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Abstract: Self-regulated learning (SRL) is an essen-
tial skill to achieve one's learning goals. This is par-
ticularly true for online learning environments (OLEs) 
where the support system is often limited compared 
to a traditional classroom setting. Likewise, existing 
research has found that learners often struggle to 
adapt their behaviour to the self-regulatory demands 
of OLEs. Even so, existing SRL analysis tools have 
limited utility for real-time or individualised support 
of a learner's SRL strategy during a study session. 
Accordingly, we explore a reinforcement learning 
based approach to learning optimal SRL strategies 
for a specific learning task. Specifically, we utilise the 
sequences of SRL processes acted by 44 partici-
pants, and their assessment scores for a prescribed 
learning task, in a purpose-built OLE to develop a 
long short-term memory (LSTM) network based re-
ward function. This is used to train a reinforcement 
learning agent to find the optimal sequence of SRL 
processes for the learning task. Our findings indi-
cate that the developed agents were able to effec-
tively select SRL processes so as to maximise a 
prescribed learning goal as measured by predicted 
assessment score and predicted knowledge gains. 
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INTRODUCTION

Academic researchers have established that self-regulation is vital for effective learn-
ing (Butler & Winne,  1995; Panadero,  2017; Winne,  2020, 2021; Winne et  al.,  1998; 
Zimmerman, 2013). In an academic setting, self-regulation is the process of setting goals, 
devising strategies to achieve said goals, and, as the tasks are underway, monitoring and 
evaluation of progress towards these goals (Hattie & Timperley, 2007; Winne et al., 1998). 
If an obstacle is encountered or the learner's progress evaluation is deemed unsatisfactory, 
self-regulating learners may alter strategies to improve progress (Hattie & Timperley, 2007; 
Winne et al., 1998).

The contributions of this work will facilitate the devel-
opment of a tool which can detect sub-optimal SRL 
strategy in real-time and enable individualised SRL 
focused scaffolding.

K E Y W O R D S
learning analytics, learning strategies, reinforcement learning, 
self-regulated learning

Practitioner notes

What is already known about this topic
•	 Learners often fail to adequately adapt their behavior to the self-regulatory de-

mands of e-Learning environments.
•	 In order to promote effective Self-regulated learning (SRL) capabilities, research-

ers and educators need tools that are able to analyze and diagnose a learner's 
SRL strategy use.

•	 Current methods for SRL analysis are more often descriptive as opposed to pre-
scriptive and have limited utility for real-time analysis or support of a learner's SRL 
behavior.

What this paper adds
•	 This paper proposes the use of Reinforcement Learning for prescriptive analyt-

ics of SRL. We train a Reinforcement Learning agent on sequences of SRL pro-
cesses acted by learners in order to learn the optimal SRL strategy for a given 
learning task.

Implications for practice and/or policy
•	 Our work will facilitate the development of a tool which can detect sub-optimal SRL 

strategy in real-time and enable individualized SRL focused scaffolding.
•	 The implications of our work can aid in course design by predicting the self-

regulatory load imposed by a given task.
•	 The ability to model SRL strategies using Reinforcement Learning can be ex-

tended to simulate or test SRL theories.
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       |  3PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

Researchers have documented that students' self-regulated learning (SRL) capabili-
ties can play an important role in academic achievement (Broadbent, 2017; Broadbent & 
Poon, 2015; Dent & Koenka, 2016; Theobald, 2021). For example, Dent and Koenka (2016) 
find that academic success will depend on the way a learner deploys self-regulatory strat-
egies (eg, goal-setting, planning, or monitoring) during the learning process. Kizilcec and 
Schneider (2015); Zheng et al. (2015) and Theobald (2021) showed that SRL strategies such 
as time management, motivation and self-monitoring play a significant role in goal attain-
ment or academic performance.

As online learning continues to gain prominence, its inability to provide the same level 
of support and guidance typically seen in a physical setting remains an issue (Wong 
et  al.,  2017). Online learners need to be able to strategise what, when and how to en-
gage with the abundance of resources made available to them. Lack of SRL abilities can 
make it challenging to successfully navigate such environments (Kizilcec & Schneider, 2015; 
Maldonado-Mahauad et al., 2018). Studies have found that many learners fail to adequately 
adapt their behaviour to the self-regulatory demands of e-learning environments (Azevedo 
& Aleven, 2013; Cerezo et al., 2017; Feyzi-Behnagh et al., 2014). Hence, the learner's ability 
to self-regulate is an increasingly important skill to achieve desired learning goals.

In order to promote effective SRL capabilities in challenging environments such as on-
line learning, research is needed into prescriptive tools that can diagnose a learner's SRL 
strategy use and provide beneficial scaffolding. However, current methods for SRL analysis 
(see Section “SRL modelling tools”) are more often descriptive as opposed to prescrip-
tive and have limited utility for real-time analysis of a learner's SRL patterns (see Section 
“Reinforcement learning to address the shortcomings of SRL analysis methods for pre-
scriptive analytics”). Reinforcement learning techniques show promise in addressing these 
shortcomings by enabling the real-time prediction of an optimal action required to achieve a 
desired outcome (Luo, 2020; Nguyen & La, 2019) (see Section “Reinforcement learning to ad-
dress the shortcomings of SRL analysis methods for prescriptive analytics”). Consequently, 
this paper analyses the use of reinforcement learning to learn optimal SRL strategy for a 
given learning task. We believe progress in this area can inform the development of an au-
tomated scaffolding tool, that prescribes learners individualised SRL strategies to achieve a 
desired learning goal. The results and their implications for theory and practice are further 
discussed in the paper.

BACKGROUND

SRL and trace data

Digital learning environments allow researchers not only to track students' learning perfor-
mance, but also their learning interactions and activities such as click streams, eye gaze 
data, resource usage and chat logs (Azevedo & Gašević, 2019; Fan, van der Graaf, Lim, 
Rakovic, Kilgour, et al., 2022; Li et al., 2020); often referred to as trace data. These traces 
that learners generate as they engage in digital learning environments result from a variety 
of internal cognitive and metacognitive states, strategies and processes used by the student 
(Azevedo et al., 2013). Hence, studies propose the analysis of SRL and learning strategies 
through the use of learner traces and activity logs (Bannert et al., 2014; Hadwin et al., 2007). 
For example, Bannert et al.  (2014) propose that SRL can be viewed as a trail of actions 
performed by learners while engaging in a study session. Further buttressing this notion, 
Hadwin et al. (2007) studied the activity of eight learners across two study sessions using 
the gStudy platform. They analysed the activity traces and compared the data to learner 
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self-reports on SRLs and determined that student activity traces are vital towards progress-
ing our understanding of SRL.

SRL analysis can be performed using learner actions (eg, open quiz, play video) captured 
by trace data (Baker et al., 2020; Winne, 2013). However, learner actions are often platform 
dependent, which can limit the generalisability of findings (Baker et al., 2020; Fan, van der 
Graaf, Lim, Rakovic, Singh, et al., 2022). Alternatively, Fan, van der Graaf, Lim, Rakovic, 
Kilgour, et  al.  (2022) and Srivastava et  al.  (2022) have translated sequences of learning 
actions captured from trace data into theoretically grounded SRL processes. These SRL 
processes can be categorised according to varying levels of granularity but broadly fall 
under metacognition, low cognition or high cognition processes (Fan, van der Graaf, Lim, 
Rakovic, Kilgour, et al., 2022; Srivastava et al., 2022). Analysis can then be conducted on 
these platform agnostic concepts (Srivastava et al., 2022).

Various research groups have developed statistical and machine learning methods to 
construct abstract representations of learning strategies from trace log data to analyse 
the complex temporal patterns of SRL (Aleven et al., 2006; Azevedo et al., 2009; Blikstein 
et al., 2014; Hadwin et al., 2007; Saint et al., 2022). While efforts have been taken to anal-
yse SRL processes on a frequency basis (Kovanović et al., 2015; Lust et al., 2011), these 
practices provide more of a summative view and offer insufficient insight into the sequential 
way learners employ strategies as they engage in a task. Since SRL is a continuous process 
rather than a standstill frame, SRL analysis techniques should be augmented with tools 
more suited to capturing the dynamics of temporality in learner engagement (Molenaar & 
Järvelä, 2014; Saint et al., 2021, 2022; Saint, Whitelock-Wainwright, et al., 2020). These 
methods largely fall into the categories of process mining, sequential pattern mining and 
Markov models.

SRL modelling tools

Sequential pattern mining (SPM) is a family of techniques used to extract the most fre-
quently occurring sequences in a dataset (Mabroukeh & Ezeife, 2010). SPM is often used 
in SRL research to analyse the patterns displayed by learners while engaging with a digital 
learning environment. For instance, Bouchet et al. (2012) studied frequently occurring action 
sequences to infer that high-performing students were more systematic with their read-
ing strategy, as their most frequent activity patterns included more relevant reading and 
full-length re-reads. They also found that academic performance was linked to monitoring 
patterns. Rabin et al. (2019) compared frequent sub-sequences of learner actions between 
different groups of learners and found that learners who fulfilled their initial intentions were 
more strategic in their resource usage; for instance, tending to access video lectures in a 
sequential manner.

Process mining (PM) is a group of techniques used to extract insights from event log data 
to track and model processes. Unlike SPM, PM is able to consider other relationships to direct 
succession such as causality and choice (van der Aalst et al., 2004). PM has steadily gained 
traction in academic research due to its ability to analyse temporal and sequential data 
(Maldonado-Mahauad et al., 2018; Romero & Ventura, 2013; Saint, Whitelock-Wainwright, 
et al., 2020). Cerezo et al. (2020) used a PM technique called inductive mining on learning 
management system event logs to contrast processual differences in pass versus fail stu-
dents. They found that both groups were unlikely to follow the recommended course path, 
but students who passed exhibited significantly more self-regulatory processes.

Markov models (MMs) analyse sequential observations using a set of states and probabi-
listic transitions between those states under the assumption that future states are dependent 
only on the current state (Gagniuc, 2017).
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Autonomous Markov models (AMMs) are MMs in which the outcome cannot be influ-
enced by feedback or reward signals. Hidden Markov models (HMMs) and Markov chains 
(MCs) are the most common form of AMMs uses for SRL analysis (Biswas et al., 2017; 
Galyardt & Goldin, 2015; Kinnebrew & Biswas, 2011; Saint, Gašević, et al., 2020). In anal-
ysis of SRL patterns, the states used by AMMs are typically inferred to be a study session 
(Fincham et al., 2019) or a learning strategy (Biswas et al., 2010; Jovanović et al., 2017; 
Matcha et al., 2019).Fincham et al. (2019) and Matcha et al. (2019) used AMMs on trace 
data to extract study tactics from the learner's prior study sessions. The authors then 
clustered the sequences of learners; study tactics to deduce strategies used during the 
course. Zhang and Cheng  (2019) explored the difference in negotiating behaviours of 
students with varying SRL capabilities (measured using a questionnaire) in a negotiated 
online reading assessment system. In the study, states were inferred to be metacog-
nitive strategies. The study found significant differences in the behaviours of high and 
low SRL students; particularly, high SRL students showed better strategic planning and 
self-reflection.

Reinforcement learning for prescriptive analytics

Reinforcement learning is a type of machine learning technique that enables an agent to 
learn in an environment by trial and error using rewards as signals for positive (or negative) 
behaviour (Doroudi et al., 2019). In each episode, the agent's goal is to learn a sequence 
of actions that would maximise the total cumulative reward from a given state (Doroudi 
et al., 2019). The function which determines this action based on a given state is known as 
the policy. As the agent explores the environment, it receives information in the form of the 
state and reward and uses this information to take the next optimal action (see Figure 1). 
Hence, reinforcement learning algorithms are dynamic and flexible in that they are able to 
update and predict in real time (Luo, 2020; Nguyen & La, 2019).

Reinforcement learning in education

In the education field, reinforcement learning has been utilised successfully for personal-
ised recommendations (Doroudi et al., 2019; Intayoad et al., 2020; Liang et al., 2022; Zhang 
et al., 2019).

Zhang et al. (2019) use reinforcement learning to filter noisy actions from user profiles for 
more accurate course recommendations. The proposed approach involves using a two-level 

F I G U R E  1   Simplified illustration of the reinforcement learning process.
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hierarchy of RL agents. The first level agent is responsible for selecting a course category 
to recommend, while the second level agent is responsible for selecting a specific course 
within that category. The state space includes both user and course features, such as user 
demographics, historical activity data and course attributes. The action space for the first 
level agent includes the different course categories, while the action space for the second 
level agent includes the specific courses within a category. The reward function is designed 
to encourage the system to recommend courses that the user is likely to be interested in 
and to maximise user engagement with the recommended courses hence, the authors use a 
combination of click-through rate, completion rate, and time spent on course to determine the 
reward. The authors evaluated their proposed approach on a real-world dataset of MOOC 
course activities and compared it against several baseline methods, including non-RL ap-
proaches and single-level RL approaches and showed that the proposed approach outper-
formed the baselines in terms of recommendation accuracy and user satisfaction.

Other uses of RL in education relate to scaffolding strategy (Barnes & Stamper, 2008; 
Fahid et al., 2021; Johnson & Zaiane, 2012). Fahid et al.  (2021) develop an RL model to 
adaptively determine how a student should engage with learning resources after an incor-
rect answer, based on the integrated cognitive antisocial potential (ICAP) theory. According 
to the ICAP theory, there exist four types of engagement modes—interactive, constructive, 
active and passive (Chi & Wylie, 2014). The learning environment used for the study did 
not provide interactive options, so the developed model works by suggesting to the learner 
one of the other three modes of engagement or providing no suggestions at all. After each 
incorrect solution, one of these four actions is proposed to maximise the learner's expected 
learning gain. The state representation used for this study was a total of 31 features that 
encompassed the learner's survey features such as gender, age and domain interest; video 
playback features such as time spent on video; and prior scaffolding engagement features 
including previous types and numbers of engagement modes delivered. The reward was the 
increase in predicted normalised learning gains. This prediction function was created from a 
dataset of participant's post- and pre-test scores and the sequences of scaffolding they re-
ceived. The data were used to build a prediction model that maps sequences of scaffolding 
sequences to the difference in post- and pre- test scores. The developed RL model yielded 
scaffolding policies that outperformed heuristic-based policies such as only constructive 
scaffolding, no scaffolding or scaffolding at random, as measured by the average expected 
reward.

Despite the effectiveness of reinforcement learning in in other fields of research (Shao 
et al., 2019; Zhang & Mo, 2021) as well as in education for personalised recommendations 
and feedback strategy, to the best of our knowledge, there has been little to no research on 
the use of reinforcement learning for SRL analysis.

Reinforcement learning to address the shortcomings of SRL analysis 
methods for prescriptive analytics

The current approaches taken to model SRL patterns indicate that learning strategies can 
be derived from trace data and are able to provide valuable insights on the learner's pro-
cesses during study sessions; however, they exhibit significant limitations:

1.	 Real-time evaluation of a given pattern is difficult. The current approaches do not 
offer insight on intermittent states (such as a learner's SRL processes half-way 
through a session); hence, various models will have to be built to analyse patterns 
at different points during a given study session—this makes it difficult to provide 
real-time personalised feedback. For instance, to evaluate a learner's SRL strategy 
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using every 5 minutes in an hour-long session using one of SPM, PM or AMM 
methods highlighted above, we would need to construct 20 (60 minutes/5 minutes) 
different models to evaluate a learner's patterns. However, we can use a single 
reinforcement learning model to calculate the predicted outcome at each interval.

2.	Methods are descriptive as opposed to prescriptive. For instance, we can distinguish the 
patterns exhibited by low and high SRL strategy groups but cannot determine what actions 
an individual should take at a given time period to improve from the low to high group. 
Using one of SPM, PM or AMM methods highlighted above we can attain the average pat-
tern displayed by the high SRL group, but this would not consider the individual learner's 
prior actions acted thus far in the learning session, which may make recommended ac-
tions ill-suited. Reinforcement learning shows promise in its potential to address these 
shortcomings. By building an abstract representation of the decision making process in 
SRL strategy selection, we can use reinforcement learning to analyse both the value of a 
given state and the actions that maximise achievement of a desired goal at any given time 
period.

We propose the utilisation of reinforcement learning's dynamic capabilities to model a 
learner's SRL processes as they engage in a study session. These distinctions can pro-
vide significant possibilities including (1) learning optimal SRL selection strategy for a given 
learning task, (2) detecting poor SRL strategy in real-time, (3) providing scaffolding to pro-
mote effective SRL strategy and (4) running simulations to explore various SRL theories.

RESEARCH OBJECTIVES

At this stage of the experiment, our goal is to use RL to find the optimal strategy for the learn-
ing task. We develop a reinforcement learning agent on sequences of SRL processes acted 
by learners to analyse to what extent the agent can learn various SRL strategies. We posit 
progress in our abilities to model SRL strategies using reinforcement learning can provide 
benefits in future work that include a reinforcement learning directed feedback strategy. 
Hence, in this paper we study:

RQ To what extent can a reinforcement learning agent learn effective SRL strat-
egy using learner traces?

METHODOLOGY

The process from data collection to model output is illustrated in Figure 2. The process 
is as follows: trace data are collected in a lab setting as students complete an assigned 
learning task. The trace data are then translated into sequences of SRL processes. These 
sequences of SRL processes are used to develop a reward function and train reinforcement 
learning models. Further information is provided in the following sections.

Data collection and processing

Trace data used in the experiment were collected from an experiment conducted in a lab 
setting at a university in the Netherlands. Analyses were conducted with 44 participants 
(Average Age = 21 years, SD = 3 years) from a wide range of degree programs but mostly 
from social sciences. The study uses trace data generated while learners interact with a 
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8  |      OSAKWE et al.

digital learning environment  (Fan et al., 2022). The learning environment comprised of a 
catalogue and navigation section, a reading material area, multiple learning aids such as 
annotation, planner, timer and search tools, and a writing panel situated at the bottom right 
corner of the screen, which can be opened or closed anytime (see Figure 3).

The 90 minute study used a pre-post design with a learning session in between. 
Specifically, the procedure comprised of the following successive steps: a pre-test apti-
tude, a pre-survey, a training session, a writing task, a post-test, a transfer-test, and a post-
survey (van der Graaf et al., 2022). However, for this study we only made use of the data 
from the pre/post task aptitude tests and the writing task. Statistics from the assessments 
are presented in Table 1. The pre/post task aptitude test were used to gauge the level of 
knowledge in the topic before and after the writing task and had acceptable reliability scores 
(Kline, 2013),

at postest. The writing task involved a 45 minute session where they could selectively learn 
from and read more than 30 web pages on informative texts about three topics: artificial intel-
ligence (AI), differentiation and scaffolds. The learners were instructed to use this information 
to write a vision essay of 300–400 words about the future of education in the year 2035. The 
essays were scored by human markers using the following criteria: coverage of topics from 
readings (9 points), essay cohesion (6 points), future vision (3 points) and word count (3 points). 
While the learners undertook the reading and writing task, data were collected from the follow-
ing channels: (1) Navigation data, which stored simple navigational log data and time spent on 

� = 0.60, �2 = 0.65,�t = 0.68, at pretest and � = 0.59, �2 = 0.64,�t = 0.66

F I G U R E  2   An overview of the steps and deliverables of each step to developing the reinforcement learning 
SRL model. 
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       |  9PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

pages; (2) peripheral data, which stored data about mouse movements, mouse clicks on pages, 
mouse scroll and keyboard strokes; and (3) eye-tracking data from a screen-based eye-tracker 
(Tobii TX300), which was sampled at 300 Hz and consists of fixations, saccades, gaze points 
and pupil size.

The trace data events (navigation/peripheral/eye-tracking) were translated to learner ac-
tions (eg, a learner's click to create or edit a note during learning is indicative of a NOTE_
EDITING action). The sequences of these learning actions could be mapped to one of the 
categories or subcategories mentioned in Table 2. In order to code the data, we followed the 
framework proposed by Bannert et al. (2014), which describes three major SRL categories: 
metacognition, cognition and motivation. Due to the difficulty in determining motivation from 
log data, the Motivation category was excluded from the coding process. Metacognition 
and cognition can be further decomposed into subcategories (see Table 2). Specifically, 
Metacognition consists of orientation, planning, monitoring and evaluation. Cognition is 
divided into first-reading; and re-reading and elaboration/organisation which require more 
complex processing (Lim et al., 2021, 2023). For example, when a learner highlighted a note 
while reading the instructions, this sequence of learning actions was labelled as GENERAL_
INSTRUCTION<-> EDIT_ANNOTATION and could be mapped to the Orientation process 
(MC.O), as the learner was orientating towards the task's requirements. In cases where 
recorded actions could not be mapped to any of the proposed processes, it was labelled as 
No_Process. This coding process of trace data was checked for validity by using think aloud 
data in (Fan et al., 2022).

F I G U R E  3   A screenshot of the learning environment used by the participants, including annotations of the 
tools available to the learners. 

TA B L E  1   Summary statistics of assessments used for developing RL algorithms detailed in Section 
“Analysis”.

Essay score Pre-test score Post-test score

M 0.66 0.55 0.68

SD 0.23 0.14 0.12
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       |  11PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

Figure 4 presents a general overview of the processing pipeline. For a more detailed 
presentation of the process see (Fan et al., 2021).

Analysis

In reinforcement learning, in each episode an agent A interacts with an environment E, 
aiming at maximising the accumulated reward R along the action trajectories (see Table 3). 
Each trajectory starts at an initial state S0 and ends at a final state ST by doing actions ai at 
each step t under a policy P. For this experiment, an episode was one 45-minute study ses-
sion, the agent was the learner and the policy decided what SRL process (see Table 2 and 
below) to take based on the learner's current state.

F I G U R E  4   An overview of the pipeline of transforming the raw trace data into SRL processes. 

TA B L E  3   A translation of the reinforcement learning terms presented in the paper into their environmental 
equivalent.

Reinforcement learning term Environment equivalent

Agent Learner

Action SRL process

State Sequence of SRL processes taken so far in study session

Policy Learner's SRL strategic decision making process

Reward Assessment score or equivalent measure

Episode Study session
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12  |      OSAKWE et al.

Reward

In determining the reward function best suited for this study, we adopted SRL theories which 
state that:

1.	 SRL capabilities play an important role in academic achievement (Broadbent,  2017; 
Dent & Koenka,  2016; Theobald,  2021).

2.	Low and high performing students tend to apply different SRL strategies (DiFrancesca 
et al., 2016; Proctor et al., 2006; Zhang & Cheng, 2019).

3.	High-efficacy SRL learners are more likely to use a diverse range of SRL processes (Fan 
et al., 2021; Fincham et al., 2019; Nandagopal & Ericsson, 2012).

Hence, we utilised a long short-term memory (LSTM) neural network that maps sequences 
of SRL processes to learning gains and essay scores. An LSTM model was selected due to 
its effectiveness with handling sequential data; particularly in regard to predicting processes 
(Camargo et  al.,  2019; Tax et  al.,  2017). Learning gains were calculated by normalising 
(Marx & Cummings, 2007) the difference between pre-test knowledge scores as a percent-
age and post-test knowledge scores as a percentage (see Equation 1) (Table 4). The LSTM 
was implemented using Python Library, Tensorflow (Abadi et al., 2015)

The reward function (R) was defined by a weighted combination of the predicted essay 
assessment score (P) and normalised learning gain (NLG or learning gain) as well as a 
penalty for lack of diversity, measured using the entropy (H) of actions taken by the rein-
forcement learning agent, as defined in the formula below (see Equation 2). Entropy was 
calculated using Shannon entropy (Shannon, 1948) and a standard base of e. The weighted 
combination α illustrates the fact that learners can approach the study session with different 
priorities. We can adjust α to toggle the relative balance of the two priorities. For instance, 
a learner with α of 1, would have the main priority of maximising learning gains, and α at 0 
would translate to a learner whose main priority was to perform best on the assessment. 
The reward would only be received at the end of each episode

(1)NLG = {

post−pre

100−pre
post>pre

0 post=pre
post−pre

pre
post<pre

.

(2)
R = �∗NLG + (1 − �) ∗W + min

[

H − 1, 0
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Entropy Penalty

.

TA B L E  4   Statistics for learning gains obtained from human participants.

Learning gains

Standard Normalised

M 0.14 0.28

SD 0.14 0.25
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       |  13PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

The performance of LSTM models can be negatively impacted by longer sequences due 
to issues such as exploding/vanishing gradients and information decay (Gers et al., 1999); 
hence, we tested reducing the length of SRL sequence vectors by summarising actions into 
intervals of varying length in seconds. For instance, using an interval of 30 seconds would 
translate to every row in the learner's SRL sequences vector being 30 seconds worth of SRL 
processes acted by the learner (see Figure 5). However, by summarising the sequences 
in this way, one can lose information on the sequences of processes acted by the learner. 
Hence, we compared the training loss, as measured by mean squared error, using intervals 
of 1, 15, 30, 45, 60 and 90 seconds. The training loss was minimised at intervals of 30 sec-
onds (see Figure 6).

State

Similar to the vectors used to construct the LSTM predictor in Section “Reward”, the learn-
er's state is a matrix consisting of the SRL processes (see Table 2) taken so far in the current 
study session, at intervals of 30 seconds.

F I G U R E  5   An example of reducing actions into intervals. In our example, from time t = 0.00 to t = 0.30 a 
learner planned for 10 seconds, monitored for 15 seconds then planned again for 5 seconds. In this case, by 
summarising into 30 second intervals, we lose information on the sequential order of planning to monitoring to 
planning processes. 
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14  |      OSAKWE et al.

Actions

To simplify the action selection process and reduce model complexity, we combined First-
reading and re-reading into one process—reading. This significantly reduces model com-
plexity and training time by simplifying the action selection process at the cost of a negligible 
change (0.001) in the LSTM reward function training loss. The total list of available actions is:

•	 Orientation—MC.O
•	 Planning—MC.P
•	 Monitoring—MC.M
•	 Evaluation—MC.E
•	 Reading—LC.R
•	 Elaboration/Organisation—HC.E/O
•	 No process—NP

Furthermore, to reduce the impact of model training on memory, we introduced a category 
of actions called magnitude. For each SRL action presented above, the agent determined a 
magnitude from 1 to the interval size of 30 seconds. This allowed the agent to skip up to 29 
additional time steps if necessary. For instance, an output of SRL process orientation and 
magnitude 10 would translate to performing the orientation process for 10 seconds.

Algorithms

The reinforcement learning algorithms used in this study are Tensorforce (Kuhnle et al., 2017) 
implementations of actor-critic (AC), proximal policy optimisation (PPO), Q-learning (Q) 
and random. These are the major categories of algorithms available from Python library, 
Tensorforce (Kuhnle et al., 2017). The results from the best performing algorithm for this 
environment are used to draw insights and implications.

F I G U R E  6   The recorded loss from training the LSTM neural network after reducing participants' 
SRL sequential data to intervals of 1, 15, 30, 45, 60 and 90 seconds. 

 14678535, 0, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13429 by R

adboud U
niversity N

ijm
egen, W

iley O
nline L

ibrary on [28/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



       |  15PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

Actor-Critic
The AC algorithm (Mnih et al., 2016) consists of a “Critic” that estimates the value of a given 
action or state and an “Actor” which learns and updates the policy in the direction suggested 
by the Critic. Both the “actor” and the “critic” were parameterised using neural networks. 
This study used the advantage actor critic implementation.

Proximal policy optimisation
PPO (Schulman et al., 2017) improves the policy function while maintaining a “trust-region” 
to minimise the change in policy after each update by measuring the Kullback–Leibler diver-
gence (Kullback & Leibler, 1951) of the updated policy and instilling large penalties for large 
changes. This ensures the policy is not too heavily swayed by outlier occurrences.

Q-learning
A Q agent will choose an action in each state based on a “Q-value”, which is a weighted re-
ward based on the expected highest long-term reward. Specifically, the Q-value of an action 
is the reward from taking a particular action plus the discounted sum of maximum expected 
rewards. Traditional Q-learning makes use of a look-up table to store these Q-values; how-
ever, in deep Q-Learning, a neural network is trained to parameterise the function which 
models this expected long term reward (Mnih et al., 2015).

Random
An agent who selects any action with equal probability.

Evaluation

We compared the performance of four reinforcement learning agents: Advantage actor critic 
(AC), proximal policy optimisation (PPO), Deep Q-learning (Q) and an agent which acts 
randomly (random). The agents were trained for a total of 5000 episodes. After each batch 
of 100 episodes of training, we evaluated the agent's performance and record its average 
reward, using 1000 test episodes. A baseline is included, which is the average reward of a 
random agent using 1000 test episodes.

Average Cumulative Reward

The Average Cumulative Reward (ACR) metric can be used to measure the effectiveness 
of a given Reinforcement Learning agent. ACR computes the average total reward an agent 
accumulates in executing a given task. To evaluate a given agent, we look at its ACR ob-
tained from its test episodes. The developed SRL policy should be able to consistently 
attain higher ACR over the baseline random agent which does not necessarily select SRL 
processes in a strategic manner.

We will analyse the output of the best performing agents at each of the three levels of priority:

	 (i)	 Essay focused (α = 0). The agent whose main priority is maximise essay scores.
	 (ii)	 Learning gain focused (α = 1). The agent whose main priority is maximise learning 

gains.
	(iii)	 Balanced focused (α = 0.5). The agent whose main priority is to balance the maximisa-

tion of learning gains and essay scores.

At each of the three levels we examine:
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16  |      OSAKWE et al.

Predicted Scores. We use the LSTM predictor described in Section “Reward” to analyse 
the predicted essay scores and learning gains.
Actions Distribution. We observe the distribution of the average timespan allocated to 
each SRL process during the agent's test run. Plots were created using Python library, 
Matplotlib (Hunter, 2007).
Epistemic network analysis: Epistemic network analysis (ENA) is a network analytic 
method used to analyse and visualise network data. ENA measures the connections 
and strength of connections between nodes in a network (Shaffer et  al.,  2009). ENA 
has previously been used to study the dynamics of SRL sequences by Saint, Gašević, 
et al.  (2020). Using each SRL Process as a node, and the relationship measuring the 
relative frequency of co-occurrence of SRL processes, we can analyse the relationships 
and interplay between SRL processes generated by an agent's actions during its test 
run. The thicker the connecting lines between two processes, the more frequently they 
tend to succeed or precede each other. This can provide deeper insights into the strategy 
of SRL Process selection. ENA plots were created using rENA, an R Library (Marquart 
et al., n.d.).

