

Initial reports about FDG-PET for lymph node staging of the neck in head and neck SCC were 

very optimistic with sensitivity and specificity values between 72% to 91% and 88% to 98%, 

respectively �26,47�26,47��. Stuckensen et al. performed a prospective study in 106 patients with oral 

SCC and compared FDG-PET, US, CT, and MRI with histologic results of the neck dissection 

specimen �24�. Only 48 of 106 patients included in the study were staged cN0. FDG-PET had a 

sensitivity of 70% and a specificity of 82%. There was a correlation with the size of the lymph 

node metastases. Most of the metastases larger than 12 mm were detected, but less than half 

of those smaller than 6 mm were detected. Therefore, it is likely that sensitivity and specificity 

in the cN0 group were worse than those reported for the complete group.

FDG-PET in the clinically negative neck

Table	4.3
Comparison of studies considering the use of FDG-PET to find metastatic spread in patients with 
head and neck carcinoma (laryngeal and hypopharyngeal cancer excluded) regarding the clinically 
N0	neck.	*	=	Could	not	be	retrieved	from	study.	†	=	Corrected	percentages	are	based	on	number	
of	treated	necks	(108	of	Braams	et	al.	because	no	sensitivity	could	be	estimated	in	the	two	
remaining patients). IHSN = immunohistochemy of sentinel node only. HE = hemotoxylin and eosin 
staining.

No. of patients Diagnostic value of PET

Study
Total in 
study

Palpably 
N0

N0 palpably / 
radiographically

Pathology Sens. Spec. Accuracy

Myers et al. 14 14 8 / 12 * 78% 100% 92%

Civantos et al. 18 18 18 / 18 IHSN 30% 100% 61%

Hyde et al. 19 18 18 / *20 IHSN 0% 100% 78%

Brouwer et al. 15 15 12 / 12 HE 67% 92% 87%

Wensing et al. 28 28 28 / 30 HE 33% 76% 63%

Total 94 93 84 / 92 --- 38% 92% 74%

Corrected data for 84 patients 
palpably and radiographically N0

† 25% 91% 72%
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In FDG-PET studies specifically addressing patients with oral cavity or oropharyngeal cancer 

with a cN0 neck, huge variations in sensitivity �from 0–100%� and specificity �92–100%� are 

reported �11–13,20�11–13,20��. Brouwer et al. showed that in the studies using routine histopathologic workup, 

a much higher sensitivity �67–100%� for the detection of occult lymph node metastases was 

found in comparison to the studies in which step sectioning and immunohistochemistry as 

part of the sentinel node procedure was performed �11,22�. In the latter studies, a sensitivity of 

only 0% to 40% was found �20�. They point out that the histopathologic method used seems to 

be the most important factor for the differences in sensitivity. However, we feel that patient 

selection and differences in inclusion criteria are other major reasons for these differences. 

In the “less sensitive studies”, only patients were included who were clinically as well as 

ultrasonographically N0, and in the “sensitive studies”, patients were included who had a 

clinically negative neck but often had radiologic evidence of metastatic disease �12–14,20�12–14,20��. If 

the results of the studies in table 4.3 are combined, while excluding patients with radiologic 

evidence of metastases, overall sensitivity drops from 38% to 25% �84 patients, 92 necks�. 

This is in line of the diagnostic yield of FDG-PET in our study of patients with lymph node 

metastases all smaller than 8 mm.

4.5	 Conclusions

FDG-PET does not lower the false-negative rate of occult lymph node metastases in patients 

with an oral SCC and a clinically and US-negative neck below the clinically required 20% of 

patients. Therefore, FDG-PET has no added value in the preoperative workup. FDG-PET alone 

or in combination with US �±FNAC� cannot replace SOHND as a staging procedure.
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Abstract

Clinical work in software PET/CT image fusion in our 
institute raised suspicion that the image sizes of PET and CT 
differred slightly from each other, thus rendering the images 
suboptimal for image fusion. The aim of this study was to 
evaluate the extent of the relative image size difference 
between PET and CT and the impact of the correction of this 
difference on the accuracy of image fusion.

Methods: The difference in real image size between PET and 
CT was evaluated using a phantom study. Subsequently, 13 
patients with cancer in the head/neck area underwent both 
CT and FDG-PET in a custom-made mask for external beam 
radiotherapy, with multimodality markers for positional 
reference. The image size of PET relative to CT was 
determined by evaluating the distances between the markers 
in multiple directions in both scans. Rigid-body image fusion 
was performed using the markers as landmarks, with and 
without correction of the calculated image size difference.

Results: Phantom studies confirmed a difference in real 
image size between PET and CT, caused by an absolute error 
in PET image size calibration. The clinical scans demonstrated 
an average relative difference in image size of 2.0% in the 
transverse plane and 0.8% along the longitudinal axis, the 
PET images being significantly smaller. Image fusion using 
original images demonstrated an average registration error 
of 2.7 mm. This error was decreased to 1.4 mm after size 
correction of the PET images, a significant improvement of 
48% �P < 0.001�.

Conclusions: A significant deviation in PET image size may 
occur, either as a real image size deviation or as a relative 
difference from CT. Although possibly not clinically relevant in 
normal diagnostic procedures, correction of such a difference 
benefits image fusion accuracy. Therefore, it is advisable to 
calibrate the PET image size relative to CT before performing 
high-accuracy rigid-body image fusion.

Chapter 5



65

5.1	 Introduction

Image fusion of positron emission tomography �PET� and computed tomography �CT� can 

improve the diagnostic value and accuracy in oncological imaging of the head and neck 

area �1-3�. Image fusion may also be applied to incorporate functional information in external 

beam radiation treatment �4,5�. When performing image fusion, a high accuracy in anatomical 

registration of the images is required, because incorrect registration may induce diagnostic 

errors, such as erroneous localization or characterization of the lesions �6�. In particular, when 

using image fusion for the definition of target volumes in intensity-modulated radiation therapy 

�IMRT�, the required accuracy is high as the error in dose delivery is in the range of only 2-3 

mm �7�. Errors in image registration may influence the outcome of therapy and the level of 

complications of external beam radiation therapy.

For software image fusion of dedicated PET and CT, an accuracy of better than 2 mm has been 

demonstrated using phantoms �8�. The accuracy that can be achieved in patients will probably 

be lower as a result of complicating factors, such as small positioning errors, motion artefacts, 

the time interval between scans and limited comparability between scans due to visualization 

of different structures and processes on PET and CT. Furthermore, differences may exist in 

image size. In this article, real image size is defined as the discrepancy between the measured 

size of an object on an image and the true size of that object. Furthermore, relative differences 

in image size may occur between scanning modalities. The image size is often not considered 

in rigid-body image fusion, as – in general – the scanner image sizes are fixed and validated 

for both PET and CT.

During software PET/CT image fusion with multimodality markers for IMRT planning of the 

head and neck area, we observed a small systematic scaling difference between CT and PET 

images. Patients were slightly smaller on PET images than on CT images. An example is shown 

in figure 5.1.A. It was suspected that the image size of the CT scanner and/or PET scanner 

was inaccurate. Attempts were made to correct these errors with patient-specific manual or 

automatic scaling procedures, but the results were variable and were complicated by other 

factors, such as small positioning differences and deformations. 

It was hypothesized that correction with an objectively determined systematic scaling factor 

would provide a better and more elegant solution. The purposes of this study were to determine 

the extent of image size differences between PET and CT, to evaluate the impact of this problem 

on image fusion accuracy and, if needed, to determine a systematic correction factor.

Correction of image size in PET/CT fusion 
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5.2	 Materials	and	methods

Phantom experiment

A linear phantom, 50 cm in length, with 11 multimodality markers positioned at 5 cm intervals, 

was used to estimate the real image sizes of PET and CT, and to detect the linearity of deviations. 

Each marker consisted of two glass capillaries positioned under a 90º angle, filled with either 

iodine-containing X-ray contrast solution or diluted 18F-fluor-deoxy-glucose �FDG� solution. 

The visualization of a marker is demonstrated in figure 5.2. The phantom was scanned in 

three directions �i.e. x, y and z� in both PET and CT. The distances between the centres of 

all marker pairs were measured in three directions in both imaging modalities. Differences in 

the distances between corresponding marker pairs on PET and CT were evaluated throughout 

the field of view of the scanners to determine the linearity of deviations. The inter-operator 

variation of the manual localization of the centre of the markers was evaluated by the analysis 

of 12 markers by two operators in a separate session.

Clinical experiment

Thirteen patients with newly diagnosed malignancy in the head and neck area were included. 

All patients had squamous cell carcinoma of the oral cavity or larynx, and were candidates for 

external beam therapy. None of the patients had a history of diabetes mellitus, and fasting 

glucose levels were within the normal range. In addition to a standard planning CT, an 18F-
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Figure	5.1
Software	image	fusion	of	PET	and	CT.	Shown	is	a	slice	through	the	head,	at	the	level	of	
two multimodality fiducial markers positioned in front of the ears. (A) Original images: The 
markers	on	PET	are	closer	to	each	other	than	on	CT,	hence	the	PET	image	is	somewhat	smaller	
than	the	CT	image.	(B)	After	correction	for	image	size	differences:	The	markers	are	centered	
correctly.



6�

FDG PET scan was performed to provide biological parameters for optimized target volume 

definition. Both CT and 18F-FDG PET were acquired in a personalized custom-moulded mask 

to provide identical positioning. Four multimodality markers were attached to each mask at 

corner positions outside the target field �figure 5.2�.

Image acquisition

CT scans were acquired using a multislice spiral CT scanner �Marconi AcQsim, Marconi 

Corporation, Cleveland, Ohio, USA�. The scanning parameters comprised a scan range from 

the skull base to the lung top, intravenous contrast in the arterial phase, 100 mAs, 130 kV. 

The pixel size of the images was 0.938 mm2 in the transaxial plane. The voxel size in the axial 

direction was defined by a slice thickness of 3 mm.

PET scans were acquired using a full-ring dedicated PET scanner �Siemens ECAT Exact 47, 

Siemens/CTI, Knoxville, Tennessee, USA�. An activity of 250 MBq of 18F-FDG was injected 

intravenously. The scans were acquired 1 h post-injection, using three-dimensional emission 

for 6 min per bed position, and employing attenuation correction based on two-dimensional 

germanium-68 transmission images for 2 min per bed position. All PET scans were 

reconstructed using an iterative two-dimensional ordered subset expectation maximization 

�OSEM� algorithm �9� using four iterations, 16 subsets and a three-dimensional Gaussian filter 

of 5 mm. A zoom factor of 1.5 was applied to generate voxels with a size of 3.432 mm in all 

directions.

Correction of image size in PET/CT fusion 

Figure	5.2
Example of the multi-modality markers 
used	for	landmark	registration	and	image	
fusion	accuracy	evaluation.	(A)	Markers	
as	placed	on	the	mask.	(B)	Marker	as	
seen on CT filled with iodine contrast. (C) 
Marker as seen on PET filled with 18F-FDG	
solution.	The	center	of	the	markers	could	
be	determined	with	an	inter-operator	
variability	well	below	1	mm	on	both	CT	
and	PET	images.
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Evaluation of image size difference

The difference in real image size between PET and CT was evaluated by measuring the 

distances between the centres of multiple markers in the transverse and axial planes for both 

imaging modalities. For each patient, four markers were placed in a rectangular configuration, 

providing 26 marker pairs in the transverse plane and 26 pairs in the axial direction. Three 

markers in three separate patients were excluded from evaluation because of poor visibility. 

Thus, 24 evaluable marker pairs in the transverse plane and 23 pairs in the axial direction were 

used for the analysis. The relative difference in pixel size between PET and CT was calculated 

using the formula: �DistancePET - DistanceCT� / DistanceCT * 100%.

Impact on image fusion

Image fusion was performed twice, with the original PET images and with PET images that had 

been corrected for the image size difference relative to CT by adaptation of the pixel size in 

the DICOM header of the source files. Rigid-body landmark-based registration of PET images 

to CT images was performed with in-house-developed software, based on the visualization 

toolkit VTK �10�. First, the centre of all markers was identified manually. Subsequently, rigid-

body registration, i.e. based on three translation and three rotation parameters, of PET to CT 

images was performed automatically by minimizing the sum of the square distances between 

corresponding marker centres �11�. Scaling of the images in the image registration software 

was not necessary, because image size corrections had already been performed in the DICOM 

source files when appropriate.

The accuracy of the image registration procedure was evaluated mathematically by determining 

the remaining positional difference between corresponding markers on PET and CT after image 

registration. Statistical analysis of the difference in image registration accuracy between the 

two image sets was performed using a two-sided paired t-test. The level of significance was 

set at 0.05.

5.3	 Results

The inter-operator variability in the determination of the centre of the markers was well below 

1 mm in both types of scans. For CT images, the average difference between the two operators 

was 0.54 mm �S.D. 0.28 mm�. For PET images, the average difference was 0.42 mm �S.D. 

0.19 mm�.

Image size difference

In the phantom experiment, in the horizontal direction �x-axis�, the measured distance 

between the outermost markers on PET was 490.4 mm. On CT images, the measured distance 
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was 499.2 mm, a relative difference from PET of 1.8%. In the vertical direction �y-axis�, 

the respective distances were 499.0 and 490.1 mm, a relative difference of 1.8%. In the 

longitudinal direction, the distances were 500.5 and 497.2 mm, a relative difference of 0.7%. 

For both PET and CT, the markers were distributed evenly along the phantom in all directions. 

The difference in distance between marker pairs on PET and CT was detected throughout the 

field of view, indicating a linear image size difference.

In the series of clinical scans, in the transverse plane, a significant average relative difference 

in distance between markers on PET and CT of 2.0% was observed �range 0.2 – 3.7%, S.D. 

0.76%�, the patient being smaller on the PET images than on the CT images in all cases. In the 

axial direction, an average difference of 0.8% �range -0.6 to 2.5%, S.D. 0.65%� was found, 

the patient being smaller on the PET images than on the CT images in the majority of cases.

To compensate for the detected differences in the clinical series, the pixel size of the PET 

images was increased by 2.0% to 3.501 mm in the transverse plane, and increased by 0.8% 

to 3.459 mm along the longitudinal axis, by adaptation of pixel size values in the DICOM file 

header. Repeated evaluation using the corrected PET images showed an image size difference 

of 0.2% �range -1.4 – 1.8%, S.D. 0.69%� in the transverse plane, and a difference of 0.0% 

�range -1.5 – 1.7%, S.D. 0.68%� in the axial direction. Thus, a significant relative difference 

in image size between PET and CT could no longer be demonstrated.

Accuracy of image fusion

Image fusion using the original uncorrected PET images demonstrated an average mathematical 

registration error of 2.7 mm �range 0.8 – 5.5 mm� at the position of the markers. When image 

fusion was performed using PET images corrected for relative image size differences, the error 

was 1.4 mm �range 0.3 – 3.8 mm�. This represented a significant decrease in the error in 

image fusion at the location of the markers of 48% �P < 0.001�. Figure 5.1.B shows a fused 

image after pixel size correction.

5.4	 Discussion

The suspected relative difference in real image size between PET and CT was confirmed 

using both phantom studies and clinical scans. In the clinical scans, a series of separate 

measurements over multiple patients demonstrated the deviation with statistical significance. 

The manual identification of the centre of the markers was excluded as a possible source of 

error in the analysis procedure, because the inter-operator variability was negligible.

Correction of image size in PET/CT fusion 



�0

The results of the phantom measurements and the clinical scans were concordant �the size 

differences in the phantom measurements were well within the standard deviations of the 

clinical series�. The deviation was shown to be linear, and thus the results from the phantom 

study and the clinical data were theoretically exchangeable. The image size difference derived 

from the clinical series was considered to be the most accurate, because statistical analysis 

of a series of measurements is less prone to bias in the manual evaluation of markers than a 

single measurement in the phantom experiment. Therefore, the average image size difference 

derived from the clinical series was applied as the correction factor. This approach was validated 

by repeated measurements after correction, which no longer demonstrated significant image 

size differences.

The observed difference in image size between PET and CT was larger in the transverse plane 

than in the axial direction �2.0% versus 0.8%�. The exact cause of this discrepancy remains 

unclear. There is no apparent reason why image size calibration of PET images would be more 

difficult in one direction than in another.

The relative difference in real image size between PET and CT was caused by an absolute 

error in calibration of the PET image size. With a pixel size and effective resolution �full-width 

at half-maximum� in the range of 5 mm in PET imaging, accurate image size calibration may 

be difficult. For example, to detect a deviation of 1%, the difference to be found in a marker 

distance over a length of 20 cm is only 2 mm, which is well below the resolution. Therefore, the 

procedure to determine the image size of a PET scanner will always be less accurate, relative 

to a CT scanner. Furthermore, in IMRT planning, CT is the gold standard by default because 

planning of the radiation fields depends on the electron density information derived from CT. 

For these reasons, we have adapted the PET images to match CT, regardless of the possibility 

of a hypothetical small remaining error in CT real image size.

Correction of the image size differences alone will not result in perfect image fusion. Other 

causes of inaccuracies remain, such as slight deformation of the mask between scans �as a 

result of small patient positioning differences� and patient motion during scanning �for example 

swallowing�. These factors, in combination with the sampling errors of the marker locations, 

contribute to the detected remaining error in rigid-body landmark-based image registration.

It can be argued that image size correction should be applied to all PET scanning, but the 

relevance of an error of this small magnitude in normal diagnostic imaging is probably 

negligible. Image size corrections need to be advocated only when a very high accuracy is 

required, such as in image fusion for IMRT planning in the head and neck area.

Several approaches to rigid-body image registration are available. Examples include manual 

procedures, automatic methods based on mutual information or the iterative closest point 

algorithm, and landmark-based registration. We used the latter method for our accuracy 
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evaluation, as landmark registration is a robust and accurate technique when reliable 

landmarks are available �11�. It seems obvious that other rigid-body registration techniques will 

benefit similarly from the correction of image size differences. Theoretically, when non-rigid 

transformations are used, there is no need for additional image size corrections.

Multiple approaches may be available to correct the standard image size of PET images. Some 

PET scanners may allow easy adaptation of the image size on the machine itself, most likely as 

a parameter in the reconstruction algorithm. Other options include adaptation of the DICOM 

file that is transported to the fusion software, or adaptation in the fusion software itself. Not all 

available approaches may support separate adaptation for the transverse and axial directions, 

as was needed in our specific situation. Otherwise, there are no rational arguments to prefer 

one approach over another.

As an alternative solution to systematic correction of differences in image size, patient-

specific scaling may be advocated as it is relatively easy to perform. Image fusion software 

generally supports scaling, either manual or automatic. Scaling is even considered as a routine 

procedure in image fusion with magnetic resonance imaging �MRI�, which suffers from spatial 

distortions and size deviations because of magnetic field inhomogeneities. However, when 

spatial inhomogeneities are absent, we consider this approach to be suboptimal, as the 

applied size corrections will be influenced by incidental regional variations, such as positioning 

differences. The application of ad	hoc scaling factors seems a less rational procedure, when 

the exact correction values can be derived by relatively simple measurements as presented 

in this paper.

It seems unlikely that the correction parameters presented in this article can be transferred 

to other PET systems in general. Variations may occur between systems, especially when 

using scanners from different manufacturers. Therefore, the extent of image size differences 

needs to be assessed locally. Hybrid PET/CT systems may also suffer from relative image size 

differences between PET and CT, as all currently available hybrid systems consist of dedicated 

PET and CT scanners placed in-line. Therefore, the adjustment of pixel size may result in a 

similar benefit in image fusion accuracy when using hybrid PET/CT scanning.

5.5	 Conclusion

We have demonstrated that a small deviation in real image size of PET may occur, as well as 

a difference in PET image size relative to CT. Although a small deviation in PET image size is 

not clinically relevant in normal diagnostic procedures, correction of such a difference proves 

to be beneficial with regard to the accuracy of rigid-body software image fusion. Therefore, it 

is advisable to re-evaluate PET scanner image size relative to CT images before using high-

accuracy rigid-body image fusion with CT.

Correction of image size in PET/CT fusion 
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Abstract

Integration of PET information into CT-based IMRT allows 
adaptation of the target volume to functional parameters, 
but only when the image registration procedure is reliable. 
The aim of this study was to select the optimal method for 
software fusion of dedicated PET and CT, and to validate the 
procedure for IMRT in the head-neck area.

Methods: 15 patients with HNSCC underwent separate 
CT and FDG-PET, both in a custom-moulded rigid mask 
fitted with 4 multimodality fiducial markers. Five image 
registration methods were applied. PET emission and CT were 
registered manually �ME�, and using the landmarks �LM�. 
PET transmission and CT were registered manually �MT�, 
using a mutual information-based method �MI� and using 
an iterative closest point method �ICP�. The error in image 
registration using each of the methods was determined by 
evaluation of the markers.

Results: LM showed an excellent average registration error 
of 1.4 mm at the location of the markers, and 0.3 mm in the 
planning area. However, this method proved to be laborious. 
Apart from LM the best method was ICP, with registration 
errors of 3.0 and 2.0 mm, respectively. For ME the respective 
errors were 4.7 and 3.5 mm, for MT 3.6 and 2.7 mm, and for 
MI 5.3 and 4.1 mm. 

Conclusions: Image fusion of dedicated PET and CT of 
the head-neck area can be performed reliably and accurate 
with no need for laborious markers, using the operator-
independent ICP method. The achieved accuracy permits 
implementation of dedicated PET images in external beam 
radiation therapy.
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6.1	 Introduction

External beam radiation therapy of head and neck squamous cell carcinoma �HNSCC� demands 

accurate dose delivery. Nowadays this can best be achieved with intensity modulated external 

beam radiation therapy �IMRT�, with a good effective spatial accuracy in dose delivery 

and with high achievable dose gradients �1�. As a next step, integration of functional and 

anatomical information by fusion of PET and CT images allows consideration of biological tumor 

characteristics in the determination of the IMRT target volume �2-4�.

For IMRT, accurate detection and localization of tumor sites is essential. Primary tumors in the 

head and neck area are often small at the time of discovery, and lymph node metastases tend 

to be small in size and multiple in number �5�. Computed tomography �CT� imaging provides 

the anatomical reference and electron density information that is mandatory for 3-dimensional 

planning in IMRT, and can visualize structural information conveniently. Major drawbacks of 

CT are a low sensitivity for small lymph node metastases and low specificity in marginally 

enlarged lymph nodes or atypical lesions �6�. The inability of CT imaging to differentiate tissue 

characteristics contributes to this problem, despite the application of intravenous contrast.

Additional functional and molecular information can be provided with positron emission 

tomography �PET�. The radiopharmaceutical 18F-fluor-deoxy-glucose �FDG� quantitatively 

visualizes glucose metabolism, thus providing a tool for discrimination of normal and malignant 

tissues. The clinical value of FDG-PET in staging of malignancy in the head and neck area has 

been demonstrated by some �6-9�, although others have reported less impressive results �10�. 

Radiotherapy planning may benefit from improved tumor detection, and from quantitative 

evaluation of intra-tumoral variations in metabolic activity such as glucose metabolism. 

Examples of other evaluable biological parameters include hypoxia and proliferation, as 

visualized with 18F-Misonidazole �FMISO� and 18F-fluor-deoxy-thymidine �FLT�, respectively.

Using IMRT, a high dose can be delivered accurately to known tumor sites �11,12�. Perhaps equally 

important, a significant dose reduction to adjacent non-tumor sites can be achieved, resulting 

in fewer complications and side-effects such as central nervous system damage, mucositis, 

and loss of parotid gland function �13-15�. Furthermore, the 3-dimensional approach of IMRT 

facilitates intra-tumoral variations in dose delivery, tailored to �regional� specific functional 

and molecular tumor characteristics. Planning and application of such highly optimized IMRT 

procedures depends on precise tumor imaging. Any error in the anatomical registration of CT 

and PET images may lead to erroneous localization or interpretation of lesions, which may 

subsequently result in suboptimal radiation treatment.

PET-CT fusion in head/neck radiation therapy



�6

Currently, many perform image fusion of CT and PET for planning of external beam radiation 

therapy using their own preferred approach to image registration. Some use an integrated PET/

CT scanner, others apply software fusion of dedicated CT and PET.  Different methods of image 

registration are available for the latter approach, each with their specific characteristics, and 

with variable accuracy of image registration. The relative accuracy of the available methods is 

currently not known. We have hypothesized that for successful application of image fusion in 

external beam radiation therapy planning – especially for IMRT – the error in image registration 

should not exceed existing limits in spatial accuracy of image quality and dose delivery. In this 

paper we evaluate different approaches to high accuracy software PET/CT image fusion, and 

validate the selected optimal technique for application in IMRT procedures in the head and 

neck area.

6.2	 Methods

A total of 15 patients �mean age 59 years, range 49-74 years� referred for external beam 

radiation therapy for newly diagnosed HNSCC were included. Twelve patients had carcinoma of 

the larynx, 3 had carcinoma of the tongue. PET and CT scans were acquired within a maximum 

interval of one week.

Imaging

CT scans were acquired using a multislice spiral CT scanner �Philips AcQsim, Philips, Cleveland, 

USA�. Scanning parameters were 130 kV, 120 mAs, slice distance and slice thickness 3 mm. 

Images were acquired from the top of the lungs to the base of the skull, with intravenous 

contrast.
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Figure	6.1
Example of the multi-modality 
markers	used	for	landmark	
registration	and	image	
fusion	accuracy	evaluation.	
(A)	Markers	(red	arrows)	
as	placed	on	the	mask.	
(B)	Marker	as	seen	on	CT	
filled with iodine-containing 
contrast.	(C)	Marker	as	
seen on PET filled with FDG 
solution.	The	center	of	the	
markers	could	be	determined	
with	an	inter-operator	
variability	well	below	1	mm	on	
both	CT	and	PET	images.
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FDG-PET was acquired using a full-ring dedicated PET scanner �Siemens ECAT Exact 47, 

Siemens/CTI, Knoxville, Tennessee, USA�. Patients with diabetes mellitus were not excluded. 

However, glucose levels had to be appropriately regulated �glucose levels at time of FDG injection 

< 10 mmol/l, no insulin administration prior to FDG injection�. A 3D emission scan of the head 

and neck area and a 2D Germanium-68 based transmission scan for attenuation correction 

were acquired 60 minutes after intravenous injection of 250 MBq FDG �Mallinckrodt Medial, 

Petten, The Netherlands�. The acquisition time per bed position was 5 minutes for emission 

and 3 minutes for the Germanium-based transmission, resulting in a total scanning time of 16 

minutes for the two bed positions. Emission and transmission scans were reconstructed using 

a 2D ordered subset expectation maximization �OSEM� iterative algorithm, with parameters 

optimized for low photon attenuation in the head and neck area as described elsewhere �16�. 

As during previous studies, a structural difference in real image size between the CT and PET 

devices of 2.0% in the transversal direction and 0.8% in the axial direction was observed �17�, 

this was corrected by applying a scaling factor.

Patient positioning

During all imaging procedures, patients were placed in radiotherapy position within a custom-

moulded rigid mask covering the head, neck and shoulders. Maximum reproducibility in 

positioning was assured by the use of additional support systems: a flat scanning bed, a 

customized head support cushion, an intra-oral mould for positioning of the tongue when 

needed, a standard cushion supporting the knees, and a laser positioning system.

All patients were scanned with 4 multi-modality crosshair fiducial markers firmly attached to 

the fixation mask in a rectangular configuration around the center of the IMRT planning area, 

halfway in the anterior-posterior plane. The crosshair markers consisted of two 5 cm glass 

capillaries positioned in a 90° angle. The capillaries were filled with either 300 mg/ml iodine-

containing contrast for CT or 1 MBq/ml FDG for PET. Figure 6.1 shows an example of a mask 

with fiducial markers in place.

Image registration

The image registration procedure was performed on a PC with in-house developed image 

viewing and registration software based on the visualization toolkit VTK �18� and the insight 

segmentation and registration toolkit ITK �19�. The software allows rigid-body image registration, 

i.e. based on 3 translation and 3 rotation parameters. Anatomical image registration of PET 

images to CT images was performed using five different methods:

1. Method ME: Manual registration of PET emission images to CT. Anatomically correct 

registration in the field of interest was performed by an experienced investigator, 

through manual adjustment of the 6 free parameters. The operator used an interface 
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where 3 variable sections of orthogonal planes �transverse, coronal and sagittal� 

through the 2 images were displayed simultaneously. Hence, by performing registration 

in only one section at the time, the 3D registration problem was reduced to a series 

of 2D problems. The method is therefore fast and easy, but may suffer from operator-

dependancy.

2. Method LM: Landmark-based registration of PET emission images to CT. Registration 

was optimized by manual identification of the centers of the multimodality markers, 

followed by a minimization of ∑
(1-4)

((r
i
–T*r’

i
)^2)/N, where r

i
 are the coordinates of 

CT landmark i, r’
i
 are the coordinates of PET landmark i, T is the transformation, and 

N=4 for the number of markers.  This minimization provides �by taking the square-

root of this minimization result� the fiducial registration error �FRE� �20�. This method is 

subject to operator-dependency due to the manual localization of the markers.

3. Method MT: Manual registration of PET transmission images to CT. Parallel to method 

ME, anatomically correct registration in the field of interest was pursued through manual 

adjustment of the 6 free parameters. At the end of the procedure the transmission 

images were substituted with the emission images. This method is also fast and easy, 

but may again suffer from operator-dependancy.

4. Method MI: Mutual information based registration of PET transmission images to CT. This 

method optimizes a functional measuring the similarity of all geometrically corresponding 

voxel pairs for some feature. The mutual information metric implementation follows 

the method as specified by Voila and Wells �21,22�.  In this implementation, probability 

densities are estimated from the image data using the Parzen-Window scheme �23�. 

This method is available in ITK �19�. Its main advantages are that it can work directly 

with image data as no pre-processing or segmentation is needed. Furthermore, it has 

an efficient implementation based on stochastic approximation. The parameters of this 

method �19� have been tuned to our application: the Parzen window width was set to 

2, the number of samples to 50, the learning rate to 0.0005, the translation scale to 

100 and the number of iterations to 20,000. This provided robust results. At the end of 

the registration procedure the transmission images were substituted with the emission 

images. This method is not operator dependant, but does require some computation 

time.

5. Method ICP: Iterative closest point registration, using surface models of the body 

contours acquired from PET transmission and CT. A thresholding technique was used 

on both image sets to create triangulated iso-surfaces of the body, using the VTK 

method vtkContourFilter �18�. Normals were computed for these surfaces for each of 

the polygonal facets, using the VTK method vtkPolyDataNormals �18�. Using these 

normals, a faceted shading of the surface was obtained that was used as an input 

for the ICP algorithm. The ICP algorithm �19� has three stages and iterates. Firstly, 
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random points on the first model �of the transmission PET� are associated to random 

points on the other model �of the CT� by the nearest neighbor criterion. Secondly, 

transformation parameters are estimated using a mean square cost function. Next, the 

transformation is applied. Then, the iteration procedure starts by re-associating points, 

etc. The procedure continues untill convergence has been reached. In this study 5000 

random points were used for each model and the convergence criterion was to stop 

when the change between two successive iterations fell below a threshhold of 0.001 

mm, or when the number of iterations exceeded 3000. At the end of the procedure the 

transmission PET images were substituted with the emission images. The ICP method 

is illustrated in figure 6.2. This method is not operator dependant, but does require 

some computation time.

For the automatic registration methods MI and ICP the algorithm input was restricted to 

a volume of interest by defining a 3-dimensional box, containing the head and neck area, 

but excluding bodyparts that tend to keep freedom of movement within the mask �i.e. the 

shoulders�. With the exception of the landmark-based method LM, the fiducial markers were 

not considered during the image registration process. In the PET transmission images the 

markers were not visible, and all representations of the markers were removed from the 

emission images prior to image registration.

Assessment of image registration

The fiducial markers were used for assessment of the accuracy in image registration. The 

location of the center of each marker was determined on both CT and PET emission images. The 

inter-operator variation of the manual localization of the center of the markers was evaluated 

by analysis of 12 markers in a separate session by two operators. The difference in position 

of corresponding markers on CT and PET was determined, representing the error in image 

registration at the location of the markers. Subsequently, for each patient the location of a 

hypothetical marker in the center of the IMRT planning area was determined, by calculating the 

geometrical center of all surrounding markers. The difference in position of this hypothetical 

marker on CT and PET was determined to estimate the image registration error in the region 

of the IMRT planning area.

Statistical analysis

Differences in the image registration errors for the applied methods were evaluated using 

a repeated measures ANOVA with Bonferroni’s correction for multiple comparisons, using 

GraphPad InStat version 3 �GraphPad Software, San Diego CA, USA�. The level of significance 

was set at 0.05.
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6.3	 Results

The inter-operator variability in determination of the center of the markers was well below 1 

mm in both types of scans. For CT images the average difference between the two operators 

was 0.54 mm �S.D. 0.28 mm�. For PET images the average difference was 0.42 mm �S.D. 

0.19 mm�.

Application of LM achieved the best results �P < 0.001 as compared to all other methods�. LM 

showed an average registration error of 1.4 mm �range 0.3 – 3.8, S.D. 0.8� at the location 

of the markers, and a calculated average registration error in the center of the planning area 

of 0.3 mm �range 0.0 – 0.6, S.D. 0.2�. The second-best method proved to be ICP, with an 

average error in image registration of 3.0 mm �range 0.5 – 8.8, S.D. 0.9� at the location of 

the markers and 2.0 mm �range 0.6 – 4.3, S.D. 1.1� at the center of the planning area. The 

average error in the center was above the limit of 3 mm in three cases �20%�, the largest error 

in the planning area being 4.3 mm.

For method ME the respective registration errors were 4.7 mm �range 1.2 – 13.6, S.D. 2.2� and 

3.5 mm �range 0.7 – 6.3, S.D. 1.6�, for method MT 3.6 mm �range 0.5 – 10.6, S.D. 1.5� and 

2.7 mm �range 1.1 – 6.1, S.D. 1.6�, and for method MI 5.3 mm �range 1.0 – 18.3, S.D. 2.0� 

and 4.1 mm �range 1.9 – 6.8, S.D. 1.4�. As 

compared to ICP, the methods ME and MI were 

significantly less accurate in image registration 

�P < 0.05�. MT was not significantly different 

as compared to method ICP. An example of 

the results after image registration is shown in 

figure 6.3. The quantitative results are depicted 

in figure 6.4.
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Figure	6.2
Iterative	closest	point	(ICP)	registration	of	
PET	transmission	images	to	CT.	(A)	On	both	
CT	and	the	PET	transmission	scan,	a	surface	
model	of	the	body	contour	is	generated	using	a	
thresholding	technique.	(B)	Both	surface	models	
are	represented	as	a	3-dimensional	structure.	
(C)	Automatic	image	registration	is	performed	by	
iteratively	minimizing	the	distance	between	the	
surface	models.
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During the PET image acquisition, small positioning problems occurred in 4 patients, due to 

relative inexperience of the PET operating personnel with the fixation mask. Examples are a 

minor backwards tilt of the head within the mask, or an incorrectly attached part of the mask 

near a shoulder. This resulted in minor visually discernible positioning differences between PET 

and CT scans, in all cases below 1 cm and mostly well outside the IMRT planning area. All 3 

patients who showed a registration error above 3 mm using method ICP were subject to such 

errors.

PET-CT fusion in head/neck radiation therapy

Figure	6.3
Example of image fusion using 
method	ICP.	Transverse	(A)	
and	coronal	(B)	sections	of	
FDG-PET	(left),	CT	(middle)	
and	fused	PET-CT	(right)	in	a	
patient	with	carcinoma	at	the	
base	of	the	tongue	(blue	arrow)	
and	multiple	pathological	lymph	
nodes	on	the	right	side	of	the	
neck (white arrows). The extent 
of the malignancy was difficult 
to	appreciate	on	the	CT,	while	
fused	PET/CT	images	allowed	
clear	delineation	of	the	primary	
tumor, as well as identification 
of	pathological	lymph	nodes.

Figure	6.4
Accuracy	of	image	
registration.	The	errors	
in	image	registration,	
as	performed	by	
the	different	applied	
techniques	(MI	=	mutual	
information,	ME	=	
manual	emission,	MT	=	
manual	transmission,	
ICP	=	iterative	closest	
point,	LM	=	landmark).	
The	graph	shows	that	the	
lowest	error	in	the	center	
of the IMRT field can 
be	achieved	using	the	
landmark-based	method	
(LM).
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6.4	 Discussion

Image fusion may be performed with software-based image registration of dedicated PET and 

CT. However, image registration of dedicated PET and CT has a risk for introducing errors �24�. 

Although high accuracy in image registration has been shown using phantoms �25�, a time 

interval between scans and repeated positioning may result in introduction of differences when 

imaging patients. Furthermore, the image registration procedure itself is hampered by limited 

visualization of normal anatomical structures on FDG-PET. The risk for potentially significant 

errors in PET/CT image registration emphasizes the need for a structured and validated 

approach.

The spatial resolution of PET imaging is in the range of 4–7 mm �full width half maximum� 

for most currently available scanners, although the image quality may be better in the head 

and neck area where photon attenuation is low �16�. The geometrical uncertainty in IMRT 

dose delivery is in the range of 2–3 mm �1�. Therefore, an upper limit for the error in image 

registration of 3 mm can be considered  acceptable for application in IMRT planning.

Fiducial markers

At least three fiducial markers are needed to define position and orientation of a rigid object in 

a 3-dimensional space. In these studies 4 markers were used, in a rectangular configuration 

in the coronal plane around the planning area to equally represent the whole head/neck area. 

The anterior and posterior sides of the mask were not marked with separate markers, but 

these areas were considered not very prone to additional local positioning errors because of 

rigid attachment to the scanning table and adequate fixation of the nose.

Fiducial markers can also be used for evaluation of the local image registration error. This local 

error is influenced by non-rigid positioning differences within the mask. The extent of such 

positioning differences is unclear. According to van Lin et al. the error in repeated positioning 

in a customized mask is in the range of 3-4 mm �26�, but this includes other factors such as 

visual and manual correlation with laser guides. In this paper, the relatively good results of 

image registration suggest that on average patient positioning was adequate, and well within 

the range found by van Lin et al. Nevertheless, some of the patients were indeed subject to 

slightly suboptimal positioning, due to relative inexperience of PET personnel in postioning of 

the customized mask. This suggests that the accuracy of the image registration may improve 

even further, as experience grows.

In this study, the errors in image registration were measured by markers placed well outside 

the target volume for radiotherapy, which can be considered a ‘worst case scenario’. The 
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much more relevant error in the center of the planning area was estimated by the error in a 

mathematically derived hypothetical marker, defined by the geometrical center of all available 

surrounding markers. A drawback of this method is that it represents a theoretical value. 

However, there is no reliable direct method to evaluate the errors in image registration within 

the neck of a patient, due to the lack of anatomical landmarks that are well demarcated both 

on CT and PET transmission images, the unfeasibility of marker placement in such areas, and 

unavoidable physiologic processes such as swallowing. Wong et al. have described anatomical 

landmarks that may be identified in the head and neck area on both PET and CT �27�, but 

we considered the visibility of such landmarks very poor, and also considered the suggested 

accuracy of localization of 1.3 – 8.2 mm insufficient. Furthermore, the artificial markers were 

chosen as these do not depend on tracer biodistribution and uptake, and as manual localization 

will be less operator dependent. Therefore, the calculated error in the center of the planning 

area, derived from fiducial markers at the edges, was considered the best available indicator 

of the real error in image registration.

Fitzpatrick et al. have previously published a method for quantitative evaluation of registration 

errors using recognisable landmarks �28,29�. The so-called “Target Registration Error” �TRE� 

expresses the displacement between any two corresponding points in the images, in relation 

to the fiducial registration error �FRE� of available landmarks. This TRE is considered to be 

the most accurate mathematical representation of the real registration error at a specific 

point. Given the configuration and number of the markers in our study, the calculated average 

position of the hypothetical marker in the center of the planning area approaches the local TRE 

as defined by Fitzpatrick. The error in areas further away from the planning area �e.g. at the 

anterior and posterior borders of the head and neck area� will be somewhat underestimated, 

but this is considered not very relevant for treatment planning for areas in the center field of 

view.

Image registration

The best results in image registration accuracy were achieved by the landmark-based method. 

These values were considered a ‘gold standard’ in rigid-body image registration accuracy as 

they reflect the mathematically achievable accuracy, including all unavoidable positioning 

differences, mask deformations, patient motion due to e.g. swallowing, and sampling errors in 

determining the position of the markers. The average registration error at the location of the 

landmarks is better than the values observed when using anatomical landmarks by Wong et 

al., probably because the manual localization procedure of artificial markers is more accurate 

and less operator independant �27�. Furthermore, our results with LM are very similar to those 

reported with integrated PET/CT scanners, which provide an excellent tool for image fusion for 

IMRT planning in the head and neck area �30,31�.
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In practice, LM proved to be relatively laborious and cumbersome, as for each procedure the 

markers had to be filled manually, placed on the masks and subsequently removed again. This 

may partially be overcome by using commercially available multimodality markers, containing 

a solid long lived PET source. However, an adequate method with no need for markers may 

still be preferable. 

The ICP method proved to be the second best method, as compared to the landmark-based 

registration method. With ICP, the average error in image registration was 2.0 mm in the 

center of the planning area, which was within the limits of accuracy of IMRT �1�. ICP proved to 

be significantly better than the ME and mutual information based methods. A further advantage 

of ICP over the manual methods is the operator independency. An advantage over the mutual 

information method is the independency of initial registration differences between PET and CT. 

The results of the ICP method in this study were better than previously published results of 

software PET/CT fusion of the brain in a single patient using a mutual information algorithm 

by Lavely et al. �25�. Obviously, a direct comparison with the head-neck area is not possible. 

Also, Lavely et al. did show more precise registration in a phantom, but it is not very realistic 

to extrapolate these results to clinical procedures.

Using ICP, three patients still showed an error of more than 3 mm in image registration in the 

center of the planning area. In these cases, less experienced personnel positioned the patient 

in the fixation mask. Thus, it is likely that a smaller registration error of the ICP method �and 

possibly the other methods� than reported in our series is feasible, when experience in patient 

positioning increases. This also illustrates that patient positioning could be the limiting factor in 

image registration, rather than the ICP method itself. This supports the conclusion that PET-CT 

image registration using the ICP method can be applied in the IMRT procedure.

The method ME performed significantly less accurate than the ICP method. Furthermore, as 

opposed to the ICP method, both manual registration methods �ME and MT� are operator-

dependent, which is a clear disadvantage. Therefore, the manual methods were considered 

suboptimal for procedures in the head and neck area as compared to ICP.

The performance of the MI based algorithm was somewhat disappointing, as the method 

performed significantly less accurate than the ICP method, with an average error larger than 3 

mm. We have observed that the algorithm consistently converges to a reasonable registration, 

but tends to deviate slightly in the final registration result as an intelligent evaluation of 

edges and symmetry seems to be lacking, as opposed to the ICP method. Furthermore, 

the results may vary with the extent and direction of the registration mismatch that the MI 

algorithm is confronted with initially. The results of an MI-based algorithm depend on several 

parameters, such as the number of iterations. We fine-tuned our parameters, but were unable 

to improve the results to the level of the ICP results. Therefore, we consider the Parzen 
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Window implementation of the MI method suboptimal for procedures in the head and neck 

area as compared to ICP.

The ICP method in this study was based on registration of PET transmission images to CT. This 

implies that PET without transmission images cannot be registered using the ICP method. This 

is not a relevant problem, as PET-based quantitative tissue characterization for IMRT already 

requires correction for photon attenuation. A further important advantage of using transmission 

images is the independence of the choice of the radiopharmaceutical �i.e. FLT, F-Misonidazole�. 

This allows image registration also when delineation of anatomical landmarks in the emission 

images is relatively poor and tumor uptake is low. Theoretically, image registration based on 

transmission images may fail in case of patient motion between the acquisition of emission 

and transmission, but the use of a fixation mask will prevent such problems. The fixation mask 

itself is visible on CT images and may slightly influence PET transmission images, despite its 

limited thickness and density. Visualization of the mask on PET transmission images would 

be homogeneous and symmetrical, and is not considered a problem for image registration. 

Especially the ICP method is unaffected by symmetrical factors, such as the threshold level on 

PET images. The evaluation of image registration with fiducial markers is not influenced by the 

presence of the mask.

The accuracy and robustness as achieved by the observer independent ICP method has 

not been published before. Only a few studies have evaluated the accuracy of rigid image 

registration in the head and neck area. As stated above, one study has shown the feasibility 

of image fusion in 30 patients using manually selected anatomical landmarks �27�, although 

the method is very operator dependent and the average registration error of 3.8 mm �range 

1,3 – 8,2 mm� is considered insufficient for high-accuracy procedures such as IMRT. Another 

study by Klabbers et al. has also demonstrated the feasibility of mutual information based 

registration with transmission images �32�, but the image registration was only evaluated for 

the object as a whole using a full-circle method, which provides no information about local 

and systematic registration errors. The claimed average registration error of 4 mm is exclusive 

additional errors due to rotation, and neglects local errors due to positioning differences. A 

study by Nishioka et al. used image registration based on the brain only, and used visual 

evaluation only �33�.

Other image registration techniques

We have evaluated 5 different approaches to PET-CT image registration. More techniques 

are available, as published in an extensive listing by Maintz et al. �20�. In this study, a method 

has been selected from each category of techniques, unless inappropriate �i.e. not applicable 

for inter-modality registration�. Other techniques are not yet established, such as non-rigid 

�elastic� registration.
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The high accuracy of image registration presented in this study is only valid for rigid-body 

image registration. This limits the applicability of this approach to IMRT planning in the head 

and neck area, where measures can be taken to ensure reproducible positioning. It is likely 

that image registration of non-rigid body parts where immobilization and positioning tools are 

less effective – such as the chest and abdomen – will be less accurate, or will require different 

approaches to image registration, tailored to the specific situation.

Hybrid PET/CT

For hybrid PET/CT scanning, phantom studies have demonstrated an image registration 

accuracy in the range of 0-2 mm, and for patients in the range of 1-3 mm in the head and neck 

area �30�. Furthermore, patient repositioning between the acquisition of PET and CT images 

is no longer required. However, many hospitals do not have access to an integrated PET/CT 

scanner system. As the clinical demand for functional imaging in radiation therapy planning 

is high, also in hospitals without a hybrid PET/CT scanner, validation of software image fusion 

remains of relevance.

6.5	 Conclusions

High-accuracy rigid-body image registration of dedicated PET and CT of the head and neck area 

can be performed adequately and reliably, with or without multi-modality markers. Without 

using markers, the iterative closest point registration method of CT and PET-transmission 

images proved to be the most accurate operator-independent image registration method. The 

achieved accuracy – with an average error lower than 3 mm in image registration – permits 

implementation of dedicated PET images in IMRT planning and therapy. Our results validate the 

use of software image fusion of PET and CT for IMRT planning in the head and neck area, thus 

permitting application of this technique whenever dedicated PET and CT are available.
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Abstract

Target volume delineation for radiation treatment in the head 
and neck area is traditionally based on physical examination, 
CT, and MRI. Additional molecular imaging with FDG-PET 
may improve definition of the gross tumor volume �GTV�, but 
there is no consensus on the method of tumor delineation. 
In this study, five methods for tumor delineation on FDG-PET 
are compared with CT-based delineation.

Methods: Seventy-eight patients with stage II-IV squamous 
cell carcinoma of the head and neck area underwent co-
registered CT and FDG-PET. The primary tumor was delineated 
on CT �GTVCT�, and five PET-based GTVs were obtained: 
visual interpretation �GTVVIS�, applying an isocontour of 
a standardized uptake value of 2.5 �GTVSUV�, using a fixed 
threshold of 40% and 50% of the maximum signal intensity 
�GTV40% and GTV50%�, and applying an adaptive threshold 
based on the signal to background ratio �GTVSBR�. Absolute 
GTV volumes were compared, and overlap analyses were 
performed.

Results: The GTVSUV method failed to provide successful 
delineation in 45% of cases. For the other PET delineation 
methods, the volume and shape of the GTV were heavily 
influenced by the choice of the segmentation tool. On 
average, all threshold-based PET-GTVs were smaller than on 
CT. Nevertheless, PET frequently detected significant tumor 
extension outside the GTVCT  �15-34% of PET-volume�. 

Conclusions: The choice of a segmentation tool for target 
volume definition of head and neck cancer based on FDG-
PET images is not trivial, as it influences both volume and 
shape of the resulting GTV. With adequate delineation, PET 
may add significantly to CT and physical examination-based 
GTV definition.
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7.1	 Introduction

Progress in radiation oncology enables delivery of radiation treatment with increasing geometric 

precision. This requires a re-evaluation of target volume delineation, which is traditionally 

based on physical examination, computed tomography �CT� and magnetic resonance imaging 

�MRI�. In recent years, new methods have been introduced for visualization of tumor tissue. 

In addition to anatomical data as supplied by CT and MRI, ‘functional’ and ‘molecular’ imaging 

techniques, such as positron emission tomography �PET�, single-photon emission computed 

tomography �SPECT� and magnetic resonance spectroscopy �MRS�, allow visualization of 

biological characteristics, with several potential advances. The primary tumor may be identified 

more accurately, with consequences for the size and shape of the gross tumor volume �GTV�. 

Tumor characteristics relevant for radiation sensitivity can be visualized �e.g. hypoxia�, which 

may assist in the selection of patients for customized treatments �1�. Also, intra-tumoral 

heterogeneity of these characteristics may be identified, providing an opportunity for ‘dose 

painting’ �2�. Finally, when imaging modalities become more accurate, the inter- and intra-

observer variations in tumor delineation will decrease, resulting in improved standard of 

care.

Metabolic information, as provided by imaging 18F-fluor-deoxy-glucose �FDG� with PET, has 

been incorporated into target volume delineation by many groups �3�. Tumor localizations can 

be identified and localized with high sensitivity, due to the high contrast resolution of PET. 

However, application of FDG-PET data for target volume delineation is not straightforward, as 

identification of tumor boundaries on PET suffers from a relatively low spatial resolution and 

a ‘blurry’ appearance of lesions. Furthermore, FDG-PET is usually interpreted qualitatively, 

whilst in radiation oncology a more quantitative approach is required for tumor contouring �4�. 

Currently, various methods for FDG-PET based target volume definition are in use. Visual 

interpretation is the most commonly used method �5-12�. This method, however, is susceptible 

to the window-level settings of the images and is highly operator dependent. Therefore, 

more objective methods have been explored. Examples are isocontouring based on either 

a standardized uptake value �SUV� of 2.5 �10,13,14�, a fixed threshold of the maximum signal 

intensity �15-21�, or on a threshold which is adaptive to the signal to background ratio �22�. 

The utility of these methods for tumor delineation in the head and neck area is currently 

unknown.

The choice of method for tumor delineation on FDG-PET may influence GTV determination, 

with consequences for the outcome of radiation therapy. The aim of this study was to compare 

different methods for tumor delineation with FDG-PET, relative to CT-based delineation, for 

radiation therapy planning in head and neck cancer patients.

FDG-PET target definition in head/neck
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7.2	 Methods	and	materials

Patients

Seventy-eight patients �59 males and 19 females, median age 61 years, range 43-86 years� 

with stage II-IV squamous cell carcinoma of the head and neck area, eligible for primary 

curative radiotherapy, were prospectively enrolled from June 2003 until July 2006. The tumor 

characteristics are summarized in table 7.1. The study was approved by the Ethics Committee of 

the Radboud University Nijmegen Medical Centre and all patients provided informed consent.

Image acquisition

Prior to treatment, a CT scan and an FDG-PET scan were acquired in radiation treatment 

position, the patient being immobilized by a custom-made rigid mask covering head, neck 

and shoulders. Maximum reproducibility in positioning was assured by the use of additional 

support systems: a flat scanning bed, a customized head support cushion, an intra-oral mould 

when indicated, a standard cushion supporting the knees, and a laser positioning system. The 

median interval between CT and FDG-PET was 3 days �range 0-10 days�. The CT scan was 

always performed prior to the PET-scan. CT scans were acquired using a multislice spiral CT 

scanner �Philips AcQsim, Philips, Cleveland, USA�. Scanning parameters included 130 kV, 120 

mAs, slice distance and slice thickness 3 mm, scanning from above the frontal sinuses to below 

the clavicles, with intravenous contrast.

FDG-PET was acquired using a full-ring dedicated PET scanner �Siemens ECAT Exact 47, 

Siemens/CTI, Knoxville, Tennessee, USA�. Patients with diabetes mellitus were not excluded, 

however, glucose levels had to be appropriately regulated �glucose levels at time of FDG 

injection < 10 mmol/l, no insulin administration prior to FDG injection�. A 3D emission scan 

of the head and neck area and a 2D Germanium-68 based transmission scan for attenuation 

correction were acquired 60 minutes �median 64 minutes, S.D. ± 11.4� after intravenous 

injection of 250 MBq FDG �Mallinckrodt Medical, Petten, the Netherlands�. The acquisition 
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Table	7.1
Tumor	characteristics.

Patient and tumor characteristics

Tumor site

Oral Cavity 6
Oropharynx 31
Hypopharynx 9
Larynx 32

T-stage

T1 1
T2 16
T3 39
T4 22
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time per bed position was 5 minutes for emission and 3 minutes for the Germanium-based 

transmission scan, resulting in a total scanning time of 16 minutes for two bed positions. 

Emission and transmission scans were reconstructed using a 2D ordered subset expectation 

maximization �OSEM� iterative algorithm, with parameters �4 iterations, 16 subsets� optimized 

for low photon attenuation in the head and neck area as described elsewhere �23�.

Image registration

The image registration procedure has been described in detail previously �24�. In brief, three-

dimensional surface models were automatically derived from both the CT and the PET 

transmission images. These models were anatomically co-registered using an operator-

independent iterative closest point algorithm, with an average registration error of 2.0 mm 

at the centre of the planning area. Afterwards, the PET transmission images were replaced 

with the PET emission images. In addition, a second PET data set was generated in which the 

original values were replaced with calculated SUV values. SUV was defined as the voxel value 

of detected activity �in Bq/ml� multiplied by the weight of the patient �in Kg� divided by the 

activity at the beginning of the scan �in Bq� multiplied by 1000 �25�.

The CT and the two PET data sets were transferred via DICOM to a Pinnacle3 treatment 

planning system �Philips Medical Systems, Andover, MA, USA� for target volume definition and 

subsequent volume analysis.

FDG-PET target definition in head/neck

Figure	7.1
CT	scan	(A),	corresponding	FDG-PET	scan	(B)	and	fused	image	(C)	of	a	patient	with	a	T4N2M0	
tongue carcinoma, showing differences in target volume definition. Indicated are GTVCT	(red),	GTVVIS	
(light	green),	GTVSUV	(orange),	GTV40%	(yellow),	GTV50%	(blue),	and	GTVSBR	(dark	green).	GTVSUV	is	
unsuccessful	in	this	case,	due	to	inclusion	of	large	areas	of	normal	background	tissue.	Note	that	all	
other PET-based delineations indicate greater tumor extension towards lateral side and less towards 
medial	side	compared	to	CT	delineation.	Also	note	that	on	this	transversal	slice	GTV50%	and	GTVSBR	
are	indistinguishable.
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Target volume definition

The primary tumor was delineated on CT and FDG-PET images by two experienced radiation 

oncologists in consensus. The role of FDG-PET in detection of metastatic lymph nodes will be 

the subject of a separate analysis.

On CT images, manual delineation of the GTVCT was performed according to current clinical 

protocols, using information gathered from physical examination, available diagnostic workup 

imaging modalities �CT and/or MRI, examination under general anesthesia� and the CT in 

treatment position. When the radiation oncologists were drawing the GTVCT contours, the FDG-

PET images were blinded.

Five PET-based GTVs were obtained using different delineation approaches. Visual delineation 

�GTVVIS� was performed by contouring FDG activity clearly above normal background activity. 

Localizations with increased FDG uptake were classified malignant in consensus with an 

experienced nuclear medicine physician. The other �threshold based� GTVs were obtained 

using in-house developed software scripts for the Pinnacle3 treatment planning system. SUV-

based delineation was obtained by applying an isocontour of SUV=2.5 �GTVSUV� around the 

tumor. Two thresholds were based on fixed percentages of the maximum signal intensity 

in the primary tumor, of 40% �GTV40%� and 50% �GTV50%� respectively. Finally, an adaptive 

threshold delineation �GTVSBR� based on the signal-to-background ratio �SBR� was performed, 

as developed at Université St. Luc in Brussels, Belgium �22�. The maximum signal intensity 

was defined as the mean activity of the hottest voxel and its eight surrounding voxels in a 

transversal slice. The mean background activity was obtained in a manually defined region 

of interest of approximately 10 cm3 in the left neck musculature, far away from the primary 

tumor and any involved lymph nodes. Prior to delineation, scanner-specific variables that were 

needed for calculation of the GTVSBR were derived by a phantom experiment as described by 

Daisne et al. �22�. In brief, hot spheres with different sizes in a 6.5L Jaszczak phantom were 

imaged at different image contrast ratios. Optimal delineation thresholds were determined by 

minimizing the square difference between true and measured sphere volumes. These results 

were used to find the parameters a and b in the algorithm: Threshold=a+b×1/SBR �in our 

setting a=44.1, and b=70.4�. These data were consistent in replicate experiments.

For all FDG-PET delineation methods, air cavities were excluded from the GTV. This was achieved 

using automatic contouring of air cavities on CT �Hounsfields units 0-900� and subsequent 

subtraction from the GTV using an in-house developed Pinnacle3 script. Results obtained by 

automated delineation algorithms were checked visually before acceptation. A delineation was 

considered unsuccessful if the resulting GTV included significant volumes of tissue that were 

clearly normal at visual interpretation.
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Volume analysis

Absolute volumes of different GTVs were compared using a paired t-test. In addition, for all 

PET GTVs, in-house developed scripts were used to calculate: 1. the overlap volume of GTVCT 

and GTVPET, where overlap was expressed as the overlap volume of GTVCT and GTVPET relative 

to GTVCT �overlap fractionCT �OFCT��, and as the overlap volume of GTVCT and GTVPET relative to 

the five PET-based GTVs �overlap fractionPET �OFPET��; 2. the volume enclosed by GTVCT but not 

by GTVPET relative to GTVCT, which is 1 ∩ OFCT; and 3. the volume enclosed by GTVPET but not 

by GTVCT relative to GTVPET, which is 1 ∩ OFPET. Correlations between overlap fractions were 

assessed by linear regression analysis.

7.3	 Results

Seventy-eight patients were included in this study. Of these, 77 data sets were available for 

analysis; one patient was excluded as the primary tumor, a T2N2cM0 oropharyngeal carcinoma, 

was not visualized by FDG-PET.

The GTVVIS could be generated for all 77 patients. The GTVSBR segmentation tool resulted 

in an unsuccessful volume definition in two patients. This was observed in four patients for 

both the GTV40% and the GTV50%, two of whom also had an unsatisfactory GTVSBR. The GTVSUV 

determination was not successful in 35 patients, including the four patients mentioned above. 

As a consequence, this latter method was not further evaluated. Unsuccessful delineation was 

not correlated with specific tumor subsites or T-stages. All unsatisfactory volumes were largely 

oversized, being at least 300 cm3. An example of an inadequate GTVSUV  is depicted in figure 

7.1.

FDG-PET target definition in head/neck

GTV volume and overlap fractions for various segmentation tools

mean absolute volume mean OFCT mean OFPET

cm3 95% CI cm3 95% CI cm3 95% CI

GTVCT 22.7 [17.4 - 27.9] - -

GTVVIS 21.5 [16.5 - 26.6] 0.61 [0.56 - 0.66] 0.66 [0.66 - 0.70]

GTV40% 16.4 [13.2 - 19.6] 0.55 [0.51 - 0.58] * 0.72 [0.67 - 0.77] °

GTV50% 10.5 [8.2 - 12.7] 0.39 [0.36 - 0.43] ** 0.80 [0.76 - 0.85] °°

GTVUCL 11.2 [8.2 - 12.9] 0.43 [0.35 - 0.51] *** 0.85 [0.74 - 0.97] °°°

Table	7.2
GTV volume and overlap fractions for various segmentation tools. CI: Confidence Interval. OFCT:	
GTVCT	∩	GTVPET	/	GTVCT.	OFPET:	GTVCT	∩ GTVPET	/	GTVPET.	p-values	(relative	to	GTVVIS):	*	p	=	0.0007,	
**	p	<	0.0001,	***	p	<	0.0001,	°	p	=	0.01,	°°	p	<	0.0001,	°°°	p	=	0.001.
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The mean absolute volumes obtained with the various delineation procedures are shown in 

table 7.2 and figure 7.2. GTVCT and GTVVIS yielded comparable volumes but the three threshold-

based PET-GTVs �40%, 50% and SBR� all were smaller than the CT-based GTV �p ≤ 0.0001 

for all comparisons�. Furthermore, GTV50% < GTV40% < GTVVIS �p ≤ 0.0003�, indicating that 

these methods resulted in significantly differently sized GTVs. The mean volumes of GTV50% 

and GTVSBR were very similar.

The results of the overlap analyses are also shown in table 7.2. The mean OFCT varied from 0.39 

to 0.61, depending on the segmentation tool used. The mean OFPET varied from 0.66 to 0.85. 

A clear trend was observed with OFCT decreasing and OFPET increasing, from GTVVIS to GTV40% 

to GTV50%, GTVSBR. This indicates that in this order the PET volume not only decreased but was 
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Figure	7.2
Average	absolute	volumes	of	the	various	
GTV	methods.	Error	bars	indicate	standard	
deviation.

Table	7.3
The number of cases where FDG-PET detected a significant additional tumor volume (GTV), that 
was	not	detected	by	CT.

Additional tumor detected with FDG-PET

Cases where >10% of  GTVPET is located outside the GTVCT-volume

GTVVIS GTV40% GTV50% GTVUCL

Oral cavity/oropharynx 30 �83%� 23 �68%� 17 �50%� 15 �43%�

Larynx/hypopharynx 35 �85%� 29 �74%� 20 �51%� 22 �55%�

Total 65 �84%� 52 �71%� 37 �51%� 37 �49%�

Cases where >20% of  GTVPET is located outside the GTVCT-volume

GTVVIS GTV40% GTV50% GTVUCL

Oral cavity/oropharynx 19 �53%� 19 �56%� 8 �24%� 9 �26%�

Larynx/hypopharynx 30 �73%� 24 �62%� 13 �33%� 14 �35%�

Total 49 �64%� 43 �59%� 21 �29%� 23 �31%�
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also increasingly incorporated within the CT volume. All overlap fractions were significantly 

different from each other, except overlap fractions of GTV50% versus GTVSBR. The mean GTV 

fraction delineated by CT but not by PET, 1 ∩ OFCT, varied from 0.39 to 0.61. The mean GTV 

fraction delineated by PET but not by CT, 1 – OFPET, varied from 0.15 to 0.34. The latter is 

further detailed in table 7.3, categorized for tumor subsite. The segmentation tools performed 

very differently with no clear difference by tumor site or stage and all methods resulted in a 

large percentage of patients having more than 20% of the GTVPET outside the GTVCT-domain. 

GTV50% and GTVSBR resulted in less PET-volume outside the CT-volume than GTVVIS and GTV40%. 

An example of tumor tissue delineated by FDG-PET but not on CT is shown in figure 7.3.

The absolute volumes OFCT and OFPET of the methods GTV50% and GTVSBR were similar. The 

overlap fraction of GTV50% relative to GTVCT, versus the overlap fraction of GTVSBR relative to 

GTVCT showed a strong correlation between the two methods �Pearson correlation r=0.85, 

p<0.0001�. Nevertheless, the overlap of GTV50% and GTVSBR relative to each other showed 

a similarity less than 90% in 26 cases. This indicates that, although the GTV50% and GTVSBR 

segmentation tools yield similar average GTV volumes and overlap fractions, on an individual 

patient basis, there is a geographical mismatch in a substantial number of cases.

FDG-PET target definition in head/neck

Figure	7.3
CT	scan	(A),	
corresponding	
FDG-PET	scan	(B),	
fused	image	(C)	
and	enhanced	detail	
of	fused	image	
(D)	of	a	patient	
with	a	T3N2cM0	
oropharyngeal	
carcinoma,	showing	
tumor	tissue	
delineated	by	FDG-
PET,	but	not	by	CT.	
Indicated	are	GTVCT	
(red)	and	GTVSBR	
(dark	green).
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7.4	 Discussion

In this study we compared five segmentation tools for FDG-PET based target volume definition 

in a large cohort of head and neck cancer patients. There were three important observations. 

First, the GTVSUV method using a fixed threshold of 2.5 failed to provide successful delineation 

in a large number of cases. Second, the volume and shape of the GTV on PET largely depends 

on the segmentation tool used. Third, PET frequently detected extension of tumor tissue 

outside the GTVCT, regardless of the applied segmentation method.

Segmentation using a SUV-threshold of 2.5 resulted in an unsatisfactory large GTV in nearly 

half of the patients. In the remaining patients it resulted in a volume that was larger than the 

corresponding CT-volume, whilst the other automated segmentation tools produced volumes 

smaller than GTVCT. The SUV of 2.5 was chosen as an arbitrary cut-off value as it represents the 

level that some reports use to consider a lesion as malignant, e.g. when staging non-small cell 

lung cancer �14,15�, although the use of any SUV to differentiate benign from malignant is highly 

questionable �26�. Furthermore, extrapolation to tumor sites other than lung cancer is even 

more debatable. Lung tumors are frequently much larger than head and neck tumors, and lung 

tumors are often surrounded by large areas of very low FDG activity �i.e. normal lung tissue� 

whereas in head and neck cancer there is always a significant amount of background activity, 

because of physiological FDG-uptake in surrounding muscular tissue. For segmentation of 

primary lung cancer, Nestle et al. have found the value of 2.5 for SUV satisfactory �10�, but they 

also reported that when attempting to delineate a lesion surrounded by tissue with significant 

background activity that the GTVSUV tool was not suitable. Based on our results, we conclude 

that this method is not useful for automated target definition of head and neck cancer.

The other PET segmentation tools were successful in most, or all �GTVVIS�, cases. We found 

no explanation why a GTV40% and GTV50% could not be generated in four cases. Miller et al. 

reported that thresholding at 40% only works when the SBR is larger than 10 �20�. These four 

patients all had a SBR below 10 �range 3.6 to 6.4�, However, 31 other patients who did have 

a satisfactory GTV40% and GTV50% also had a SBR below 10. We can not conclude that it was a 

low SBR that caused the unsatisfactory GTVs.

The mean absolute GTV volume derived from visual interpretation of PET-images was 

comparable to GTVCT. All threshold-based PET segmentation tools, besides the rejected SUV-

based segmentation, resulted in volumes smaller than GTVCT. This was also described by 

Daisne et al. �27�, who compared the role of co-registered CT, MRI and FDG-PET in delineating 

the primary tumor in laryngeal cancer patients prior to laryngectomy, with contouring based on 
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the GTVSBR tool. Compared to the reference surgical specimen all modalities overestimated the 

tumor extension, but GTVSBR came closest at depicting the true tumor volume.  The differences 

were significant, with an average GTV on histological examination of 12.6 cm3, whereas 

averages for PET, CT and MRI were 16.3 cm3, 20.8 cm3 and 23.8 cm3, respectively. We also 

observed this effect for CT and GTVSBR in our patients with cancer of the larynx, oral cavity, 

oropharynx and hypopharynx.

Most other studies comparing GTV definition using FDG-PET against CT or MRI in head and 

neck cancer have used visual interpretation of PET images �5,9,28�. All studies demonstrated 

significant differences between PET and CT volumes in a large proportion of the patients. 

Compared to the GTVCT, the average GTVPET was smaller in one study �5�, of similar size in 

one study �9� and in another study larger in 40% of the cases, but smaller in the remaining 

60% �28�. These variable results may, at least partly, reflect the subjective nature and operator 

dependency of the visual interpretation method. Paulino et al. used a fixed threshold of 50% of 

the maximum signal intensity �21�. The resulting GTVPET was almost a factor two smaller relative 

to the GTVCT which is in good agreement with our results. 

Despite the fact that on average threshold-based GTVPET volumes were smaller than GTVCT, 

in many cases a significant part of the GTVPET was located outside the volume defined as 

GTVCT. This suggests that GTV definition using PET may include tumor extension that are not 

unequivocally depicted on CT. Note that our GTVCT already included tumor extensions found 

at clinical examination and examination under anesthesia. As FDG may also accumulate in 

inflammatory tissue, this is a potential caveat resulting in larger PET-based GTV not due to 

cancer. The relevance of peritumoral inflammation needs further evaluation, as this could not 

be discriminated in the current study.

FDG-PET may also underestimate tumor volume in specific situations. Tumor parts that are 

small, or that are located in a background with a relatively intense signal, could be missed. 

Both Daisne et al. and Ng et al. observed that, like CT and MRI, FDG-PET failed to identify 

superficial mucosal tumor extension �27, 29�. Nevertheless, using PET, Ng et al. missed only one 

small tumor location in a series of 124.

Given the different characteristics of GTV delineation with CT and PET, PET-based target 

volume definition can be used as complementary information to the conventional methods, 

but at present should not replace the CT-based volume until the smaller PET-based GTVs have 

been proven to be oncologically safe. This proof should ideally be acquired through histological 

validation studies, for then one can reliably decide how to use the additional information. GTV 

may be reduced using PET when dubious densities as seen on CT prove to be FDG-negative. 

FDG-PET target definition in head/neck
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This will reduce overtreatment and possibly reduce side-effects. GTV may be expanded based 

on PET, when additional FDG-positive locations are not explained by clinically evident benign 

inflammation. This will reduce the risk of geographical misses. We envisage that the future role 

of PET in target volume definition will be as a complementary tool, adding to other imaging 

and clinical information. 

The PET delineation methods resulted in GTV volumes with significant differences. Only the 

GTV50% and GTVSBR methods produced comparable volumes and overlap fractions. These 

segmentation tools, however, were not equivalent as geographical similarity between GTV50% 

and GTVSBR proved to be less than 90% in 26 of 73 cases. This might be explained by the 

thresholds that were generated by the GTVSBR algorithm, which ranged from 45.8% to 63.7%. 

This illustrates that for an individual patient GTV50% and GTVSBR were not interchangeable. The 

differences between the other PET-based methods were larger both with regard to volume and 

overlap. This underlines the need for validated GTV definition with PET.

All segmentation tools have inherent limitations. The main weaknesses of GTVVIS are that the 

resulting GTV is strongly influenced by the window-level setting of the data set and that it 

is a pure subjective approach, leading to substantial intra- and inter-observer variability �30�. 

Using a fixed threshold �i.e. GTV40% or GTV50%� as advocated by many research groups �15-21� 

is debatable. This seems to perform reasonably well in phantom-based experiments using 

symmetrical volumes with homogeneous activity and a sharp demarcation from the background 

activity. However, tumors may display a heterogeneous distribution of radioactivity. They may 

also be more complex in shape, which may limit the performance of the segmentation tool 

in the clinical setting �31�. Furthermore, these methods imply that there is no dependency on 

the background activity. When trying to apply a fixed threshold on Daisne’s laryngectomy 

data, thresholds ranging from 36% to 73% were necessary to fit the true tumor volume 

on histology �30,32�. The GTVSBR tool needs to be calibrated to the specific institutional image 

acquisition and reconstruction settings and it is not ideal for low SBR images �33�. However, it 

is the only tool that has been the subject of a histological validation study, and its threshold 

is adapted to the signal to background ratio of an individual patient. A novel iterative method 

for lesion delineation and volumetric quantification has recently been presented, whereby 

the background is subtracted from the signal, which makes it independent of the signal-to-

background ratio, and seems to be a more robust segmentation tool �34�. It will be of great 

value to investigate its performance in head and neck cancer patients. Alltogether, a method 

that is not dependent on observer variations and SBR ratio, and that has been validated 

properly, is preferable. These criteria apply best to the GTVSBR segmentation tool.
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7.5	 Conclusions

This study shows that FDG-PET may have important consequences for GTV definition, but 

that the choice of a segmentation tool for target volume definition of head and neck cancer 

based on PET images is not trivial. The absolute PET volume is dependent on the segmentation 

method used. Delineation using an SUV value of 2.5 is insufficient, and the other evaluated 

methods show inconsistencies. The SBR method seems preferable, since it uses a threshold 

adapted to the signal to background ratio of an individual patient and it does not depend on 

observer variability.

In general, PET volumes were smaller than CT volumes, but PET also identified possible tumor 

areas that were not contoured by the conventional CT-based method. This could potentially 

improve the accuracy of GTV definition. Additional histological validation studies are necessary 

before routine usage of FDG-PET data to optimize CT-derived target volumes.
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Abstract

Repopulation of clonogenic tumor cells is inversely correlated 
with radiation treatment outcome in head and neck squamous 
cell carcinomas. A functional imaging tool to assess the 
proliferative activity of tumors could improve patient 
selection for treatment modifications and could be used for 
early treatment response evaluation. The PET tracer 18F-fluor-
deoxy-thymidine �FLT� can image tumor cell proliferation 
prior to and during radiotherapy, and it may provide biological 
tumor information useful in radiotherapy planning. In the 
present study, the value of FLT-PET in determining the lymph 
node status in squamous cell carcinoma of the head and 
neck was assessed, with pathology as the gold standard.

Methods: Ten patients with newly diagnosed stage II-IV 
squamous cell carcinoma of the head and neck underwent 
FLT-PET prior to surgical tumor resection with lymph node 
dissection. Emission FLT-PET and CT images of the head and 
neck were recorded and fused, and standardized uptake 
values �SUV� were calculated. From all 18 FLT-PET positive 
lymph node levels and from eight FLT-PET negative controls, 
paraffin embedded lymph node sections were stained and 
analyzed for the endogenous proliferation marker Ki-67 and 
for the pre-operatively administered proliferation marker 
iododeoxyuridine. Sensitivity, specificity, positive predictive 
value and negative predictive value were calculated for FLT-
PET.

Results: Primary tumor sites were the oral cavity �7�, 
larynx �2� and maxillary sinus �1�. Nine of the ten patients 
examined had FLT-PET positive lymph nodes �SUVmean: median 
1.2, range 0.8-2.9�, but only three of these patients had 
histologically proven metastases. All metastatic lymph nodes 
showed Ki-67 and iododeoxyuridine staining in tumor cells. 
In the remaining seven patients, there was abundant Ki-67 
and iododeoxyuridine staining of B-lymphocytes in germinal 
centers in PET positive lymph nodes explaining the high rate 
of false positive findings. Sensitivity, specificity, positive and 
negative predictive values of FLT-PET were 100%, 16.7%, 
37.5% and 100%, respectively.

Conclusion: In head and neck cancer patients, FLT-PET 
showed uptake in metastatic as well as in non-metastatic 
reactive lymph nodes, the latter due to reactive B-lymphocyte 
proliferation. Because of the low specificity, FLT-PET is not 
suitable for assessment of pre-treatment lymph node status. 
This observation may also negatively influence the utility of 
FLT-PET for early treatment response evaluation of small 
metastatic nodes.
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8.1	 Introduction

Lymph node involvement in squamous cell carcinoma of the head and neck is a poor prognostic 

indicator, reducing cure rate by almost 50% �1�. The standard diagnostic work-up for assessing 

cervical lymph node status is performed by computed tomography �CT� or magnetic resonance 

imaging �MRI�. The sensitivity �50-80%� and specificity �70-90%� of CT and MRI are relatively 

limited, and are comparable �2,3�. For marginally enlarged lymph nodes, examination by 

ultrasound imaging �US� with fine needle aspiration cytology is superior to CT and MRI if 

performed by an experienced radiologist �sensitivity and specificity up to 76% and 100%, 

respectively� �4,5�. More recently, a number of studies have been performed to assess the value 

of positron emission tomography with 18F-fluor-deoxy-glucose �FDG-PET� for cervical lymph 

node staging �6-11�. The results of these studies indicate that the performance of FDG-PET is not 

clearly superior to US, CT or MRI. Therefore, FDG-PET is generally not considered as part of 

the standard work-up for head and neck cancer patients for this indication. 

An additional biologic factor of prognostic relevance is tumor cell proliferation. Head and 

neck squamous cell carcinomas may show accelerated repopulation of clonogenic tumor cells 

during the course of radiation therapy, and this is related to poor treatment outcome �12-15�. 

Several treatment modifications have been developed to counteract this phenomenon, such 

as accelerated radiotherapy and inhibition of the epidermal growth factor receptor �EGFR�, but 

at the cost of increased toxicity for the patient �16-18�. Hence, careful patient selection for these 

treatment strategies is required ensuring maximal patient benefit, while preventing undue 

toxicity and costs. A diagnostic tool to identify lymph node metastases with high accuracy that 

can also provide information on the proliferative activity of the tumor could be of great value 

for treatment selection and radiotherapy planning.

Shields et al. introduced the novel PET-tracer 18F-fluor-deoxy-thymidine �FLT� that is 

monophosphorylated by the cytosolic enzyme thymidine kinase 1 �TK1� and trapped 

intracellularly �19�. TK1 activity is increased during DNA synthesis, and FLT trapping is related 

to TK1 activity and thus to proliferation. A number of studies evaluated the usefulness of FLT 

in assessing tumor cell proliferation in the primary tumor, most of them including a comparison 

with FDG-PET �20-31�. Several studies validated FLT tracer uptake with the proliferation marker 

Ki-67 in primary tumor resection material or biopsies �23,30-35�. A single study on laryngeal 

carcinoma by Cobben et al. compared FLT- with FDG-PET for imaging of the primary tumor 

without histological verification �27�. Only three studies, two on breast carcinoma and one on 

thoracic tumors, have validated FLT-PET versus histopathology for the detection of metastatic 

lymph nodes �20,30,31�. 

FLT-PET in head/neck lymph nodes
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Different markers have been used for histological assessment of proliferation. These include 

endogenous markers such as Ki-67, proliferating nuclear antigen �PCNA� and members of the 

cyclin group, or intravenous administration of the thymidine analogues bromodeoxyuridine 

�BrdUrd� and iododeoxyuridine �IdUrd� �36-38�. The latter have a short half-life and are rapidly 

incorporated in the DNA of S-phase cells �39�. For immunohistochemical validation of FLT these 

thymidine analogues seem most suitable because TK1 activity is increased mainly during DNA 

synthesis.  

Thus far, validation of the PET-tracer FLT has mainly focused on primary tumor sites and only 

recently this was expanded to determining lymph node status. Characterization of both the 

primary tumor and the lymph nodes is compulsory for selection of the treatment strategy 

in patients with squamous cell carcinomas of the head and neck. The aim of this study was 

to determine the value of FLT-PET for assessment of the cervical lymph node status and 

proliferative activity with histological evaluation as the gold standard.

Chapter �

Figure	8.1
FLT-PET-CT	images	of	patient	number	9	(pT2N0M0	oral	cavity	carcinoma).	The	upper	panels	show	
the	PET-images,	the	middle	panels	the	CT-images	and	the	lower	panels	the	fusion	of	both	image	
modalities.	Cervical	lymph	nodes	with	increased	FLT	uptake	are	found	bilaterally	in	level	II	(A:	
indicated	by	white	arrows)	and	in	levels	III	and	IV	(B:	white	arrows).	All	lymph	nodes	detected	with	
FLT in this example were false-positive for metastasis, due to uptake in proliferating B-lymphocytes 
in	reactive	germinal	centers.
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8.2	 Materials	and	methods

Patients

Ten patients with newly diagnosed stage II-IV primary squamous cell carcinoma of the head 

and neck, awaiting surgical tumor and lymph node resection, were included in this study after 

giving written informed consent. The study was approved by the Institutional Review Board of 

the Radboud University Nijmegen Medical Centre, the Netherlands. 

FLT synthesis

FLT was obtained commercially from the Cyclotron B.V., VU Medical Centre, Amsterdam, The 

Netherlands. Synthesis was performed according to the method of Machulla et al. �40�. In brief, 

FLT was produced by 18F-fluorination of the 4,4′-dimethoxytrityl protected anhydrothymidine, 

followed by a deprotection step. After purification by reversed phase high performance liquid 

chromatography, the product was made isotonic and passed through a 0.22 μm filter. FLT was 

produced with a radiochemical purity of >95% and specific activity of >10 TBq/mmol.

PET/CT acquisition

Prior to surgical tumor resection, integrated PET and CT images were acquired with either 

a hybrid PET/CT, or with software fusion of dedicated PET and CT images. All scans were 

performed with the patient positioned in a rigid customized mask covering the head/neck area 

in order to increase position accuracy and to reduce movement artefacts during PET-scanning. 

Hybrid PET/CT images were acquired using a Siemens Biograph Duo scanner �Siemens/CTI, 

Knoxville, Tennessee, USA�. Emission images of the head and neck area were recorded 60 

minutes after intravenous injection of 250 MBq FLT, with 7 minutes per bed position in 3D 

mode. PET images were reconstructed using the OSEM iterative algorithm with parameters 

optimized for the head and neck area �i.e. 4 iterations, 16 subsets and 5 mm 3D Gaussian 

filter�, with correction for photon attenuation. In addition, CT images were acquired with 120 

mAs, 130 kV, and slice width 3 mm, with i.v. contrast in the venous phase, for anatomical 

correlation and attenuation correction purposes.

Dedicated PET images were acquired using a Siemens ECAT Exact scanner �Siemens/CTI, 

Knoxville, Tennessee, USA�. Emission and transmission images of the head and neck area were 

recorded 60 minutes after intravenous injection of 250 MBq FLT, with 5 minutes per bed position 

in 3D mode for emission and 3 minutes per bed position in 2D mode for transmission. PET 

image reconstruction was identical to images from hybrid PET/CT. Dedicated CT images were 

acquired using a Philips AcQsim CT scanner �Philips, Cleveland, USA�, with the same acquisition 

parameters as CT images from hybrid PET/CT. PET and CT image sets were anatomically co-

registered using iterative closest point based optimization of surface maps derived from PET 

transmission and CT images, with an average registration accuracy of 3 mm �41�.

FLT-PET in head/neck lymph nodes
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PET analysis

Before analyzing the histological sections, the combined PET/CT image sets were reviewed 

in consensus by two experienced observers blinded for all patient data. Images were scored 

for presence or absence of FLT-PET uptake. Lymph node levels were determined as described 

by Gregoire et al. �42�. Maximum and mean standardized uptake values �SUVmax and SUVmean� 

were calculated for visible lymph nodes. SUVmean was calculated after constructing a region of 

interest at the 50% isocontour of the SUVmax.

Surgery

Twenty minutes before the start of surgery, 200 mg IdUrd �Centre Hospitalier Universitaire 

Vaudois, Lausanne, Switzerland�, diluted in 100 ml NaCl 0.9%, was administered intravenously 

as a bolus injection. After resection, the neck dissection specimens were presented on a 

uniform left or right sided plate resembling the neck levels I-VI.

Immunohistochemical staining of IdUrd and Ki-6� 

From the ten patients, a total of 236 lymph nodes without metastases and 14 lymph nodes 

with metastatic involvement localized in 44 lymph node levels were removed. From these, 

paraffin blocks containing lymph nodes from 26 different lymph node levels were collected for 

this study. These included 18 FLT-PET positive lymph node levels and 8 randomly chosen levels 

that were FLT-PET negative.

From these blocks, five μm sections were cut and consecutive sections were stained for Ki-67 

and IdUrd. Between all consecutive steps of the staining procedure, lymph node sections were 

rinsed with 0.1 M phosphate-buffered saline �Klinipath, Duiven, The Netherlands�, pH 7.4. 

The staining procedures were performed at room temperature unless stated differently. The 

sections were deparaffinized and re-hydrated in histosafe and graded alcohols. For antigen 

retrieval, slides were heated �90 °C� in 10 mM citrate buffer pH 6.0 for 30 min. For the Ki-67 

staining, sections were incubated with normal donkey serum 5% diluted in primary antibody 

diluent �PAD, Abcam, Cambridge, UK� at 37 °C for 30 min. Overnight, sections were incubated 

with mouse-anti-human-Ki-67 �Zymed Laboratories, San Francisco, CA�, undiluted, at 4 °C. 

For the IdUrd staining, sections were incubated with 2 N HCl for 30 min followed by incubation, 

with 0.1 M Borax for 15 min and with normal donkey serum 5% diluted in PAD at 37 °C for 30 

min. Then, sections were incubated with mouse-anti-IdUrd �Caltag Laboratories, Burlingame, 

CA�, diluted 1:3000, for 60 min. In both staining procedures, peroxidase was blocked with 3% 

H2O2 in methanol for 10 min. Next, all sections were incubated with donkey-anti-mouse-biotin 

�Jackson Immuno Research Laboratories, West Grove, PA�, diluted 1:400, for 60 min and with 

ABC-reagent �Vector Laboratories, Burlingame, CA� for 30 min. Then, sections were rinsed 

with deionized water before incubation with diaminobenzidine �Zymed Laboratories� for 15 
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min. Finally, after rinsing with tap water and staining with hematoxylin �Klinipath� for 30 sec, 

sections were dehydrated and captured in mounting medium �Klinipath�.

Pathology evaluation and assessment of proliferation

The removed lymph nodes were routinely stained for hematoxylin and eosin �H&E� and 

assessed for metastatic involvement by a pathologist. Next, the clinical investigators and an 

experienced pathologist �PS� reviewed all lymph node sections stained for Ki-67 and IdUrd. 

Based on FLT-PET images and pathologic findings, lymph nodes were assigned to one of three 

groups: true positive �FLT positive lymph node with histologically proven metastasis�, true 

FLT-PET in head/neck lymph nodes

Figure	8.2
Ki-67	and	IdUrd	
staining	in:	
A:	germinal	
center	harboring	
proliferating	B-
lymphocytes	
and	remaining	
lymphoid	tissue;	
B:	Remaining	
lymphoid	tissue	
with	proliferating	
lymphoid	cells;	
C:	metastasis	of	
a	squamous	cell	
carcinoma	of	the	
maxillary sinus; 	
D:	micrometastasis	
with	keratinization	
(indicated	by	
purple	arrow),	
fragment	of	a	
germinal	center	
(white	arrow)	
and	surrounding	
lymphoid	tissue.
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negative �FLT negative lymph node without metastasis� and false positive �FLT positive lymph 

node without metastasis� or false negative �FLT negative lymph node with histologically proven 

metastasis�.

Three histologically distinct areas were distinguished in the lymph node sections: germinal 

centers, metastatic tumor �if present� and remaining lymphoid tissue �figure 8.2�. In theseure 8.2�. In these2�. In these 

areas, Ki-67 and IdUrd positive and negative nuclei were counted using a grid with 25 fields 

placed in the eyepiece at 100x magnification �three randomly selected fields were analyzed in 

germinal centers, three fields in metastatic tissue and one field in remaining lymphoid tissue�. 

The Ki-67 and IdUrd labeling index �LI� was determined as the number of positively stained 

nuclei relative to the total number of nuclei in a certain area.

In all lymph node sections, the total lymph node area and the �relative� area occupied by 

germinal centers and, if present, metastatic tumor were calculated. This was done by scanning 

the entire section under bright field microscopy and reconstructing a composite image of the 

complete lymph node using image analysis software �IPLab, Scanalytics Inc., Fairfax, VA�. 

Masks were drawn on these scans indicating the total lymph node area, the germinal centers 

and metastatic tumor deposits. Next, using the image analysis software, the absolute and 

relative areas occupied by germinal centers and metastatic deposits were calculated. 

SUVmean versus Ki-6� and IdUrd staining

As a measure of total proliferative activity in the germinal centers of a lymph node section, the 

product of the Ki-67 or IdUrd LI and the absolute area occupied by the germinal centers was 

calculated. These parameters were called: Ki-67germinal center and IdUrdgerminal center. Similarly, as a 

measure of total proliferative activity in the entire lymph node, the sum of the products of LI 

and absolute area of germinal centers, remaining lymphoid tissue and, if present, metastatic 

deposits was calculated: Ki-67lymph node and IdUrdlymph node. These parameters were compared 

between true positive, false positive and true negative lymph nodes and were correlated with 

SUVmean.

Statistical analysis

The ANOVA-test was used to assess differences in absolute area and Ki-67 and IdUrd LI 

between true negative, false positive and true positive lymph nodes. The t-test was applied for 

comparison of number and absolute area of germinal centers and for comparison of Ki-67germinal 

center and IdUrdgerminal center between true negative and false positive lymph nodes. Correlations 

between Ki-67lymph node and IdUrdlymph node and SUVmean were calculated using linear regression. 

All statistical analyses were calculated using GraphPad Prism �version 4.0a�. A p-value ≤ 0.05 

was regarded statistically significant.
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8.3	 Results

Patient characteristics are summarized in table 8.1. Four men and six women with a mean 

age of 59 years �range 43-80 years� were included. Primary tumor sites were oral cavity 

�7�, larynx �2� and maxillary sinus �1�. Preoperative staging of the neck was performed 

with ultrasound imaging �8 patients� – with fine needle aspiration cytology in 6 patients and 

without in two, with CT �3 patients� or MRI �4 patients�. All patients underwent surgical tumor 

resection combined with assessment of cervical lymph node involvement according to the 

Dutch National Guidelines: six patients with clinically N0 oral cavity carcinoma underwent 

selective neck dissection of level I-III. In three patients a �modified� radical neck dissection 

was done because of pre-operatively proven cervical lymph node involvement. In one patient 

with a glottic laryngeal carcinoma without suspected lymph node involvement only sampling 

of level II and III nodes was performed. Neck surgery was performed unilaterally in seven 

patients and bilaterally in three patients.

PET imaging

FLT-PET scans were acquired consecutively on PET/CT �3� or separately on CT and PET �7�. 

The median time interval between FLT-PET and surgery was 5 days �average 10 days, range 

4-37 days�. In all but one case, surgery was performed within 14 days after the PET-scan. In 

the case with the longest interval �37 days�, the surgical resection of an oral cavity carcinoma 

was postponed because the patient underwent laser evaporation of a small laryngeal lesion 

first. In all but one patient �number 5�, lymph nodes with increased mean SUV were detected 

�range 0.8-2.9, median 1.2, standard deviation �S.D.� 0.41�, mostly in multiple lymph nodes. 

A typical FLT-PET-CT image is shown in figure 8.1.

Pathological evaluation

Routine pathology based on H&E staining revealed three patients to have metastatic cervical 

lymph node disease �numbers 1, 3, 8�, whereby clinical examination and anatomical imaging had 

predicted this only in two patients �numbers 1 and 3�. The third patient had a micrometastasis 

of less than 2 mm in one lymph node �number 8�. Although preoperative staging of the neck 

revealed multiple ipsilateral enlarged lymph nodes in patient 4, final histology showed no signs 

of metastatic disease.

In total, paraffin-embedded sections containing 26 lymph node levels were selected for Ki-67 

and IdUrd staining and analysis. Eighteen of these levels were positive on FLT-PET, eight levels 

were negative. As shown in table 8.2, comparison of FLT-PET results with pathology revealed 

six true positive, twelve false positive and eight true negative findings. There were no false 

negative FLT-PET studies. Based on these findings, sensitivity of FLT for determining lymph 

node status in head and neck cancer patients was 100%, specificity 40%, positive predictive 
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FLT-PET in head/neck lymph nodes

Table	8.2
Histological	lymphnode	assessment	histopathology	and	Ki-67	and	IdUrd	staining
*LN	=	lymph	node,	†n.a.	=	not	available,	‡R	=	right,	§L	=	left,	||II	=	level	indicated	by	Roman	
number,	¶TN	=	true	negative	(FLT	negative	lymph	node	without	metastasis),	#TP	=	true	positive	
(FLT	positive	l.n.	with	metastasis),	**FP	=	false	positive	(FLT	positive	l.n.	without	metastasis)

Stage LN level Pathology  Ki-6� and IdUrd staining

FLT pos FLT neg Metastasis Metastasis
Germinal 
centers

Remaining lymph 
node tissue

1 pT4N1M0 R‡ II|| n.a.†

L III - �TN¶� - + +

L§ II + �TP#� + - +

2 pT3N0M0 R II - �FP**� - ++ +

R III n.a.

R IV n.a.

L III - �FP� - ++ +

3 pT4N2cM0 R II n.a.

R III + �TP� + ++ +

R IV + �TP� + ++ +

L II + �TP� + - -

L IV + �TP� + + +

4 pT4N0M0 R II - �FP� - ++ +

R III - �TN� - - +

R IV - �FP� - - +

R V - �TN� - ++ +

L II n.a.

L IV n.a.

5 pT2N0M0 R I - �TN� - + +

L II - �TN� - + ++

6 pT2N0M0 R I - �FP� - ++ ++

R II - �FP� - ++ ++

R III - �FP� - + +

7 pT2N0M0 R IV n.a.

L I - �TN� - ++ +

L III - �TN� - ++ +

8 pT3N1M0 R II + �TP� + ++ +

RIII n.a.

9 pT2N0M0 R II n.a.

R IV n.a.

L II - �FP� - ++ +

L III - �FP� - + +

L IV - �FP� - + +

10 pT2N0M0 L I - �TN� - - +

L II - �FP� - + ++
L III - �FP� - + ++
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value 33.3% and negative predictive value 100% on lymph node level. On patient level, after 

excluding patient 7 as no histological correlate for the FLT-positive lymph node was available, 

numbers were 100%, 16.7%, 37.5% and 100%, respectively.

Not all lymph nodes showing enhanced FLT-PET-uptake were removed during surgery. These 

lymph nodes were either not included in the neck dissection specimen �patient 3 and 8�, or 

situated in the contralateral neck �patient 1, 2, 4, 7, 9�. Based on the results of the standard 

diagnostic work-up and therapeutic guidelines, there was no indication for removal of these 

nodes.

Follow-up �median 13 months, range 11-15 months� has revealed a recurrent primary tumor in 

one patient treated with surgery and post-operative radiotherapy �pT2N0M0 carcinoma of the 

tongue�. Until present, no lymph node recurrence has been observed in any of the patients.

Chapter �

Figure	8.4
A:	Absolute	area	(in	mm2)	
occupied	by	germinal	centers	in	
true	negative	(TN;	FLT	negative	
lymph	node	without	metastasis),	
false	positive	(FP;	FLT	positive	
lymph	node	without	metastasis)	
and	true	positive	(TP;	FLT	
positive	lymph	node	with	
metastasis)	lymph	nodes.	B	and	
C:	Ki-67germinal	center	and		
IdUrd	germinal	center	in	TN	and	FP	
lymph	nodes	as	a	measure	of	
the	total	proliferative	activity	in	
germinal	centers	(calculated	as	
area	in	mm2).

Figure	8.3
Results	in	germinal	
centers.	Ki-67	and	
IdUrd	LI	in	germinal	
centers,	metastases	
and	remaining	lymphoid	
tissue	for	true	negative	
(TN;	FLT	negative	
lymph	node	without	
metastasis),	false	
positive	(FP;	FLT	positive	
l.n.	without	metastasis)	
and	true	positive	(TP;	
FLT	positive	l.n.	with	
metastasis)	lymph	nodes.
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Ki-6� and IdUrd staining  

Ki-67 and IdUrd staining was present in metastatic tumor cells, germinal centers and in 

remaining lymphoid tissue as shown in figure 8.2. In almost all lymph nodes examined – both 

FLT-PET positive and negative – germinal centers staining positive for Ki-67 and IdUrd were 

present. Metastatic tumor cells in patients 1 and 3 had almost fully destroyed the lymph node 

architecture. In patient 8, the micrometastasis occupied only a small region of the affected 

lymph node leaving reactive germinal centers and remaining lymph node tissue unperturbed.

 

In germinal centers, metastases and remaining lymphoid tissue nuclei staining positive for 

Ki-67 and IdUrd were counted and the LI was calculated. Figure 8.3 shows the results for 

true negative, false positive and true positive lymph nodes. The median Ki-67 and IdUrd LI 

in the germinal centers was 53% and 26.9% with no difference between the three groups. In 

the remaining lymphoid tissue this was 3.6% and 1.6% respectively, also with no difference 

between the groups. In the metastases the median LI was 26.7% for Ki-67 and 9.3% for IdUrd. 

In all three areas and patient groups studied, Ki-67 LI was significantly higher compared to 

IdUrd LI �p<0.0001�.

Germinal centers

The median number of germinal centers per lymph node was 9 �S.D. 6.7� in true negative 

lymph nodes, 20.5 �S.D. 27.0� in false positive nodes and 4 �S.D. 18.1� in true positive nodes. 

The difference in number of germinal centers between true negative and false positive lymph 

nodes was significant �p=0.03�. Also the absolute area occupied by germinal centers was 

higher in false positive nodes relative to true negative nodes but the difference was only 

borderline significant �p=0.06�, see figure 8.4.A. The total proliferative activity in the germinal 

centers expressed as Ki-67germinal center and IdUrdgerminal center was higher in the false positive lymph 

nodes compared to the true negative nodes, although the difference did not reach statistical 

significance �p=0.07, respectively�, see figures 8.4.B and 8.4.C.

FLT-PET in head/neck lymph nodes

Figure	8.5
Scatterplot	of	Ki-67	lymph	
node	and	IdUrd	lymph	
node	as	a	measure	of	
the	total	proliferative	
activity	in	the	lymph	
node	(calculated	as	area	
in	mm2)	versus	SUVmean	
of	FLT-PET.	Solid	line	
indicates linear best fit for 
Ki-67	and	dashed	line	for	
IdUrd.
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Proliferative activity in lymph nodes and correlation with SUVmean

The total proliferative activity in lymph nodes expressed as Ki-67lymph node and IdUrdlymph node 

was found to be significantly higher in the true positive lymph nodes as compared to false 

positive lymph nodes �p=0.006 and p=0.05, respectively�. As shown in figure 8.5, there was 

a moderate but significant correlation between SUVmean and Ki-67lymph node �r
2=0.47, p=0.0009� 

and between SUVmean and IdUrdlymph node �r
2=0.55, p=0.0004�.

8.4	 Discussion

The PET tracer FLT for imaging of cell proliferation has been studied by various groups, 

correlating FLT with FDG �20-31�. Buck et al. studied FLT-PET and FDG-PET in 47 patients with 

benign and malignant pulmonary nodules and found a high sensitivity of FLT for malignant 

primary tumors �sensitivity 90%�, but not for mediastinal lymph node involvement �sensitivity 

53%� or detection of lung metastasis �sensitivity 67%� �22�. Twenty-one patients with primary or 

recurrent laryngeal carcinomas were studied by Cobben et al. Data on sensitivity and specificity 

for detection of the primary tumor were only reported for FDG and not for FLT. However, the 

standardized uptake value �SUV� for FLT was found to be significantly lower compared to the 

SUV for FDG and therefore the routine use of FLT-PET for detection of laryngeal carcinoma 

was not recommended �27�. Additional studies correlated FLT with histological assessment 

of proliferation by Ki-67 labeling in fibrosarcoma, breast and lung cancer �23,30-35�. In lung 

carcinoma, Buck et al. found that the Ki-67 LI correlated with FLT uptake �23�. This finding has 

recently been confirmed by Yap et al. �31�. In a fibrosarcoma xenograft, Leyton et al. found that 

FLT uptake and PCNA labelling index were linearly correlated �33�. In contrast to these studies, 

Smyczek-Gargya et al. found no correlation between Ki-67 labelling index and FLT uptake in 

primary breast carcinoma �30�. Although the results are not entirely consistent, these studies 

suggest that FLT-PET may be of value for the quantification of tumor cell proliferation.

In the current study, the value of FLT-PET in assessing the cervical lymph node status and 

proliferative activity of metastatic lymph nodes in squamous cell carcinoma of the head and 

neck was investigated. The endogenous proliferation marker Ki-67, which is expressed in the 

G1-, S-, G2- and M-phase of the cell cycle, was chosen for comparison with FLT-PET, because 

endogenous markers do not require intravenous administration and because recent studies 

validated FLT-PET with Ki-67 �23,30,31�. In addition, the exogenous marker IdUrd was used. IdUrd 

is a robust and specific S-phase marker and it was hypothesized that this marker might correlate 

better with FLT uptake, because TK1 activity is increased mainly during DNA synthesis. In 

nine of the ten patients studied, increased FLT uptake was observed in the lymph nodes. 

Only three of these nine FLT-PET positive patients had metastatic nodal disease confirmed by 
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histopathology, and two of them had already been detected by routine preoperative screening. 

In none of the FLT-PET negative lymph nodes metastatic disease was present.

As the number of false positive lymph nodes was high, further analysis was performed taking 

into account the architecture and proliferative state of the lymph nodes. In most lymph nodes 

evaluated intense staining of both Ki-67 and IdUrd was present in B-lymphocytes proliferating 

in germinal centers. Less intense staining was found in metastatic tumor cell deposits and the 

proliferative activity in remaining lymph node tissue was very low. In germinal centers, the 

labelling index of both markers was significantly higher compared to metastases or lymphoid 

tissue. There was no difference in the proliferative activity in germinal centers between true 

negative and false positive lymph nodes. However, false positive nodes on average contained 

a significantly greater number of germinal centers and these occupied a larger absolute area 

relative to the true negative nodes, although this latter finding was only borderline statistically 

significant. Also the product of Ki-67 LI and IdUrd LI and area occupied by germinal centers 

was higher in the false positive compared to the true negative lymph nodes. It is therefore 

likely that the active proliferation of B-lymphocytes in germinal centers is responsible for the 

false-positive FLT-PET results. This high proliferative activity of B-lymphocytes might also be 

responsible for FLT-PET positivity of the micrometastasis in patient 8. 

Three other studies, two in breast cancer and one in thoracic tumors, compared FLT-PET 

with histopathology for the assessment of lymph node status �20,30,31�. The study by Smyczek-

Gargya et al. included 14 breast cancer patients, of whom eight had histologically proven 

axillary lymph node metastasis and seven were detected by FLT-PET �sensitivity 87.5% and 

specificity 100%� �30�. In the study by Been et al. that included ten patients, only two of seven 

patients with histologically proven metastatic axillary lymph nodes were detected by FLT-

PET �sensitivity 28.5% and specificity 100%� �20�. Yap et al. studied 22 patients with thoracic 

tumors and reported sensitivity and specificity for detection of mediastinal lymph nodes by FLT 

to be 33.3% and 98.2%, respectively �31�. The low sensitivity in some of these studies may be 

explained by the fact that some histological tumor types, such as mammary carcinoma, can 

exhibit limited proliferative activity. A second explanation might be that the metastatic tumor 

load of some of these lymph nodes was low.

All three studies reported a high specificity in contrast to the current study were specificity 

was only 16.7%. The localization of the lymph nodes may be of importance in explaining 

this discrepancy. Reactive lymph nodes in the head and neck area are found frequently 

as response to bacterial or viral infections, whereas reactive axillary lymph nodes are less 

common. Furthermore, patients with squamous cell carcinomas of the oral cavity – in this 

study the largest patient group – often present with non-healing ulcers accompanied with 
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reactive lymph nodes. This is consistent with the observation that false positive lymph nodes 

on average contained a higher subvolume of germinal centers with very active proliferation of 

B-lymphocytes as compared to true negative nodes. 

In this study, FLT-PET reached only low mean SUV in metastatic as well as in non-metastatic 

cervical lymph nodes compared to the SUV for FDG-PET generally reported in head and neck 

cancer �6-9�. This is in agreement with the previous finding for primary laryngeal tumors by 

Cobben et al. �27�. In accordance with studies discussed above, a significant correlation between 

SUVmean and overall Ki-67 and IdUrd staining �Ki-67lymph node and IdUrdlymph node� was found in 

this study �figure 8.5�ure 8.5� 8.5� �31,33�. The correlation was strongest for IdUrd and we recommend this 

marker for future studies with FLT that include histological validation.

8.5	 Conclusions

Although FLT-PET correctly identified all head and neck cancer patients with metastatic lymph 

nodes, the specificity and positive predictive value were low due to tracer-uptake in germinal 

centers of lymph nodes. Therefore, the use of FLT-PET for assessing pretreatment lymph node 

status and for determining the proliferative activity of affected lymph nodes is not encouraged 

in head and neck cancer patients. This also limits the usefulness of FLT-PET for radiation therapy 

planning and possibly for early treatment response evaluation of small metastatic lymph nodes. 

The value of FLT-PET for assessment of the proliferative state of the primary head and neck 

tumor and the relevance for radiotherapy planning is a topic of current investigations.
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Abstract

Many imaging modalities and scanning techniques, such 
as contrast enhanced CT, �dynamic� MRI and FDG-PET, are 
available for assessment of recurrent colorectal carcinoma. 
On top of this, integrated PET/CT is becoming increasingly 
available. Intuitively, a synergistic combination of scanning 
characteristics sounds promising.

However, the exact clinical value has not yet been fully 
established. The role of PET/CT image fusion must be 
weighed carefully against other available modalities. In this 
review we evaluate the potential of combined PET/CT in 
recurrent colorectal carcinoma.

When available, PET/CT currently appears the diagnostic tool 
of choice. In the near future, combined PET/MRI may further 
enhance the diagnostic algorithm.
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9.1	 IntroductionIntroduction

Early detection of recurrent colorectal carcinoma has become more important in the past 

decade, as the treatment options for localized disease have improved significantly. However, 

aggressive locoregional interventions �e.g. partial liver resections, radiofrequency ablation 

�RFA� of liver metastases, resections of pulmonary metastases� are considered futile in the 

presence of metastases elsewhere �1�. Therefore, detection of tumor sites throughout the body 

is needed with high sensitivity and specificity. For further patient management with regard to 

invasive therapy, accurate information about the local extent of tumor sites is also necessary.

Tumor visualization is traditionally performed using merely anatomical imaging devices such 

as Computer Tomography �CT�, Ultrasound �US�, and Magnetic Resonance Imaging �MRI�. 

Functional imaging may be of additional value, especially when anatomical imaging is 

cumbersome. Visualization of metabolism with 18F-fluor-deoxy-glucose in positron emission 

tomography �FDG-PET� is a valuable tool for detection of primary and recurrent colorectal 

cancer �2-4�. Tumor sites may be detected throughout the body with high contrast resolution. 

However, exact localization and demarcation of lesions with PET is hindered by a relatively low 

spatial resolution, and lack of anatomical reference.

The added value of simultaneous stand-alone FDG-PET and CT has been demonstrated �5�. 

As a next step, the theoretical benefit of joined capabilities of CT �anatomical reference� and 

FDG-PET �accurate tumor detection� have led to the practice of fusion of images as obtained 

by PET and by CT. Although promising �6-8�, the technique is relatively new and has a limited 

availability. Furthermore, PET/CT image fusion may suffer from artefacts, and the exact clinical 

value has not been fully established as yet. Therefore, the role of PET/CT image fusion must 

be weighed carefully against other, more widely available, modalities.

9.2	 Integration	of	PET	and	CT

When considering the combination of PET and CT, different methods of fusion are available. 

The most prevailing approach today is ‘visual fusion’, where two scans are held side-by-side 

for comparison and correlation. Discrepancies between PET and CT may be cleared with this 

established technique. When further uncertainties persist, integration of the images can prove 

to be of additional value. But before attempting to integrate PET and CT images, some specific 

issues must be considered �9�.
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Scanning characteristics

Tissues appear differently on PET and on CT images. CT shows anatomy with high spatial 

resolution, but with low contrast resolution for soft tissues. On the other hand, PET visualizes 

pathological sites with high contrast resolution, but spatial resolution is limited to the range 

of 4-7 mm, and surrounding normal anatomical structures are hardly visualized. Due to these 

characteristics, strong discrepancies may exist between CT and PET images. Benign lesions 

may appear unequivocal on CT, but may be negative on FDG-PET �e.g. cyst, hemangioma, scar 

tissue�, while intensely FDG-positive lesions may be imperceptible on CT �e.g. local recurrence, 

liver metastasis�. These characteristics complicate visual recognition and correlation. 

Positional differences may exist between PET and CT because of repositioning and/or accidental 

�in�voluntary motion. Organs may be displaced or changed in size �e.g. bowel motion, gastric 

emptying, bladder filling between PET and CT scanning�. Administration of furosemide may 

contribute to such discrepancies. The main problem is breathing motion. PET is obligatory 

acquired during free breathing due to the duration of the scanning procedure �20-60 minutes�, 

by default resulting in slightly blurred images in the upper abdomen. For correlation purposes, 

CT acquisition must be adapted to match these images by scanning during either free breathing 

or timed unforced expiration �9�. Failure to do this correctly will result in serious localization 

errors, as the diaphragm �including lower lung fields and upper abdominal organs such as the 

liver� will be relatively displaced.
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Figure	9.1
Image	fusion	of	
contrast-enhanced	CT	
and	FDG-PET.	Shown	
are	coronal	slices	of	
CT	(A)	and	PET	(B)	
through	the	abdomen.	
On	CT	images,	the	
pelvic	recurrence	is	
hard	to	appreciate	due	
to extensive tissue 
masses.	Within	these	
masses,	the	PET	image	
clearly	shows	a	local	
recurrence	behind	the	
bladder	(white	arrow).	
Image	fusion	with	CT	
provided sufficient 
anatomical	reference	
to	guide	a	surgical	
approach.
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Software fusion of PET and CT

When separate CT and PET images are available these may be integrated using specialized 

software. In such procedures certain preconditions need to be met. Identical positioning 

is a prerequisite. The issue of artefacts due to breathing motions needs to be addressed 

by breathing instructions. The time gap between scans must be limited, in order to avoid 

discrepancies due to disease progression �or regression� during the interval. Specific software 

and operator experience are needed. As a whole, the procedure is lengthy, logistically complex, 

and it has a serious risk on registration errors. Some authors do report adequate results 

using software fusion, even in the region of the liver �10�, but others strongly dissuade the 

procedure �11�. It must at least be accepted that the bladder and diaphragmatic regions – and 

probably the whole abdomen – have a limited accuracy in image registration. 

Integrated PET/CT scanning

A so-called hybrid scanner consists of in-line placed separate CT and PET scanners, which may 

acquire both scans consecutively without repositioning the patient. Fusion of images obtained 

by these two modalities is often referred to as “hardware fusion”, although this term ought to be 

reserved for situations where multiple images are acquired by a single detector system at the 

same time. “Hardware” PET/CT fusion as currently available reduces �but not fully eliminates� 

many of the abovementioned positioning problems, but the need for an adequate breathing 

protocol remains. Other problems such as bladder filling and bowel motion are reduced to 
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Figure	9.2
Image	fusion	of	contrast-
enhanced	CT	and	FDG-PET.	
The	images	show	transverse	
slices	(A,	B)	and	coronal	slices	
(C,	D)	through	the	abdomen	
of	a	patient,	who	previously	
underwent	primary	resection	
of	a	sigmoid	carcinoma.	The	
PET	image	clearly	showed	a	
pathological	lesion	(white	arrow),	
but	the	cause	remained	unclear	
as	no	clear	lymph	node	was	
found,	and	the	dilated	ureter	
suggested another explanation 
(black	arrow).	Image	fusion	with	
CT	could	demonstrate	correlation	
with	a	lymph	node	that	was	
overlooked	before.
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acceptable levels. When compensating all abovementioned sources of errors, a fusion error 

below ~10 mm is generally achievable in the abdomen �12�. In specific cases this accuracy may 

not be reached, for example when a patient is not able to comply with breathing instructions. 

This source of errors is of high importance when considering the liver, as the result may be 

misplacement of liver lesions in the lung or vice versa, albeit in a low percentage of scans �13�.

When using a hybrid PET/CT scanner, the CT images can be used for attenuation correction of 

the PET images. Although convenient, as the total scanning time can be reduced by ±35%, 

any artefact in the CT images may cause secondary artefacts in the PET images. Examples of 

such artefacts are false-positive hotspots related to attenuating metal such as prosthesis or 

clips �14�, and hotspots related to intravenous/oral contrast �15�. Further discrepancies between 

the PET images and the CT images may result from bowel movements �16�, or when the patient 

accidentally did move between the two scans.

Balancing the benefits

Integration of PET and CT can provide synergistic benefit regardless of the applied technique. 

Hybrid PET/CT is more expensive than software fusion, but it delivers a fast, logistically easy 

and more reliable image correlation procedure. A definitive advantage of hybrid PET/CT is that 

visual fusion and software fusion may be impossible or inadequate when demanded ad-hoc �11�. 

In case of unexpected findings, integrated PET/CT scanning will provide adequate images, 

while software image fusion is likely to result in suboptimal results.

Interpretation

While fused PET/CT images do appear straightforward, the abovementioned characteristics 

indicate that the images may not be easy to interpret. The true benefit of integrated PET/CT 

depends not only on integration of images, but also on the integration of expert opinions. 

Therefore, it is strongly advised to perform joint reading sessions with the radiologist, nuclear 

medicine physician and preferably also the referring physician to reach consensus.

9.3	 PET/CT	in	recurrent	colorectal	carcinoma

In follow-up of colorectal carcinoma, or suspected recurrence �e.g. detectable CEA level, 

residual or newformed tissues�, the clinically relevant questions to be answered include: 

Where are potentially malignant tissues localized, is a specific lesion malignant or not, and 

what is the local extent of a specific lesion? An important role of imaging is to guide rational 

use of additional invasive diagnostic procedures �e.g. liver biopsy, colonoscopy, et cetera�. A 
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second role is visual demarcation of lesions to guide locoregional therapy. The role of PET/CT 

in relation to other imaging modalities depends on the indications for the procedure.

Local recurrence

CT is not very accurate for early detection of local recurrence of colorectal carcinoma, due to 

the distorted local anatomy after operation. Selzner et al. demonstrated a sensitivity of only 

53% for CT, and a much better sensitivity for FDG-PET of 93% �7�. Such excellent sensitivity in 

detection of local recurrence also applies in the evaluation after external beam therapy �17�. On 

the other hand, lacking anatomical reference hampers exact localization and evaluation of the 

extent of local pathology on PET. Since these data are essential when considering therapeutic 

intervention such as re-excision or irradiation, PET/CT may be of great value. An example of 

local recurrence detection and localization is provided in figure 9.1. Therefore, for detection 

and evaluation of local recurrence, it is advised to perform PET/CT when available.

Lymph node metastases

Abdominal lymph node metastases from colorectal carcinoma tend to be small. Many involved 

lymph nodes are below 1 cm in diameter, explaining the poor sensitivity of CT. Some small 

metastases can be detected by FDG-PET, be it with a poor sensitivity of  29%, but with a 

high specificity of  88% �18�. Problems arise when a hotspot on PET may correlate with several 

anatomical structures, activity excreted in the urinary tract, blood vessels, bowel polyps, or 

physiological bowel uptake. In these cases, PET/CT can adequately identify a hotspot, and 

settle the diagnosis. Figure 9.2 illustrates PET/CT localization of a pathological lymph node.

Liver metastases

Ruers et al. demonstrated that FDG-PET as a stand-alone modality improves diagnostic work-up 

in patients with liver metastasis when added to conventional diagnostic imaging. Furthermore, 

it has an impact on and improves therapeutic management �4�. Integrated PET/CT can provide 

further improved value especially in postoperatively deformed livers with scar tissue and 

artificial materials, cases where sensitivity and specificity are relatively low for both CT and 

MRI �19,20�. After local ablative therapy, PET may detect recurrence of liver metastasis earlier 

than CT �3,21�, but correlation with CT is needed for more exact localization �8�. Conversely, CT 

may turn false-positive in the rim of the lesions because of hyperperfusion after RFA, while 

FDG-PET remains reliable �22�. MRI using enhancement with manganese containing contrast 

may further improve detection of liver metastases and provide additional information on the 

nature of liver lesions �23�. Figure 9.3 demonstrates that FDG-PET is not affected by scar tissue 

and artificial materials. For the detection of liver metastasis after hepatectomy a sensitivity 

of 100% and specificity of 89% was demonstrated for PET/CT, while the specificity of contrast 

enhanced CT dropped to 50% for this specific patient category �7�. An example of recurrent 
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metastasis in the liver resection area, not recognized on CT and MRI but detected by FDG-PET 

and localized by image fusion, is shown in figure 9.4. For evaluation of liver metastases PET/CT 

appears to be the technique of choice.

Extrahepatic metastases

The straightforward overview of the whole body in a standard procedure is a major benefit of 

FDG-PET, thus providing information on extrahepatic metastases. Detection of extrahepatic 

metastases does have direct impact on patient management. Lai et al. demonstrated that 29% 

of patients with liver metastases appeared inoperable because FDG-PET detected extrahepatic 

metastases �2�. In recurrent colorectal carcinoma, most extrahepatic distant metastases will be 

pulmonary metastases. Detection of these metastases is of particular importance as surgical 

intervention may still be possible, by combining liver surgery with resection of a limited number 

of pulmonary lesions �24,25�. Both CT and FDG-PET have demonstrated high sensitivity for 

pulmonary lesions, but PET may be particularly helpful in discriminating benign from malignant 

lesions �26�. FDG-PET has also demonstrated added value in detection of other extrahepatic 

distant metastases such as bone metastases �27�. In unexpected extrahepatic lesions detected 

by PET, exact localization may be very hard without correlative anatomical imaging as provided 

by PET/CT. This also applies to the detection of unexpected second primaries, which may occur 

in approximately 1% of cases �28�.

Lesion characterization

Regardless of the type of lesion as seen on imaging, differentiation of benign from malignant 

disease is always a challenge. Both CT and FDG-PET can contribute to the final diagnosis, but 
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Figure	9.3
Image	fusion	of	contrast-enhanced	CT	and	FDG-PET.	The	images	show	transverse	slices	through	
the	liver,	from	CT	(A),	PET	(B)	and	PET/CT	(C).	PET	shows	a	clear	metastasis	in	the	liver	that	is	
hardly	visible	on	CT,	indicating	the	high	sensitivity	of	FDG-PET,	but	also	illustrating	the	need	for	
correlation	with	anatomical	imaging.	The	image	also	illustrates	that	FDG-PET	is	unaffected	by	the	
extensive residual changes and surgical clips in the right liver lobe, after partial liver resection.
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combination of both modalities delivers the strongest diagnostic tool �29,30�. Given this asset, we 

consider PET/CT the best option when atypical lesions need to be characterized at the highest 

possible level of accuracy, especially in cases where a definitive diagnosis through pathology 

can not be obtained.

9.4	 Future	developments

The true clinical value of FDG-PET – and the added value of PET/CT scanners – should ideally 

be clarified by prospective clinical trials. But a true comparison between separately acquired 

PET and CT images, visual fusion, software fusion, and integrated PET/CT images can hardly 

be achieved, as this implies the acquisition of multiple scans with a high cumulative radiation 

burden to the patient. As a result of the rather limited scientific evidence, the current choices 

for implementation of FDG-PET in diagnostic strategies appear rather random, and large 

variations exist among institutes. This also applies to the application of hybrid PET/CT scanning 

for various specific questions. Nevertheless, scientific evidence about the diagnostic values of 

PET and PET/CT is increasing rapidly, and is eagerly awaited.

New PET tracers

Besides visualization of glucose metabolism with FDG, PET scanning may be applied for in-vivo 

noninvasive evaluation of other tissue characteristics using tracers other than FDG. For example, 
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Figure	9.4
Software	image	fusion	of	
CT,	MRI	and	FDG-PET.	The	
images	show	transverse	
slices	through	the	liver	of	
a	patient	who	underwent	
prior	RFA	treatment	(upper	
arrow)	and	resection	of	
liver	metastasis	of	colon	
carcinoma.	Both	CT	and	MRI	
are difficult to interpret in 
the	region	of	the	surgical	
clips.	The	PET	image	clearly	
shows	a	recurrent	liver	
metastasis	(lower	arrow),	
which	could	be	localized	
only	after	image	fusion.	
This	permitted	guided	
locoregional	therapy.
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DNA synthesis activity may be quantitatively assessed using 18F-fluor-deoxy-thymidine �FLT�, 

reflecting cell proliferation and tumor growth �31�. The exact clinical applicability of FLT, as well 

as of several other tracers currently under investigation, is at present even less clear than 

the utility of FDG-PET. It is to be expected that many new tracers will accumulate selectively 

in pathological lesions, and will show poor or no normal tissue activity. These images may 

therefore be uninterpretable without integration of PET and CT.

Integration of PET and MRI

The combination of PET and CT is not the only possibility, nor is it a perfect solution. On 

theoretical grounds it is preferable to combine PET with �functional� MRI, for better soft tissue 

evaluation with a relatively low radiation burden. An excellent example of the application of 

PET/MRI fusion is accurate delineation of malignant lesions in the liver, to allow optimally 

guided locoregional therapeutic intervention. The PET/MRI fusion procedure is already possible 

when using software fusion; an example is shown in figure 9.4. It is expected that integrated 

PET/MRI scanners will become clinically available in the next five years.

9.5	 Conclusions

The combination of PET and CT is currently proving itself as a valuable tool in the diagnostic 

strategy for detection of recurrent colorectal carcinoma, especially in the field of staging before 

surgical reinterventions. This has an impact on diagnosis and choice of therapy. In this view, 

the application of separate PET and CT is not to be considered ‘second class’, when visually 

correlated adequately. Although unbiased supporting literature is currently limited, hardware 

integrated PET/CT using a hybrid scanner does seem to be able to improve diagnostic accuracy 

over correlated stand-alone PET and CT in several specific cases. As software image fusion is 

prone to error, this technique should be used with caution and should be reserved for specific 

applications.

The largest benefit from integration of PET and CT images depends on the integration of 

knowledge. This implies joint consensus reading by a multidisciplinary team. This will be of 

even greater importance when new PET tracers and new MRI applications enter the clinical 

field. With the increasing availability of integrated PET/CT scanners, it is to be expected that 

clinical use and experience will rapidly expand. However, a critical review of indications and 

added value of these techniques are a prerequisite for rational application and maximum 

diagnostic yield.
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Abstract

Diagnostic and surgical strategies could benefit from accurate 
localization of liver malignancies via CT–FDG-PET image 
registration. However, registration uncertainty occurs due to 
protocol differences in data-acquisition, the limited spatial 
resolution of positron emission tomography �PET� and the 
low uptake of 18F-fluor-deoxy-glucose �FDG� in normal liver 
tissue. To assess this uncertainty, methods were presented 
to estimate registration precision and systematic bias.

Methods: A semi-automatic, organ-focused method was 
investigated to minimize the uncertainty well beyond the 
typical uncertainty of 5–10 mm obtained by commonly 
available methods. By restricting registration to the liver 
region and by isolating the liver on computed tomography �CT� 
from surrounding structures using a thresholding technique, 
registration was achieved using the mutual information-
based method as implemented in insight toolkit �ITK�. CT 
and FDG-PET images of 10 patients with liver metastases 
were registered rigidly a number of times. Results of the 
organ-focused method were compared to results of three 
commonly available methods �a manual, a landmark-based 
and a ‘standard’ mutual information-based method� where 
no dedicated image processing was performed.

Results: The proposed method outperformed the other 
methods with a precision �mean ± S.D.� of 2.5±1.3 mm and 
a bias of 1.9 mm with a 95% CI of [1.0, 2.8] mm.

Conclusion: Unlike the commonly available methods, our 
approach allows for robust CT–FDG-PET registration of the 
liver, with an accuracy better than the spatial resolution of 
the PET scanner that was used.
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10.1	 Introduction

Detection of malignancies in the liver using computed tomography �CT� is difficult when tumor 

tissue has an electron density similar to normal liver tissue. Even when contrast-enhancing 

techniques are used, the detection of liver malignancies can be difficult. Particularly in a 

deformed liver after therapeutic interventions, a CT image can be uninterpretable due to the 

presence of scar tissue, necrotic remnants and artificial materials as staples. Positron emission 

tomography �PET� with 18F-fluor-deoxy-glucose �FDG� visualizes glucose metabolism, rather 

than anatomy, making it suitable to detect tumor tissue. Often, localizing FDG-PET activity can 

be a problem and therefore integrating FDG-PET and CT data allows correlation of pathological 

FDG activity to CT-detected anatomical structures. This may improve the diagnosis, enabling 

better therapeutic management by clinicians �1,2�. 

Integration of FDG-PET and CT images consists of two steps. The first step is the registration, 

i.e., the determination of the geometrical transformation of one of the acquired images 

needed to fit the other image. The second step of the integration is the fusion, required for the 

integrated display of the data. This is mainly important for adequate visualization.

Registration problems occur due to the limited spatial resolution of PET and the moderate 

uptake of FDG in normal liver tissue. Furthermore, due to the time difference and differences 

in the protocols in the data-acquisition of the PET and CT data sets, differences occur in 

the position, orientation and shape of the liver, which also make the registration difficult. 

The use of a combined PET-CT scanner does not necessarily provide a satisfactory solution 

since respiration and patient motion induce artefacts on CT �3-7� and thus on the fused PET-CT 

images.

Essential for using image integration in the clinic is knowing the registration accuracy. Accuracy 

measures how close to the ‘true’ value a measurement lies. It includes both precision, which 

measures how closely results can be duplicated, and systematic bias, or, i.e., the combination of 

random and systematic uncertainties. Quantification of the registration accuracy is non-trivial 

for the reason that the ‘ground truth’ is lacking �8�. However, transferring uncertainty measures 

obtained by reference, statements can be made related to the likelihood for the uncertainty 

to exceed a certain bound. In literature, the amount of registration-validation studies is small 

compared to studies involving image registration. Fitzpatrick et al. have provided a critical 

and direct measure of the registration accuracy for rigid-body, point-based registration �9�. It 

is the only measure that expresses the displacement between any two corresponding points 

in the images. Unfortunately, lack of �anatomical� landmarks on both FDG-PET and CT images 

prevents us to use this validation measure.

Accuracy of PET/CT fusion of the liver
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In this paper, methods are presented to estimate the precision and systematic bias of CT–FDG-

PET liver registration. Precision and bias are then compared for four methods. One method 

focuses on the liver by including image processing before performing the registration. The 

other three methods are conventionally available techniques where no such pre-processing 

is performed. The organ-specific approach is hypothesized to give more accurate registration 

results.

10.2	 Materials

Images of 10 consecutive patients with histologically confirmed colorectal carcinoma with liver 

metastases were used. All patients have a prior history of resection of the primary tumor and 

at least once underwent surgical treatment for liver metastases. Each patient received a CT 

and FDG-PET scan within a week.

CT was performed using a multi-slice spiral CT scanner �Siemens Somatom Volume Zoom, 

Erlangen, Germany� with specifications as given in table 10.1. After contrast injection �90 ml 

Omnipaque-350, or 100 ml Xenetix-300�, a scan of the whole liver was taken during unforced 

expiration breath-hold. This protocol ensures optimal positioning of the diaphragm and liver for 

image registration with PET �5�. Therefore, using this protocol, differences in the shape of the 

liver between CT and PET are expected to be minimal, allowing rigid registration. Furthermore, 

the arms of the patient were above the head, for better image quality.

PET scans were acquired using a full-ring dedicated PET scanner �ECAT Exact 47, Siemens/CTI, 

Knoxville, Tennessee, USA�. Patients fasted for a minimum of 6 h before intravenous injection 

of the radiopharmaceutical 18F-fluor-deoxy-glucose �FDG�. The PET protocol consisted of an 

emission scan from the hips to the base of the skull, with 68Ge-based attenuation correction. 

The arms of the patient were next to the body. Due to the long PET scanning time of typically 

1 h it would be inconvenient for the patient to put the arms above the head. Specifications of 

the FDG-PET scan are given in table 10.1.

Chapter 10

Modality Specifications

PS �mm2� ST �mm� FOV �mm� V �kVp� R �mAs�

CT 0.74 – 0.78 6 – 8 380 – 400 120 150

PS �mm2� ST �mm� FOV �mm� Resolution �mm� A �MBq�

FDG-PET 5.15 5.15 562 7 250

Table	10.1
Specifications of the CT and FDG-PET scans. For both types the pixel size (PS) in the axial view, 
slice thickness (ST) in the axial direction and field of view (FOV) are given. For the CT scan, the 
x-ray high voltage peak (V) and the dose rate (R) are given. For the FDG-PET scan the spatial 
resolution (full width at half maximum) and the initial radioactivity (A) are given. 
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10.3	 Methods

A registration method was investigated to minimize uncertainties due to position and orientation 

differences of the liver between the FDG-PET and CT images. To achieve minimum uncertainties, 

a mutual information-based registration method was applied onto image volumes of interest 

focused on the liver. Within these volumes, image processing prior to the registration was 

performed to further isolate the liver on the CT from surrounding structures. This organ-

focused mutual information-based method �OFMI� was compared to three commonly available 

methods: a manual method �MAN�, a landmark-based method �LM� and a ‘standard’ mutual 

information-based method �SMI� as described by Wells et al �10�. Using comparable breathing 

protocols for CT and PET, differences in the shape of the liver in both image modalities were 

expected to be minimal. Hence, the registration transformation T was taken rigid, i.e., 

consisting of three rotation and three translation parameters.

Registration

The mutual information �MI� similarity measure was introduced for matching of medical 

images in 1995 �11,12�. Being a voxel-based registration method, the mutual information-

based registration method optimizes a functional measuring the similarity of all geometrically 

corresponding voxel pairs for some feature. Consequently, the achievable accuracy of this 

registration method is not limited by the voxel size of the images �13�, or rather �in this study� 

by the spatial resolution of the PET scanner.

The MI metric implementation follows the method as specified by Viola and Wells �12,14�. In this 

implementation, probability densities are estimated from the image data using the Parzen-

Window scheme �15�. In particular, N
S
 and N

R
 elements of two samples, S

i
 ∈ S and R

i
 ∈ R, are 

drawn from the image: the first to compute the density, the second to estimate the entropy. 

The kernel function was a Gaussian with a width ψ. Having estimated entropy, an approximation 

can be found,      , for the derivative of the MI similarity measure, with respect to T �12,14�. The 

stochastic-gradient descent scheme was used to find optimal transformation parameters:

 

      Equation �10.1�

where T
j
 indicates the values of the transformation parameters at iteration j and λ is the 

learning rate. Different learning rates were used for translations and rotations. The mutual 

information-based method described above is available in ITK �16�.

Before the method was applied, the user first aligned the FDG-PET and CT images manually. 

The manual registration result was used as the initial input in the MI optimalization process, 

i.e., T
0
 in equation 10.1.

Accuracy of PET/CT fusion of the liver
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By restricting the registration to the region of the liver, surrounding structures, such as the 

heart, cannot disturb the registration. Therefore, user-identified boundaries of the liver as 

seen on the CT image were used for creating a volume of interest �VOI� that contains the liver. 

As indicated in figure 10.1, the boundaries were constructed based on four selected points 

on the liver: the point with the highest axial �z� coordinate �top point�, with the lowest axial 

coordinate �bottom point�, with the lowest coronal �y� coordinate �front point� and with the 

lowest sagittal �x� coordinate �right point�. These four points define four planes �orthogonal to 

either the x, y or z direction� of a box. The remaining two planes were constructed using the 

right point translated over a distance ΔX in the x direction and the front point translated over 

a distance ΔY in the y direction. The values for ΔX and ΔY were chosen such that surrounding 

structures of the liver �e.g., the heart� hardly take part in the registration. This way, it can 

happen that the box does not contain the liver completely. This is not alarming, since the 

potentially missing parts of the liver can hardly be isolated from surrounding structures on the 

FDG-PET image, so that it cannot give a significant contribution to the registration performance. 

However, it is most important that the sharply defined edges in the right liver lobe �around 

the top, bottom, front and right points� are within the VOI that is used for the registration. 

Therefore, the VOI was determined by increasing the constructed box in all directions by 5 

mm. Figure 10.1 illustrates the determination of the VOI. Once a VOI was created on the CT 

image, automatically an overlapping VOI on the FDG-PET image was created.

It was found that the MI similarity can be increased by first thresholding the CT image. The 

typical CT Hounsfield number for the liver is 1050 HU �17�. Setting all grey values outside the 

region [1000, 1200] HU to 1000, the liver was well isolated from surrounding structures. As 

an illustration, figure 10.2.A shows an example of the image pre-processing to arrive at the 

VOIs that are used for mutual information-based registration. Figures 10.2.B and 10.2.C show 

examples of fusion results.

Chapter 10

Figure	10.1
Determination	of	the	VOI,	based	on	
a box that is constructed using four 
liver points identified by the user 
(see the text).
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Prior to the mutual information-based registration of the FDG-PET and the thresholded CT 

images of the liver, the statistical distributions of the images’ grey levels were normalized such 

that the grey values have zero mean and unit variance. Moreover, the CT image was resampled 

so that its original voxel size was reduced by a factor 6 in both the x and y directions. This way, 

the voxel dimensions were more isotropic and comparable to the FDG-PET voxel dimensions, 

increasing the robustness of the mutual information-based method �10�. A tri-linear interpolation 

scheme was applied onto the images to estimate the image intensity at any possible position 

in the images.

In this paper, a comparison is made with the results of three commonly available registration 

methods. These three methods are the following:

• The	manual	(MAN)	method,	i.e.,	manually	aligning	the	images	in	3D. The operator used 

an interface where three variable sections of orthogonal planes �x, y and z� through the 

two images were displayed simultaneously. Hence, by performing registration in only one 

section at the time, the 3D registration problem was reduced to a series of 2D problems.

Accuracy of PET/CT fusion of the liver

Figure	10.2
(A) Example of the image pre-processing to arrive at the VOIs that are used for mutual 
information-based registration. An axial view is shown of the original CT and FDG-PET images. From 
these	images	VOIs	are	determined.	In	addition,	for	the	CT	image	a	thresholding	is	performed;	(B)	
a fusion example after registration; (C) a fusion result using different window and level settings for 
FDG-PET,	showing	clearly	the	location	of	a	lesion,	which	was	hardly	visible	on	CT	alone	due	to	scar	
tissue	and	staples.
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• The	landmark-based	(LM)	method. Firstly, the user identified on both the CT and FDG-PET 

images at least four points on the liver: the top, bottom, front and right points. Although 

difficult, these points could be identified on both images. If other anatomical points on the 

liver could be identified the user was allowed to do this. Next, registration was performed 

by matching the identified points in a least square sense. In general, the use of anatomical 

or artificial orientation points in both images can be of benefit for the registration �8�.

• The	‘standard’	mutual	information-based	(SMI)	method. Registration was performed by 

applying the mutual information-based method �also using the Parzen-Window scheme� 

to the whole CT image and the PET transmission image that is used for attenuation 

correction. No image pre-processing �e.g., thresholding on CT� was performed on the 

images. Further, the registration transformation derived from the PET transmission and 

CT images was used for fusing the emission FDG-PET and CT images. In some cases the 

use of the PET transmission image, instead of the emission image, is of benefit for the 

registration: in general, emission scans contain too little anatomical information to apply 

standard image registration methods �18-20�. Apart from a few organs such as the liver �but 

also, e.g., the brain, heart and kidneys�, the emission scan hardly visualises other anatomy. 

Sometimes also a combination of emission and transmission PET volumes is used for 

registration purposes �21,22�. We also studied registration of the CT with a constructed PET 

image consisting of the sum of the emission image and 25% �22� of the transmission image. 

The manual registration result was used to initialize the MI optimalization process.

Validation

The validation includes precision measurements, measurements of a possible systematic bias 

of a method, and a visual judgement. The combination of precision and bias of a method 

reveals the accuracy of a registration. By studying results for different patients, performed by 

different operators, insight is provided in the accuracy of a registration for a particular patient, 

performed by a particular operator.

Precision

For each of the four methods �OFMI, MAN, LM and SMI�, each CT–FDG-PET pair was registered 

by four operators: one nuclear medicine physician and three physicists. To obtain the intra-

operator variability, the individual operator repeated the registration, for each patient and each 

method, up to four times. Variability in the registration between different operators was used 

to determine the inter-operator variability.

To compare the registration results, each computed registration transformation, M, was ap-

plied onto four points, t ’, b ’, f ’ and r ’, in the FDG-PET image. The points, which were deter-

mined once for each patient by a nuclear medicine physician, are the top, bottom, front and 

→ → → →
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right points of the liver, respectively. Next, inter- and intra-operator variabilities of the result-

ing points, t ’ = Mt ’, b ’ = Mb ’, f ’ = Mf ’ and r ’ = Mr ’ were determined. To assess the 

registration precision, the points t, b, f and r cannot directly be compared between patients.

Therefore, the average location of each point � t, b, f and r � was computed for each patient 

and each method. For a given point, the average location was subtracted for each patient and 

each method. As the number of registrations per patient per method was rather low �in the 

order of 7�, a trimmed �25%� mean method was used to determine a least-biased average. 

From the resulting vector differences, the lengths were computed, representing the absolute 

distances from the average points of t, b, f and r, denoted by D
t
, D

b
, D

f
, and D

r
, respectively. 

The squared length of these distances follow a χ2 distribution �23�, which can be characterized by 

a mean and a standard deviation �S.D.�. The S.D. indicates variations due to different patients 

and operators. Again robust estimates were used: the mean was estimated using a trimmed 

�25%� mean method. The S.D. was estimated using the median of the absolute deviation 

�MAD� from the median. For all distance distributions, the mean values resulting from the four 

methods were compared using the Wilcoxon rank sum test �or, the Mann–Whitney test�. Fur-

thermore, the analysis of variance �ANOVA� test was used to analyse the influence of different 

components �intra- and inter-operator components and possible other components�.

Systematic bias

To test for systematic differences between the output of the different registration methods, the 

non-parametric Wilcoxon signed rank test was applied onto paired data points of t, b, f and r, 
resulting from any two registration methods. Here, average locations of t, b, f and r were not 

subtracted from the individual point locations. In particular, using the approximation that the 

MAN results are symmetric around the ‘ground truth’, we estimated systematic uncertainties 

for the OFMI, LM and SMI methods.

Since visual assessment is likely to provide the test quality assurance of multi-modality reg-

istration accuracy �24�, the MAN results are assumed to provide the ‘ground truth’ registration. 

Also, values of rotation parameters in the registration transformation were analysed to search 

for biases. If a particular method results in a systematic rotation, this indicates a bias. For 

each method, rotation distributions were determined for all registrations that were performed 

and the mean and S.D. were determined. Necessary to support the assertion that the MAN 

results are symmetric around the ‘ground truth’ is to test the symmetry properties of the MAN 

results. Therefore, differences in the MAN distributions from the average for each patient, each 

point and each axis were computed. Single histograms were determined for each of x, y and z 
over all points, patients and operators. From these distributions the skewness was computed 

indicating if the histograms are symmetric about the average value.

→ → → → → → → →

→ → → →

→ → → →

→ → → →

→ → → →

→ → → →
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Visual judgement

Validation was further performed by visual judgement of the fusion results. For given CT–FDG-

PET pairs, operators had to rank the fusion results, corresponding to four different anonymized 

methods. The sign-test was used to test the hypothesis that one method is not preferred to 

another method.

10.4	 Results

The operators performed 280 �70 for each of the four methods� registrations. Furthermore, 

experience of Viola and Wells �12,14� and Wells et al �10� and fine tuning resulted in the following 

parameter settings for the mutual information-based method: ΔX = 160 mm, ΔY = 180 mm, 

N
S
 = N

R
 = 50, for rotations λ = 0.0005, for translations λ = 0.05, number of iterations = 

20,000 �enough to reach convergence of the transformation parameters� and ψ = 2 �width of 

Parzen Window�. Experimentally, the values for ΔX and ΔY were found to be good values to 

minimize the presence of surrounding structures of the liver, without removing sharply defined 

edges of the right liver lobe. The total run time for the mutual information-based method, on 

a PIII/933MHz/128MB, is about 3 min, comparable with the times given in Wells et al. �10�. An 

experienced operator was able to perform the pre-processing within 2 min, so that the total 

registration time for the OFMI or SMI method was performed within 5 min. The registration 

time for the MAN or LM method was typically 2 min.

Table 10.2 summarizes the D
t
, D

b
, D

f
, and D

r
 distributions for each of the four methods. Since 

the results are highly correlated for a given method, also the average of the means and S.D.s 

of these points are given. The results of the SMI method were found to be similar to those of 

the variant of the SMI method where a linear combination of the emission and transmission PET 

scan was used in the registration. Further, for none of the distance distributions a significant 

difference in mean distance between the OFMI and SMI results was observed. However, the 

MAN and LM methods gave a significantly �p < 0.001 for each point� increased mean distance 

compared to the OFMI and SMI methods.
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Table	10.2
Mean	and	s.d.	of	the	D

t
,	D

b
,	D

f
,	and	D

r 
distributions,	for	the	OFMI,	MAN,	LM	and	SMI	methods.	

Also	the	average	over	the	four	distributions	is	given.

Method Dt (mm) Db (mm) Df (mm) Dr (mm) Average

Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

OFMI 2.4 1.1 2.4 1.4 2.6 1.5 2.4 1.2 2.5 1.3
MAN 4.4 2.9 4.7 3.0 4.7 2.6 4.7 2.9 4.6 2.9
LM 5.2 2.8 5.0 2.6 6.1 3.2 5.2 3.1 5.4 2.9
SMI 2.2 1.1 2.7 1.5 2.5 1.3 2.7 1.5 2.5 1.3
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As an illustration, figure 10.3 shows the distance distributions for the top point, for each 

method. For the other points, similar distributions were obtained. It is clear that the best 

precision measurements were obtained with the OFMI and SMI methods, without giving big 

outliers, which makes these methods robust.

For the MAN method none of the operators made use of all six transformation parameters. 

Only the three translation parameters were used and sometimes one rotation parameter. On 

average the number of degrees of freedom for the MAN method was found to be 3.9. For the 

other methods all six parameters were used. In general, the �trimmed� mean of the distance 

distribution will be smaller when less transformation parameters �less degrees of freedom� 

are used. Therefore, the means of the MAN method in table 10.2 may be underestimated in 

comparison to the results of the other methods.

The ANOVA test suggests that, for each method and each point �top, bottom, front, right� 

there is no statistical significant difference in mean registration results obtained by different 

operators, nor in mean results when registrations were repeated by the operators. Moreover, 

the contribution to the total variability originating from either the intra- or interoperator 

components or possible other components was statistically not significant �for each component 

p > 0.05�.

Accuracy of PET/CT fusion of the liver

Figure	10.3
Density	distributions	
of	the	distance	D

t 
,	

for	the	methods	OFMI	
(A),	MAN	(B),	LM	(C),	
and	SMI	(D).
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Applying the Wilcoxon signed rank test onto paired data points of t, b, f and r, resulting from 

any possible combination of two methods, we observe significant deviations from zero for 

mean differences of paired data for x, y and z components. Table 10.3 summarizes the mean 

differences with a confidence interval of 95%. For each point, we observe that the difference 

of paired data between the OFMI and MAN results has a mean value consistent with zero 

for the y and z components, but a significant deviation from zero, up to 2.5 mm, for the x 

→ → → →
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Table	10.3

Results of the Wilcoxon signed rank test applied onto paired data points of t, b, f and r,	for	
different	combinations	of	two	methods.	Mean	differences	of	paired	data	between	different	methods	
and a confidence interval (CI) of 95% are given for each coordinate. A ‘*’ sign indicates that the 
difference is significantly (p < 0.05) different from zero.

→ → → →

Table	10.4
Systematic	registration	uncertainty	for	the	OFMI,	LM	and	SMI	methods,	including	the	95%	CI.	A	‘*’	
sign indicates that the uncertainty is significantly (p < 0.05) different from zero.

Coordinate OFMI-MAN (mm) OFMI-LM (mm) OFMI-SMI (mm)

Difference 95% CI Difference 95% CI Difference 95% CI

t
x

-2.5 * [-3.6, -1.6] -4.5 * [-5.6, -3.2] -7.0 * [-8.2, -5.7]

t
y

 0.4 [-1.1, 1.9] -4.4 * [-6.1, -2.8] -0.8 [-2.6, 0.6]

t
z

 0.6 [-0.2, 1.5]  0.9 [-0.1,1.8]  7.0 * [5.7, 8.3]

b
x

-1.0 [-2.1, 0.1] -0.9 [-2.0, 0.2] -3.6 * [-5.0, -2.1]

b
y

 0.1 [-1.0, 1.2] -3.0 * [-4.7, -1.4] -0.7 [-1.7, 0.2]

b
z

 0.3 [-0.5, 1.0]  0.1 [-1.2, 0.9]  6.3 * [5.0, 7.4]

f
x

-2.4 * [-3.2, -1.6] -0.8 [-1.9, 0.3] -6.1 * [-7.1, -5.0]

f
y

 0.4 [-0.9, 1.5] -2.0 * [-3.6, -0.7] -2.3 * [-3.8, -0.7]

f
z

 1.6 [0.0, 3.0]  1.3 [-0.4, 2.7]  9.1 * [7.0, 11.0]

r
x

-1.7 * [-2.4, -1.0] -2.6 * [-3.4, -1.7] -5.6 * [-6.6, -4.4]

r
y

 0.3 [-1.0, 1.7] -3.9 * [-5.5, -2.6] -0.3 [-2.0, 1.1]

r
z

 0.2 [-0.6, 0.9] -0.4 [-1.5, 0.7]  6.1 * [4.9, 7.1]

Coordinate Systematic uncertainty including �5% CI (mm)

OFMI LM SMI

x  1.9 * [1.0, 2.8] -0.3 [-1.3, 0.8] -3.7 * [-4.8, -2.4]

y -0.3 [-1.6, 1.0] -3.6 * [-5.3, -2.2] -1.3 [-2.8, 0.0]

z -0.7 [-1.6, 0.3] -0.2 [-1.5, 0.9]  6.5 * [5.0, 7.8]
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component. Comparison between results of the OFMI and the LM or SMI method shows much 

bigger deviations, in all components: up to 4.5 mm when comparing with the LM results and 

up to 9.1 mm when comparing with the SMI results. Further, we observe that the results for 

the different points � t, b, f and r � are highly correlated.

