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Abstract: Plant species usually have either annual or perennial life cycles, but facultative annual
species have annual or perennial populations depending on their environment. In terrestrial an-
giosperms, facultative annual species are rare, with wild rice being one of the few examples. Our
review shows that in marine angiosperms (seagrasses) facultative annual species are more com-
mon: six (of 63) seagrass species are facultative annual. It concerns Zostera marina, Z. japonica,
Halophila decipiens, H. beccarii, Ruppia maritima, and R. spiralis. The annual populations generally
produce five times more seeds than their conspecific perennial populations. Facultative annual
seagrass species occur worldwide. Populations of seagrasses are commonly perennial, but the facul-
tative annual species had annual populations when exposed to desiccation, anoxia-related factors,
shading, or heat stress. A system-wide ‘experiment’ (closure of two out of three connected estuaries
for large-scale coastal protection works) showed that the initial annual Z. marina population could
shift to a perennial life cycle within 5 years, depending on environmental circumstances. We discuss
potential mechanisms and implications for plant culture. Further exploration of flexible life histo-
ries in plant species, and seagrasses in particular, may aid in answering questions about trade-offs
between vegetative and sexual reproduction, and preprogrammed senescence.

Keywords: life history; sexual reproduction; Halophila; Ruppia; Zostera; