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Abstract

Category theory is a branch of mathematics that provides
a formal framework for understanding the relationship be-
tween mathematical structures. To this end, a category not
only incorporates the data of the desired objects, but also
“morphisms”, which capture how di�erent objects interact
with each other. Category theory has found many applica-
tions in mathematics and in computer science, for example
in functional programming.
Double categories are a natural generalization of cate-

gories which incorporate the data of two separate classes
of morphisms, allowing a more nuanced representation of
relationships and interactions between objects. Similar to
category theory, double categories have been successfully
applied to various situations in mathematics and computer
science, in which objects naturally exhibit two types of mor-
phisms. Examples include categories themselves, but also
lenses, petri nets, and spans.
While categories have already been formalized in a va-

riety of proof assistants, double categories have received
far less attention. In this paper we remedy this situation
by presenting a formalization of double categories via the
proof assistant Coq, relying on the Coq UniMath library. As
part of this work we present two equivalent formalizations
of the de�nition of a double category, an unfolded explicit
de�nition and a second de�nition which exhibits excellent
formal properties via 2-sided displayed categories. As an
application of the formal approach we establish a notion of
univalent double category along with a univalence principle:
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equivalences of univalent double categories coincide with
their identities.
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1 Introduction

Double categories [13] are a categorical concept that captures
more structure than a category. They are often succinctly
de�ned as an internal (pseudo)category in the 2-category
of categories. A double category has objects, two kinds of
morphisms — called vertical and horizontal, respectively —
and �llers for squares formed from horizontal and vertical
morphisms. As such, a double category can capture two
di�erent kinds of morphisms (and their interplay) between
mathematical objects.

Many mathematical objects are better understood within
a double category than within a category; for instance, the
double category of sets, functions, and relations. The objects
of this double category are sets - , the vertical morphisms
- . are functions - . , the horizontal morphisms
- . are relations, i.e. subsets of - ×. . Considering this
double category allows one to generalize classical set theory
(largely overlapping with the generalization given by topos
theory). Similarly, one can also consider the double category
of categories, functors, and profunctors, and this has been
used to great success to generalize category theory [33].

Applications of double categories have become ubiquitous
in mathematics and computer science; see, for instance, its
applications in systems theory [5, 9, 21] and programming
languages theory [12, 22].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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In the present work we develop the notion of univalent
double category and a library of univalent double categories
in univalent foundations. Our main result states that the
bicategory of univalent double categories is univalent. As a
consequence, the type of identities � = � between univalent
double categories � and � coincides with the type � ≃ �

of equivalences from � to �. The proof of this result relies
crucially on Voevodsky’s univalence axiom. The result en-
tails that any construction on univalent double categories
can be transported across equivalences — an instance of the
univalence principle [3].
Double categories consist of a lot of data (see Section 2),

and morphisms of double categories — and morphisms be-
tween these morphisms — need to preserve that structure
suitably. In other words, the bicategory of double categories
is quite complicated. For this reason, a naïve, brute-force ap-
proach to proving univalence of this bicategory would lead
to di�cult proofs. Instead, we develop technology to build
the bicategory of double categories in layers, using displayed
bicategories [1]. We then prove every layer univalent, and
obtain that their “total bicategory” — which is the desired
bicategory of univalent double categories — is univalent, by
a result from [1]. The key layer we consider in this approach
is the layer of “2-sided displayed categories”. These gadgets
are a simple variation on the notion of displayed category
[2]. Through their use, we derive a modular proof of uni-
valence of the bicategory of univalent double categories; in
particular, we can reuse an existing proof of univalence of
univalent categories from [1].

Building the bicategory of univalent double categories in a
layered way also gives rise to an interesting characterization
of equivalences of double categories. In Section 7, we show
that a double functor between univalent double categories
is an adjoint equivalence if it is a strong double functor and
an adjoint equivalence on the underlying 2-sided displayed
category.

1.1 UniMath

In this section we provide a brief introduction to univalent
foundations and UniMath, and �x notations used throughout
the paper. By univalent foundations, we mean Martin-Löf
type theory (MLTT) plus Voevodsky’s univalence axiom.
We use standard notation for the type and term formers of
MLTT; in particular, we write 0 = 1 for the type of identi�-
cations/equalities/paths from 0 to 1.

Crucially, we rely on the notion of homotopy level, and, in
particular, the notions of proposition and set of univalent
foundations: a type - is a proposition if

∏

G,~:- G = ~ is
inhabited, and a set if the type G = ~ is a proposition for all
G,~ : - . Hence, despite working in Coq, we do not rely on
the universes Prop or Set.

We do not rely on any inductive types other than the ones
speci�ed in the prelude of UniMath, such as identity types,
sum types, natural numbers, and booleans.

Our key result, the univalence principle for univalent dou-
ble categories, relies on the univalence principle for types,
also known as Voevodsky’s Univalence Axiom. This axiom
is added to Coq as a postulate in UniMath.

1.2 Computer Formalization

The formalization accompanying this paper is based on the
UniMath library [34], a library of computer-checked mathe-
matics in the univalent style. UniMath itself is based on the
Coq proof assistant [29].
Our code has been integrated in the UniMath library in

commit 5acbf27 (recorded as release v20231010), and it can
be compiled with Coq 8.17.1. From this commit, we compiled
an HTML documentation of UniMath; throughout this article
we include links to this documentation, as in disp_bicat. The
interested reader can type-check our de�nitions by following
the compilation instructions of the UniMath library.

1.3 Synopsis

In Section 2 we informally review and motivate the notion of
double category, and give an elementary, unfolded de�nition.
The unfolded de�nition is easy to understand, but proving
a univalence principle for it directly would be tough. For
this reason, we introduce, in Section 3, the notion of 2-sided
displayed categories; we use these in Section 5 to build a
bicategory of displayed categories that does not make use of
the elementary de�nition. To prepare for this construction,
we review the notion of displayed bicategory in Section 4. In
Section 6 we construct several examples of univalent double
categories. In Section 7 we give a characterization of adjoint
equivalences, and of invertible 2-cells, in the bicategory of
univalent double categories — that is, of equivalences of
double categories and of invertible transformations between
functors of univalent double categories.

2 Double Categories

In this section, we give a brief overview of the theory of dou-
ble categories. Intuitively, a double category is a category
with an extra class of morphisms. Morphisms in one class of
morphisms are called vertical morphisms, and morphisms
in the other class are called horizontal morphisms. We see
horizontal morphisms as “extra” morphisms, and for those,
the laws do not hold up to equality (see Remark 2.1). We
denote the vertical morphisms by G1 G2 and the horizon-
tal morphisms by G ~. In addition, any double category
features a collection of squares, parametrized by a boundary
consisting of two horizontal and two vertical morphisms
with “compatible” endpoints as follows:

G1 ~1

G2 ~2

E1

ℎ1
p

E2

ℎ2

p
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Such squares are also denoted as
(

E1
ℎ1

ℎ2
E2

)

. For both the

horizontal and the vertical morphisms we have identities
and compositions. However, there is an essential di�erence
between the two classes of morphisms: laws for the vertical
morphisms hold up to equality, whereas the laws of horizon-
tal morphisms hold up to a square. Concretely, this means
that we have unitor and associator squares that witness the
unitality and associativity of horizontal composition. In ad-
dition, this data is coherent: we also require the triangle and
pentagon equation for this data.

Remark 2.1. The notion of double category comes in sev-
eral �avors. For example, there is the notion of strict double
category, and in those, unitality and associativity of compo-
sition holds as an equality. However, in the remainder of this
paper, we look at pseudo double categories, and in those, com-
position of horizontal morphisms is only weakly unital and
associative, up to an invertible square — see Items 10 to 12 of
De�nition 2.3. Pseudo double categories are a useful gener-
alization of strict double categories. Some examples, such as
spans (Example 6.3) and structured cospans (Example 6.5),
are pseudo double categories, but not strict ones.

Double categories play a prominent role in applied cate-
gory theory. For example, Clarke de�ned a double category
of lenses [8], and lenses have become an important tool in the
study of databases and datatypes; see, e.g., [7]. In addition,
Baez and Master [6] de�ned a double category of Petri Nets,
which are used in the study of parallel programs [16] and
modeling hardware [24]. Baez and Courser de�ned a double
category of structured cospans and of decorated cospans
[4, 14], which are used to model open systems.

There are several approaches to de�ning the notion of dou-
ble category, and each comeswith their ownmerits and draw-
backs. The most concise de�nition is that a double category
is a pseudocategory internal to the bicategory of categories.
While this de�nition is clean and short, its drawback is that
composition is described using pullbacks, which makes it
more cumbersome to work with. More concretely, let us
assume we have two categories C� and C+ together with
functors (,) : C� C+ . If we were to use this de�nition,
then a horizontal arrow from G : C+ to ~ : C+ would consist
of an object ℎ : C� together with isomorphisms ( (ℎ) � G

and ) (ℎ) � ~. In addition, the composition operation for
horizontal arrows would take three objects G,~, I : C+ , two
horizontal arrows ℎ, : : C� and isomorphisms ( (ℎ) � G ,
) (ℎ) � ~, ( (:) � ~, and ) (:) � I, and it returns a horizon-
tal arrow ℎ ·: : C� together with isomorphisms ( (ℎ ·:) � G

and ) (ℎ · :) � I.

Remark 2.2. Note that one could also look at categories
internal to a 1-category instead of a bicategory. By looking at
categories internal to the 1-category of strict categories, one
obtains yet another notion of double category. This approach
is taken in Lean [18, 20], where pullbacks are used directly,

and in 1lab [30], where pullbacks are avoided by looking
at the internal language of a presheaf category. However,
this approach comes with a signi�cant limitation: by looking
at strict categories, one loses examples such as spans in Set

(Example 6.3), and the square construction for univalent cate-
gories (Example 6.1). Note that the type of objects of internal
categories in the 1-category of strict categories must form
a set, since strict categories have a set of objects. However,
we did not add such a requirement in Remark 2.1. See also
our discussion of related work in Section 8 for information
about formalizations of di�erent notions of double category.

We can avoid pullbacks by going for an unfolded de�nition,
which looks as follows:

De�nition 2.3 (doublecategory). A double category con-
sists of

1. a category C called the vertical category;
2. for all objects G : C and ~ : C, a type G ~ of

horizontal morphisms;
3. for every object G : C a horizontal identity idG :

G G ;
4. for all horizontal morphisms ℎ : G ~ and : :

~ I, a horizontal composition ℎ ⊙ : : G I;
5. for all horizontal morphisms ℎ : G1 ~1 and : :

G2 ~2 and vertical morphisms EG : G1 G2 and

E~ : ~1 ~2, a set
(

EG
ℎ
:
E~

)

of squares;

6. for all horizontal morphisms ℎ : G ~, we have a

vertical identity idEsq (ℎ) :
(

idG
ℎ
ℎ
id~

)

;

7. for all squares g1 :
(

E1
ℎ
:
F1

)

and g2 :
(

E2
:
;
F2

)

, we

have a vertical composition

g1 ·sq g2 :
(

E1 · E2
ℎ
; F1 ·F2

)

;

8. for all E : G ~, we have a horizontal identity

idℎsq (E) :
(

E idG
id~

E
)

;

9. for all squares g1 :
(

E1
ℎ1

:1
E2

)

and g2 :
(

E2
ℎ2

:2
E3

)

, we

have a horizontal composition

g1 ⊙sq g2 :
(

E1
ℎ1⊙ℎ2

:1⊙:2
E3

)

;

10. for all ℎ : G ~, we have a left unitor

_ℎ :

(

idG
idG⊙ℎ
ℎ

id~

)

;

11. for all ℎ : G ~, we have a right unitor

dℎ :

(

idG
ℎ⊙id~

ℎ
id~

)

;

12. for all ℎ1 : F G , ℎ2 : G ~, and ℎ3 : ~ I, we
have an associator

U (ℎ1,ℎ2,ℎ3 ) :

(

idF
ℎ1⊙(ℎ2⊙ℎ3 )

(ℎ1⊙ℎ2 )⊙ℎ3
idI

)

.
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This data is required to satisfy several laws, stating, in par-
ticular, that horizontal identities and horizontal composition
are functorial, and that the left unitor, right unitor, and asso-
ciator are natural transformations and invertible. In addition,
we have the triangle and pentagon law. Their description
can be found in Fig. 1 and Fig. 2.

To formulate the laws in De�nition 2.3, one needs to use
transports. The necessity of these transports come from the
laws of the squares. For example, if we compose a square

g :

(

E ℎ
:
F
)

with the identity square, then we should get the

original square g back. However, the square g ⊙sq id
ℎ
sq (F)

has di�erent sides than g , because the the top and bottom
sides of g ⊙sq id

ℎ
sq (F) are composed with identities. As such,

we need the laws for vertical composition in order to state
the laws for composition of squares.

Remark 2.4. Strict double categories can also be de�ned
in an unfolded style. One can do so by slightly modifying
De�nition 2.3: we add the requirement that the horizontal
morphisms form a set and that the unitors and associators are
identities. Such an approach is used in the Agda-categories
library [15].

However, De�nition 2.3 is still unsatisfactory for our pur-
poses. Many notions from double category theory can be
derived from the bicategory DoubleCat of double categories.
For example, equivalences of double categories are the same
as adjoint equivalences in DoubleCat [27], monoidal double
categories are the same pseudomonoids in DoubleCat [4],
and �brations of double categories are the same as internal
Street �brations [10]. For this reason, DoubleCat plays a
prominent role in double category theory.

Since we are working in univalent foundations, we would
also like a notion of univalence for double categories and a
univalence principle for them. This principle can be formu-
lated by saying that DoubleCat is a univalent bicategory. All
in all, our goals in this paper are

• to de�ne the notion of univalent double category;
• to de�ne the bicategory DoubleCat of double cate-
gories;
• to prove that DoubleCat is a univalent bicategory.

The unfolded de�nition from De�nition 2.3 poses several
complications for our purposes. More speci�cally, proving
that DoubleCat is univalent would become unfeasible. This
is because we are forced to consider the identity type of
double categories, which is rather complicated. However, by
using displayed bicategories [1], one can give a simpler proof
that DoubleCat is univalent. Intuitively, the idea is to break
up the de�nition into smaller layers. The identity type of
each of these layers is simpler, and that simpli�es the proof
of univalence.

This is the basic philosophy behind the de�nition of double
category that we describe in the remainder of this paper.
More speci�cally, we take the following steps:

• We de�ne the notion of 2-sided displayed categories in
Section 3. With 2-sided displayed categories, we can
describe categories with an additional class of mor-
phisms and squares.
• In Section 5, we describe the bicategory of double cat-
egories. We start by de�ning the displayed bicategory
of 2-sided displayed categories, and step-by-step we
add data and properties to acquire double categories.
For example, in De�nition 5.5, we add horizontal iden-
tities to the structure, and in De�nition 5.8, we add a
horizontal composition operation. Simultaneously, we
prove that the resulting bicategory is univalent.

Another advantage of our approach is that we can use it
to construct adjoint equivalences and invertible 2-cells of
double categories. We describe this process in Section 7.

3 2-Sided Displayed Categories

The notion of displayed categories was developed by Ahrens
and Lumsdaine [2]. Displayed categories are useful for vari-
ous purposes, and among those are de�ning the notion of
Grothendieck �bration and modularly de�ning univalent
categories. Intuitively, a displayed category represents struc-
ture/property of objects and morphisms in some category
C. Displayed categories consist of a type family of displayed
objects parametrized by the objects of C, and a family of sets
of displayed morphisms parametrized by the morphisms in
C and displayed objects. For example, we have a displayed
category of group structures over the category of sets. The
displayed objects over a set - are group structures on - ,
and the set of displayed morphisms over 5 : - . from
a group structure �- over - to a group structure �. over .
are proofs that 5 preserves the group operations.
In this section, we de�ne 2-sided displayed categories —

a variation of the notion of displayed categories. The dif-
ference between 2-sided displayed categories and displayed
categories is that displayed categories depend on one cate-
gory, whereas 2-sided displayed categories depend on two
categories. Note that 2-sided displayed categories sharemany
purposes with displayed categories: they can be used to de-
�ne univalent categories in a modular way, and they can be
used to de�ne 2-sided �brations [17, 28]. However, in this
paper we view 2-sided displayed categories in another way,
namely as an extra class of morphisms on a category.

De�nition 3.1 (twosided_disp_cat). Let C1 and C2 be
categories. A 2-sided displayed category D over C1 and
C2 consists of

1. for all objects G1 : C1 and G2 : C2 a type D(G1,G2 ) of
objects over G1 and G2

2. for all objects G : D(G1,G2 ) and ~ : D(~1,~2 ) and mor-
phisms 51 : G1 ~1 in C1 and 52 : G2 ~2 in C2, a
set G (51,52 ) ~ of morphisms over 51 and 52
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G ~ ~ I

G ~ I

ℎ
p

id~
p

:
p

ℎ
p

:
p

_:idℎsq (E) =∗

G ~ ~ I

G ~ ~ I

G ~ I

ℎ
p

id~
p

:
p

id~
p

:
p

ℎ
p

:
p

ℎ
p

idℎsq (: )dℎ

U (ℎ,id~,: )

We use =∗ to denote dependent equality, see Remark 3.2.

Figure 1. The triangle equation

E F G I

E G ~ I

E I

ℎ1
p

ℎ2
p

ℎ3⊙ℎ4
p

ℎ1⊙ℎ2
p

ℎ3
p

ℎ4
p

( (ℎ1⊙ℎ2 )⊙ℎ3 )⊙ℎ4

p

U (ℎ1,ℎ2,ℎ3⊙ℎ4 )

U (ℎ1⊙ℎ2,ℎ3,ℎ4 )

=∗

E F G ~ I

E F G ~ I

E F G ~ I

E F G ~ I

ℎ1
p

ℎ1

p

E

ℎ1
p

ℎ4
p

ℎ4

p

ℎ2
p

ℎ3
p

ℎ4
p

ℎ2

p
ℎ3

p
ℎ4

p

ℎ2
p

ℎ3
p

ℎ1

p
ℎ2

p
ℎ3

p

idℎsq (ℎ1 )

idℎsq (ℎ4 )

U (ℎ2,ℎ3,ℎ4 )

U (ℎ1,ℎ2⊙ℎ3,ℎ4 )

U (ℎ1,ℎ2,ℎ3 )

We use =∗ to denote dependent equality, see Remark 3.2.

Figure 2. The pentagon equation

3. for every object G : D(G1,G2 ) a morphism idG over idG1
and idG2

4. for all 5 : G (51,52 ) ~ and 6 : ~ (61,62 ) I, a mor-

phism 5 · 6 : G (51 ·61,52 ·62 ) I

such that the following equations hold.

5. for all 5 : G (51,52 ) ~, we have 5 · id~ =∗ 5 and

idG · 5 =∗ 5 ;
6. for all 5 : F (51,52 ) G , 6 : G (61,62 ) ~, and ℎ :

~ (ℎ1,ℎ2 ) I, we have 5 · (6 · ℎ) =∗ (5 · 6) · ℎ.

Remark 3.2. Here we use the notation =∗ to represent a
dependent equality, i.e., a path between an element~1 : . (G1)
and ~2 : . (G2) such that G1 = G2.

Note that the laws in Items 5 and 6 in De�nition 3.1 are ac-
tually dependent equalities. For examples, if 5 : G (51,52 ) ~,

then the left-hand side of 5 · id~ =∗ 5 is a morphism that
lives over 51 · id~1 and 52 · id~2 , respectively. However, the
right-hand side lives over 51 and 52, and thus their types are
not equal. We can solve this by properly using a transport.
Note that the type of 2-sided displayed categories over C1

and C2 is equivalent to the type of displayed categories over
the product C1 × C2. We use 2-sided displayed categories

instead of displayed categories because the 2-sided variant
is closer to De�nition 2.3.
Every displayed category D over C gives rise to a total

category
∫

D and a functor
∫

D C. For 2-sided displayed
categories, we can do the same.

De�nition 3.3 (total_twosided_disp_category). Let D
be a 2-sided displayed category over C1 and C2. Then we
de�ne the total category

∫

D to be the category whose
objects consists of triples G1 : C1, G2 : C2, and G : D(G1,G2 ) .
We also de�ne the projection functors cD

1
:
∫

D C1

and cD
2
:
∫

D C2 to be the functors that take the �rst
and second coordinate of a triple, respectively.

Note that every 2-sided displayed category D over C1 and

C2 gives rise to a span C1

cD
1
←−−

∫

D
cD
2

− C2 of categories.
Now let us consider some examples of 2-sided displayed
categories.

Example 3.4 (arrow_twosided_disp_cat). Let C be a cate-
gory. We de�ne the 2-sided displayed category Arr(C) over
C and C as follows.

• The objects over G and ~ are morphisms i : G ~.
• Suppose that we have morphisms 5 : G1 G2, 6 :

~1 ~2, i1 : G1 ~1, and i2 : G2 ~2, then
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the set i1 (5 ,6) i2 is de�ned to be the collection of

proofs that 5 · i2 = i1 · 6.

The total category
∫

Arr(C) is equivalent to the arrow cate-
gory of C.

Example 3.5 (comma_twosided_disp_cat). Given functors
� : C1 C3 and � : C2 C3, we de�ne the 2-sided
displayed category Comma(�,�) over C1 and C2:

• The objects over G : C1 and ~ : C2 are morphisms
i : � (G) � (~).
• Given morphisms 5 : G1 G2, 6 : ~1 ~2, i1 :

� (G1) � (~1), and i2 : � (G2) � (~2), the set
i1 (5 ,6) i2 is de�ned to be the collection of proofs

that � (5 ) · i2 = i1 ·� (6).

The category
∫

Comma(�,�) is equivalent to the comma
category of � and � .

Example 3.6 (twosided_disp_cat_of_spans). Let C be a
category. We de�ne the 2-sided displayed category Span(C)

over C and C:

• The objects over G and ~ are spans from G : C to ~ : C.
More concretely, they consist of an object I : C and
two morphisms i : I G andk : I ~.
• Suppose that we have 5 : G1 G2 and 6 : ~1 ~2.

A morphism from G1
i1

←−− I1
k1

− ~1 to G2
i2

←−− I2
k2

−

~2 over 5 and 6 consists of a morphism ℎ : I1 I2
such that the following diagrams commute.

G1 I1 ~1

G2 I2 ~1

i1

i2

k1

k2

5 6ℎ

Example 3.7 (twosided_disp_cat_of_struct_cospans).
Suppose that we have a functor ! : C1 C2. We de�ne
the 2-sided displayed category StructCospan(!) over C1 and
C1:

• The objects over G and~ are structured cospans from
G : C1 to ~ : C1, that is to say, an object I : C2 together

with morphisms !(G)
i

− I
k
←− !(~).

• Given two structured cospans !(G1)
i1

− I1
k1

←−− !(~1)

and !(G2)
i2

− I2
k2

←−− !(~2), and two morphisms
5 : G1 G2 and 6 : ~1 ~2, a displayed morphism
consists of a morphism ℎ : I1 I2 such that the
following diagram commutes

!(G1) I1 !(~1)

!(G2) I2 !(~1)i2

k1

k2

! (5 ) ! (6)ℎ

i1

Example 3.8 (twosided_disp_cat_of_lenses). Let C be
a category with chosen binary products. A lens ; from B

to E consists of a get-morphism get; : B E and a put-
morphism put; : E × B B such that

• put; · get; = c1;
• get; × idB · put; = idB ;
• idE × put; · put; = c1 × (c2 · c2) · put; .

Then we de�ne a 2-sided displayed category Lens(�) over
C and C as follows.

• The displayed objects over B and E are lenses from B to
E .
• Given morphisms 51 : B1 B2 and 52 : E1 E2 and
lenses ;1 from B1 to E1 and ;2 from B2 to E2, the displayed
morphisms from ;1 to ;2 over 51 and 52 are proofs that
61 · 52 = 51 · 62 and ?1 · 51 = 52 × 51 · ?2.

Our next goal is to de�ne univalent 2-sided displayed cate-
gories. To do so, we take the same approach as for categories
and for displayed categories. We �rst de�ne the notion of iso-
morphism, and we prove that the identity is an isomorphism.
With that in place, we obtain a map that sends equalities of
displayed objects to isomorphisms, and univalence is formu-
lated by saying that this map is an equivalence of types.

De�nition 3.9 (is_iso_twosided_disp). Let D be a 2-sided
displayed category over C1 and C2, and let 51 : G1 ~1 and
52 : G2 ~2 be isomorphisms in C1 and C2 respectively.
In addition, suppose that we have objects G : D(G1,~1 ) and

~ : D(G2,~2 ) . Then we say that 5 : G (51,52 ) ~ is an isomor-

phism if we have a morphism 5 −1 : ~ (5 −1
1

,5 −1
2
) G such

that 5 · 5 −1 =∗ idG and 5 −1 · 5 =∗ id~ .

Proposition 3.10 (isaprop_is_iso_twosided_disp). For
every morphism 5 : G (51,52 ) ~ over isomorphisms 51 and 52,

the type that 5 is an isomorphism is a proposition.

Proposition 3.11 (id_iso_twosided_disp). For all displayed
objects G : D(G1,G2 ) , the identity idG is an isomorphism.

De�nition 3.12 (is_univalent_twosided_disp_cat). Let D
be a 2-sided displayed category over C1 and C2.

• For all objects G1 : C1 and G2 : C2 and displayed objects
G,~ : D(G1,G2 ) , we have a map that sends identities ? :

G = ~ to isomorphisms idtoisoG,~ (?) : G (idG1 ,idG2 )
~.

• We say that D is univalent if for all G,~ : D(G1,G2 ) , the
map idtoisoG,~ is an equivalence of types.

Note that in the formalization, the de�nition of univalence
is equivalent, but formulated slightly di�erently. In De�ni-
tion 3.12, we only look at paths ? : G = ~ between displayed
objects lying over the same objects in the base, whereas in
the formalization, we also take paths in the base into account.
Each of the 2-sided displayed categories from Examples 3.4
to 3.8 is univalent.
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Proposition 3.13 (is_univalent_total). If D is a univalent
2-sided displayed category over C1 and C2, and C1 and C2 are
univalent, then

∫

D is univalent as well.

Recall that every 2-sided displayed category gives rise
to a span of categories. Hence, by Proposition 3.13, every
univalent 2-sided displayed category D over C1 and C2 gives

rise to a span C1

cD
1
←−−

∫

D
cD
2

− C2 of univalent categories.
To end this section, we de�ne the notions of 2-sided displayed
functors and 2-sided displayed natural transformations. These
play a prominent role when we de�ne the bicategory of
double categories in Section 5.

De�nition 3.14 (twosided_disp_functor). Suppose that we
have 2-sided displayed categories D over C1 and C2, and D′

over C3 and C4. In addition, suppose that we have functors
�1 : C1 C3 and �2 : C2 C4. A 2-sided displayed

functor � over �1 and �2 from D to D′ consists of

• a map that assigns to every object G : D(G1,G2 ) an object

� (G) : D′
(�1 (G1 ),�2 (G2 ) )

;

• a map that assigns to every morphism 5 : G (51,52 ) ~

a morphism � (5 ) : � (G) (�1 (51 ),�2 (52 ) ) � (~)

such that � (idG ) =∗ id� (G ) and � (5 · 6) =∗ � (5 ) · � (6).

De�nition 3.15 (twosided_disp_nat_trans). Suppose that
we have 2-sided displayed categories D over C1 and C2, and
D′ overC3 andC4. In addition, suppose that we have functors
�1,�1 : C1 C3 and �2,�2 : C2 C4, 2-sided displayed

functors � over �1 and �2 and� over�1 and�2, and natural
transformations g1 : �1 ⇒ �1 and g2 : �2 ⇒ �2. A 2-sided

displayed natural transformation g over g1 and g2 from
� to � consists of a map that assigns to every G : D(G1,G2 )
a morphism � (G) (g1 (G1 ),g2 (G2 ) ) � (G) such that the usual

naturality condition holds.

4 A Recap on (Displayed) Bicategories

Our next goal is to construct the bicategory of double cat-
egories. To do so, we recall in this section the de�nitions
and propositions that we use in the remainder of this pa-
per. These de�nitions were originally introduced in [1], and
full de�nitions can be found there. Recall that a bicategory
not only has objects and morphisms, but also 2-cells. The
notion of displayed bicategory is similar to that of displayed
category.

De�nition 4.1 (disp_bicat). Let B be a bicategory. A dis-

played bicategory D over B consists of

• for each object G : B, a type DG of objects over G ;
• for all 1-cells 5 : G ~ and displayed objects G : DG

and ~ : D~ , a type G 5 ~ of 1-cells over 5 ;

• for all 2-cells g : 5 ⇒ 6 and displayed 1-cells 5 :

G 5 ~ and 6 : G 6 ~, a set 5 ⇒g 6 of 2-cells over
g .

In addition, there should be suitable identities, composition,
unitors, and associators, and the usual coherence laws should
be satis�ed.

There are numerous examples of displayed bicategories
and they are discussed in [1], and we quickly recall the ones
that we need in Section 5. If we have displayed bicategories
D1 and D2 over B, then we have a displayed bicategory D1 ×

D2 over D whose displayed objects, 1-cells, and 2-cells are
pairs of displayed objects, 1-cells, and 2-cells of D1 and D2

respectively. The full subbicategory can also be de�ned using
a displayed bicategory: if we have a predicate % on the objects
of a bicategory B, then we de�ne a displayed bicategory over
B whose displayed objects over G are proofs of % (G), and
whose displayed 1-cells and 2-cells are inhabitants of the
unit type.

Every displayed bicategory gives rise to a total bicategory.

De�nition 4.2 (total_bicat). Given a displayed bicategory
D over B, we de�ne its total bicategory as the bicategory
whose objects are given by pairs of objects G : B and G : DG .
The 1-cells and 2-cells are de�ned similarly.

Univalent bicategories are de�ned in a similar way as univa-
lent categories, but there is a slight di�erence. For categories,
univalence is expressed by saying that identity of objects
is equivalent to isomorphisms between objects. For bicate-
gories on the other hand, we formulate univalence in two
steps. First of all, we say that identity of 1-cells is equiva-
lent to invertible 2-cells between them. This is called local
univalence in [1]. Secondly, we say that identity of objects is
equivalent to adjoint equivalences between them. In [1], this
is called global univalence. Then a univalent bicategory is a bi-
category that is both locally and globally univalent. Similarly,
we de�ne univalent displayed bicategories. The key theorem
for univalent displayed bicategories is the following.

Proposition 4.3 (total_is_univalent_2). LetD be a univalent
displayed bicategory over a univalent bicategory B. Then

∫

D

is univalent.

One key application of univalence for bicategories is equiv-
alence induction. More speci�cally, to prove some property
for every invertible 2-cell, it su�ces to only consider identity
2-cells. Similarly, to prove some property for every adjoint
equivalence, one only has to show it for identity equiva-
lences. This is similar to path induction in homotopy type
theory [25, 31].

Proposition 4.4 (J_2_0). Let B be a univalent bicategory,
and suppose that for all objects G,~ : B, we have a predicate %
on adjoint equivalences G ≃ ~. Then % holds for every adjoint
equivalence if % holds for idG : G ≃ G for every G : B.
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Proposition 4.5 (J_2_1). Let B be a univalent bicategory, and
suppose that for all objects G,~ : B and 1-cells 5 , 6 : G ~,
we have a predicate % on invertible 2-cells 5 � 6. Then % holds
for every invertible 2-cell if % holds for id5 : 5 � 5 for every
5 : G ~.

5 The Bicategory of Double Categories

In this section, we de�ne the bicategory of univalent double
categories, and we prove that this bicategory is univalent.
The notion of displayed bicategory plays a key role in this
construction [1].

The construction proceeds in several steps.We start in Def-
inition 5.1 by de�ning a displayed bicategory TwoSidedDispd
over the bicategory UnivCat of univalent categories, and the
objects over C are 2-sided displayed categories D over C and
C. If we look at the total bicategory TwoSidedDisp of this
displayed bicategory, then the objects consists of a category
C and a 2-sided displayed D over C and C. This means that
we have a category with an extra class of morphisms and a
class of squares.
To obtain a the bicategory of double categories, we need

to add more structure. We de�ne two displayed bicategories
HorIdd and HorCompd over TwoSidedDisp in De�nition 5.5
and De�nition 5.8. The displayed bicategory HorIdd adds
horizontal identities to the structure, and HorCompd adds
horizontal compositions. By taking their product and the
total bicategory, we obtain the bicategory HorIdComp, of
which the objects consists of a category, horizontal mor-
phisms, squares, horizontal identities, and compositions.
Next we de�ne displayed bicategories Lund, Rund, and

Assocd over HorIdComp. These add the left unitor, the right
unitor, and the associator to the structure. Again we take
their product and the total bicategory to obtain the bicat-
egory UnAssoc. Finally, we de�ne DoubleCat as a full sub-
bicategory of UnAssoc: the predicate we use, expresses the
triangle and pentagon coherence.

At each step, we prove that the relevant displayed bicate-
gories are univalent. Themachinery of displayed bicategories
allows us to combine all of this to conclude that DoubleCat
is univalent. The advantage of using displayed bicategories
over a direct approach is that the proof of univalence be-
comes simpler and more modular. This is because the dis-
played approach allows us to consider the identity of each
part individually, and we are able to reuse results (e.g., the
bicategory of univalent categories is univalent).

The main idea behind this construction is that we can split
up the de�nition of a double category into several layers.
Instead of looking at the whole, we look at these layers
separately, and that allows for reusability and modularity.
This is also why the notion of 2-sided displayed category
plays an important role in this construction: it is one of the
layers to de�ne double categories.

De�nition 5.1 (disp_bicat_twosided_disp_cat). The dis-
played bicategory TwoSidedDispd over UnivCat is de�ned
as follows:

• The displayed objects over C are univalent 2-sided
displayed categories D over C and C.
• The displayed morphisms from D1 to D2 over � :

C1 C2 are 2-sided displayed functors � over �
and � from D1 to D2.
• The displayed 2-cells from � to � over g : � ⇒ � are
2-sided displayed natural transformations over g and
g from � to � .

We de�ne TwoSidedDisp to be
∫

TwoSidedDispd.

An object of TwoSidedDisp consists of a univalent cate-
gory C and a univalent 2-sided displayed category D over
C and C. If we compare this to De�nition 2.3, then we al-
ready got the data from Items 1, 2 and 5 to 7. The vertical
category is given by C, the horizontal morphisms from G to
~ are given by the displayed objects D(G,~) , and the squares
(

E1
ℎ
:
E2

)

are given by displayed morphisms ℎ (E1,E2 ) : .

The vertical identity and composition for squares is given by
the identity and composition inD, respectively, and similarly
for the laws involving vertical composition of squares.

Proposition 5.2 (univalent_2_twosided_disp_cat). The
displayed bicategory TwoSidedDispd is univalent.

5.1 Identities and Composition

Next we add horizontal identities (Items 3 and 8 in De�ni-
tion 2.3 and composition (Items 4 and 9 in De�nition 2.3), in
the form of two displayed bicategories over TwoSidedDisp.
To de�ne the �rst one, we de�ne when a 2-sided displayed
category supports horizontal identities.

De�nition 5.3 (hor_id). Let C be a category and let D be a
2-sided displayed category over C and C. Then we say that
D has horizontal identities if

1. for all G : C, we have a displayed object idDh (G) : D(G,G ) ;
2. for all morphisms E : G ~, we have a displayed

morphism idDsq (E) : id
D
h (G) (E,E) id

D
h (~);

such that idDsq (idG ) = ididDh (G )
and idDsq (E1 · E2) = idDsq (E1) ·

idDsq (E2).

We also de�ne when a 2-sided displayed functor preserves
horizontal identities.

De�nition 5.4 (double_functor_hor_id). Let D be a 2-sided
displayed category over C and C and let D′ be a 2-sided
displayed category over C′ and C′. Suppose that we have
a functor � : C C′ and a 2-sided displayed functor �
from D to D′ over � and � , and that D and D′ have hori-
zontal identities. Then we say that � preserves horizon-

tal identities if for all G : C1 we have a natural square
�id(G) : id

D′

h (� (G)) (id� (G ) ,id� (G ) ) � (id
D
h (G)).
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The precise naturality condition for the square can be
found in the formalization. In addition, note that we consider
lax double functors: we do not require �id (G) to be invertible.

De�nition 5.5 (disp_bicat_twosided_disp_cat_hor_id). We
de�ne the displayed bicategory HorIdd over TwoSidedDisp
as follows:

• the displayed objects over a pair of a univalent cate-
gory C and a univalent 2-sided displayed category D

are horizontal identities for D (De�nition 5.3);
• the displayed 1-cells over a functor � : C1 C2

and 2-sided displayed functor � from D1 to D2 that
preserve horizontal identities (De�nition 5.4);
• the displayed 2-cells over a natural transformations g :

� ⇒ � and a 2-sided displayed natural transformation
g are proofs that g preserves horizontal identities. The
precise formulation can be found in the formalization.

Next we look at horizontal compositions.

De�nition 5.6 (hor_comp). Let C be a category and let D
be a 2-sided displayed category over C and C. Then we say
that D has horizontal composition if

• for all ℎ : D(G,~) and : : D(~,I ) , we have a displayed
object ℎ ⊙ : : D(G,I ) ;
• for all displayed morphisms B1 : ℎ1 (E1,E2 ) ℎ2 and

B2 : :1 (E2,E3 ) :2, we have a displayed morphism

B1 ⊙sq B2 : ℎ1 ⊙ :1 (E1,E3 ) ℎ2 ⊙ :2;

such that

• idℎ ⊙sq id: = idℎ⊙: .
• (B1 · C1) ⊙sq (B2 · C2) = (B1 ⊙sq B2) · (C1 ⊙sq C2).

De�nition 5.7 (double_functor_hor_comp). Let D be a
2-sided displayed categories over C and C and let D′ be 2-
sided displayed categories over C′ and C′. Suppose that we
have a functor � : C C′ and a 2-sided displayed functor

� from D to D′ over � and � , and that D1 and D2 have hori-
zontal identities. Then we say that � preserves horizontal

compositions if for all ℎ : D(G,~) and : : D(~,: ) we have a

natural square �comp (ℎ, :) :
(

� (ℎ) ⊙ � (:)
id� (G )
id� (I)

� (ℎ ⊙ :)
)

.

De�nition 5.8 (disp_bicat_twosided_disp_cat_hor_comp).
The displayed bicategory HorCompd over TwoSidedDisp is
de�ned as follows:

• the displayed objects over a pair of a univalent cate-
gory C and a univalent 2-sided displayed category D

are horizontal composition for D (De�nition 5.6);
• the displayed 1-cells over a functor � : C1 C2

and 2-sided displayed functor � from D1 to D2 that
preserve horizontal composition (De�nition 5.7);

• the displayed 2-cells over a natural transformations
g : � ⇒ � and a 2-sided displayed natural transfor-
mation g are proofs that g preserves horizontal com-
position. The precise formulation can be found in the
formalization.

We de�neHorIdCompd to beHorIdd×HorCompd, and we
de�neHorIdComp to be the total bicategory ofHorIdCompd.

Proposition 5.9 (disp_univalent_2_disp_bicat_twos

ided_disp_cat_id_hor_comp). The displayed bicategory
HorIdCompd is univalent.

5.2 Unitors and Associators

At this point, we obtained the bicategory HorIdComp, and
the objects of that bicategory consists of a univalent cate-
gory C, a univalent displayed D over C and C, together with
horizontal identities (De�nition 5.3) and horizontal compo-
sitions (De�nition 5.6). This corresponds to Items 1 to 9 in
De�nition 2.3 and now we look at Items 10 to 12 from De�ni-
tion 2.3. For each of these, we de�ne a displayed bicategory
overHorIdComp. Due to space constraints, we only say how
the displayed objects of those displayed bicategories are de-
�ned.

De�nition 5.10 (disp_bicat_lunitor). We de�ne a displayed
bicategory Lund over HorIdComp whose displayed objects
over a univalent categoryC and a univalent 2-sided displayed
category D with horizontal identities and compositions con-
sists of a natural isomorphism idDh (G) ⊙ ℎ (idG ,id~ ) ℎ for

each ℎ : D(G,~) .

De�nition 5.11 (disp_bicat_runitor). We de�ne a displayed
bicategory Rund over HorIdComp whose displayed objects
over a univalent categoryC and a univalent 2-sided displayed
category D with horizontal identities and compositions con-
sists of a natural isomorphism ℎ ⊙ idDh (~) (idG ,id~ ) ℎ for

each ℎ : D(G,~) .

De�nition 5.12 (disp_bicat_lassociator). We de�ne a dis-
played bicategory Assocd over HorIdComp whose displayed
objects over a univalent category C and a univalent 2-sided
displayed category D with horizontal identities and compo-
sitions consists of a natural isomorphism

ℎ1 ⊙ (ℎ2 ⊙ ℎ3) (idF ,idI ) (ℎ1 ⊙ ℎ2) ⊙ ℎ3

for all ℎ1 : D(F,G ) , ℎ2 : D(G,~) , and ℎ3 : D(~,I ) .

We de�ne UnAssocd to be Lund × Rund × Assocd, and we
de�ne UnAssoc to be the total bicategory of UnAssocd.

Proposition 5.13 (is_univalent_2_bicat_unitors_and_assoc
iator). The displayed bicategory UnAssocd is univalent.

De�nition 5.14 (bicat_of_double_cats). We de�ne the
bicategory DoubleCat of double categories as the full sub-
bicategory where the predicate expresses that the triangle
and pentagon laws are satis�ed.
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Theorem 5.15 (is_univalent_2_bicat_of_double_cats). The
bicategory DoubleCat is univalent.

The proof of Theorem 5.15 uses Voevodsky’s univalence
axiom.
The objects of DoubleCat collect all the data and proper-

ties mentioned in this section. Each of these data and prop-
erties correspond to some part of De�nition 2.3. However,
the only thing missing in De�nition 2.3 is a univalence con-
dition. To de�ne this notion, we �rst note that every double
category as de�ned in De�nition 2.3 gives rise to a category
of objects and vertical morphisms, and to a 2-sided displayed
category of horizontal morphisms and squares.

De�nition 5.16 (is_double_univalent). A double category
as de�ned in De�nition 2.3 is called univalent if

• its underlying category of objects and vertical mor-
phisms is univalent; and
• its corresponding 2-sided displayed category of hori-
zontal morphisms and squares is univalent.

Theorem 5.17 (double_cat_weq_univalent_doublecateg
ory). The type of objects of DoubleCat is equivalent to the
type of univalent double categories as de�ned in De�nitions 2.3
and 5.16.

Proof. This theorem is proved by inspecting what objects
of DoubleCat consist of, and comparing it to De�nition 2.3.
Such an object consists of

• a category C (Item 1 in De�nition 2.3);
• a 2-sided displayed category over C and C (Items 2
and 5 to 7 in De�nition 2.3);
• horizontal identities (Items 3 and 8 in De�nition 2.3);
• a horizontal composition operator (Items 4 and 9 in
De�nition 2.3);
• left unitors (Item 10 in De�nition 2.3);
• right unitors (Item 11 in De�nition 2.3);
• associators (Item 12 in De�nition 2.3).

In addition, the laws and the univalence that are satis�ed by
objects of DoubleCat correspond to those in De�nitions 2.3
and 5.16. □

The 1-cells in DoubleCat are lax double functors. They
consist of an underlying functor and 2-sided displayed func-
tor that preserve horizontal identities and compositions as
described in De�nitions 5.4 and 5.7. Finally, every 2-cell in
DoubleCat has an underlying natural transformation and
2-sided displayed natural transformation.

Note that there are several notions of morphisms between
double categories, namely lax, oplax, and pseudo double
functors. To obtain a univalent bicategory, the choice does
not matter: one could de�ne variants of DoubleCat where
oplax or pseudo double functors are used. Each variant leads
to a univalent bicategory, since in all cases the adjoint equiv-
alences are the same.

Remark 5.18. Note that the double categories inDoubleCat
are univalent, and this univalence condition means that the
underlying category and 2-sided displayed category are uni-
valent. From this, we see that objects in DoubleCat are the
same as pseudocategories internal to the bicategory of uni-
valent categories.

In [3, Example 9.3], a notion of univalent double bicategory
is de�ned such that identities correspond to gregarious equiv-
alences of double bicategories. In the particular case where
the underlying bicategory given by objects, vertical mor-
phisms and squares is a category (meaning the 1-morphisms
form a set and the assignment from identities of 1-morphisms
to 2-morphisms is an equivalence), our notion of univalence
coincides with the notion introduced in [3].

6 Examples of Double Categories

Now we construct several examples of double categories
using De�nition 5.14. All of the double categories considered
here are univalent.

Example 6.1 (square_double_cat). Let C be a univalent
category. In Example 3.4, we de�ned the 2-sided displayed
category Arr(C) over C and C. This gives rise to a double
category as follows.

• the horizontal identities are given by the identity mor-
phism;
• horizontal composition is given by the composition of
morphisms.

The unitality and associativity of horizontal composition re-
duce to the ordinary laws of composition for morphisms. All
laws involving squares hold because the type of morphisms
in a category is a set.

Example 6.2 (kleisli_double_cat). Let ) be a monad on
a univalent category C. In Example 3.5, we de�ned the 2-
sided displayed category Comma(�,�) for arbitrary func-
tors � : C1 C3 and � : C2 C3. We take � to be
the identity on C and � to be the endofunctor underlying
) . Concretely, we look at Comma(idC,) ), meaning that the
horizontal morphisms are morphisms in the Kleisli category
of ) . We obtain the following double category.

• the horizontal identities are given by the unit of ) ;
• given morphisms ℎ : G ) (~) and : : ~ ) (I),
their horizontal composition is de�ned as the follow-
ing composition

G ) (~) ) () (I)) ) (I)
ℎ ): `I

The construction of the unitors and associators for this dou-
ble category reduces to proving unitality and associativity
of composition in the Kleisli category.

One way to instantiate Example 6.2 is by takingC to be Set
and) to be the power set monad. Note that morphisms from
- to . in the Kleisli category of the power set monad are
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the same as relations between - and . . Hence, the resulting
double category has functions as vertical morphisms, and
relations as horizontal morphisms.

Note that both Examples 6.1 and 6.2 are strict double cate-
gories. In both cases, the type of horizontal morphisms is a
set and unitality and associativity for horizontal composition
holds up to equality.

Example 6.3 (spans_double_cat). Let C be a univalent
category with pullbacks. We de�ned the 2-sided displayed
category Span(C) in Example 3.6. This gives rise to a double
category.

• The horizontal identity on an object G : C is given by

the span G
idG
←−− G

idG
− G .

• Suppose that we have spans G1
i1

←−− I1
k1

− ~1 and

G2
i2

←−− I2
k2

− ~2. Their composition is given by the
following span

?

I1 I2

G1 G2 G3

i1 k1 i2 k2

c1 c2⌟

Here ? is the pullback ofk1 and i2.

To construct the right unitor of this double category, we
consider the following diagram

I

I ~

G ~ ~

i k id~ id~

idI k⌟

The square in this diagram is a pullback, and from this, we
get the desired isomorphism for the right unitor. Similarly,
we can de�ne the left unitor and the associator. The proofs
of the triangle and pentagon laws follow by diagram chasing,
and details can be found in the formalization.

Example 6.4. Using the examples we already introduced in
this section, we de�ne a double category of sets and relations
valued in propositions and a double category of sets and
relations valued in sets. To de�ne the �rst, we instantiate
Example 6.2 using the power set monad. In the resulting
double category, horizontal morphisms from- to. are given
by morphisms - P(. ), which are the same as relations
on - and . . Furthermore, since the category of sets has
pullbacks, we can instantiate Example 6.3 to sets as well.
The horizontal morphisms in the resulting double category

are given by spans -
5
←− '

6

− . , which are the same as
set-valued relations on - and . .

Example 6.5 (structured_cospans_double_cat). Suppose
that we have a functor ! : C1 C2 between univalent
categories and suppose that C2 has pushouts. In Example 3.7
we de�ned the 2-sided displayed category StructCospan(!)

over C1 and C1 of structured cospans. This gives rise to a
double category.

• The horizontal identity on an object G : C1 is given by
the cospan

!(G)
id! (G )
− !(G)

id! (G )
←−−−− !(G).

• The construction of the horizontal composition is dual
to how horizontal composition is de�ned in Exam-
ple 6.3.

Example 6.6 ([26], lenses_double_cat). LetC be a univalent
category with chosen binary products. Then we de�ne the
double category of lenses of C as follows. In Example 3.8,
we de�ned the 2-sided displayed category Lens(C). We con-
struct a double category from it as follows.

• The identity lens from G : C to G : C is given by
idG : G G and c1 : G × G G .
• Suppose we have lenses ;1 from G to ~ and ;2 from
~ to I. Then we have a lens ;1 ⊙ ;2 from G to I such
that get;1⊙;2 = get;1 · get;2 , and such that put;1⊙;2 is the
following composition.

I × G (I × G) × G ~ × G G
put;1⟨id,c2 ⟩ ( (id×get;1

) ·put;2 )×id

Note that there are di�erent gadgets called “lenses” in the
literature. The lenses by Clarke [8, Def. 3.20] are, more specif-
ically, “delta lenses”. The double category of delta lenses has,
as objects, (small) categories, as horizontal morphisms func-
tors between categories, and vertical morphisms delta-lenses,
that is, functors equipped with an extra “lifting operation” —
see [8, Def. 2.1] for details. Squares are suitable commutative
squares of functors.

7 Equivalences of Double Categories

In this section, we give su�cient conditions to show that a
1-cell in DoubleCat is an adjoint equivalence (Theorem 7.3),
and that a 2-cell in DoubleCat is invertible (Theorem 7.1).
Since these proofs are similar, we only discuss how Theo-
rem 7.3 is proven. Let us �rst give conditions for when a
2-cell in DoubleCat is invertible.

Theorem 7.1 (invertible_double_nat_trans_weq). Let g be
a 2-cell in DoubleCat. Then g is an invertible 2-cell if and only
if its underlying natural transformation and 2-sided displayed
natural transformation are pointwise isomorphisms.

To characterize adjoint equivalences, we need the notion
of a strong double functor.

De�nition 7.2 (is_strong_double_functor). Let � be a lax
double functor. We say that � is a strong double functor
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if �id (G) and �comp (ℎ, :) are isomorphisms for all suitably
typed G , ℎ, and : .

Theorem 7.3 (adjoint_equivalence_double_functor_weq).
Let ! : C1 C2 be a 1-cell in DoubleCat. Then ! is an
adjoint equivalence if and only if ! is a strong double functor
and ! is an adjoint equivalence in TwoSidedDisp.

We give a sketch of our proof of Theorem 7.3; it fol-
lows the construction of TwoSidedDisp in Section 5. As
such, we �rst show that ! lifts to an adjoint equivalence
in HorIdComp, then we show that ! lifts to an adjoint equiv-
alence in UnAssoc, and �nally, we conclude that ! gives rise
to an adjoint equivalence in DoubleCat.
Next we show that ! lifts to an adjoint equivalence in

HorIdComp, and to do so, we construct a displayed adjoint
equivalence over ! in both HorIdd and HorCompd. We sim-
plify this construction by using induction over adjoint equiv-
alences (Proposition 4.4) for whichwe use that the bicategory
HorCompd is univalent. Intuitively, this allows us to assume
that ! is the identity equivalence. More concretely, we show
the following.

Lemma 7.4. Let D : TwoSidedDisp. Suppose that �1 and �2
are objects over D in HorIdd, and that 5 : �1 idD �2. Note

that 5 consists of a natural square g :

(

idG
idD
′

h (G )

idDh (G )
idG

)

for

each G . Then 5 is a displayed adjoint equivalence if g (G) is an
isomorphism for every G .

In our situation, the assumption in Lemma 7.4 follows from
the fact that ! preserves the identity up to isomorphism. Sim-
ilarly, we can construct a displayed adjoint equivalence over
! in HorCompd, and this gives us the adjoint equivalence in
HorIdComp.
To lift ! to an adjoint equivalence in UnAssoc, we need

to construct displayed adjoint equivalences over ! in Lund,
Rund, and Assocd. Note that each of these displayed bicate-
gories live overHorIdComp. Againwe use Proposition 4.4, so
we assume that ! is the identity. Constructing the displayed
adjoint equivalences then follows from diagram chasing, and
the precise proof can be found in the formalization.
To conclude Theorem 7.3, we note that DoubleCat is de-

�ned as a full subbicategory of UnAssoc. Since adjoint equiv-
alences in full subbicategories of some bicategory B are the
same as adjoint equivalences in B, we get the desired adjoint
equivalence in DoubleCat.
For the converse, we �rst note that whenever ! is an ad-

joint equivalence DoubleCat, then ! is an adjoint equiva-
lence in TwoSidedDisp. This is because pseudofunctors pre-
serve adjoint equivalence. To show that ! is a strong double
functor, we use Proposition 4.4, so it su�ces to show that
the identity is a strong double functor. This follows from the
fact that the identity is an isomorphism.
Note that Shulman proves Theorem 7.3 for framed bicat-

egories in a di�erent way [27, Corollary 7.9]. Whereas our

proof follows the construction of DoubleCat via displayed
bicategories and makes use of induction over adjoint equiv-
alences, Shulman’s proof makes use of fully faithful and
essentially surjective strong double functors.

8 Related Work

Variants of double categories have been formalized in several
computer proof assistants.
Murray, Pronk, and Szyld [20] worked towards de�ning

double categories in the Lean proof assistant.1 The chosen
approach is to de�ne double categories as category objects
in the category of categories (see also Remark 2.2). To this
end, the authors start from the notion of “quiver internal
to a category”, and add a composition operation via suit-
able pullbacks, as discussed in Section 2. This approach is
orthogonal to ours, as it allows one to consider not just a
version of double categories, but also category objects in
other categories. Note that in Lean, due to the assumption of
uniqueness of identity proofs, all categories are “strict” in the
sense that their objects (and morphisms) form a homotopy
set. The categories internal to the category of categories in
Lean, correspond most closely to what we call “strict dou-
ble categories” in Section 2 — see Remark 2.1; in particular,
the associativity and unitality laws for both horizontal and
vertical morphisms hold up to equality.

In 1lab [30], double categories are also de�ned as cate-
gory objects in a category of categories. There, pullbacks are
avoided by looking at the internal language of a presheaf
category.

Hu and Carette [15] started a library of category theory in
Agda. At the time of writing that article, “[. . . ] double cate-
gories [. . . ] are still awaiting” formalization. In the meantime,
the de�nition of strict (see Remark 2.1) double categories,
as well as the construction of the dual of a double category
(swapping horizontal and vertical morphisms), have been im-
plemented.2 In particular, Hu and Carette’s double categories
are symmetric, that is, horizontal and vertical morphisms
play the same role. The library is based on E-category theory
[23]. Accordingly, the type family of squares in a double cate-
gory is indexed by setoids; to avoid “transport modulo setoid
equality” in the statement of composition laws for squares,
a custom equality for squares, called FrameEquality, is in-
troduced. We instead do state composition laws for squares
modulo transport (along identities), see the discussion in
Section 2.
Displayed (bi)categories [1, 2] play a prominent role in

our work. Firstly, we use 2-sided displayed categories to
represent an extra class of morphisms on a category. Note
that 2-sided displayed categories are the same as displayed
categories over a cartesian product of categories. Secondly,

1https://github.com/leanprover-community/mathlib/pull/18204
2https://github.com/agda/agda-categories/blob/36abe6bff98be027bd4fcc

3306d6dac8b2140079/src/Categories/Double/Core.agda
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the bicategory of double categories is constructed in layers
using the technique of displayed bicategories.

Displayed categories are the same as type re�nement sys-
tems as studied by Melliès and Zeilberger [19]. Melliès and
Zeilberger [19, Section 6.4] also consider a 2-sided displayed
category, in the form of a displayed category over the cate-
gory Dom × Dom, to formalize a logical relations theorem
by Reynolds.

9 Conclusion

In this paper, we constructed the univalent bicategory of uni-
valent double categories. The main tool in the construction is
the notion of 2-sided displayed categories, which represent
categories with an extra class of morphisms and squares.
We also characterized the adjoint equivalences and invert-
ible 2-cells in the bicategory of univalent double categories,
and in that characterization, we made use of univalence at
several points. Finally, we gave numerous examples of univa-
lent double categories. Among our examples are the double
categories of lenses and of structured cospans.
There are numerous ways to extend this work. An inter-

esting special case of double categories is given by framed
bicategories [27]. We can obtain a univalent bicategory of
univalent framed bicategories by extending the work in Sec-
tion 5: we take a full subbicategory of DoubleCat that ex-
presses that the the double category is framed (i.e., some
functor is a �bration). However, currently framed bicate-
gories are not considered in our formalization. Furthermore,
in many applications, one would like to have more struc-
ture on a double category, such as a (symmetric) monoidal
structure. Such structures can conveniently be de�ned by
looking at pseudomonoids in DoubleCat. To construct a uni-
valent bicategory of (symmetric) monoidal double categories,
one would need to combine ideas from [1, 32] and [35]. The
methods in this paper are also applicable to de�ne virtual
double categories [11]. To do so, one would need to modify
the notion of a 2-sided displayed category so that the source
of a square is not given by a morphism, but by a sequence of
composable morphisms.

In addition, our notion of univalent double category is un-
able to capture univalent categories with profunctors. This
is because we do not have a category of univalent categories,
but only a bicategory. This is another situation where the
right solution is to pursue a formalization of double bicate-
gories [33] and its suitable notion of univalence [3, Example
9.3].
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