Assuming the MAN results are symmetric around the ‘ground truth’, we estimated the systematic 

uncertainty for the OFMI, LM and SMI methods using the results given in table 10.3. Firstly, 

mean differences �and CIs� in paired data of the MAN results and any of the OFMI, LM and SMI 

results were determined, for all four points. Next, the average over the four points of these 

mean differences and CIs were computed. Since no significant dependence on the position on 

the liver was observed �see also table 10.3�, these average values, summarized in table 10.4, 

serve as an estimation of the systematic registration uncertainty for the OFMI, LM and SMI 

methods on any point on the liver. It is clear that the OFMI method yields the smallest bias.

Table 10.5 shows the mean and S.D. of the rotation distributions �around the three axes� of all 

registrations that were performed. In general, we observe that the mean results are consistent 

with zero, for all methods. The spread in rotations is typically 1–2°, except for the manual 

method where it is smaller. This makes sense when realizing that for the manual method, 

rotations were significantly less applied than for the other methods. The skewness for the 

single MAN histograms of each of x, y and z over all points, patients and operators was found to 

be -0.25, -0.06 and 0.25, respectively. Hence, these histograms �each having 70 registrations 

× 4 points = 280 entries� can be considered symmetrical about their average values, with 

p>0.05. Visual judgement showed that in most cases �60%� the OFMI method was found to 

be the best. It was found to be significantly �p<0.05� better than one of the other methods. 

Furthermore, the tendency is that the MAN method is preferred to the LM method and the LM 

method is preferred to the SMI method.

→ → → →

Accuracy of PET/CT fusion of the liver

Table	10.5
Mean	and	s.d.	of	the	rotations,	for	each	method,	corresponding	to	all	registrations	that	are	
performed. A ‘*’ sign indicates that the mean is significantly (p < 0.05) different from zero.

Method Rotation x-axis (°) Rotation y-axis (°) Rotation z-axis (°)

Mean s.d. Mean s.d. Mean s.d.

OFMI  0.2 1.0 -0.1 1.5 -0.5 1.8

MAN  0.5 0.5 -0.4 0.7  0.4 1.0

LM -0.6 2.0  0.4 1.2 -1.0 * 1.7

SMI -0.2 1.3  0.4 1.3  0.2 1.8
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10.5	 Discussion

In this paper, methods were presented to estimate precision and systematic bias of registrations. 

Further, we showed that by focusing on the organ of interest �OFMI method�, better registration 

results were obtained than for other conventional methods.

In the validation process we assumed the MAN results to be symmetric around the ‘ground 

truth’. One may have doubts about the negligibility of a systematic bias of the MAN method. 

In particular, doubts can arise after the observation that the operators did not use all degrees 

of freedom when performing manual registrations: rotation parameters were hardly used. 

However, the average performance of the MAN method is based on averaging over both the 

patients and the operators. We expect that most manually induced biases that might be present 

when looking at a single patient or a single operator cancel each other when averaging over a 

set of patients and various operators. At least, biases due to rotation effects can be neglected. 

The mean rotation �around the three axes� is found to be consistent with zero, not only for the 

MAN results, but also for the results of the other methods. Further, the single MAN histograms 

of each of x, y and z over all points, patients and operators were found to be symmetrical about 

their average values. This is a necessary observation for the assertion that the MAN results 

are symmetric around the ‘gold standard’. Moreover, we visually observed the tendency that 

the OFMI method is the best, followed by the MAN method, the LM method and finally the SMI 

method. Hence, a possible bias of the OFMI method is more likely to be related to differences 

with the results of the MAN method than to differences with the results of the LM or SMI 

method. Based on the arguments above, we do not expect that the MAN method is strongly 

biased. This supports that the estimated systematic uncertainties of the OFMI method, that go 

up to 1.9 mm �table 10.4�, are reasonable and not an underestimation.table 10.4�, are reasonable and not an underestimation.�, are reasonable and not an underestimation.

Questions may arise as to why the OFMI method outperforms the other methods. Firstly, since 

the MAN and LM results greatly depend on the operator, the precision of these methods is 

worse than that of the OFMI and SMI methods �table 10.2�. Moreover, the relatively high meantable 10.2�. Moreover, the relatively high mean�. Moreover, the relatively high mean 

values for the LM method given in table 10.2 are also due to the absence of clear anatomical 

landmarks on the liver. Next, the SMI method resulted in the biggest systematic uncertainties. 

There are two reasons why the SMI method fails. Firstly, the SMI method makes use of the 

whole CT of the abdomen. Hence, registration uncertainties can occur due to position and 

orientation differences of the liver between the FDG-PET and CT images. Secondly, lack of 

contrast in transmission PET images prohibits its use for distinguishing between soft tissue. 

Therefore, by using the transmission PET image, the registration is effectively based on 

the contours of the body. Due to protocol differences in PET and CT data-acquisition, e.g., 
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differences in the position of the arms, differences occur in the contours of the body, affecting 

the registration performance in a negative way. As was explicitly checked, failure of the SMI 

method is not a consequence of not thresholding the CT.

A shortcoming of the OFMI method is that it does not account for deformation differences of 

the liver between the FDG-PET and CT images. The unforced expiration breath-hold during 

the CT scan cannot be quantified in an absolute manner. Hence, variations may occur around 

the optimal unforced expiration breath-hold for registration. As previously observed �5�, the 

unforced expiration breath-hold protocol results in differences in location �0.4 mm �mean�, 

11.7 mm �1 S.D.�� of the diaphragmatic dome on CT as compared with the diaphragmatic 

dome on the PET scan. Hence, differences in movement can also be expected when observing 

the liver. Part of this liver movement will be rigid and part of it will be non-rigid. The non-

rigid part is not taken into account in the OFMI method. Using respiratory gating provides 

insight in the non-rigid liver deformation and hence provides a technique to deal with the non-

rigidities �25�. Other potential sources of residual deformations can be attributed to the time 

difference between the data-acquisition of the two images and to other differences between 

the CT and PET acquisition protocols. Use of non-rigid registrations possibly can improve the 

registration results. However, a problem in non-rigid registrations is the introduction of new 

uncertainties due to the necessary segmentation and modelling �8�.

The introduction of combined PET–CT systems solves a number of registration problems �26�, 

but it does not solve all. Apart from respiratory-induced artefacts leading to registration 

uncertainties �3-7�, information from other modalities �such as magnetic resonance imaging� 

cannot be included without an image-integration software application. Therefore, the necessity 

to develop methods for integrating CT images �or images from another modality� with images 

of a stand-alone PET will remain.

10.6	 Conclusion

We have presented methods to quantitatively compare the registration precision and systematic 

bias of different registration methods. Measuring both precision and possible bias of a method 

provides an estimate of the accuracy of a registration. An organ-focused mutual information 

based method was demonstrated to outperform three other conventional techniques. In 

particular, the precision �mean ± S.D.� for this method was found to be 2.5 ± 1.3 mm. The 

systematic uncertainty was found to be 1.9 mm with a 95% CI of [1.0, 2.8] mm. By analysing 

precision and bias on several points on the liver and observing high correlation between 

the results, the above-mentioned results are approximately valid to any point on the liver. 

Accuracy of PET/CT fusion of the liver
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Hence, unlike commonly available registration methods, the organ-focused method results in 

registrations with an accuracy better than the spatial resolution of the PET scanner that was 

used. Further, the strength of the organ-focused method is that it potentially can be applied on 

demand on any area it is needed for. In general, it is not clinically interesting to fuse the whole 

images: it is the PET-positives that cannot visually be located on CT that are interesting. This 

is only in part of the patient’s population and only in part of the lesion case. Hence, we think 

this method is acceptable for use in the clinic.
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Abstract

Multimodality PET/CT imaging of the liver can be performed 
with an integrated �hybrid� PET/CT scanner, or with software 
fusion of dedicated PET and CT. Regardless the method, 
accurate anatomical correlation and good image quality 
of both modalities are important prerequisits. Registration 
accuracy is influenced by breathing motion differences 
between PET and CT, which may also have impact on 
�attenuation correction related� artefacts, especially in the 
upper abdomen. The impact of these issues was evaluated 
for both hybrid PET/CT and software fusion, focussed on 
imaging of the liver.

Methods: 30 patients underwent hybrid PET/CT, 20 of 
whom with CT during expiration breathhold �EB� and 10 
with CT during free breathing �FB�. 10 additional patients 
underwent software fusion of dedicated PET and dedicated 
expiration breathhold CT �SF�. The image registration 
accuracy was evaluated at the location of liver borders on 
CT and uncorrected PET images, and at the location of liver 
lesions. Attenuation correction artefacts were evaluated by 
comparison of liver borders on uncorrected and attenuation 
corrected PET images. CT images were evaluated for the 
presence of breathing artefacts.

Results: In EB, 40% of patients had an absolute registration 
error of the diaphragm in the vertical direction >1 cm �range 
-16 – 44 mm�, and 45% of lesions were mispositioned 
>1 cm. In 50% of cases, attenuation correction artefacts 
caused a deformation of the dome of the liver of >1 cm. Poor 
compliance to breathhold instructions caused CT artefacts 
in 55% of cases. In FB, 30% had registration errors >1 cm 
�range -4 – 16 mm� and PET artefacts were less extensive, 
but all CT images suffered from breathing artefacts. As SF 
allows independent alignment of PET and CT no registration 
errors or artefacts >1 cm of the diaphragm occurred, and 
attenuation correction artefacts are not an issue.

Conclusions: When imaging the liver with hybrid PET/CT, 
registration errors and artefacts related to breathing motion 
may occur, depending largely on the selected breathing 
protocol and the speed of the CT scanner. According to these 
findings, recommendations were formulated with regard to 
scanner requirements, breathing protocols, and reporting.
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11.1	 Introduction

Accurate imaging of liver lesions such as metastases is important, as it has an impact on 

clinical decision making when considering partial liver resections and local ablative therapy 

such as radiofrequency ablation �RFA� �1,2�. These locoregional interventions rely on accurate 

information about the localization and extent of tumor sites �3,4�.

The added value of functional imaging with 18F-fluoro-deoxy-glucose positron emission 

tomography �FDG-PET� to conventional anatomical imaging �especially CT and, MRI� has been 

well recognized, especially when assessing previous therapeutic interventions �5,6�. However, 

exact localization and demarcation of lesions on FDG-PET is limited by a relatively low spatial 

resolution and lack of anatomical reference. The obvious benefit of combining the capabilities 

of CT �anatomical reference� and FDG-PET �sensitive tumor detection� has led to the practice 

of correlation of images as obtained by PET and by CT �7-9�.

Correlation can be performed with mere visual evaluation of images acquired by separate 

scanners, or with integrated images as provided by either an integrated �hybrid� PET/CT 

scanner or software image fusion of dedicated PET and CT �10�. Regardless of the methodology, 

the anatomical correlation of both image sets must be accurate. This implies that the liver needs 

to be in the same anatomical position and shape during both CT and PET acquisitions. However, 

CT and PET are differently influenced by breathing motion. PET is obligatory acquired during 

free breathing, and consequently suffers from some blurring in the region of the diaphragm. 

CT acquisition must be adapted to match these images, by scanning during free breathing or 

timed unforced expiration �10�. Neither approach fully eliminates the risk of registration errors 

between PET and CT �11,12�. Furthermore, the free breathing approach will introduce breathing 

artefacts on CT images in hybrid PET/CT, as  attenuation correction of PET images is based on 

the CT images.

In this study, we evaluate the accuracy of anatomical registration and the occurence of artefacts 

during different breathing protocols in hybrid PET/CT imaging of the liver, and compare it to 

software image fusion of separately acquired PET and CT.

11.2	 Methods	and	materials

Combined PET/CT images were acquired with 3 different protocols. 20 consecutive patients 

suspected of metastases from colorectal cancer underwent hybrid PET/CT with low-dose CT 

Optimized PET/CT imaging of the liver
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during expiration breathhold �EB�. 10 other consecutive patients, who were referred for various 

indications and who were unable to comply to breathing instructions for various reasons, 

underwent hybrid PET/CT with low-dose CT during free breathing �FB�. 10 more consecutive 

patients with suspected metastases from colorectal carcinoma underwent software fusion of 

dedicated PET and dedicated breathhold diagnostic CT �SF�.

Image acquisition

Hybrid PET/CT scans were acquired using a Siemens Biograph Duo �Siemens/CTI, Knoxville, 

Tennessee, USA�. A low-dose CT scan for localization and attenuation correction purposes was 

acquired in the caudo-cranial direction from the thighs to the skull base. Scanning parameters 

included 40 mAs, 130 kV, slice collimation 5 mm, pitch 1,5, reconstructed to 3 mm slices 

for smooth coronal representation. CT scans were acquired during timed unforced expiration 

breathhold �EB� or during free breathing �FB�. Timed expiration breathhold consisted of free 

breathing during the caudal part of the scan, a deep inspiration command at the level of the 

spina iliaca superior, immediately followed by a command to expire and breathhold; patients 

were allowed to resume free breathing at the level of the lung tops. The total expiration 

breathhold time was about 30 seconds. Free breathing was performed without specific patient 

instructions. No intravenous contrast was applied. For PET scanning, a 3D emission scan of the 

central body was acquired during free breathing, 60 minutes after intravenous injection of 250 

MBq FDG. The acquisition time per bed position was 4 minutes for emission only. Uncorrected 

emission images as well as images with CT-based attenuation correction were reconstructed, 

both using 2 iterations, 8 subsets and a 5 mm 3D Gaussian filter.

Dedicated FDG-PET scans were acquired using a Siemens ECAT Exact 47 scanner �Siemens/

CTI, Knoxville, Tennessee, USA�. A 3D emission scan was acquired and reconstructed identical 

to PET from PET/CT. In addition, a 2D Germanium-68 based transmission scan was acquired 

for attenuation correction. The acquisition time per bed position was 5 minutes for emission 

and 3 minutes for the transmission.

Dedicated CT scans were acquired using a Siemens Somatom Volume Zoom �Siemens, 

Erlangen, Germany�. Scans of the liver were acquired with 80 mAs, 130 kV, slice thickness 5 

mm, during unforced expiration breathhold for the whole scan length. Intravenous contrast 

was applied; the portal phase images were selected for image fusion with PET.

Image registration

For hybrid PET/CT scanning, normal image registration quality assurance procedures were 

followed as described by the manufacturer. This involved alignment of the PET and CT gantries 

after maintenance, using a crossed lines phantom. No additional image registration optimization 

was performed after scanning. Software image registration was performed on a PC with in-

house developed image viewing and registration software based on the visualization toolkit 
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VTK �13� and the insight segmentation and registration toolkit ITK �14�. The software allows rigid-

body image registration, i.e. based on 3 translation and 3 rotation parameters. Anatomical 

registration of PET images to CT was pursued using an implementation of the automatic mutual 

information algorithm, restricted to a 3-dimensional volume containing the liver. The procedure 

has been described in more detail in a previous publication �15�.

Definitions

PET images were evaluated for image registration errors, attenuation correction artefacts, and 

the visual discernibility of these errors. Analysis was performed on CT images, uncorrected PET 

images �uPET�, and attenuation corrected PET images �acPET�.

• Registration	 errors were defined as the relative anatomical/positional mismatch of 

structures �either circumscript lesions or organ borders� as visible on uPET and CT images, 

expressed as a distance in mm.

• Attenuation	correction	artefacts were defined as contour changes of structures as visible 

on PET images before and after attenuation correction, i.e. a difference of liver border 

positions between uPET and acPET images, expressed as a distance in mm.

• Visible	 errors were defined as mismatch of visible structures �circumscript lesions or 

organ borders� between acPET and CT, representing the extent in which the combination 

of registration errors and attenuation correction errors can be recognised and appreciated 

in acPET, expressed as a distance in mm.

Where focal lesions were evaluated, distances are expressed as 3-dimensional vectors. This 

is not possible where liver borders are evaluated, because an unidirectional shift of a liver 

border may be complicated by an �unrecognisable� deformation or rotation that alters the 

location that represents the top. Therefore, when evaluating the liver borders, distances were 

expressed as 1-dimensional distances along the axis of the largest movement �e.g. the vertical 

direction for the diaphragmatic dome and the caudal tip of the liver, and the lateral direction for 

the right lateral liver border�. For all measured registration errors and attenuation correction 

artefacts, a distance of > 10 mm was considered potentially clinically relevant.

Registration error of liver borders

The tangent points �top� of the curved shape of three liver borders were selected as landmarks: 

the diaphragmatic dome, the right liver border, and the caudal tip. Three-dimensional ellipsoids 

were mapped to the curved shapes of the liver borders; the locations of the tangent points 

were then derived mathematically. This procedure was performed on CT, uPET and acPET 

images independently, blinded from eachother. The process of ellipsoid mapping is illustrated 

in figure 11.1.
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An observer-specific systematical bias between localization of liver borders on uPET and acPET 

was determined by comparing measurements of images from dedicated PET, where the position 

of the liver is theoretically identical on both image sets. The true position of the liver border 

was assumed to be between the visual localizations on uPET and acPET. All uPET and acPET 

measurements were corrected afterwards for this bias, using the observer-specific average 

measurement difference from the theoretical position.

The interobserver variability for manual determination of positional differences of tangent 

points, after correction of the systematic bias, was evaluated in 5 subsequent dedicated PET 

scans �both uPET and acPET�, by two experienced observers.

The error in local image registration was determined for the three liver borders separately, for 

all EB, FB, and SF images. Differences in image registration between imaging techniques were 

evaluated using Bartlett’s test for equality of variances �level of significance 0.05�.

Registration error of liver lesions

Image registration of focal lesions was evaluated using CT and acPET images, for EB and 

SF. Lesions were considered evaluable when they were visible on both CT and acPET. The 

center of each evaluable lesion was identified on CT and PET images. This analysis was not 

possible on free breathing CT images, as breathing motion artefacts on CT prevented reliable 

determination of the center of lesions. The interobserver variation in manual localization of 

lesion centers on CT and acPET was evaluated for 5 subsequent lesions on CT and acPET, by 

two experienced observers.

Chapter 11

Figure	11.1
Localization	of	liver	borders.	Coronal	slices	of	CT	(A),	attenuation	corrected	PET	(B),	and	
uncorrected PET (C) of a single patient, acquired with hybrid PET/CT during expiration breathhold. 
The	circles	represent	slices	through	the	3-dimensional	ellipsoids	that	were	mapped	to	the	
diaphragmatic	dome	(green),	right	lateral	border	(blue)	and	the	caudal	tip	(red),	in	order	to	
determine	differences	in	their	respective	positions.
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Attenuation correction artefacts

The extent of attenuation correction artefacts on PET was evaluated at the location of the liver 

borders. The apparent positions of the liver borders �tangent points� were determined before 

and after attenuation correction �i.e. on uPET and acPET images, respectively�, similar to the 

evaluation of registration errors. This analysis was performed for EB, FB, and SF. Differences in 

the extent of attenation correction artefacts between protocols were evaluated using Bartlett’s 

test for equality of variances �level of significance 0.05�.

Visually discernible errors

The extent to which the combination of localization and attenuation correction errors were 

discernible on acPET was evaluated for all liver borders, by comparing acPET and CT in a 

similar approach as for the assessment of registration errors. This analysis was performed for 

EB, FB, and SF.

Breathing artefacts on CT

Artefacts caused by breathing motion may be depicted on CT images as locoregional deformities 

of the liver �i.e. breathhold not sustained� or as deformities throughout the liver �i.e. free 

breathing�. The presence of both types of artefacts was evaluated visually for all CT images. 

Quantitative analysis of these artefacts was not attempted.

Optimized PET/CT imaging of the liver

Table	11.1
The extent of registration errors and attenuation correction artefacts in PET/CT imaging of the liver, 
using	different	acquisition	protocols.

Registration errors
Attenuation 
correction artefacts

Breathing 
protocol

Measured landmark
Measured 
direction

Range 
�mm�

Absolute 
mean

Range 
�mm�

Absolute 
mean

EB

Diaphragmatic dome Z-axis -16 - 44 11 -18 - 41 11

Right lateral border X-axis -8 - 8 5 -4 - 10 2

Caudal tip Z-axis -3 - 53 1� -6 - 4 2

Individual liver lesions 3D-vector  3 - 24 11 n.a.

FB

Diaphragmatic dome Z-axis -4 - 16 � -7 - 11 6

Right lateral border X-axis -4 - 7 3 -4 - 4 2

Caudal tip Z-axis -5 - 20 � -4 - 4 2

Individual liver lesions 3D-vector n.a. n.a.

SF

Diaphragmatic dome Z-axis -3 - 8 3 -3 - 5 3

Right lateral border X-axis -1 - 9 3 -2 - 2 1

Caudal tip Z-axis -3 - 12 5 -3 - 4 2

Individual liver lesions 3D-vector  7 - 14 � n.a.
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11.3	 Results

All FB scans, SF scans, and all registration procedures were performed without problems. 

From the 20 EB patients, 11 patients did not fully comply with adequate breathhold during 

CT acquisition of the whole liver range. This was visible on CT images as various artefacts, a 

more detailed evaluation is provided below. The EB group was therefore divided into 9 patients 

with adequate breathhold �EBadequate� and 11 patients with inadequate breathhold �EBfailed� for 

additional separate analysis.

Registration error of liver borders

The absolute average interobserver variability in determination of liver border position 

differences on uPET and acPET, measured in one direction, was 2 mm �range -3 – 4 mm, S.D. 

3 mm� for the diaphragmatic dome, 2 mm �range -3 – 2 mm, S.D. 2 mm� for the right lateral 

border, and 2 mm �range -4 – 3 mm, S.D. 3 mm� for the caudal tip.

For EB the absolute average image registration error at the diaphragmatic dome of the liver in 

the vertical direction was 11 mm �relative range -16 to +44 mm, 40% more than 10 mm�. The 

largest errors were caused by insufficient expiration during breathhold CT. For the caudal tip 

of the liver, the average error was 19 mm �range 0 – 53 mm, 55% more than 10 mm�. There 

were no clinically relevant registration errors at the right lateral liver border, and neither in the 

FB and SF protocols.

The image registration errors of FB and SF at the locations of the diaphragmatic dome and 

caudal tip were significantly less than that of EB �P < 0.05�. SF did not perform significantly 

better than FB at the location of all liver borders. The results are listed in more detail in table 

11.1. The distribution of registration errors per acquisition protocol is represented in figure 

11.2. The occurrence of registration errors >10 mm is visualized in figure 11.3.figure 11.3..
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Figure	11.2
Image	registration	error	of	liver	
borders.	The	relative	image	
registration	errors	at	the	location	of	
several	liver	borders,	for	EB	(hybrid	
PET/CT	with	breathhold	CT),	FB	
(hybrid	PET/CT	with	free	breathing	
CT),	and	for	SF	(software	fusion	of	
dedicated	PET	and	CT).	Registration	
errors	occur	mainly	in	the	vertical	
direction	(diaphragm	and	caudal	tip	
affected most), due to insufficient 
expiration during CT.
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The results of image registration at the diaphragmatic dome in breathhold PET/CT was not 

significantly influenced by the adequacy of the breathhold instructions �error > 10 mm in 44% 

of EBadequate and in 36% of EBfailed; not significant�. Conversely, the registration of the caudal 

tip of the liver appeared to be influenced by the success of the breathhold procedure: error 

>10 mm in 33% of EBadequate and in 73% of EBfailed. Due to the small number of cases, this 

difference also failed to reach statical significance. When EB was limited to EBadequate, there was 

no difference with FB in the diaphragmatic dome.

Registration error of liver lesions

The average interobserver variability in localization of focal liver lesions, measured as a 3-

dimensional vector, was 2 mm �range 1 – 3 mm� on CT, and 1 mm �range 0 – 2 mm� on acPET. 

For EB, the average displacement of 11 detected lesions was 11 mm �range 3 – 24 mm�, with 

5 lesions �45%� being displaced more than 10 mm. There were insufficient evaluable lesions 

for separate analysis of EBadequate and EBfailed. For SF, the average displacement of 5 detected 

lesions was 9 mm �range 7 – 14 mm�, with 1 lesion displaced more than 10 mm. Due to the 

limited number of evaluable lesions, statistical comparison of EB and SF was not performed. An 

example of a displaced lesion on hybrid PET/CT during EB is shown in figure 11.4.

Attenuation correction artefacts

For EB, the average size of attenuation artefacts at the diaphragmatic liver dome in the vertical 

direction was 11 mm �range 0 – 41 mm, 50% more than 10 mm�. The largest errors were 

encountered due to insufficient expiration during breathhold CT. The extent of attenuation 

correction artefacts at the diaphragmatic dome did not depend on the success of the breathhold 

procedure �error > 10 mm in 45% of EBadequate and in 56% of EBfailed, not significant�. An 

example of liver deformation due to attenuation correction in breathhold hybrid PET/CT is 

shown in figure 11.5.

Optimized PET/CT imaging of the liver

Figure	11.3
The	frequency	of	image	registration	errors	
and	attenuation	correction	artefacts	of	
more	than	10	mm	at	the	location	the	
diaphragmatic	dome	of	the	liver,	for	EB	
(hybrid	PET/CT	with	breathhold	CT),	FB	
(hybrid	PET/CT	with	free	breathing	CT),	
and	for	SF	(software	fusion	of	dedicated	
PET	and	CT).
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For FB, the average attenuation artefact at the diaphragmatic liver dome measured 6 mm 

�range 0 – 11 mm, 20% more than 10mm�, both in in the cranial and caudal direction. For 

SF, attenuation correction artefacts of the liver are theoretically not an issue as attenuation is 

performed with Germanium rod sources during free breathing. Control measurements at the 

diaphragmatic dome showed an average absolute error of 3 mm �range of 0 – 8 mm, thus in 

all patients within 10 mm�. No signifant attenuation correction artefacts occurred at the lateral 

border or the caudal tip, for all EB, FB and SF cases.

The extent of attenuation correction artefacts at the diaphragmatic dome was significantly 

worse in EB than in FB or SF �P < 0.05�. When EB was limited to EBadequate, the difference with 

FB in the diaphragmatic dome was no longer significant. FB was significantly worse than SF 

�P < 0.05�. No clinically relevant attenuation correction errors occurred at the right lateral 

border and the caudal tip with either technique.
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Figure	11.5
PET/CT	attenuation	correction	artefacts.	Hybrid	PET/CT	of	a	large	liver	metastasis	with	central	
necrosis, with CT acquired during expiration breathhold. Coronal slices of CT (A), uncorrected 
PET	(B),	attenuation	corrected	PET	(C),	and	fused	corrected	PET	with	CT	(D).	Despite	breathing	
instructions,	comparison	of	A	and	B	reveals	a	difference	in	diaphragm	position	between	CT	and	PET.	
C	and	D	demonstrate	a	change	in	shape	of	the	liver	on	PET	after	attenuation	correction,	to	falsely	
match	CT.	The	liver	metastasis	appears	partially	in	the	lung	on	corrected	images,	and	suffers	from	
severe	loss	of	signal	intensity	in	the	region	of	the	mismatch.

Figure	11.4
Misregistration	of	a	liver	lesion	in	
breathhold	PET/CT.	Transverse	(left)	
and	coronal	(right)	images	of	a	large	
liver	metastasis	in	hybrid	PET/CT	with	
breathhold	CT.	The	center	of	the	lesion	
is	marked	with	a	red	cross	on	CT,	and	
with	a	blue	cross	on	PET.	Positioning	
differences	of	the	liver	between	PET	and	
CT	acquisition	resulted	in	a	mismatch	of	
13	mm,	measured	as	a	3-dimensional	
vector.
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Visually recognisable errors

At the locations of the diaphragm and the right lateral liver border, there were no cases that 

showed a visually discernible mismatch of more than 10 mm at the liver border between acPET 

and CT, for all EB, FB and SF images, regardless of the presence of registration or attenuation 

correction artefacts of more than 10 mm. Visually discernible errors were seen at the the 

location of the caudal tip in all image series, with values similar to the local image registration 

error.

CT artefacts

In EB, locoregional breathing artefacts in the liver were detected in the CT images of 4 patients 

�20%�, all attributable to some breathing motion during acquisition despite instructions to 

hold the breath. Furthermore, the caudal tip of the right liver lobe appeared displaced or 

deformed in 7 additional patients �35%�, all attributable to the breathing instructions given 

when approaching the region of the liver in the caudocranial scanning direction. In FB, free 

breathing artefacts were discernible throughout the images for all patients. In the SF images, 

no breathing artefacts were detected on CT images. Examples of breathing artefacts on CT 

are shown in figure 11.6. The clinically relevant breathing artefacts on CT are summarized in 

table 11.2.

Optimized PET/CT imaging of the liver

Figure	11.6
Breathing	artefacts	on	CT.	CT	slices	from	different	patients,	acquired	on	a	hybrid	PET/CT	scanner.	
(A) Coronal slice of CT acquired with expiration breathhold command. The arrows indicate an 
artefact	in	the	middle	of	the	liver	and	spleen	due	to	unsustained	breathhold.	(B)	Sagittal	slice	of	CT	
acquired with expiration breathhold command. The breathing commands were given relatively late, 
and	can	be	recognised	by	movement	of	the	abdominal	wall	(left	arrow);	the	resulting	liver	motion	
causes	the	caudal	tip	of	the	liver	to	appear	twice	(right	arrow).	(C)	Coronal	slice	of	CT	acquired	
during	free	breathing.	Breathing	artefacts	are	visible	throughout	the	image.
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11.4	 Discussion

Evaluation of PET/CT image registration and artefacts of the liver is not trivial, because the 

organ lacks well-defined, clearly discernible landmarks on PET. Therefore, evaluations are 

limited to liver borders, and if present, focal lesions within the liver. Evaluation of liver borders 

is further restricted to those areas with sufficient contrast to surrounding tissues in uncorrected 

PET images. acPET images from PET-CT can not be used for this purpose because CT-based 

attenuation correction may influence the images. Therefore, the top of the diaphragmatic 

dome, the lateral edge of the right liver border, and the caudal tip of the right liver lobe were 

selected for evaluation. Other borders of the liver could not be evaluated using uPET.

Comparison of border localizations is complicated as liver borders appear different on uPET 

and acPET. For example, on acPET the level of the diaphragm shows a sharp transition from 

low to high uptake �lungs to liver�, while uPET shows a transition from medium intensity in the 

lungs to depth-dependent variable intensity in the liver. As this may have caused a systematic 

bias in localization of liver borders, an observer-specific correction factor needed to be applied 
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Table	11.2
Errors	and	artefacts	of	more	than	10	mm	in	multimodality	PET/CT	imaging	of	the	liver.

Hybrid PET/CT

Breathhold CT

Hybrid PET/CT

Free breathing CT

Software image

fusion

Artefacts on CT Affected cases Affected cases Affected cases

- Breathhold not sustained 3 / 20 20 % 0 / 10 --- 0 / 10 0 %

- Breathhold timing issues 5 / 20 33 % 0 / 10 --- 0 / 10 0 %

- Free breathing artefacts 0 / 20 --- 10 / 10 100 % 0 / 10 ---

Image registration errors > 1 cm

- Diaphragmatic dome 8 / 20 40 % 3 / 10 30 % 0 / 10 0 %

- Right lateral border 0 / 20 0 % 0 / 10 0 % 0 / 10 0 %

- Caudal tip 11 / 20 55 % 4 / 10 40 % 2 / 10 20 %

- Individual liver lesions 5 / 11 45 % --- --- 1 / 5 20 %

Attenuation correction artefacts on PET > 1 cm

- Diaphragmatic dome 10 / 20 50 % 2 / 10 20 % 0 / 10 0 %

- Right lateral border 0 / 20 0 % 0 / 10 0 % 0 / 10 0 %

- Caudal tip 0 / 20 0 % 0 / 10 0 % 0 / 10 0 %
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to all measurements of uPET and acPET. The correction factor was derived from a series of 

measurements on uPET and acPET from dedicated PET �where the position of the liver should 

be identical�; the true position of a liver border was assumed to be at the mathematical middle 

of measurements. The corrected measurements may still differ slightly from the real border 

positions, but the differences will be small and cannot be optimized any further.

Despite correction of any systematical bias, the manual localization of liver borders and focal 

lesions can never be perfect. Uncertainties are caused by the limited spatial and contrast 

resolution of PET, and by interpretation difficulties on uPET images in general. Mapping of 3-

dimensional ellipsoids to liver borders may reduce sampling errors to some extent, but cannot 

fully eliminate them. Furthermore, different observers may choose different points of the liver 

for the top, due to the sometimes irregular shape of the organ. Therefore, the interobserver 

variability measurements were restricted to comparison of positional differences rather than 

positions of liver borders, thus eliminating the variable choice of the top as a factor. The 

measured interobserver variabilities were all well within acceptable ranges �2 mm on average 

between uPET and acPET, for all borders�.

Obviously, measurement of the available landmarks �3 borders in one direction each and 

a limited number of focal lesions� represents an oversimplification of the true position of 

the liver. Only basic liver displacement will be detected, while local deformation and organ 

rotation will be neglected. Thus, the observed misregistrations in this study rather represent 

an underestimation than an overestimation.

The detection limit of FDG-PET for small liver lesions has been estimated in the range of 

10 mm �16�. Thus, misregistration needs to be more than ~10 mm to cause uncertainty in 

discrimiation of two adjacent small structures. This does not imply that all cases with 

registration errors >10 mm will lead to misinterpretations, but awareness of the �possible� 

extent of misregistration may help to avoid reading errors.

Breathing issues

The problem of maintaining unforced expiration breathhold is easily underestimated. The 

procedure is demanding and needs to be rehearsed prior to scanning. Even so, some patients 

will fail to sustain breathhold during actual scanning, causing CT artefacts �in 20% of cases 

in our series�. Especially when scanning elderly or diseased patients, completion of a CT 

scan during breathhold cannot be guaranteed. This problem is obviously related to the the 

acquisition time for CT during whole-body scanning. The faster the CT scanner, the  better 

breathhold compliance will be.

Optimized PET/CT imaging of the liver
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Another cause of artefacts on breathhold CT images is the timing of breathing instructions: 

33% of cases showed deformation of the caudal part of the liver, related to the deep inspiration 

command when approaching the mid-abdomen. Depending on the speed of the CT scanner, 

an earlier breathhold command would result in increased risk on breathing artefacts towards 

the end of the scan in the upper lung fields. Increasing the CT acquisition speed may further 

degrade the quality of the low-dose CT images.

The alternative strategy of free superficial breathing resulted in CT artefacts throughout the 

liver. This was previously described by Beyer et al. �11�. In the lungs, this effect caused small 

lung nodules to be missed in up to 34% of cases �17�. It is unknown how this translates to 

imaging of the liver, but such a level of missed diagnosis will be hardly acceptable for correlative 

imaging. A faster CT scanner will result in free breathing artefacts with a lower frequency, but 

the amplitude of misregistrations will remain unchanged as this depends on patient factors 

only. Thus, both breathhold and free breathing techniques have disadvantages.

Even in an ideal situation �i.e. with a fast scanner, accurate breathhold instructions, and an 

exemplary patient�, the exact position of the diaphragm during breathhold cannot be predicted. 

Furthermore, the shape of the diaphragm may vary because breathhold generates a different 

muscle tension than free breathing. This implies that differences in position and shape of 

the liver between PET and CT may be unavoidable to some extent. Our results confirm that 

registration errors of the liver are not uncommon, and are rather unpredictable in extent. 

The misregistrations occurred mainly in the cranio-caudal direction, and were in most cases 

explained by insufficient expiration during breathhold. Deeper expiration would increase the 

risk of non-sustained breathhold. Perfect compliance to breathhold instructions did not prevent 

the occurrence of registration errors >10 mm, although the average extent appeared lower. 

The impact of breathhold protocols has been evaluated by Goerres et al. �18�. They concluded 

that the best breathing protocol is unforced expiration breathhold as performed in our study, 

but that the impact on image registration can still be severe �relative registration errors of 

–25 to +19 mm; compare –16 to +44 mm in our series�. Brechtel et al. have  reported better 

values for image registration at the diaphragm, but these data seem biased because evaluation 

was limited to acPET images only �19�.

Free breathing during CT resulted in less extreme registration errors, but still >10 mm in 30%. 

The extent of misregistration was congruent with normal liver motion during free breathing as 

shown by Brandner et al. �20�. As stated above, these registration errors will be unavoidable. 

The extent of misregistration is theoretically not dependent on the speed of the CT scanner, but 

this could not be evaluated in this study. The effects of free breathing CT on image registration 

of abdominal organs in PET/CT have previously been evaluated by Nakamoto et al. �21�. They 

observed even slightly worse results at the location of the right diaphragmatic dome, with 
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38% misregistration >10 mm and even 10% of cases >20 mm �30% and 0% respectively 

in our study�, with artefacts that may influence the position, shape and apparent size of the 

liver on PET. Osman et al. demonstrated moderate to severe attenuation correction artefacts 

in 18% of cases at the right diaphragmatic dome, although quantitative analysis was not 

performed �22�. They also observed that correlation errors of liver lesions may occur, incidentally 

even with erroneous localization in lung instead of liver, albeit in a limited number of cases �23�. 

Papathanassiou et al. have confirmed that lesions may be missed in liver parts that were 

affected by CT-based attenuation correction �24�.

Selecting a protocol

Given the possible extent of lesion misregistration and attenuation correction artefacts, 

integrated PET/CT can be far from ideal for imaging of the liver. Free breathing hybrid PET/CT 

performs somewhat better at these issues, but suffers from poorer image correlation due to 

artefacts and missing of lesions on CT. Nevertheless, both approaches have been found suitable 

for diagnostic correlative imaging �25�. When considering a breathhold or a free breathing hybrid 

PET/CT protocol, it is important realize that registration errors and attenuation correction 

artefacts in breathhold PET/CT can be recognised and circumvented afterwards by adequate 

evaluation of uPET images, while missing small lesions on free breathing CT is definitive. The 

final choice of technique may be guided by specific clinical questions, available equipment, 

individual patient characteristics, and personal preferences.

Software fusion is based on optimization of image registration of diagnostic quality image sets. 

This technique resulted in significantly lower registration errors of the liver as a whole, and of 

liver lesions, as PET and CT images can be freely manipulated to achieve optimal matching. 

This raises the question whether such optimization and uncompromised PET image quality are 

possible in hybrid PET/CT. When image registration is performed with uPET and CT images, 

followed by the attenuation correction procedure, the result should be similar to SF. However, 

this option is not provided by current hybrid PET/CT scanners. Software fusion is not ideal for 

high-throughput imaging, but remains useful when hybrid PET/CT is not available.

Eliminating attenuation correction artefacts

When the abovementioned registration mismatches between PET and CT occur, hybrid PET/CT 

introduces a subsequent risk for artefacts on PET images. Attenuation correction will be applied 

erroneously on PET at the location of dense objects �26,27�, or where the location of a transition 

from low to high photon attenuating tissue does not correspond on PET and CT �21,28�. The 

diaphragmatic area is very susceptible to such errors due to the sharp tissue/air transition, 

combined with the risk for positional differences. This may result in an apparent contour 

change of the liver on acPET images, and reduced sensitivity for lesions in the affected area.

Optimized PET/CT imaging of the liver
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In our series of EB imaging, deformation of the liver on acPET images was not uncommon, 

and rather unpredictable. The potential clinical impact is underlined by the presence of 

artefacts >10 mm in 50% of cases. In FB attenuation correction artefacts were significantly 

less extensive, but still in 20% >10 mm. These problems must be considered unavoidable, 

as long as registration errors occur and attenuation correction is performed with CT images. 

Dedicated PET does not easily suffer from attenuation correction artefacts, because the 

attenuation profile is measured using photons with an energy identical to emission scanning, 
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Table	11.3
Recommendations	for	optimal	PET/CT	imaging	and	reviewing.	These	recommendations	were	
formulated	to	achieve	optimal	diagnostic	quality	and	interpretation	of	multimodality	PET/CT	imaging	
of	the	liver.	As	such,	most	recommendations	will	also	apply	to	whole-body	imaging	with	PET/CT.

Category Recommendations

Scanner 
requirements

When hybrid PET/CT with breathhold CT is needed, a fast CT scanner �i.e. 
more than 2 slices� is preferable to avoid breathhold compliance issues.

When hybrid PET/CT with a fast CT is available, breathhold CT seems 
preferable over free breathing CT �no missed lesions and no artefacts on CT, 
while image registration and artefacts are not significantly worse than in free 
breathing�.

When hybrid PET/CT with a slow CT is available, the choice between 
breathhold and free breathing CT �for non-diagnostic use� is unsettled and 
depends on personal preference �i.e. more serious registration errors with 
breathhold CT, but missed lesions on free breathing CT�.

PET/CT image 
acquisition

Explain the importance of avoiding motion to patients

Practising breathhold with each patient prior to actual scanning is advised, 
to avoid serious misregistration and artefacts. Revert to free breathing when 
breathhold rehearsal fails.

The performance of PET/CT with breathhold CT may be improved by 
providing feedback about registration errors to operating personnel.

When reliable correlative imaging of PET and CT images without artefacts 
is needed on an incidental basis, software fusion of dedicated PET and 
diagnostic CT can still be considered.

Reviewing  
PET/CT

Awareness of the level of misregistration and attenuation correction 
artefacts can be improved by consequent correlation of uncorrected PET and 
CT images.

Uncorrected PET images may reveal small lesions that may be undetectable 
or misplaced on corrected PET images, in the diaphragmatic area of the liver 
and the lower lung fields.

Unexplained PET lesions that show no correlating density on non-diagnostic 
CT �e.g. free breathing or low-dose� may be resolved by correlation with 
separate diagnostic CT images.



1�5

acquired during the same breathing pattern. No significant artefacts were detected in our 

series of dedicated PET images. This leaves room for improvement of hybrid PET/CT with 

regard to PET attenuation correction artefacts. As full elimination of registration errors seems 

unlikely, re-introduction of 511 KeV transmission imaging in hybrid PET/CT remains a matter 

of debate. Expiration breathhold on CT images will remain a problem for correlative imaging. 

Alternative acquisition protocols all bear disadvantages. Slow-CT and averaged multiple-

series-CT as applied in external beam radiation therapy planning severely degrade the image 

quality. Gated CT acquisition may provide excellent correlative imaging, at least when PET is 

acquired in gating identical to CT imaging �29�. Further experiments with such techniques need 

to be conducted.

Future developments

Recent advances in CT scanning have predominantly been in the field of spatial resolution and 

scanning speed, with an increasing number of slices �e.g. 128 parallel detectors, multibeam 

CT�. A real benefit could be expected from better attenuation correction. Although algorithms 

for CT-based attenuation correction are continuously being improved, only reintroduction of 

true 511 KeV transmission imaging in hybrid PET/CT scanners would minimize the problem 

of artefacts. This remains a matter of debate, although some hybrid PET/CT scanners offer 

this functionality. Development of higher quality and faster transmission scanning, e.g. 

simultaneous with emission scanning �30�, is eagerly awaited.

Other PET radiopharmaceuticals for imaging of malignancy in the liver are likely to become 

available in the coming years, such as 18F-fluor-deoxy-thymidine �FLT� �31�. Registration errors 

and attenuation correction artefacts in FDG-PET/CT imaging are independent of the PET tracer. 

However, misregistrations will be harder to detect in tracers that show low or no uptake 

in normal liver tissue. This illustrates the importance of optimized imaging and reviewing, 

especially for imaging of novel tracers in the near future.

The combination of PET with MRI may be preferable over PET/CT, for better soft tissue imaging 

characteristics and less radiation dose issues, but breathing will remain a problem. Current 

MRI techniques do not allow whole-body imaging during breathhold, and free breathing during 

MRI can severely distort the images. The best approach to hybrid PET/MRI is still unclear.

11.5	 Conclusions

Anatomical registration errors of the liver in PET/CT may be severe, occuring mainly in the 

vertical direction, due to breathing differences during acquisition of PET and CT. Subsequent 

attenuation correction artefacts can occur where registration errors are present, but only where 

a sharp transition between dense and non-dense tissue exists �e.g. at the diaphragmatic 

Optimized PET/CT imaging of the liver
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area but not in the caudal region of the liver�. The extent of image registration errors and 

attenuation correction errors cannot be appreciated visually on PET images that have been 

corrected for photon attenuation.

The application of breathing protocols for CT images influences these issues, but no protocol 

can warrant perfect image registration and artefact-free images. PET/CT with breathhold 

CT may suffer from unpredictable significant misregistrations. A fast CT scanner is less 

liable to breathhold compliance errors and timing issues and may therefore reduce serious 

registration errors. PET/CT with free breathing CT also suffers registration errors, and from 

unavoidable breathing artefacts throughout CT images which must therefore be considered 

non-diagnostic.

Awareness of the level of misregistration and attenuation correction artefacts is essential for 

reviewing, and can be improved by consequent correlation of uncorrected PET and CT images. 

Furthermore, uncorrected PET images may allow detection of small lesions that became 

invisible or misplaced on corrected PET images, in the diaphragmatic area of the liver and the 

lower lung fields. Based on these conclusions, recommendations were formulated for optimal 

imaging and reviewing of integrated PET/CT �table 11.3�.
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12	 Abstract

Determination of lesion boundaries on FDG-PET is difficult 
due to the point-spread blurring and unknown uptake of 
activity within a lesion. Standard threshold-based methods 
for volumetric quantification on PET usually neglect any size 
dependence and are biased by dependence on the signal-
to-background ratio �SBR�. A novel, model-based method is 
hypothesized to provide threshold levels independent of the 
SBR and to allow accurate measurement of volumes down to 
the resolution of the PET scanner.

Methods: A background-subtracted relative-threshold 
level �RTL� method was derived, based on a convolution 
of the point-spread function and a sphere with diameter 
D. Validation of the RTL-method was performed using PET 
imaging of a Jaszczak phantom with seven hollow spheres 
�D=10-60 mm�. Activity concentrations for the background 
and spheres �signal� were varied to obtain SBRs of 1.5-
10. An iterative procedure was introduced for volumetric 
quantification, as the optimal RTL depends on a priori 
knowledge of the volume. Feasibility of the RTL-method was 
tested in two patients with liver metastases and compared to 
a standard method using a fixed percentage of the signal.

Results: Phantom data validated that the theoretically 
optimal RTL depends on the sphere-size, but not on the SBR. 
Typically, RTL=40% �D=15-60 mm�, and RTL>50% for small 
spheres �D<12 mm�. The RTL-method is better applicable to 
patient data than the standard method.

Conclusions: Based on an iterative procedure, the RTL-
method has been shown to provide optimal threshold levels 
independent of the SBR and to be applicable in phantom and 
in patient studies. It is a promising tool for lesion delineation 
and volumetric quantification of PET lesions.
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12.1	 Introduction

Metabolic information provided by positron emission tomography with 18F-fluor-deoxy-glucose 

�FDG-PET� is increasingly used in the management of patients with cancer. Especially the role of 

FDG-PET in target volume delineation in radiotherapy treatment planning, both for the primary 

tumor and regional lymph nodes, is a main topic of research �1�. Volumetric quantification with 

PET may also impact on surgical decision making �2�. 

When evaluating liver metastases, accurate imaging of such lesions is important for 

determining the feasibility of partial liver resections and especially of local ablative therapy 

such as radiofrequency ablation �RFA� �3,4�. These locoregional interventions rely on accurate 

information about the localization and extent of tumor sites �5,6�. The added value of FDG-

PET to conventional anatomical imaging such as computed tomography �CT� and magnetic 

resonance imaging �MRI� for assessment of patients with liver metastases has been well 

documented �7,8�.

FDG-PET is suitable to identify a tumor and its probable location. However, due to the 

point-spread blurring and the unknown amount of accumulated activity within the lesion, 

it is difficult to quantify its boundary and volume. The delineation of the “true” contour 

of the FDG-accumulation is addressed in different ways by various groups, such as visual 

interpretation �9,10�, the application of a contour comprising a percentage of the maximum 

activity concentration in the lesion �9,11,12�, or the use of a threshold based on the standardized 

uptake value �SUV� of e.g. 2.5 �9,13�. This is what is mostly done in normal clinical practice. Some 

propose a more sophisticated method where the ratio of activity concentration in the lesion 

�signal S� to the concentration in normal tissue �background B� is the main input parameter in 

the contour detection �14,15�. Others propose a method where the difference “S-B” is the main 

variable �16-18�. 

In this study, we developed a robust and relatively simple model-based method for lesion 

delineation and volumetric quantification with PET, where the optimal threshold levels take into 

account the presence of background activity and are independent of the signal-to-background 

ratio �SBR�. The background of our method was based on a model for volumetric quantification 

with single-photon emission computed tomography �SPECT� �19,20�. However, a translation to 

a methodology for data from FDG-PET, taking also into account the presence of background 

activity, has not been described before. Furthermore, an explicit derivation of the optimal 

threshold level that is independent of the SBR has not been provided before. Also, no procedure 

has been described how to implement such methodology in practice.

Delineation of liver metastases on FDG-PET
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12.2	 Theoretical	background

In a one-dimensional situation, figure 12.1 illustrates how a step in an ideal �i.e. homogeneous� 

intensity distribution is displayed in an image. Due to the finite spatial resolution of the system 

that acquires the image, the edges of the step are blurred in the image. To obtain the true size 

of the step �D�, it is easy to see that the 50%-level of the image signal �S� after background 

�B� subtraction indicates the optimal image cut-off value for the threshold �T�. The only criteria 

are that D is sufficiently larger than the full-width-half-maximum value �FWHM� of the point-

spread function �PSF� and that the PSF is symmetrical.

In a three-dimensional �3D� situation, mathematics become more complex since curved 

boundaries are encountered. In case of a sphere with diameter D, the optimal relative 

threshold level �RTL� to obtain the true volume, defined as the percentage of “S-B” where 

the cut-off should be taken, turns out to be smaller than 50%, for D approximately 1.2 times 

larger than the FWHM of the PSF �20�. This can be seen by convolving a sphere with a trivariate 

Gaussian PSF, to determine the optimal RTL. The basic idea of the convolution is to determine 

the amount of overlap �an integral� between the PSF and the sphere, as a function of the 

distance between their centres �19,20�. Firstly, the activity concentration, A
c
, after background 

subtraction can be written as:

 A
c
(x

p 
,S,FWHM) =  ∫ ∫ ∫ O (D) × PSF (x

p 
,FWHM) dxdydz  �12.1�

where PSF (x
p 
,FWHM) is the point spread function centered at location x

p
 along the x-

axis, with a full-width-half-maximum value FWHM, and O (D) is the sphere with diameter D, 

centered at x = y = z = 0. Secondly, to determine the optimal RTL one should realize that 

the maximum amount of overlap between the sphere and the PSF is obtained when they are 

co-centered for x
p 
= 0. This implies that the image signal after background subtraction can be 

written as:

 S - B = A
c
(x

p 
= 0,D,FWHM)     �12.2�
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Figure	12.1
Illustration	of	a	one-dimensional	
step-distribution,	that	is	blurred	in	
the	image	due	to	the	point-spread	
function	(PSF).	The	50%-level	of	
the	difference	“S-B”	indicates	the	
optimal	image	cut-off	value	(relative	
threshold	level,	RTL)	to	obtain	the	
true	size	of	the	step	(D).



1�3

In a similar way, the optimal threshold, after background subtraction, is obtained when x
p  

is 

equal to the radius of the sphere, i.e.:

T - B = A
c
(x

p 
= ½D,D,FWHM)     �12.3�

Subsequently, the optimal RTL is obtained via:

RTL   = (T-B) / (S-B)      �12.4�

  = A
c
(x

p 
= ½D,D,FWHM) / A

c
(x

p 
= 0,D,FWHM)

Figure 12.2 illustrates the optimal RTL as a function of the diameter of the sphere. In the 

calculations a trivariate Gaussian PSF with a FWHM of 9.2 mm �in all 3 dimensions� was used 

as input �for reasons explained below�. This theoretical derivation forms the basis of this 

study.

The theoretical derivation shows that the optimal RTL is independent of the SBR. However, a 

dependency to the volume �or diameter� of the sphere is expected. As shown in figure 12.2, forfigure 12.2, for, for 

very large spheres, RTL converges to 50%; for spheres with a diameter between approximately 

15 to 50 mm, RTL is typically 40%; for spheres with a small diameter �<1.2×FWHM of the 

PSF�, RTL becomes larger than 50%.

Delineation of liver metastases on FDG-PET

Figure	12.2
The	optimal	RTL	as	a	
function	of	the	sphere	
diameter	in	case	the	
FWHM	of	the	point	
spread	function	(PSF)	
is	9.2	mm.
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12.3	 Materials	and	methods

Point spread function

The measured shape of the PSF is required to predict the optimal RTL. To obtain the PSF, an 

FDG point-source of 15 kBq, smaller than 2 mm in all directions, was scanned using a full-ring 

dedicated PET scanner �Siemens ECAT Exact 47, Siemens/CTI, USA�. Emission imaging wasSiemens/CTI, USA�. Emission imaging was�. Emission imaging was 

performed for one bed position and the acquisition time was 5 minutes. The emission scan wasacquisition time was 5 minutes. The emission scan was. The emission scan was 

reconstructed using 2 iterations, 8 iteration subsets and a 5 mm 3D Gaussian blurring filter. In 

order to achieve the most accurate measurement of the PSF, a zoom of 4 was used, resulting 

in a voxel size of the PET image of 1.28×1.28×1.28 mm3. The trivariate PSF was fitted with a 

trivariate Gaussian using the FWHM �in 3 directions� as fit parameters. Once the measured PSF 

is known, a convolution with a sphere can be performed, in order to obtain the optimal RTL as 

a function of the sphere diameter �see equation 12.4�.equation 12.4�.�.

Phantom experiment

A phantom study was performed using a Jaszczak phantom with a volume of approximately 

6.5 l, with 7 hollow spheres with inner diameters �volumes� of 10.1 mm �0.54 ml�, 12.6 �1.06 

ml�, 15.9 mm �2.09 ml�, 19.9 mm �4.15 ml�, 25.0 mm �8.23 ml�, 31.4 mm �16.21 ml� and 

60.1 mm �113.52 ml�. Activity concentration in the spheres decreased during the experimentActivity concentration in the spheres decreased during the experiment 

from 25 to 6 kBq/ml; the background activity concentration was varied from 2.5 to 4.0 kBq/ml, 

such that SBRs were obtained in the �clinically relevant� range of 1.5 to 10.

Five FDG-PET scans of the Jaszczak phantom were acquired at 5 different SBRs: 1.8, 2.4,Jaszczak phantom were acquired at 5 different SBRs: 1.8, 2.4,were acquired at 5 different SBRs: 1.8, 2.4, 

3.7, 7.2 and 9.9. Similar imaging was performed as for the PSF, but including 3 minutes 

68Germanium/68Gallium based transmission scans for attenuation correction. The voxel size of. The voxel size ofThe voxel size of 

the PET images was 5.15×5.15×5.15 mm3, to match the clinical setting. 

The mean background activity concentration was measured in a spherical volume of interest 

�VOI� of 30 mm diameter within the Jaszczak phantom, but outside the region of the spheres. 

In the three largest spheres, the mean activity concentration was determined by choosing a 

spherical VOI with a diameter 18 mm smaller �approximately 2×FHWM of the PSF� than the 

diameter of the sphere. It is assumed that partial volume effects �PVE� do not play a significant 

role for these VOIs. For the smaller spheres the activity concentration was estimated using the 

most intense voxel within the spheres, as opposed to a mean or median activity concentration 

within some VOI, which would be very sensitive to PVE. These measurements provided values 

for B and S.

Chapter 12
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The phantom study was performed to verify the theoretical model and to create a procedure to 

perform volumetric quantification of PET lesions in clinical practice. To obtain the cut-off value 

experimentally, we proceeded as follows. For a given sphere, voxels with values above some 

predefined threshold were selected. This threshold was varied until the volume of the clustered 

voxels correponded to the true sphere volume. This cut-off threshold �T� was translated to 

the RTL via RTL = (T-B) / (S-B). The hypothesis that the theoretical model describes the 

phantom data was tested using the chi-square distribution.

As already suggested by Drever et al �18�, it is important to incorporate the finite wall thickness 

of the spheres �1 mm plexiglass�. Obviously, there is no FDG-uptake in the plexiglass. 

Consequently, the RTL will be reduced by this effect, depending on the SBR �18�. We incorporated 

this wall thickness into the calculations, using a typical �average� SBR of 5.

Patient feasibility study

To test the clinical applicability of the proposed method, image series of two patients �age 

61 and 66; weight 74 kg and 114 kg, respectively� with histologically confirmed colorectal 

cancer with liver metastases were used. Both patients underwent surgical treatment of theBoth patients underwent surgical treatment of the 

liver metastases, allowing intraoperative measurement of the lesion size. For both patients, CT,For both patients, CT, 

FDG-PET and surgery were performed within a period of one month. The maximum diameterThe maximum diameter 

�D
max

� of the metastases as measured during surgery was used as the gold standard.

Prior to surgery, CT scans were acquired during inspiration breathhold using a multi-slice spiral 

CT scanner �Siemens Somatom VolumeZoom, Erlangen, Germany�. Scanning parameters wereScanning parameters were 

130 kV, 120 mAs and a slice thickness of 3 mm. In the transaxial plane, the pixel size of the CT In the transaxial plane, the pixel size of the CT 

images was 0.78×0.78 mm2.  Intravenous contrast �100 ml Xenetix-300� was applied. The portal100 ml Xenetix-300� was applied. The portal� was applied. The portal 

phase contrast images were used in this study. The FDG-PET scans were acquired using theThe FDG-PET scans were acquired using the 

same PET scanner as mentioned before. Both patients fasted for a minimum of 6 hours before 

intravenous injection of 241 and 269 MBq FDG, respectively. The PET protocol consisted of a 

whole-body emission scan from the hips to the base of the skull, with Germanium-68/Gallium-

68-based attenuation correction. The voxel size of the PET images was 5.15×5.15×5.15 mm3. 

The reconstruction was performed identical to the reconstruction of the phantom images.

Volumetric quantification of liver lesions on CT was performed using the software prototypethe software prototype 

OncoTREAT �MeVis, Bremen, Germany� �21-23�. The underlying method is based on an automated 

segmentation method that is based on morphological processing. The volumes of the lesions and 

the maximum diameter were extracted. The gold standard was the intraoperative measurement, 

while CT provided a second reference for comparison with the FDG-PET results.

Delineation of liver metastases on FDG-PET
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For FDG-PET, the volume and maximum diameter were retrieved using two different methods: 

a standard method �st-PET� that uses a fixed percentage of the signal S (T/S×100%) as a 

threshold level, which is similar to using a fixed SUV value and which is mostly used in clinical 

practice, and the RTL-based method �RTL-PET�. For the standard method the volume and 

maximum diameter were obtained for a range of values of T. For the RTL-method, first a 40% 

RTL is used to get a first volume estimate. This volume V is converted to an average diameter 

via D = (V×6/π)1/3. The appropriate RTL for that diameter is found using equation 12.4. This 

process is iterated to improve the estimate of the PET volume, until the change in the RTL 

value is less than 0.05%. The iteration process always converges as the RTL curve �see figure 

12.2� only shows one global minimum. Spherical VOIs �with adjustable diameter� were used 

to select the signal S and background B: for S this volume is placed within the lesion, for B in 

a region of healthy liver tissue. The mean activity concentrations within these VOIs represent 

S and B, respectively.

12.3	 Results

Figure 12.3 shows the measured PSF shows the measured PSF 

of the FDG point source, projected onto 

the transaxial plane and the result of 

the trivariate Gaussian fit. The FWHM fit 

parameters were found to be 8.9 mm 

�S.D. 0.1 mm�, 9.3 mm �S.D. 0.1 mm� and 

9.3 mm �S.D. 0.1 mm� in the x, y and z 
direction, respectively.

Chapter 12

Figure	12.3
The	point-spread	function	(PSF)	of	an	FDG	
point source, projected onto the transaxial 
plane	(A).	The	result	of	the	trivariate	
Gaussian fit (B).
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Phantom experiment

Figure 12.4 shows the optimal RTL as a function of sphere diameter as measured with the shows the optimal RTL as a function of sphere diameter as measured with the 

phantom. The error bars on the data points represent the standard deviation resulting from 

the variation observed in the 5 scans. Also shown are two calculations, based on a convolution 

using a trivariate Gaussian PSF with a FWHM of 9.2 mm �average result� for all 3 directions. 

Calculation A �which is equal to the calculation shown in figure 12.2� neglects the wall thicknessfigure 12.2� neglects the wall thickness� neglects the wall thickness 

of the spheres, while calculation B incorporates the wall thickness of 1 mm. As expected, 

calculation B best describes the data �A: χ2 = 8.4, p = 0.2; B: χ2 = 3.8, p=0.7�.

The measured RTL for medium sized spheres �diameter 20-60 mm� is typically 35%, for larger 

spheres it slowly increases to eventually more than 40%. For smaller spheres, RTL rapidly 

increases with decreasing diameter. Figure 12.5 demonstrates two RTL derivations: one for a 

medium sized sphere �diameter 31 mm� and one for a small sphere �diameter 13 mm�. Profiles 

in a transaxial plane and through the centre of the spheres are shown. The optimal RTL was 

found to be 35% and 53%, respectively. Since the value of the FWHM of the PSF approximates 

the diameter of the small sphere, the signal within this sphere underestimates the true activity 

concentration.

Patient feasibility study 

An example of a liver lesion in patient 1 and segmentation as seen on both PET and CT is 

shown in figure 12.6. For patient 1 we obtainedFor patient 1 we obtained S = 15.5 kBq/ml �SUV=4.8� and B = 8.2 

kBq/ml, resulting in SBR = 1.9. For patient 2 we obtained S = 19.2 kBq/ml �SUV=8.1� and 

B = 4.3 kBq/ml, resulting in SBR=4.5. Furthermore, for patient 1 we obtained RTL = 40% and 

for patient 2 RTL = 42%. Via T = (S-B) × RTL + B, this implies an RTL-optimized threshold 

of T = 11.1 kBq/ml and T = 10.6 kBq/ml, respectively. This converts to a treshhold of T/
S × 100% = 72% �SUV = 3.5� and 55% �SUV = 4.5� respectively. 

Delineation of liver metastases on FDG-PET

Figure	12.4
Optimal	relative	threshold	level	(RTL)	as	
a	function	of	the	sphere	diameter.	The	
dashed	curve	(calculation	A)	is	based	on	
a	convolution	with	a	trivariate	Gaussian	
PSF	with	FWHM=9.2	mm	in	all	directions.	
The	continuous	curve	(calculation	B)	
takes into account the plexiglass wall-
thickness	of	the	spheres	of	1	mm.	The	
results	of	phantom	measurements	are	
well	described	by	calculation	B.	For	
sphere diameters sufficiently large (> 
1.2	×	FWHM	of	PSF)	the	optimal	RTL	is	
systematically	below	50%.
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Table 12.1 summarizes all measurements of volume summarizes all measurements of volume V and D
max

 from RTL-PET, CT and surgery, 

for both patients. A good agreement is observed between D
max

 from RTL-PET and surgery or 

CT. For st-PET, D
max

 is computed using a percentage of the signala percentage of the signal S, where we allowed this 

percentage to vary; i.e. D
max

 is computed as a function of T/S. The results and those from 

RTL-PET, CT and surgery for both patients are shown in figure 12.7. It is clear that a fixedfigure 12.7. It is clear that a fixed. It is clear that a fixed 

percentage �or a fixed SUV value� for both patients can never result in an agreement with both 

surgery measurements �or CT measurements�. E.g., a T/S of 70%, or a threshold SUV of 3.4 

�for patient 1�, and a T/S of 62%, or a threshold SUV of 2.8 �for patient 2�, are needed toare needed to 

meet the gold standard obtained from intraoperative measurement. To meet the CT results,. To meet the CT results, 

also different values for T/S are needed: 77% for patient 1, 60% for patient 1.
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Figure	12.5
Illustration	of	two	RTL	
derivations:	one	for	a	
medium	sized	sphere	
(diameter	31	mm),	A,	
and	one	for	a	small	
sphere	(diameter	13	
mm), B. Profiles in a 
transaxial plane and 
through	the	centre	
of	the	spheres	are	
shown.	The	RTL	was	
found	to	be	35%	and	
53%,	respectively.	
Since	the	value	of	the	
FWHM	of	the	point-
spread	function	(PSF)	
is	around	the	size	
of	the	small	sphere,	
the	signal	within	this	
sphere	underestimates	
the	true	activity	
concentration.

Table	12.1
A summary of all volumes (V) and maximum diameters (Dmax)	of	a	lesion	assessed	by	RTL-PET,	CT	
and	surgery,	for	both	patients.

RTL-PET CT Surgery
V�ml� Dmax �mm� V�ml� Dmax �mm� V�ml� Dmax �mm�

Patient 1 �pt1� 25 39 12 31 NA 40
Patient 2 �pt2� 42 50 40 48 NA 47
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Unlike the standard method, the RTL-method provides optimal threshold levels that are 

independent of the SBR and, therefore, this method appears to be more robust. Using RTL-PET, 

the difference of D
max

 with surgery or CT is small for both patients �<10%�. Using st-PET, this 

strongly depends on the SBR. A specific T/S may easily lead to differences much larger than 

10%, e.g. �with respect to surgery� 70% and 

13% for patient 1 and patient 2 respectively, 

when a fixed threshold of 50% is used, or, 24% 

and 4% respectively, when a fixed threshold of 

60% is used. 

Delineation of liver metastases on FDG-PET

Figure	12.6
Liver	lesion	and	segmentation	
as seen on a transaxial slice on 
both	CT	(A	and	B)	and	PET	(C	
and	D),	for	patient	1.	For	CT	the	
segmentation	was	performed	using	
OncoTREAT,	for	PET	using	the	
RTL-method.	The	(non-circular)	
contours	in	B	and	D	represent	the	
segmentation.	In	the	PET	image,	
signal	S	was	determined	by	using	
a	spherical	VOI,	represented	by	
the	small	circle	within	the	lesion	in	
image	D.	The	background	B	was	
determined	by	using	a	spherical	
VOI	in	a	region	of	healthy	liver	
tissue,	represented	by	the	large	
circle	in	image	D.

Figure	12.7
The maximum diameter as a function of T/S for 
both	patients,	using	the	st-PET	method.	Also	
shown	are	the	results	from	RTL-PET,	surgery	and	
CT.
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12.4	 Discussion

Based on a convolution of a sphere with a trivariate Gaussian PSF, we derived a mathematical 

formalism for volumetric quantification of spheres with FDG-PET. Phantom measurements 

confirmed the formalism. The advantage of this formalism is that it provides optimal relative 

threshold levels that take into account the presence of background activity and that are 

independent of the SBR. The RTL-method can easily be implemented in clinical practice and be 

applied to other PET-radiopharmaceuticals as well. The only input that is needed is the shapewell. The only input that is needed is the shape. The only input that is needed is the shape 

of the PSF, which can be measured for any PET-scanner, for a given reconstruction method. 

Once the PSF is known, the RTL needed to obtain the true volume is obtained by determining 

the signal S �tumor uptake� and background B �healthy tissue uptake�. An iteration procedure 

is necessary as the optimal RTL depends on a priori knowledge of the lesion diameter.

Methods that use a fixed percentage of the signal �or SUV� to obtain the contour of a PET 

lesion, as illustrated by others �9,11,13�, imply there is no dependency on the background activity 

concentration B. Subsequently, this also implies it does not explicitly depend on “S-B”. However, 

in our study we did show an explicit “S-B” dependency �for RTL = (T-B) / (S-B) �. E.g., when 

assuming that the optimal RTL is 40% for a certain object, this implies an optimal cut-off T 

of 46% of the signal S �when case S = 10 and B = 1 kBq/ml�, while a cut-off T of 70% of the 

signal is required �when case S = 2 and B = 1 kBq/ml or S = 10 and B = 5 kBq/ml� to obtain 

the correct object size. I.e. no fixed percentage of the signal �or SUV� is ever able to describe 

all possible situations. This was also explicitly illustrated by the patient analysis. Moreover, 

as our theory and phantom measurements showed that the RTL-method provides threshold 

levels that are independent of the SBR, this implicitly means that there is a dependency on the 

signal intensity. Hence, these standard methods using a fixed percentage of the signal are less 

suitable and, therefore, are not advisable for volumetric quantification with PET.

Other methods �14,15� do take into account the background B. However, these methods still 

show an SBR dependence �and neglect a diameter dependence�, whereas our method was de-

veloped to provide threshold levels independent of the SBR. Under the assumption of no diam-

eter dependence, these methods can be rewritten such that they are mathematically identical 

to our method. In the study of Daisne et al. �15� the relative threshold, defined as y = T/S, was 

fitted to the hyperbolic function y = a + b/SBR, where a and b are fit parameters. As shown 

by Davis et al. �17�: a = RTL and b = 1-RTL. Furthermore, the method of Black et al. �14� can 

also be rewritten such that it is mathematically identical to our method. Black et al. derived a 

linear relation between the threshold SUV �TSUV� and the signal SUV: TSUV = c×SUV + d, 

where c and d are fit parameters, and by definition SUV = f×S and TSUV = f×T, with f the 
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body weight �in g� divided by the injected activity �in Bq�. From our definition RTL = (T-B)/(S-
B), we can deduce T  = RTL×S + B×(1-RTL). By multiplying both sides of this equation by 

f we obtain TSUV = RTL×SUV + f×B×(1-RTL). Hence, compared with the linear relation of 

Black et al, we obtain the constraints c = RTL and d = f×B×(1-RTL).

The above-mentioned derivations indicate that the two previously presented methods  �14,15� 

are based on two parameters �a and b, or, c and d, respectively�, where we only used one 

parameter �RTL, which is equal to a and c�. Hence, parameters b and d are redundant. 

Furthermore, these methods present a fixed value for parameter a ( = c = RTL) for a range 

of volumes �or diameters�, whereas we showed there is a dependency. In a study by Yaremko 

et al. �12�, the background B was taken into account, as well as a size-dependence. However, 

analyses were based on a fixed percentage of the signal S. Hence, an SBR-dependence was 

observed. Furthermore, it provided phenomenological results only, whereas we presented a 

model that describes the results and which can be used to estimate the appropriate threshold 

that will reproduce the given lesion volume most accurately. Several studies were performed 

where the background-subtracted relative-threshold �i.e. a fraction of “S-B”� was used for 

volumetric quantification using PET. Ciernik et al �16� proposed a fixed RTL of 50%. In general 

this results in an underestimation and for small volumes in an overestimation of the true 

volume. Drever et al. �18� showed that the optimal RTL depends on the volume of the sphere. 

Their phantom measurements support our results. However, they did not derive the underlying 

theory. Hence, no prediction was �or could be� made how to implement the measurements in 

a clinical setting �based on a measurement of the PSF and an iteration procedure�.

The FWHM of the PSF is related, but not identical, to the spatial resolution of the PET scanner. 

According to the NEMA NU-2 standard �24�, the spatial resolution should be measured using 

filtered back-projection �without smoothing�. However, the FWHM was measured on iterative 

reconstructed images, to resemble imaging in the clinical setting. Using the NEMA NU 2-2001 

standard, we observed a FWHM of approximately 6 mm, significantly smaller than the FWHM 

of the PSF used in our analyses. I.e., our measured FWHM of the PSF is �by definition� not 

identical to the spatial resolution measurement according to the NEMA NU 2-2001 standard. 

Furthermore, the value of the FWHM of the PSF slightly depends on the position within the field 

of view and also in which direction it is measured. Depending on this position and the different 

directions, differences of typically 10% were observed within the FOV. Based on calculations, 

the impact on the RTL-results is expected to be small. Drever et al. �18� showed a detailed 

analysis of possible RTL-dependencies. Besides a dependence of the size of the object, as we 

also observed, they also noticed an SBR dependence, a voxel-size dependence and a slice-

location dependence. 
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The SBR dependence is a consequence of the finite wall-thickness of the sphere. As this wall 

does not accumulate FDG, the presence of this wall lowers the RTL. As illustrated in figurefigure 

12.4, we also observed a wall-thickness effect. We used a typical �average� SBR of 5. However,, we also observed a wall-thickness effect. We used a typical �average� SBR of 5. However, 

we also performed calculations with lower and higher SBR values. In general, when the SBR 

increased, the wall-thickness effect decreased. However, due to the statistical fluctuations in 

our phantom data we could not confirm, nor reject, this tendency experimentally. In clinical 

practice this issue is of minor importance. In general there will be no “wall” with zero FDG-

accumulation around the lesion.

In our study, the voxel-size dependence was neglected. However, an effect can be expected. 

E.g. if the centre of a sphere corresponds to the centre of a voxel, a different result will be 

obtained for the RTL than if this centre would correspond to a corner of a voxel. For sphere 

diameters larger than 10 mm, this effect is assumed to be negligible. This is supported by the 

RTL measurements that are described by our calculations over the full range of sphere sizes 

�10-60 mm�. With an image voxel size of 5.15×5.15×5.15 mm3, the smallest sphere-volume 

�D = 10 mm, V = 0.5 ml� is still about a factor 4 larger than the voxel size; for the second 

smallest sphere �D=13 mm, V=1.0 ml� this is already a factor of 7. Based on shifting the grid 

of voxels �image matrix� with respect to the centre of a sphere, such that this centre can be 

anywhere within a certain voxel, extra calculations confirmed that the effect of discretization 

into voxels is small. In the determination of the diameter using the RTL method, deviations of 

typically 1 mm can be expected �for D > 10 mm� with respect to the true diameter.

No slice dependency was included in our analyses. Normalization of the PET detector elements 

assured that fluctuations between slices were within a few percent and comparable to statistical 

noise. Therefore, no slice correction was needed. 

When the size of the sphere approaches �or gets smaller than� the FWHM of the PSF, there is 

a strong increase in the optimal RTL. For small spheres, the corresponding RTL is, therefore, 

prone to errors �illustrated by the relatively large error bars in figure 12.4�: a small change infigure 12.4�: a small change in�: a small change in 

size results in a large change in the optimal RTL. Hence, in clinical practice difficulties might 

be expected in volumetric quantification of small lesions. Furthermore, the RTL-method was 

shown to be diameter-dependent. I.e., the optimal RTL depends on the curvature of the object. 

Consequently, in case of non-spherical objects �e.g. ellipsoid-like objects� there is no unique 

RTL that can provide the contour of that object, precisely. However, for objects >15 mm the 

optimal RTL only slightly changes with the size �and thus with the curvature� of the object. 

Hence, a possible bias is expected to be small in clinical practice for lesions that are sufficiently 

large. Fortunately, it is the large lesions, that can extend to critical parts of the organ or to 

other organs, that are most interesting for accurate volumetric quantification. 
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As clinical PET images are acquired during �shallow� breathing, liver lesions are likely to be 

enlarged on PET due to the absolute displacement of the liver, which was found to be 13 mm 

on average �25�. This will influence the choice of the RTL in order to acquire the correct lesion 

delineation. Obviously, the biggest influence is to be expected for small lesions as these may 

shift more than their own size during breathing. The possible bias being introduced is not 

inherent to our method. The standard lesion-delineation methods using PET will be biased 

in a similar way. A possible solution to deal with breathing effects is to perform respiratory 

gating �26�.

Furthermore, in this study the anatomical location of the lesion was disregarded. It would be 

interesting to investigate the spatial overlap of volumes determined by the different modalities 

�PET and CT�. Image fusion is a tool to investigate similarity measures of lesion volumes 

determined by PET and CT. This way, one can learn about regions identified positive on PET and 

negative on CT, and visa versa. Moreover, it provides an additional validation tool �27,28�. Due to 

the difference in PET and CT breathing protocols, leading to liver deformations, we could not 

perform image fusion with sufficient accuracy for this specific application �29�.

In clinical practice, lesions will not be spherical, nor will the accumulation be uniformly 

distributed within the lesion. Also the activity concentration in the background will not be 

uniformly distributed. Another inherent limitation is the need to manually identify the lesion 

and normal background and thus introduce some operator-dependency. For these reasons, 

the proposed method should be considered as a first approximation to perform volumetric 

quantification with FDG-PET, which is amendable for further improvements. However, the 

other published methods suffer from the same limitations. Moreover, they lack a basis on 

both mathematics and phantom measurements, and are not supported by a patient feasibility 

analysis. In particular, using a fixed threshold �e.g. 50% of the signal, or a SUV of 2.5�, which 

is mostly done in clinical practice, may lead to errors in volumetric measurements that will not 

be observed with our proposed method. 

12.5	 Conclusion

An iterative background-subtracted relative-threshold level �RTL� method that is optimal for 

spherical objects of different diameters was derived, for lesion delineation and volumetric 

quantification with FDG-PET. This RTL-method has been shown to provide optimal threshold 

levels that take into account presence of background activity and are independent of the 

signal-to-background ratio. It is applicable in phantom and in patient studies using an iterative 

procedure, as the optimal RTL depends on a priori knowledge of the lesion volume �or diameter�. 

It is a promising tool for volumetric quantification of PET lesions.
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Abstract

Locoregional therapies for liver metastases, such as partial 
liver resection �PLR� and radiofrequency ablation �RFA�, 
require accurate delineation of malignant tissue. This is 
traditionally provided by CT imaging. Functional imaging 
with FDG-PET provides an additional tool for visualization 
of liver metastases, but suffers from uncertainties due to 
the relatively poor spatial resolution and not-straightforward 
lesion delineation. The aim of the study was to determine 
an optimized delineation procedure for size measurement of 
liver metastases on PET.

Methods: Studied were thresholds for PET based on multiple 
standard uptake values �SUV�, different percentages of the 
maximum lesion intensity �LI� and average background 
intensity �BI�, and an iterative relative thresholding level 
�RTL� technique which corrects for the influences of lesion 
size and background intensity. First, lesions were delineated 
in a phantom with hot spheres with known sizes, at different 
lesion-to-background ratios. Second, liver metastases were 
delineated on FDG-PET and CT in patients with colorectal 
carcinoma, prior to laparotomy. The true largest lesion 
diameters were determined at pathological examination or 
with combined intraoperative ultrasound and palpation, for 
PLR specimens and RFA interventions respectively.

Results: Phantom lesions could best be measured on PET 
using the RTL method, with an average error of 5 mm �range 
2 – 10 mm�. In the patient study, 7 metastases were resected 
and 6 were treated with RFA. True largest diameters ranged 
from 15 to 80 mm. Several SUV, BI and BL thresholds failed 
to generate adequate delineation in one or more cases, due 
to physiological background activity in the liver. Successful 
delineation could be achieved in all cases using SUV=4.0, 
LI=60%, BI=140%, RTL, and CT, with average errors in 
the measured largest lesion sizes of 9, 7, 8, 7, and 6 mm, 
respectively. There was no significant difference between 
any of these successful methods.

Conclusions: The size of liver metastases from colorectal 
carcinoma can be determined using PET, with an accuracy 
in the range of the image resolution, and comparable to 
CT results. Multiple lesion delineation methods for PET are 
suitable, of which the operator-independent RTL method is 
preferred. The well-known thresholds SUV=2.5 and LI=50% 
are inadequate for this specific application.
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13.1	 Introduction

Accurate imaging and delineation of liver metastases is gaining importance as more therapeutic 

options are becoming available, such as partial liver resections and radiofrequency ablation 

�RFA�. These locoregional interventions rely on accurate information about localization in 

relation to important structures such as blood vessels, and the exact size and shape of tumor 

sites �1,2�.

Multiple imaging modalities are available for detection of tumor tissue in the liver. Anatomical 

imaging with computed tomography �CT� provides tumor localization and anatomical reference 

with high spatial resolution, but the technique may suffer from a suboptimal sensitivity and 

specificity for liver lesions despite the application of intravenous contrast media, especially 

after previous therapeutic interventions �3,4�. Furthermore, uncertainties in the determination 

of lesion borders and size measurements may exist, because changes in tissue density and 

perfusion are also influenced by benign phenomena such as peritumoral edema.

Functional imaging with 18F-fluor-deoxy-glucose positron emission tomography �FDG-PET� can 

detect tumor tissue by visualization of glucose metabolism, with a high contrast resolution 

between benign and malignant tissues �5�. FDG-PET may be of value for tumor detection, 

delineation and measurement, especially where anatomical imaging is cumbersome, i.e. in soft 

tissues or in altered anatomy after surgical procedures �6-8�. The benefit of joined capabilities 

of CT �anatomical reference� and FDG-PET �sensitive tumor detection� have led to the clinical 

practice of correlation of images as obtained by PET and by CT, with synergistic results �8-10�.

Delineation and measurement of lesions is not straightforward in PET imaging. As the spatial 

resolution is relatively low, images tend to be somewhat blurry or noisy, and anatomical 

orientation is limited �11�. The determination of the “true” contour of FDG accumulation is 

addressed in different ways by various groups. Examples of delineation on PET in radiation 

oncology planning include visual interpretation �12,13�, contouring based on various thresholds 

such as a percentage of the maximum lesion intensity �14� or calculated SUV levels �15�, or 

contouring based on ratios between tumor and background intensities �16,17�. No consensus 

threshold exists for any of these methods, because they are all influenced by multiple factors, 

such as tumor size and shape, tumor metabolism, and surrounding background tissue 

metabolism. Specific experience in delineation of liver lesions, where physiological background 

activity is high, is limited. We have recently introduced a mathematically based method for 

volumetric quantification of PET lesions, independent of the tumor-to-background ratio, and 

adapted to blurring effects related to lesion size and scanner characteristics. This relative 

threshold level �RTL� procedure has been described in detail elsewhere �18�. The choice of 
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method and threshold level may have significant impact on measurement and delineation of 

lesions, as illustrated in figure 13.1. It is currently unknown which method performs best in 

delineation of liver metastases, and how this performance relates to CT-based contouring. 

Here, the potential of different PET delineation methods for measurement of liver metastases 

is evaluated, in comparison with CT, with pathology or intra-operative verification as a gold 

standard.

13.2	 Methods	and	materials

Phantom experiment

The phantom experiment was conducted to determine the impact of lesion intensity, lesion 

size, and background intensity on delineation and maximum diameter measurements of 

lesions, in clinically relevant ranges. A 6.5 liter Jaszczak phantom, with 7 hollow spheres 

with inner diameters of 10.1, 12.6, 15.9, 19.9, 25.0, 31.4, and 60.1 mm, was used. The 

activity concentration in the spheres decreased during the experiment from 25 to 6 kBq/ml, 

during which the background activity concentration was varied from 2.5 to 4.0 kBq/ml. Thus, 5 

subsequent scans could be acquired with signal to background ratios �SBR� 8.4, 7.2, 3.7, 2.4, 

and 1.8. The thickness of the plexiglass wall around the hot spheres was 1 mm. Hybrid PET/CT 

imaging parameters were identical to the clinical experiment described below.

Chapter 13

Table	13.1
Patients	and	lesion	characteristics.	*	=	PET	images	acquired	on	integrated	PET/CT.	RFA	=	Radio	
frequency ablation. The real maximum diameter of lesions was determined at pathological 
examination (for resected lesions) or intra-operative ultrasound and palpation (RFA lesions).

Patients Lesions Imaging intervals

Age

�Y�
M/F Lesion

Liver

segment

Lesion

shape
Treatment

Real max.

diam. �mm�

PET-CT

�days�

PET-oper.

�days�

A 60 F 1 III Irregular Resection 70 6 7
B 67 M 2 VI Irregular Resection 36 7 28

3 IVA Sphere RFA 25
C 48 M 4 IVA Sphere Resection 32 15 29
D 56 M 5 VI Sphere Resection 30 19 2
E 66 M 6 IVA Irregular Resection 70 5 22
F * 63 M 7 II,III,IV Irregular Resection 80 9 14
G * 66 M 8 IVB Irregular RFA 40 0 35
H * 77 M 9 I Irregular RFA 15 13 15
I * 66 F 10 III Sphere RFA 27 7 21

11 VII Sphere RFA 17
12 VIII Sphere RFA 37

J * 48 F 13 V Sphere Resection 25 7 28
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The �mean� background intensity �BI� concentration at each ratio was measured in a spherical 

volume of interest of 30 mm diameter within the Jaszczak phantom outside the region of the 

spheres. The lesion intensity �LI� was defined as the activity in the hottest voxel. Threshold-

based delineation was performed for all spheres at steady SBR �3.7�, and for all SBR’s at 

steady sphere diameter �31.4 mm�, being representative for the clinical series that was 

performed. Delineation was performed using 60% of the maximum lesion intensity �LI60�, 

140% of the average background intensity �BI140�, and the RTL �relative threshold level� 

method, as described below in the clinical experiment. These thresholds were the optimal 

methods for clinical evaluation, as will become apparent later on. Every voxel within the VOI 

with an intensity above the applied threshold was regarded pathological. From these voxels a 

3D volume was rendered, from which the maximum diameter was mathematically derived.

Clinical experiment

Ten consecutive patients �3 female, 7 male; mean age 62 years, range 48 – 77 years� with 

known liver metastases from colorectal carcinoma that were visible on both FDG-PET and 

CT, and who were considered candidates for curative locoregional intervention, were studied. 

Thirteen liver lesions were available for analysis, of which 7 were resected and 6 were treated 

with RFA. Patient and tumor characteristics are summarized in table 13.1.

Measurement of liver metastases on PET

Figure	13.1
Dependancy of measured maximum lesion diameter on the chosen threshold for delineation. Lesion 
number	12	on	CT	(a)	and	FDG-PET	with	contours	(green)	based	on	SUV	threshold	3.0	(b),	4.0	
(c),	5.0	(d),	7.5	(e),	and	10.0	(f),	respectively.	In	general,	a	higher	threshold	results	in	a	smaller	
measured	lesion	size.	The	graph	also	illustrates	that	multiple	thresholds	may	generate	visually	
comprehensive delineation (images c, d, e), while actually deviating significantly from the true 
lesion size. Other thresholds do not render adequate delineation (images b, f). In this specific case, 
SUV threshold 4.0 (c) correlated best with pathology findings.
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Imaging parameters

Prior to laparotomy all patients were imaged with dedicated contrast-enhanced CT and with 

FDG-PET, either as a stand-alone modality or as an integrated PET/CT. A maximum interval of 

5 weeks �35 days� was accepted between imaging and surgery �see table 13.1�.

Multi-detector row CT scan of the liver was performed: 4 patients using a Siemens Somatom 

Volume Zoom, 5 patients using a Siemens Sensation 16 and 1 patient using a Siemens 

Sensation 64 �Siemens, Erlangen, Germany�. The scan parameters were 120 kV and 130-200 

mAs. The beam collimation used was respectively 4 x 2.5 mm, 16 x 1.5 mm and 64 x 1.2 mm. 

Reconstructed section thickness was 3 mm. A non-contrast liver scan was followed by three 

distinct enhancement phases �arterial, portal and late venous phase� after administration of 

150 ml Xenetix �iodine 300 mg/ml; Guerbet�. Portal venous phase images were selected for 

evaluation and lesion delineation.

Dedicated FDG-PET scans were acquired using a Siemens ECAT Exact 47 PET-scanner 

�Siemens/CTI, Knoxville, Tennessee, USA�. A 3D emission scan of the upper abdomen was 

acquired during free breathing, 60 minutes after intravenous injection of 250 MBq FDG. A 

2D Germanium-68 based transmission scan was acquired for attenuation correction. The 

acquisition time per bed position was 5 minutes for emission and 3 minutes for transmission. 

Scans were reconstructed using the iterative OSEM algorithm with 2 iterations and 8 subsets, 

and with a 6 mm 3D Gaussian filter.

The most recent FDG-PET scans were acquired using a Siemens Biograph Duo hybrid PET/

CT scanner �Siemens/CTI, Knoxville, Tennessee, USA�, see table 13.1. For these scans the 

emission acquisition time was 4 minutes per bed position. Attenuation correction was based 

on low-dose CT images acquired during unforced expiration breathhold. Image acquisition and 

reconstruction were otherwise identical to dedicated PET imaging.

Image analysis

On PET images, liver lesions were delineated using in-house developed software for image 

viewing and analysis, based on the visualization toolkit VTK �19� and the insight segmentation 

and registration toolkit ITK �20�. For analysis, each solitary liver lesion was isolated in an ellipsoid 

volume of interest �VOI�, containing the lesion and an abundant margin of surrounding normal 

tissue. Lesion contours were determined within the VOI using multiple thresholding algorithms, 

based on different relations between lesion signal activity, lesion size, and background signal 

activity:

• Standard uptake value �SUV�: The SUV value was calculated for all voxels, using the 

formula MeasuredActivityConcentration	*	Bodyweight	/	InjectedActivity, with correction 

for decay to the time of injection. For thresholding, SUV levels 2.0, 2.5, 3.0, 4.0, and 5.0 

�denoted as SUV2,0 – SUV5,0� were chosen.

Chapter 13
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• Lesion intensity �LI�: The intensity of the most active voxel in the lesion was defined as 

100%. Multiple levels below 100% were chosen for separate thresholding, ranging from 

20% – 90%, at 10% intervals �denoted as LI20 – LI90�.

• Background intensity �BI�: The average background intensity �measured in a manually 

defined 3-dimensional ellipsoid VOI in visually normal liver tissue, with a diameter of ~50 

mm� was defined as 100% �BI100�. Multiple levels above BI100 at 20% intervals were used 

for thresholding �denoted as BI120 – BI200�.

• Relative threshold level �RTL�: As described earlier �18�, the lesion contours were iteratively 

determined using a background-subtracted threshold adapted to lesion size. The relation 

between lesion size and optimal threshold, valid for both PET systems being used, is 

shown in figure 13.2. First, the average background intensity �liver� and maximum 

lesion intensity were determined. Second, the lesion volume was estimated using an 

initial threshold level of 40% between background and lesion maximum. Based on the 

estimated volume, the threshold level was adapted to a theoretically better suitable value, 

as predicted by the associated border curve. Using the new threshold, the lesion volume 

was again estimated. This step was iterated 4 times, to converge to a final threshold.

Identical to the phantom experiment, a 3-dimensional volume was rendered subsequently 

from the delineation result, from which the maximum lesion diameter was mathematically 

derived. A delineation method was considered “successful” when >90% of the scanned lesions 

could be contoured with a result that was not clearly abject upon visual inspection.

On CT images, liver lesions were delineated using OncoTREAT �MeVis, Bremen, Germany� �21�. 

The software allows automatic contour detection of lesions within the liver based on differences 

in tissue density and contrast enhancement. Identical to analysis of PET images, detected Identical to analysis of PET images, detectedIdentical to analysis of PET images, detected 

lesion contours were used to generate a 3-dimensional surface map, from which the maximum 

lesion diameter and lesion volume were mathematically derived.

Measurement of liver metastases on PET

Figure	13.2
The	relative	threshold	level	(RTL)	
denotes	the	theoretically	optimal	
threshold	level	for	a	lesion	of	a	
given	size.	The	shape	of	the	curve	is	
explained by the convolution of the 
sphere	and	the	measured	point	spread	
function.	Because	the	size	of	a	lesion	
is	unknown,	the	optimal	position	at	the	
curve is identified iteratively for each 
separate	lesion.
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Verification of lesion size

For patients undergoing partial liver resection, the diameter of lesions was evaluated by 

pathological examination. Resected specimens were subjected to standard slicing in 3 mm 

sections, parallel to the largest diameter as determined by palpation. The maximum diameter 

was measured in the plane with the largest tumor section. For all other patients, the largest 

diameter of lesions was determined by consensus interpretation of intra-operative ultrasound 

by an experienced radiologist, and palpation by an experienced liver surgeon. Unfortunately, 

neither pathological examination nor intra-operative ultrasound could reliably establish the 

total tumor volume.

Chapter 13

Figure	13.3
The influence of lesion intensity (for lesion size=31.4 mm) and lesion size (for SBR=3.7) on several 
methods	for	measurement	of	lesion	diameters.	The	BI140	and	LI60 methods may suffer from extreme 
deviations, especially at low SBRs and for small lesions. The RTL method eliminates the influence 
of	the	intensity	ratio	between	lesion	and	background,	and	reduces	the	impact	of	the	lesion	size	on	
measurement results. A small deviation remains even for RTL measurements, due to the artificial 
‘cold’	border	between	lesion	and	background	that	is	present	in	the	phantom	model.

Figure	13.4
Longitudinal	slice	through	a	liver	
metastasis	for	measurement	of	the	largest	
diameter.	Measurements	are	complicated	
by	the	irregular	shape	of	the	lesion.	
Furthermore,	slight	deformation	of	these	
soft	tissues	is	likely	to	occur	because	of	
handling	pressure,	as	illustrated	by	the	
apparent	difference	in	size	of	the	both	
lesion	halves.
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Statistical analysis

Differences in the largest diameter of liver lesions between various delineation methods on 

PET, contrast-enhanced CT, and pathological or intra-operative verification, were calculated 

using Bartlett’s test, with the level of significance set at 0.05.

13.3	 Results

Phantom experiment

The results of the phantom experiment are depicted in figure 13.3. All phantom measurements 

suffered from a systematical bias, that was attributed to the influence of the cold 1 mm wall of 

the spheres �22�. As this phenomenon does not play a role in clinical imaging, it was not further 

evaluated. The true inner diameter of the 31.4 mm sphere was reliably reproduced at all SBRs 

by the RTL method, when disregarding the systematical bias �an underestimation of ~4 mm 

on average�. The LI60 and BI140 were both less accurate and showed strong dependency of the 

SBR, with deviations of the real sphere diameter up to –7.2 mm and +9.2 mm respectively, 

including the systematical bias. The spectrum of sphere diameters could not be reproduced 

reliably by either the LI60 or the BI140 methods. Extreme deviations occurred especially in 

the range of the smaller spheres, with errors up to –10.1 and +28.1 mm for LI60 and BI140 

respectively. The RTL method was also influenced by the sphere size, due to the increasing 

relative impact of the wall thickness on the bias for smaller spheres, but clearly showed less 

dependency.

Clinical experiment

Thirteen liver lesions were evaluated, with an average maximum diameter of 39 mm �range 

15 – 80 mm� at pathological or intra-operative verification. An example of a liver metastasis 

measured at pathological evaluation is shown in figure 13.4. The average time interval between 

PET and CT imaging was 7 days �range 0 – 35 days�, and between PET imaging and surgery 

20 days �range 2 – 35 days�.

A clear relation was found between the chosen threshold and the measured tumor size, for all 

SBR-dependent methods �i.e. based on SUV, LI and BI�. Lower thresholds carried a risk for 

inclusion of large volumes of normal liver tissue, while higher thresholds frequently excluded a 

significant part of the tumor volume. This relation varied among lesions and was unpredictable 

�figure 13.5�.

SUV based evaluation frequently failed. Only SUV4,0 could produce a successful result in >90% 

of cases. Besides SUV4,0, the methods LI50, LI60, LI70, BI120, BI140, BI160, and RTL were also 

successful; further statistical analysis was performed on these methods �see table 13.2�. The 

best results were achieved using methods LI60, BI140, and RTL, all with 100% success rate, an 

Measurement of liver metastases on PET
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absolute average deviation from the gold standard <10 mm, and a standard deviation between 

measurements <10 mm. None of these methods proved significantly better than any other 

�Bartlett’s test P > 0,1 in all combinations�.

The RTL based method showed a tendency to perform better with spherical lesions, as compared 

with irregularly shaped lesions �average deviation range –12 – +1 mm, S.D. 5 mm, versus 

range –21 – +9 mm, S.D. 11 mm, respectively�, although this difference was not significant 

�Bartlett’s test P=0,08�. A similar influence of spherical lesions was seen for all delineation 

methods, as illustrated in figure 13.6.

CT based evaluation was successful in 100% of cases, and showed an absolute average 

deviation from the gold standard of 7 mm, and a standard deviation between measurements 

of 6 mm.
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Table	13.2
Delineation	
results.	*	=	
Techniques	
that	succeeded	
in	delineating	
more	than	
90%	of	lesions	
with	a	visually	
acceptable	
result,	and	were	
thus	suitable	for	
further	statistical	
analysis.

Measured maximum lesion diameter,

deviation from gold standard

Protocol Succes rate �%�
Absolute

average �mm�

Relative

range �mm�

S.D.

�mm�

CT 100 * 7 -8 – 19 6

PET SUV2,0 0

PET SUV2,5 31

PET SUV3,0 62

PET SUV4,0 100 * 9 -30 – 16 13

PET SUV5,0 77

PET LI20 15

PET LI30 46

PET LI40 77

PET LI50 92 * 7 -12 – 16 8

PET LI60 100 * 8 -15 – 10 8

PET LI70 100 * 10 -30 – 7 9

PET LI80 54

PET LI90 15

PET BI120 92 * 12 -4 – 21 8

PET BI140 100 * 7 -10 – 19 8

PET BI160 100 * 8 -21 – 16 11

PET BI180 85

PET BI200 62

PET RTLiterative 100 * 7 -21 – 9 8



20�

13.4	 Discussion

The results of the current study validate the use of maximum tumor diameter determination on 

PET images using the RTL method in clinical practice, theoretically independent of the tumor-to-

background ratio, correcting for the lesion size, and independent of observer factors �besides�besides 

definition of a normal tissue background region�, with a success rate of 100%. We consider, with a success rate of 100%. We consider 

the accuracy of the measurements adequate, as the average error of 7 mm approximates the 

image resolution that can be achieved in the abdominal region using current PET scanners, 

and is comparable to the results achieved with state-of-the-art CT-based delineation. It is likely 

that volumetric quantification using RTL is also adequate, but this could not be confirmed in the 

current study design due to lack of a gold standard for volumetric analysis.

The other methods for tumor delineation on PET �i.e. SUV, LI, and BI� were all influenced 

by the threshold that was chosen, thus rendering these methods observer-dependent. The 

fixed threshold SUV2,5, that is often used to attempt discrimination of malignant and benign 

tissues �23�, proved unsuitable for size measurement of liver lesions in this study, with a success 

rate of only 31%. This is caused by the relatively high background activity in normal liver 

tissue, which was in the range of SUV ~2 in most patients. For SUV-based delineation, a 

threshold higher than 2.5 for discrimination of benign and malignant lesions in the liver has 

been advised before, e.g. 3.5 by Delbeke et al. �24�. In our setup, SUV4,0 yielded reasonable 

results, but with a larger spread than other methods. Furthermore, calculated SUVs may 

vary considerably between different scanners, or even between repeated measurements of 

the same patient �25-27�. We consider SUV-based methods suboptimal for evaluation of liver 

metastases.

Measurement of liver metastases on PET

Figure	13.5
Relation	between	the	measured	
maximum lesion diameter 
and	the	chosen	threshold	for	
delineation.	A	higher	threshold	
results	in	a	smaller	measured	
lesion	size.	However,	this	
relation	is	unpredictable	and	
lesion-specific, depending on 
factors	as	lesion	intensity,	size	
and	shape,	and	background	
intensity.	No	single	threshold	can	
accurately	delineate	all	lesions.
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The methods LI60 and BI140 both achieved the same accuracy as RTL in this series. Where 

the RTL technique is not available, these methods may be used as an adequate alternative. 

Nevertheless, on theoretical grounds, the RTL technique seems preferable because a better 

result is predicted for relatively large and relatively small lesions �18�. The other BI and LI based 

thresholds were suboptimal, due to a low success rate or a larger spread in measurement 

results. 

It is of concern that many of the rejected methods could produce visually reasonable lesion 

contours, while deviating significantly from the true lesion size. For many lesions, visually 

comprehensible delineation could be provided using rather extreme thresholds such as LI30 

and LI80 �non-zero success rates in table 13.2�. Thus, mere visual assessment is a suboptimal 

instrument for recognition of valid lesion delineation. Furthermore, widely-used methods could 

fail entirely in generating a comprehensible delineation for a specific lesion. For example, the 

widely used 50% contouring �LI50� method failed in one case, and the SUV2,5 method failed in 9 

cases out of 13. These issues once again emphasize the need for methods that do not depend 

on observer, lesion, or background factors.

Effect of lesion shape

The RTL method was designed for accurate evaluation of spherical lesions, based on correction 

of point-spread blurring effects at the curved border of a sphere. This explains the good results 

for spherical lesions, as compared to irregular shaped lesions �average absolute error 5 mm 

versus 13 mm�. In our experience with PET, the occurrence of spherical liver metastases is 

approximately equal to those with irregular growth and central necrosis �7 out of 13 spherical 

in this study�. A further improvement for evaluation of irregular lesions can be expected when 

the RTL method can be adapted to correct for local differences in border curvature.
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Figure	13.6
Regardless	of	the	applied	
measurement	method,	size	
measurement	appeared	more	
accurate	for	sphere-like	lesions	than	
for	irregularly	shaped	lesions.	This	
is	illustrated	by	larger	deviations	
from the gold standard in maximum 
diameter	measurements,	for	
irregularly	shaped	lesions.
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Variances in metabolic rate within a single lesion pose an additional problem. Currently no 

method exists to discriminate inhomogeneous lesions from irregularly shaped lesions. This 

will continue to compromise lesion delineation using PET. The RTL method is therefore 

recommended for spherical lesions and homogeneous lesions, while lesion size definition for 

inhomogeneous lesions has to be cautiously interpreted using any method.

Micrometastases �<1 cm� form a separate category. In general, FDG-PET is not adequate 

for detection of micrometastases in the liver, due to the relatively poor image resolution 

and relatively high background uptake in normal liver tissue �11,28�. When small lesions are 

detected, signal intensity may be only marginally higher than the background, thus limiting the 

possibilities for thresholding. On theoretical grounds, delineation and volumetric quantification 

of – sufficiently intense – small lesions may theoretically best be performed using the RTL 

method �18�. In small lesions with very low intensity, and lesions approaching the voxel size, 

attempts to delineate on PET are discouraged.

Imaging

In this study, PET delineation and size measurements were compared with CT imaging. It 

is known that CT is not flawless with regard to detection of liver metastases, despite the 

application of intravenous contrast �29,30�. However, CT imaging does represent the current 

clinical standard of care. The fact that CT and PET performed similar at size measurement of 

liver metastases, when an adequate PET delineation method was used, supports the conclusion 

that clinical value can be derived from both imaging modalities. Uncertainties and inaccuracies 

may have been introduced in this study due to a change of equipment. Early PET scans were 

acquired using a dedicated PET camera, later scans using an integrated PET/CT scanner �table 

13.1�. Although some imaging characteristics varied among the scanners �e.g. voxel size, 

detector efficiency�, the point-spread-function and effective image resolution �FWHM� were 

similar. When using an entirely different scanner, or e.g. a different image reconstructionWhen using an entirely different scanner, or e.g. a different image reconstruction 

protocol, the RTL method remains valid as long as the point-spread function is adjusted. SimilarSimilar 

effects may also apply for the LI and BI-based methods. It may be advised to determine the 

characteristics of a specific camera, and validate size measurements, before using any kind of 

lesion delineation. In this study, no significant differences could be demonstrated between the 

results achieved with the dedicated PET and integrated PET/CT scanners �data not shown�.

Limitations of the approach

Determination of the maximum lesion size in pathological examination is not trivial. The choice 

of the slicing plane was based on palpation �ex vivo� and may have been suboptimal. Small 

tumor bulges may have existed just off the slicing plane. Nevertheless, this technique was 

considered the approach closest to a gold standard. Complete volumetric analysis of excised 

lesions was considered technically not feasible.

Measurement of liver metastases on PET
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The alternative of intra-operative ultrasound combined with intra-operative palpation, in 

consensus by an experienced radiologist and an experienced surgeon respectively, may be 

slightly less accurate as compared to pathological examination. Some lesions were located in 

the central �deep� part of the liver, compromising both palpation and ultrasound, and further 

bias may be caused by extensive peri-tumoral edema �31�. Some have applied CT imaging 

as the gold standard �32�, although we feel that evidence for such an approach is limited. 

Our results do demonstrate good correlation between PET and CT measurements, as well as 

between CT and pathology measurements.

Time interval

Liver metastases may be rapidly progressive in size and number, or may develop central 

necrosis over time. This implies that a short time interval between different imaging modalities 

and operative verification is required for adequate correlation of results. In this study, the 

intervals between imaging modalities �average 9 days, max. 35 days�, and between FDG-PET 

and surgery �average 20 days, max. 35 days� were considered reasonable. Nevertheless, tumor 

growth in the interval between imaging and surgery may in part account for the systematical 

underestimation of lesion sizes �4 mm on average when using the RTL measurements on PET�. 

A prospective study could overcome this issue, if a repeated PET and CT can be incorporated 

directly prior to surgery.

It can be concluded that the size of liver lesions can be determined accurately using PET and 

the RTL algorithm, with an average measurement error in the range of the image resolution 

of the scanner, which is comparable with CT-based delineation. It is uncertain whether a 

higher accuracy can be determined using current PET scanners. No diagnostic technique can 

provide size measurements or delineation as an absolute gold standard, because the presence 

of a tumor capsula, microscopic tumor bulges and satelites, peri-tumoral edema, reactive 

inflammation, and changes in vascularization, all influence evaluations of any kind. The current 

accuracy achieved with PET may suffice for clinical implementation, i.e. planning of partial 

liver resections or RFA procedures. A further benefit would be needed not from improved size 

measurement, but from better localization and orientation in relation to anatomical structures 

�e.g. blood vessels and intrahepatic bile ducts�. 

For localization purposes, multimodality imaging may be of added value. Vascular structures 

can be identified on anatomical imaging such as CT and MRI, but not on FDG-PET. On the other 

hand, PET imaging is appreciated for its sensitive tumor detection, even in an anatomically 

deformed liver after previous therapeutic interventions �6,7�. The added value of integrated 

PET/CT imaging for liver lesions has been widely recognised �8,33,34�, although breathing motion 

differences in the region of the diaphragm may be of relevance �35�. Fused image sets of liver 
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lesions are not yet perfect in the current implementations of PET/CT, as well as in other 

combinations such as PET/MRI. Currently, estimation of the size of liver lesions using RTL based 

analysis of PET imaging in combination with co-localization relative to vessels as provided by 

CT or MRI seems the best that can be achieved. More research and development of improved 

image registration techniques seems a prerequisite for further clinical implementation of 

multimodality evaluation of liver metastases.

13.5	 Conclusions

The size of liver metastases from colorectal carcinoma can be determined accurately using 

PET imaging and the RTL algorithm, with an average measurement error in the range of the 

image resolution of the scanner, and comparable with measurements on CT images. When RTL 

is not available, lesion contouring using 60% of the maximum lesions intensity or 140% of the 

background intensity seem adequate alternatives.
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14.1	 	 Advances	in	PET	imaging

Although the first positron emission tomography �PET� scanner has been built as early as in 

1953, improvements are constantly being achieved in e.g. image quality, determination of 

diagnostic value, and in the selection of indications �1�.

Image quality

Spatial resolution, contrast resolution, and noise levels are relevant parameters in the diagnostic 

performance of PET imaging. The image quality is influenced by many factors, such as scanner 

resolution and sensitivity, positron range �2�, injected activity �3�, biodistribution time, patient 

characteristics, and image reconstruction. All these factors require specific optimizations.

Multiple improvements in scanner design are to be expected in the coming decade, with 

significantly better image quality as a result. Examples are more efficient detection of photons, 

incorporation of annihilation photon flight time information �4,5�, and adaptation of scanner 

design to specific clinical requirements �6-8�. However, these advances are not the only issues 

that require attention. Several of the abovementioned factors in image quality are not scanner-

related. Therefore, additional efforts need to be directed at patient-related factors, such as 

weight-adapted activity administration, adapted acquisition time per bed position, adapted 

biodistribution times, and optimized image reconstruction. An example of the latter is the 

improvement of the diagnostic yield of FDG-PET through adaptation of image reconstruction 

parameters to low photon-attenuation in the head and neck area �chapter 3�, or other specific 

body characteristics �e.g. children or adipose patients�. Incorporation of such factors may 

lead to a more variable approach to PET imaging, tailored to a specific patient and a particular 

disease. As a consequence, advances beyond the current imaging quality will require a more 

active role of individual nuclear medicine departments.