RESULTS

In Table 5, we compare the performance of the various agents at different values of alpha. 
At an α of zero (an essay focused agent), the best performing agent was Q-learning with 
an average reward of 1.12. The PPO agent was also able to outperform a Random agent, 
by obtaining an average reward of 0.74. At every other value of α the best performing agent 
was PPO with an average reward of 0.57, 0.50, 0.43 and 0.81 at α values of 0.25, 0.50, 0.75 
and 1.00, respectively. Hence, the PPO agent was the only algorithm able to consistently 
outperform a random agent at every value of α.

Using the results from Table 5, we can determine the best performing agents at the three 
main priority levels of focus. Namely, the PPO agent at the NLG and balanced focus; and the 
Q agent at the Essay focus. In Table 6, we observe the predicted essay score and learning 
gain for these best performing agents. As expected, the essay score and learning gain were 
maximised when the agents were trained to optimise for the respective focus. Furthermore, 
we also observe an inverse relationship between essay score and learning gain; ie, the 
greater the focus on maximising learning gains (higher α), the worse predicted essay score 
attained. However, despite the inverse relationship, the rate of change is notably different. 
As we move from an α of 0 to 0.5, we see an increase in learning gains of 0.15, with a de-
crease in essay score of 0.02. Likewise, as we move from an α of 0 to 1, we see an increase 
in learning gains of 0.56, with a decrease in essay score of 0.17. Essentially, the trade-off 

TA B L E  5   Performance of trained agents are compared at different values of α, which defines goal priority.

α Q-learning Actor-critic PPO Random

0.00 1.12 −0.66 0.74 0.67

0.25 0.50 −0.28 0.57 0.54

0.50 0.47 −0.19 0.50 0.41

0.75 0.16 −0.06 0.43 0.28

1.00 0.15 0.61 0.81 0.15

Note: Performance is measured using the highest average reward obtained from the test batches.
For each value of α, the highest average reward is boldened.
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       |  17PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

between essay score and learning gains is diminishing as the agent pursues a more learn-
ing gain focus.

Figure 7 illustrates the optimal minutes distribution as suggested by the best agents in 
their respective focus. In regard to learning gains (Figure 7a), the PPO agent allocated 

TA B L E  6   Predicted essay scores and learning gains for the best performing agents at the three goal 
priority levels.

α Description Agent Essay score
Learning 
gain

0.00 Essay focus Q-learning 0.67 0.15

0.50 Balanced focus PPO 0.65 0.30

1.00 Learning gain focus PPO 0.50 0.71

– Human participant average – 0.69 0.28

Note: The human participant averages are also included for comparison's sake.

F I G U R E  7   A plot of the average minutes' distributions of the best performing reinforcement learning agents 
at different goal priority levels as well as the average minutes distribution of human participants from the data 
collection study. The minute totals (y-axis) are shown for each of the SRL processes (x-axis). (a) Average 
minutes distribution of the trained learning gains oriented PPO agent. (b) Average minutes distribution of the 
trained essay oriented Q agent. (c) Average minutes distribution of the balanced oriented PPO agent which 
accounts for both essay score and learning gains during its best test run. (d) Average minutes distribution of 
human participants during data collection. 

 14678535, 0, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13429 by R

adboud U
niversity N

ijm
egen, W

iley O
nline L

ibrary on [28/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18  |      OSAKWE et al.

a sizable amount of time to Planning and had a relatively even spread of minutes dis-
tributed across the remaining processes. Conversely, the essay score driven Q-learning 
agent showed less diversity in SRL strategy use, having allocated most of time between 
three processes: elaboration/organisation, planning and evaluation. The balanced focus 
agent had the most even spread of minutes allocation, with two highest minutes allocated 
to planning and elaboration/organisation. The average minute distribution of the human 
participants showed an uneven allocation, with most of the minutes going to reading and 
elaboration/organisation.

In Figure 8, we plot an ENA analysis of the network formed by the SRL processes used at 
the three levels of focus. A plot of the ENA analysis rotated according to accumulated means 
can be viewed in Figure S1. The learning gain focused agent had a mostly centralised net-
work, with most processes co-occurring with Planning. The strongest of these connections 
were elaboration/organisation to planning, orientation to planning and evaluation to planning. 
The essay score oriented agent equally strong connections between planning, elaboration/
organisation and evaluation, meaning each of these three processes were just as likely to 
co-occur. The balanced focus agent's network had planning and elaboration/organisation 
as the two largest nodes, as well as the strongest connection. The other processes were 
most likely to co-occur with either of these nodes. For example, reading was most likely to 

F I G U R E  8   A plot of the epistemic network analysis of the best performing reinforcement learning agents 
at different goal priority levels as well as the human participants from the data collection study. (a) Epistemic 
network analysis of learning gains oriented PPO agent's actions during its test run. (b) Epistemic network 
analysis of trained essay score oriented Q agent's actions during its test run. (c) Epistemic network analysis of 
the balanced oriented PPO agent which accounts for both essay score and learning gains during its best test 
run. (d) Epistemic network analysis of human participants during data collection. 
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       |  19PRESCRIPTIVE ANALYTICS OF SRL STRATEGIES

co-occur with either planning or elaboration/organisation. For all three focus levels, monitor-
ing appears to have a nearly central location in the respective networks. The ENA plot for 
the average network of human participants had only strong connections between Reading 
and elaboration/organisation. Monitoring and orientation also had weak connections with 
both reading and elaboration/organisation processes.

DISCUSSION

In answering the research question to what extent a Reinforcement Learning agent can 
learn effective SRL strategy, we observed the developed agents were able to effectively 
select SRL processes so as to maximise a prescribed learning goal as measured by re-
ward. In comparison with the average normalised learning gains of 0.28 and essay score 
of 0.69 observed from the human participants, the learning gain focused and balanced 
focus agents were able to attain better learning gains at 0.71 and 0.30, respectively. This 
may have been due to a greater emphasis on planning, monitoring and meta-cognitive 
processes as a whole. Specifically, in the minutes distribution chart (Figure 7), signifi-
cantly more minutes were allocated to Planning, Monitoring and other processes under 
the MC (meta-cognitive) category by these agents, and in the network analysis (Figure 8) 
the agents had stronger connections of Planning with all other SRL processes, and had 
Monitoring processes plotted towards the centre of the graph. In Section “Introduction”, 
we emphasised the key role planning, time-management and self-monitoring play in ef-
fective learning, and this is corroborated by the findings of our reinforcement learning 
experiment.

An additional reason for the higher learning gains obtained by the agents as compared 
to the results of the human participants may have been due to the greater diversity of SRL 
strategy use. There was a greater variety of minutes' allocations across all processes for 
the balanced and leaning gain oriented agents. Furthermore, ENA analysis showed a more 
connected network, as evidenced by more connection lines between the SRL processes. 
Literature has shown a more diverse use of SRL strategies can lead to improved learn-
ing outcomes (Fan et  al.,  2021; Fincham et  al.,  2019; Nandagopal & Ericsson,  2012). It 
is also noteworthy that the primary discerning factor between the balanced and learning 
gain focused agent was the much larger prominence of planning, and a larger allocation of 
minutes to all metacognitive processes (33 vs. 24 minutes). This is line with the findings of 
Broadbent (2017) and Theobald (2021) which view planning and metacognitive processes 
as higher-order regulation skills. Furthermore, when analysing the diversity of SRL strate-
gies used at the three focus levels, we can infer the diversity of SRL strategy use is import-
ant for learning gains only up to a certain point, after which the use of higher-order regulation 
skills take precedence.

However, none of the trained agents were able to attain a higher predicted essay score 
than the average obtained from the human dataset. This may have been due to a lower 
incentive of the human participants to complete the essay task in an experiment setting 
in contrast to a graded assessment task leading to inconsistent signals being generated 
by the reward function. The lower incentive might have been evidenced by the essay 
score maximising agent which chose to primarily cycle its SRL processes between three 
processes—planning, elaboration/organisation, and evaluation (Figure 8b). In terms of 
learning actions this is akin to the learner strategically writing the essay and referring to 
the information source as they do so, without properly digesting the information through 
reading processes; essentially a tactical copy-paste strategy. It is also noteworthy the 
relative dearth of diversity in SRL processes acted by the agent focused solely on max-
imising the assessment score. Another implication of these findings could be related 
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to assessment design. Specifically, this suggests the designed task does not require 
a depth of understanding of the subject matter to attain high scores. The assessment 
designer can choose to rectify this by utilising materials that require a range of SRL pro-
cesses in order to succeed.

LIMITATIONS

We were limited by the sise of our dataset, which could have reduced the accuracy of the re-
ward signal to the reinforcement learning agent. However, the primary function of our reward 
function was to discern positive from negative behaviour, meaning our primary concern was 
with the polarity of the reward's function output; hence, this effect may have been partially 
mitigated. Future work will involve the use of larger datasets to improve the accuracy of the 
developed reward function.

The findings of this research will also need to be studied on other tasks and subject areas 
to enable more robust conclusions.

IMPLICATIONS FOR RESEARCH AND PRACTICE

This study highlighted the potential for reinforcement learning models to learn the optimal al-
location of SRL strategies to maximise for a learning goal. The findings of this research can 
benefit the design of learning environments in numerous ways. Our findings corroborated 
that a student who prioritises maximising learning will enact a more diverse set of SRL pro-
cesses. We also observed a trend of suboptimal use of metacognitive strategies amongst 
human participants as compared to the trained agents. This suggests a greater need for 
tools and resources which can facilitate the development of this skillset. Furthermore, we 
discovered potential limitations in the assessment design, given our essay optimised agent 
was able to attain high rewards with little to no diversity of SRL Processes as well as minimal 
reading processes and the competing influences of essay score and learning gains implying 
insufficient time allotment.

The implications of our work can enable the identification of sections of the course that 
pose a self-regulatory challenge and result in high cognitive load or sections that are too 
undemanding and hence fail to invoke or develop elaborate self-regulatory strategies. This 
can be considered for future course design. Furthermore, the ability to model SRL strategies 
using Reinforcement Learning can be extended to simulate or test SRL theories; for exam-
ple, how will varying the experiment length in time affect the distribution of SRL Processes 
acted by the expert agent?

Our future work will involve adapting this algorithm to diagnose SRL strategy use in real 
time, enabling the detection of sub-optimal SRL ability in learning environments for use with 
a scaffolding strategy that improves SRL efficacy. It will also be possible to track a learner's 
SRL profile over time and assess whether course design is having positive effects on the 
learner's ability to self-regulate.
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