Radiation dose

An additional benefit of improved scanner efficiency lies in dosimetric considerations. In 

Europe, traditional protocols require an injected activity in the range of 200–400 MBq FDG with 

an average of 370 MBq �3�. Such doses allow wholebody emission acquisition in 20-30 minutes 

while delivering an acceptable effective radiation dose of 4-8 mSv to the patient. Recent 

technical advances have already allowed the same image quality while reducing either the 

injected activity or the acquisition time by half, or with a balanced benefit of both factors �5�. 

Optimal PET imaging involves a balance between injected activity, patient throughput per 

�expensive� scanner, and achieved image quality. In the current economical timeframe, high 

thoughput is a necessity in many diagnostic centers. From the patient’s perspective, it is to 

be hoped that better availability of PET imaging will soon allow a more prudent throughput, 

resulting in a lower radiation dose while refraining from compromises to image quality.
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Standardization of imaging

The abovementioned considerations apply according to local factors. This has led to differences 

between neighbouring imaging centers, in image quality, diagnostic value, and applied radiation 

dose. This may result in unacceptable impact on e.g. SUV quantification �9� or clinical value, and 

underlines the importance of standardized imaging protocols. Current efforts are focussed on 

reduction of inter-hospital differences in acquisition and quantification of PET analysis �9�. As a 

subsequent step, minimal requirements could be formulated with regard to scanner sensitivity, 

image quality, and delivered radiation dose.

Tracer development

A further benefit may be achieved with new radiopharmaceuticals. FDG has been the most 

widely used tracer for years, because of a favorably high lesion-to-background ratio for 

many disorders, and thus a very high sensitivity. Nevertheless, FDG does have drawbacks. 

Accumulation in both malignant and benign �inflammatory� diseases limits specificity. Many 

tracers are being developed that promise to be more specific, such as 18F-FLT for imaging of 

DNA synthesis in primary tumors and its metastases �10�. These new radiopharmaceuticals 

need proper validation prior to clinical implementations, because not all expectations may be 

fulfilled �i.e. staging of lymph nodes with 18F-FLT in cancer of the head and neck area, chapter 

8�. Other promising examples currently under investigation include 18F-FET for specific tumor 

imaging by visualization of protein synthesis �11-13�, and 11C-acetate for imaging of non FDG-

avid malignancies �14,15�. 

Theoretically, short-lived radionuclides may be preferred to 18Fluor. These nuclides often deliver 

a relatively low radiation dose and allow multiple acquisitions per day, although this will require 

the introduction of on-site cyclotrons or generators as standard facilities. Much work still needs 

to be done to expand the spectrum of clinically useful tracers.

Indications

As PET imaging requires medical resources and utilizes ionizing radiation, clinical indications 

need to be carefully selected. Important criteria are measurable benefits for the patient, e.g. 

fewer complaints and complications, less futile invasive procedures, a longer disease-free 

interval, or ultimately a longer survival due to better selection or optimization of treatment. 

Research has resulted in a clear benefit of FDG-PET, as illustrated by current protocols in 

the Netherlands, for e.g. diagnosis and staging of lung cancer �16�, metastatic colorectal 

cancer �17�, and lymphoma. When PET does not provide sufficient clinical benefit, it should not 

be incorporated in clinical practice, as was demonstrated for staging of clinically node-negative 

head and neck cancer �chapter 4�. 
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14.2	 Molecular	imaging

The concept of molecular imaging is not limited to nuclear medicine, as selected molecules 

can be visualized in vivo with other techniques as well �18�. Substitution of the radioactive label 

with a fluorescent label allows a similar approach using optical fluorescence imaging, while 

a paramagnetic label allows imaging using magnetic resonance imaging �MRI� and magnetic 

resonance spectroscopy �MRS� �19�.

New applications of molecular imaging are suggested frequently. Recent examples 

include exciting new fields such as monitoring of gene therapy �20,21�, imaging of stem cell 

differentiation �22�, and adaptation of external beam radiation therapy to various local tissue 

characteristics �23,24�. Molecular imaging modalities each have their characteristics and require 

validation and positioning in clinical practice, either alone or in an integrated approach.

Molecular imaging modalities

Optical imaging, with its very high spatial and temporal resolution, is limited to analysis of 

superficial tissues due to the physical characteristics of �near infrared� visible light �25�. This 

restricts applications to small animal imaging, ex vivo imaging of tissues, and superficial 

lesions. In the currents implementation of optical imaging, the acquisition of a quantitative 

signal is still a challenge �26�.

�Functional� MRI provides in vivo imaging throughout the body with high spatial and temporal 

resolution �27,28�. Currently, the number of available paramagnetic molecules is still limited, but 

expanding. Downscaling of the relatively high paramagnetic tracer dose remains a challenge. 

Furthermore, the technique is usually limited to a region of interest within the body due to the 

relatively long image acquisition times, and exact quantification is still an issue �29�.

PET imaging provides whole-body and quantitative biodistribution imaging in both small 

animals �30� and humans �31�. The excellent sensitivity allows imaging of many biologically active 

molecules in physiological quantities. On the other hand, spatial resolution is relatively low and 

the technique inherently results in a radiation burden to the patient and, to a lesser extent, 

to the operators.

The abovementioned characteristics overlap in many aspects for the various imaging 

techniques. As the chemical procedures for labeling and the approaches to interpretation 

are comparable for the respective imaging modalities, collaboration in research is needed. 

Many disciplines, such as pathology, radiology, radiation oncology, and nuclear medicine use 

implementations of molecular imaging for their research. Coordinated use of knowledge and 

equipment can provide an effective integrated research setting in terms of productivity and 

costs. This approach requires logistical cooperation, rather than technological advances. The 
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success of an integrated approach is currently illustrated by the good results of emerging 

multidisciplinary imaging	centers, where education, research and clinical diagnostics surpass 

departmental borders. 

14.3	 Advances	in	multimodality	imaging

Developing technology and constantly increasing evidence, as described for PET imaging, are 

unabatedly applicable to multimodality imaging. It is only just becoming clear in which cases 

molecular imaging with PET has clinical value as a standalone modality, or in addition to 

anatomical imaging or other functional imaging modalities. And when both functional and 

anatomical imaging are available, it is an unresolved issue in what way the images may best 

be correlated or combined �chapters 2 and 9�. 

Nevertheless, technical advances have already allowed the development of integrated PET/CT 

scanning devices �32�. Some scientific evidence of the added value in general application of 

these devices has been published �33,34�, as well as support for some specific clinical indications. 

However, at present there is insufficient evidence to classify the supposed supremacy of hybrid 

PET/CT over dedicated imaging as “evidence based medicine”. Nevertheless, these combined 

devices have found their way into many hospitals, although several important issues have not 

yet been resolved �chapters 2 and 11�.

Clear strong points of integrated PET/CT scanning – convincing although difficult to prove 

– are the logistical benefit and the improved understanding of fused images. Many groups 

have demonstrated the additional value of integrated imaging on clinical decision making and 

therapy planning �34-38�. Based on these considerations, it is to be expected that integrated 

PET/CT scanners will prevail.

Given this assumption, it is important that the drawbacks of this technique are acknowledged 

�i.e. imperfect image registration and attenuation correction artefacts, chapter 2�, to allow 

proper selection of protocols and adaptation of reviewing �chapter 11�. With these precautions, 

integrated PET/CT in its current state may be considered a safe and adequate solution until 

better alternatives will be developed. A first and important improvement could be expected 

from re-introduction of “classical” transmission imaging for attenuation correction in hybrid 

PET/CT �chapter 11�, possibly synchronously acquired during emission imaging �39�. A second 

strategy that deserves further evaluation is breathing-gated acquisition of both PET and CT, to 

eliminate motion and positional differences between the image sets �40,41�.
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SPECT/CT

Many of these issues apply to integrated SPECT/CT scanning as well �42�, although to a lesser 

extent. The lower spatial resolution of SPECT studies will bring image correlation to a coarser 

and less critical scale. Attenuation correction can be applied using CT images with less risk for 

artefacts, because the applied gamma photons tend to have photon energies closer to X-ray 

photons. SPECT images may benefit even more from correlation with anatomical imaging than 

many PET studies �43�. Similar to integrated PET/CT, the combination of SPECT and CT seems 

to benefit interpretation and understanding of the images �44-47�, and is thus likely to gain 

popularity. Nevertheless, SPECT/CT is a new technique with specific issues, that need proper 

validation �48�.

PET/MRI

Molecular imaging with PET generally involves evaluation of �processes within� soft tissues, 

for which correlation with CT may not be the optimal choice �chapter 9�. Many soft tissue 

processes can be localized and delineated with better contrast and accuracy using MRI. 

Therefore, a combination of PET with MRI may be preferable. As a secondary benefit, MRI does 

not contribute to the radiation dose, as does CT. The combination of PET and MRI in one single 

device is a major technical challenge. However, a working proof of concept has already been 

demonstrated �49�, and clinical scanners may be expected within the next 5 years.

Software fusion

Where integrated imaging is not available, and for combinations of scans other than PET/CT 

or SPECT/CT, software fusion of dedicated image sets remains an attractive alternative. As 

described in this thesis, software fusion is adequate in organ-focused approaches. Examples 

are the head and neck area when rigidly fixed �chapter 6�, and the liver when isolated from 

surrounding organs �chapter 10�. Intuitively, other organ-focused methods will perform similarly, 

when tailored solutions for specific problems are addressed. Based on our experiences and the 

lack of validated tools, unrestrained image fusion of whole-body studies must be discouraged, 

or should be interpreted with sufficient reserve. This also applies to upcoming non-rigid 

�elastic� software fusion. Algorithm-based 3-dimensional deformation of image sets is unlikely 

to behave identical to a human body, including unpredictable phenomena like parenchymal 

deformation and pleural displacement. Corruption of images and subsequent misinterpretation 

need to be ruled out by supporting evidence, prior to clinical implementation. 

In summary, integration of images can be useful and will continue to expand its field of 

applications, but is yet to find its final place and implementations. 
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14.4	 Localization	and	delineation	of	disease

Exact anatomical localization and delineation of disease is essential for both diagnostic 

procedures and planning of therapeutic interventions. Many imaging modalities can contribute 

to this clinical challenge, but no single modality can delineate any type of lesion with 100% 

accuracy. Therefore, the individual characteristics of imaging techniques need to be weighed, 

and may be combined as a logical next step.

Despite its superior contrast resolution, the place of FDG-PET imaging in the spectrum of 

available modalities is not fully elucidated. A relatively poor spatial resolution and “blurry” 

appearance of lesions demand a tailored approach to lesion delineation, of which many 

different implementations currently exist, each with their own characteristics and applications. 

Examples are visual analysis, contouring based on lesion or background signal intensities, and 

adaptive thresholding techniques based on different variables. The choice of strategy depends 

on locoregional tissue and scanner characteristics. For example, blurring, noise and diffuse 

background activity have a strong influence in PET imaging of the liver �chapters 12 and 13�, 

while variable uptake in surrounding normal tissues is the most important limiting factor for 

delineation of tumor in the head and neck area �chapter 7�. Several advances have been 

described in this thesis, but many questions remain, and lesion delineation with PET is still an 

issue. Further steps are necessary, and will be easier to take when images with higher spatial 

resolution become available.

As in any clinical application, for lesion delineation the advantage of PET �sensitive lesion 

detection� must be weighed against advantages of other imaging modalities, such as 

ultrasound, CT, and MRI �good spatial resolution and anatomical orientation�. For the head and 

neck area, reliable PET/CT image registration with an accuracy in a clinically acceptable range 

could be verified in this thesis �chapters 5 and 6�, with subsequent successful application in 

external beam radiation treatment target volume definition �chapter 7�. However, in the upper 

abdominal area, integrated PET/CT imaging in its current state cannot guarantee perfect image 

registration �chapters 2 and 11�. As shown in this thesis �chapter 10�, specific software fusion 

for multimodality imaging of the liver can be highly optimized, but is laborious compared 

to hybrid PET/CT imaging. Lesion delineation in the liver was validated for both PET and CT 

�chapter 13�, but the procedure as a whole will further benefit from new optimizations in image 

registration.

These experiences once again suggest that lesion delineation requires a tailored approach, 

optimized to locoregional tissue characteristics and multimodality imaging possibilities. Much 

work is to be done in this area of diagnostic imaging.
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14.5	 Standardization	in	medical	imaging

The purpose of modern medicine is proven benefit for patients in prevention, curation, and 

supportive care. Determination of such benefit is complicated in current medical imaging, 

due to overlapping indications for the various anatomical and functional imaging techniques. 

This has resulted in implementations adapted to local possibilities and preferences. Selected 

imaging modalities are applied with different �and ever improving� parameters that are locally 

available and that may influence clinical value �e.g. CT scanners with an increasing number 

of parallel detector rows, MRI scanners with increasing field strength and novel imaging 

sequences, and a variety of contrast enhancing substances�. Furthermore, within a single 

imaging modality, imaging devices from different manufacturers may vary in specifications. 

The spectrum is further extended by innovative visual representation methods such as 3-

dimensional reconstructions, computer aided diagnosis, and image fusion. Such advances are 

promising and find rapid acceptance in clinical strategies. But at this point it is difficult to 

determine the relative value of different approaches, with regard to patient benefit or cost 

effectiveness. These factors result in highly variable implementations and interpretation of 

diagnostic strategies across hospitals �50�. It has become a challenge to determine which 

diagnostic tests are most appropriate for a specific entity or disease.

The rapidly increasing number – and high turnover – of available diagnostic strategies also 

complicates the setup and interpretation of multi-center trials �50�. The majority of recent 

scientific publications on diagnostic imaging comprise single-center studies, as exemplified 

by this thesis. Such research must be interpreted in the perspective of local opportunities and 

experience. 

In the forthcoming years, some of the abovementioned issues will be resolved. At the same 

time, however, new issues are likely to arise from novel diagnostic techniques, such as e.g. 

new PET tracers and integrated PET/MRI. From the patient’s perspective, a critical attitude 

towards new technological achievements remains important.

14.6	 Cancer	in	the	head	and	neck	area

The final positioning of PET in imaging of cancer in the head and neck area still requires an 

effort. Few generally accepted protocols exist for either primary diagnostic imaging, staging, 

relapse detection, re-staging, therapy monitoring, or therapy planning with FDG or any other 

PET radiopharmaceutical.
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The protocols that do exist all apply to FDG, for imaging and treatment monitoring of primary 

tumors. However, FDG-PET is not an ideal technique for imaging of malignancy in the head and 

neck area, due to visualization of concurrent local inflammation, especially during and shortly 

after treatment. FLT and other more specific tracers than FDG hold much promise for better 

delineation and characterization of tumors �51�.

For initial lymph node staging, FDG-PET imaging cannot contribute to standard imaging 

protocols �chapter 4� despite extensive optimizations �chapter 3�, and FLT is not the solution 

either due to confounding B-cell proliferation �chapter 8�. Nevertheless, several new approaches 

have already been suggested, e.g. staging with acetate �52�, treatment monitoring with FLT �53�, 

integration of PET with diagnostic CT �54�, and correlation with MRI �55�. The clinical value of 

these new approaches is yet to be determined.

14.7	 Liver	metastases	from	colorectal	cancer

In parallel, imaging of liver metastases remains challenging. Lesions may be very small, 

irregularly shaped, isodense with surrounding normal liver tissue, and with limited changes in 

perfusion. This poses problems for each of the applied imaging modalities.

Lesion delineation with FDG-PET can now be performed with uncertainties in a similar range 

as with CT imaging, as shown in this thesis �chapters 12 and 13�. The number of studies that 

suggest a clinically significant place for FDG-PET imaging of liver metastasis is increasing �56,57�. 

However, FDG is not the ideal PET tracer for imaging of liver metastases, due to uptake in 

normal liver tissue. As a consequence, adequate delineation of small liver metastases is 

difficult �57�. Future improvements in scanner efficiency and resolution will contribute positivelyFuture improvements in scanner efficiency and resolution will contribute positively 

to this issue, but will not resolve it entirely. New tracers with improved lesion-to-background 

ratios are awaited, but not expected within the foreseeable future.

The combination of FDG-PET and �contrast-enhanced� CT for imaging of liver metastases is 

valuable �58-60� �chapters 9 and 13�, but not perfect �chapters 10 and 11�. Breathing-related 

misalignment and artefact issues play a prominent role in the area of the diaphragmatic dome 

in current integrated PET/CT imaging. For lesion delineation and correlative localization with 

anatomical structures, artefact-free well-correlated images are crucial. These requirements 

may be achieved through re-implementation of “classical” transmission imaging in integrated 

PET/CT, and/or gated acquisition of both PET and CT images. While such optimizations are 

awaited, registered image sets need to be interpreted with caution. Meanwhile, software fusion 

of dedicated PET and CT can provide reliable correlation on an incidental basis �chapter 10�.
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15.1	 Summary

Several advances in functional and multimodality imaging were discussed in this thesis. 

The characteristics of PET and combined PET/CT imaging were reviewed �chapter 2�, and 

subsequently, multiple hypotheses and possibilities regarding improved imaging were tested, 

with implications for clinical PET imaging.

Diagnosis and therapy of cancer in the head and neck area

The image quality of PET was optimized for detection of cancer in the head and neck area 

�chapter 3�, resulting in better lymph node staging and improved management of patients with 

cancer of the head and neck area. Since routine whole-body PET reconstruction parameters 

proved to be inadequate for the head and neck area, and optimized parameters are scanner-

specific, it is advised to implement optimization procedures for all PET scanners. Despite these 

optimizations, in patients with cancer in the head and neck area and without clinical signs of 

lymph node metastases, it was concluded that PET imaging could not replace invasive supra-

omohyoidal lymph node dissection �chapter 4�.

Multimodality imaging with PET and CT was optimized and validated for application in the head 

and neck area. After correction of an unexpected difference in real image size between PET 

and CT �chapter 5�, and after selection of the most appropriate approach to image registration, 

software image registration could be validated for implementation in novel 3-dimensional 

intensity modulated radiotherapy �chapter 6�. The spatial accuracy in image registration that 

could be achieved when using the iterative closest point algorithm �better than 3 mm in the 

planning area� now permits the application of software image fusion for IMRT where dedicated 

PET and CT are available, with no need for laborious fiducial markers.

Subsequent analysis of lesion delineation on FDG-PET images, for implementation in IMRT field 

planning, demonstrated that the clinical relevance of this approach is potentially high, but on 

the other hand that additional work needs to be performed to evaluate the clinical impact of 

the introduction of FDG-PET in radiation treatment planning �chapter 7�. Multiple delineation 

methods for PET are available and in use, but the choice of methods has a major impact on the 

resulting gross target volume �GTV�. These variations, which exist also relative to CT-based 

planning, have led to the conclusion that PET-based GTV definition in the head and neck area 

as yet may not be considered a validated technique. 

The detection of lymph node metastases in the neck with FDG-PET is hampered by a low 

specificity, due to visualization of inflammation. FLT, which accumulates in proliferating cells, 

was hypothesized to have a higher specificity than FDG. However, false positive visualization of 
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inflammatory lymph nodes also occurred with FLT, due to accumulation in proliferating B-cells 

�chapter 8�. It was concluded that FLT-PET cannot replace FDG-PET in lymph node staging in 

patients with cancer in the head and neck area, and that the ideal tracer for PET imaging for 

this specific application is yet to be discovered.

Imaging of liver metastasis in colorectal cancer

The combination of PET and CT is currently proving itself as a valuable tool in the diagnostic 

strategy for detection of recurrent colorectal carcinoma, especially in the field of staging before 

surgical reinterventions, with an impact on diagnosis and choice of therapy. In this view, the 

applications of separate PET and CT, and of integrated PET/CT, were reviewed �chapter 9�. 

The performance of software image fusion of PET and CT of the liver was improved by the 

introduction of a new organ-focussed and observer-independent image registration method 

�chapter 10�. The procedure demonstrated a precision of 2.5 ± 1.3 mm throughout the liver,chapter 10�. The procedure demonstrated a precision of 2.5 ± 1.3 mm throughout the liver,�. The procedure demonstrated a precision of 2.5 ± 1.3 mm throughout the liver, 

and was thus validated for clinical applications, although the procedure was found to be 

laborious compared to co-registration using hybrid PET/CT, and required specific software and 

skills.

Subsequently, the performance of integrated PET/CT for imaging of the liver was evaluated 

�chapter 11�. Anatomical registration errors of the liver in PET/CT proved to be potentiallychapter 11�. Anatomical registration errors of the liver in PET/CT proved to be potentially�. Anatomical registration errors of the liver in PET/CT proved to be potentially 

severe, occurring mainly due to breathing differences during acquisition of PET and CT. These 

errors resulted in clinically relevant correlation errors at the location of the diaphragm in 40-

55% of cases, depending on the applied breathing protocol. Subsequent significant attenuation 

correction artefacts could occur where registration errors and a sharp transition between dense 

and non-dense tissue co-existed. It was determined that the magnitude of image registration 

errors and attenuation correction errors cannot be appreciated visually on PET images that 

have been corrected for photon attenuation. Based on these findings, recommendations were 

formulated for optimal imaging and reviewing of integrated PET/CT.

For improved delineation of liver metastases on PET, a background-subtracted relative threshold 

level method was designed �chapter 12�. This method proved to be independent of the signal-chapter 12�. This method proved to be independent of the signal-�. This method proved to be independent of the signal-

to-background ratio and the size of the lesions, and was validated in phantom and in patient 

studies. Subsequently, the performance of this delineation method for size measurements of 

liver metastases was determined, in comparison with other available delineation methods for 

PET and CT �chapter 13�. By correlation with pathological or intra-operative verification ofchapter 13�. By correlation with pathological or intra-operative verification of�. By correlation with pathological or intra-operative verification of 

measured lesion diameters, the accuracy of the measurement of liver metastases on FDG-PET 

images could be validated for clinical application.
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15.2	 Conclusions

In this thesis, several advances in PET and PET/CT imaging have been achieved. Imaging and 

processing procedures have been optimized, and clinical applications have been validated. 

Some issues still remain unclear or unresolved. The spatial resolution of molecular imaging 

with PET will remain relatively low as compared to CT and MRI, and combined PET/CT imaging 

will bear risks of correlative errors and artefacts in its current implementations. Localization 

and delineation of tumor tissue with PET remains a good approximation, whether performed 

with stand-alone imaging or with integrated modalities.

PET imaging and multimodality imaging will require further optimization. Meanwhile, 

awareness and understanding of the potential and remaining issues can help in achieving 

adequate interpretation of the images, and can guide selection of additional clinical indications. 

Further implementation of PET imaging and multimodality imaging in consensus protocols is 

mandatory, in order to reduce regional differences in applications and clinical value, and to 

allow comparative multi-center investigations. The continuation of such research is essential 

and must synchronize with the current rapidly evolving technical advances.
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16.1	 Samenvatting

Positron emissie tomografie �PET� is een relatief nieuwe techniek waarmee radioactieve stoffen 

binnen in het menselijk lichaam kunnen worden afgebeeld, gevolgd en gekwantificeerd. Met 

de meestgebruikte radioactieve stof, fluor-18 gekoppeld aan een variant van suiker �FDG�, 

kan het energieverbruik �metabolisme� van de verschillende organen en weefsels binnen een 

patiënt in beeld worden gebracht. Met FDG-PET kunnen belangrijke vragen worden beantwoord 

op het gebied van de diagnostiek van kwaadaardige ziekten. Het  afbeelden van de activiteiten 

en eigenschappen van weefsels wordt ‘functionele beeldvorming’ genoemd.

In veel gevallen is voor het stellen van een juiste diagnose ook informatie nodig over de exacte 

locatie en het formaat van zieke weefsels, en de relatie met omliggende gezonde organen. 

Deze gegevens worden verkregen met ‘anatomische beeldvorming’, zoals computer tomografie 

�CT� en magnetische resonantie imaging �MRI�.

In de klinische praktijk zijn vaak zowel anatomische als functionele beelden van een patiënt 

beschikbaar, en kan de meest nauwkeurige diagnose worden gesteld door onderlinge 

vergelijking van alle resultaten. Daarvoor kunnen verschillende beelden naast elkaar, maar ook 

óver elkaar worden geprojecteerd. Dit laatste staat bekend als beeldfusie. Vanwege de vaak 

waardevolle synergistische informatie in deze gecombineerde beelden zijn in de afgelopen 

jaren gecombineerde apparaten op de markt gebracht, die verschillende typen scans in één 

sessie kunnen maken. 

Een voorbeeld daarvan is de gecombineerde PET/CT-scanner. Een dergelijke combinatie 

van verschillende apparaten heeft belangrijke voordelen, zoals snellere logistiek, handige 

vergelijking van beelden, en soms betere uitslagen. Maar er kunnen ook nadelen zijn. Zo 

is een gecombineerd apparaat duurder en is de stralingsbelasting voor patienten soms 

hoger, terwijl de gecombineerde beelden niet altijd nodig zijn. In bepaalde gevallen kunnen 

de verschillende componenten elkaars beeldkwaliteit nadelig beinvloeden. De uiteindelijke 

plaats van gecombineerde scanners in de medische diagnostiek is daarom nog onderwerp van 

onderzoek.

In dit proefschrift werden meerdere ontwikkelingen in de functionele beeldvorming met PET 

belicht. De karakteristieken van PET en gecombineerde PET/CT werden besproken �hoofdstuk 

2�. Vervolgens werden verschillende hypothesen en technieken met betrekking tot verbeterde 

beeldvorming getest. Hieruit werden aanbevelingen afgeleid voor verbeterde toepassing van 

PET en PET/CT in de dagelijkse praktijk, en voor enkele ziektebeelden in het bijzonder.
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Diagnostiek en behandeling van kanker in het hoofd-hals gebied

Voor het afbeelden van kanker in het hoofd-hals gebied werd de beeldkwaliteit van FDG-PET 

geoptimaliseerd, en dit leidde tot verbeterde stadiëring en behandeling van patiënten met deze 

ziekte �hoofdstuk 3�. Aangezien deze aanpassingen specifiek zijn voor een bepaalde scanner, 

werd aanbevolen de optimalisatie uit toe voeren voor alle PET-scanners die voor dit doel 

worden gebruikt. Helaas werd vastgesteld dat, ondanks deze verbeteringen, beeldvorming 

met FDG-PET de meer ingrijpende operatieve lymfeklierdissectie nog niet kan vervangen voor 

de stadiëring van patienten met kanker in het hoofd-hals gebied �hoofdstuk 4�.

Vervolgens werd het gebruik van gecombineerde PET- en CT-scans voor het hoofd-hals gebied 

geoptimaliseerd. Na correctie van een onverwacht verschil in beeldgrootte tussen PET en CT 

�hoofdstuk 5�, en na selectie van de meest geschikte methode om de beelden anatomisch gelijk 

te positioneren, werd de onnauwkeurigheid in de beeldfusie teruggebracht tot slechts 3 mm. 

Daarmee werd het combineren van PET en CT gevalideerd voor toepassing bij geavanceerde 

3-dimensionale bestraling van kanker in het hoofd-hals gebied �hoofdstuk 6�.

Tevens werd geanalyseerd in hoeverre het gebruik van functionele informatie van FDG-PET-

beelden invloed had op het intekenen van bestralingsvelden. Daarbij bleek dat de impact 

van de PET-beelden potentieel groot was, maar dat verschillende methoden om de grenzen 

van ziektelokalisaties aan te geven onderling sterk kunnen verschillen �hoofdstuk 7�. Daarom 

werd geconcludeerd dat het gebruik van PET-beelden voor planning van bestraling in het 

hoofd-hals gebied nader onderzoek behoeft, en nog niet als gevalideerde techniek kan worden 

beschouwd.

Het detecteren van lymfekliermetastasen door het afbeelden van metabolisme met FDG-PET kan 

worden vertroebeld door de aanwezigheid van ontstekingverschijnselen in deze lymfeklieren. 

Daarom werd een radioactieve stof die alleen in delende cellen wordt opgenomen, Fluor-18 

gekoppeld aan thymidine �FLT�, onderzocht als alternatieve tracer. Helaas bleek daarbij dat 

ook FLT fout-positieve signalen kan geven, doordat het ook wordt opgenomen in zich delende 

afweercellen in lymfeklieren �hoofdstuk 8�. Voor klierstadiëring bij patiënten met kanker in het 

hoofd-hals gebied kan daarom FDG-PET niet vervangen worden door FLT-PET. Naar de ideale 

PET-tracer voor deze specifieke toepassing moet nog verder worden gezocht.

Diagnostiek en behandeling van levermetastasen bij darmkanker

De combinatie van PET- en CT-beelden wordt steeds vaker gebruikt voor diagnostiek van 

patiënten met kanker van de dikke darm, met name als deze ziekte terugkeert na een eerdere 

behandeling. Deze aanpak kent echter ook enkele nadelen, met name in het gebied van de 

bovenbuik, waar adembewegingen verschillen tussen de beelden kunnen veroorzaken. In 
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hoofdstuk 9 werd het gebruik van zowel afzonderlijke als gecombineerde PET/CT-beelden voor 

deze toepassing uitgebreid besproken.

De combinatie van PET- en CT-beelden van afzonderlijke scanners werd geoptimaliseerd voor 

het afbeelden van de lever en eventuele metastasen van darmkanker daarin. Hiervoor werd een 

orgaanspecifieke methode voor het anatomisch gelijk positioneren van de beelden ontwikkeld 

�hoofdstuk 10�, met een onnauwkeurigheid van slechts enkele millimeters. Daarmee werdhoofdstuk 10�, met een onnauwkeurigheid van slechts enkele millimeters. Daarmee werd�, met een onnauwkeurigheid van slechts enkele millimeters. Daarmee werd 

deze aanpak gevalideerd voor klinische toepassing, hoewel de procedure arbeidsintensief en 

gecompliceerd bleek ten opzichte van het gebruik van een gecombineerde PET/CT scanner.

Vervolgens werd de performance van een gecombineerde PET/CT-scanner voor deze 

vraagstelling onderzocht �hoofdstuk 11�. Daarbij bleek dat anatomische verschillen tussen dehoofdstuk 11�. Daarbij bleek dat anatomische verschillen tussen de�. Daarbij bleek dat anatomische verschillen tussen de 

beelden ernstig konden zijn, en dat deze veroorzaakt werden door ademhalingsverschillen. 

Klinisch relevante verschillen traden op in 40-55 procent van de gevallen, afhankelijk van 

het soort ademhalings instructie dat tijdens het scannen aan de patient werd gegeven. Als 

gevolg daarvan traden ook potentieel ernstige verminkingen op in de uiteindelijke PET- en 

CT-beelden, die alleen omzeild konden worden door het beoordelen van PET-beelden die niet 

waren gecorrigeerd voor verzwakking van radioactieve straling. Op basis van deze bevindingen 

werden aanbevelingen geformuleerd voor het optimaal gebruiken van een gecombineerde 

PET/CT scanner, en het beoordelen van de beelden daarvan.

Ten slotte werd het meten van afwijkingen binnen de lever geoptimaliseerd. Een nieuwe 

methode, specifiek voor het afgrenzen en meten van metastasen van darmkanker binnen 

de lever, werd ontworpen �hoofdstuk 12�. In tegenstelling tot bestaande technieken bleek �hoofdstuk 12�. In tegenstelling tot bestaande technieken bleekhoofdstuk 12�. In tegenstelling tot bestaande technieken bleek�. In tegenstelling tot bestaande technieken bleek 

deze methode bij fantoomproeven geschikt om levermetastasen te evalueren onafhankelijk 

van achtergrondsignaal, het formaat van de afwijkingen en de intensiteit van de afwijkingen. 

Vervolgens werd de methode met succes toegepast op FDG-PET-scans van patiënten, in een 

vergelijking met bestaande technieken. Door controle met bevindingen bij operatie kon de 

nauwkeurigheid van het meten van het formaat van levermetastasen op PET-beelden met deze 

methode worden gevalideerd �hoofdstuk 13�.hoofdstuk 13�.�.

16.2	 Conclusies

Verschillende verbeteringen in het gebruik van PET en gecombineerde PET/CT werden 

gepresenteerd in dit proefschrift. Het verkrijgen, bewerken, beoordelen en meten van beelden 

werd geoptimaliseerd en gevalideerd voor verschillende toepassingen, met name op het gebied 

van kanker in het hoofd-hals gebied en levermetastasen van darmkanker.
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Echter, sommige kwesties blijven nog onduidelijk of onopgelost. De beeldresolutie van functionele 

beeldvorming met PET blijft relatief beperkt in vergelijking met CT en MRI. Geïntegreerde 

beeldvorming met PET/CT blijft een risico houden op artefacten en anatomische verschillen, 

ondanks de beschreven optimalisaties. Het lokaliseren en afgrenzen van afwijkingen op PET-

beelden blijft een goede benadering, ongeacht de uitvoering met separate of geïntegreerde 

scanners.

Bij de introductie van nieuwe technieken in de medisch diagnostiek blijft kennis van de voor- 

en nadelen de beste garantie voor adequaat gebruik en goede interpretatie van beelden. 

Verder onderzoek zal noodzakelijk blijven, evenals het ontwikkelen van protocollen die 

regionale verschillen verminderen en grootschalig vergelijkbaar onderzoek mogelijk maken, in 

de huidige tijd van stormachtige technische ontwikkelingen.
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De afdeling radiotherapie is historisch gezien, en in het licht van de huidige ontwikkelingen 

nu opnieuw, een echte geestverwant van de nucleaire geneeskunde. Ons gemeenschappelijke 
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De afdeling Nucleaire geneeskunde van het UMC St Radboud – mijn afdeling – verdient 

speciale aandacht. Gewaardeerd binnen de eigen kliniek, gewaardeerd in de internationale 
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Beste collega’s, nogmaals dank voor de geweldige jaren.
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vrienden, in het bijzonder Stan. En met jou, liefste Lonneke, kon ik het allemaal delen. 
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Stellingen behorende bij het proefschrift

1.  Instituten met een goede CT scanner, een goede PET scanner, en adequate 
interpretatie van de beelden, zijn niet minderwaardig aan instituten met een 
geïntegreerde PET/CT scanner. (Dit proefschrift)

2.  Het corrigeren van PET-beelden voor fotonverzwakking middels CT-beelden 
vermindert de beeldkwaliteit, en moet derhalve verworpen worden zodra het 
economisch voordeel ervan wegvalt. (Dit proefschrift)

3.  De toegevoegde waarde van beeldfusie ligt vaak niet in integratie van 
verschillende soorten beelden, maar in de daaropvolgende communicatie tussen 
de bijbehorende specialisten. (Dit proefschrift)

4.  Door de vele beschikbare diagnostische technieken en strategieën, en de snelle 
implementatie daarvan, is het moeilijk om gedegen wetenschappelijk onderzoek 
te verrichten naar de werkelijke waarde ervan. (Dit proefschrift)

5.  Van behandelend artsen kan niet langer worden verwacht dat zij te allen tijde 
weten welk beeldvormend onderzoek, en in welke volgorde, het beste kan 
worden aangevraagd. (Dit proefschrift)

6.  De term ‘nucleaire geneeskunde’ biedt alvast semantische ruimte voor integratie 
met ‘kernspin resonantie’ en ‘atomaire fluorescentie’.

7.  De werving en verdeling van geld voor medisch onderzoek berust thans teveel 
op de mediageniciteit van de betreffende ziekten.

8.  Als uw arts ‘PubMed’ als bookmark heeft, is uw kans op genezing groter.

9.  De som der eigenbelangen is niet het algemeen belang.

10.  Na zichzelf zal de mens ook het klimaat een schoonheidsideaal opleggen.

11.  Het afwijzen van de evolutietheorie biedt kennelijk een evolutionair voordeel.

12.  There are in fact two things, science and opinion; the former begets knowledge, 
the latter ignorance. (Hippocrates, 460 BC - 377 BC)

13.  Treasure the love you receive, it will survive long after your good health has 
vanished. (Augustine Mandino, 1923 - 1996)

14.  Wie nimmer het nest verlaat, zal nooit weten of hij kan vliegen.  
(Jeanne en Jacques Vogel, in 1992)

Wouter Vogel, 2007
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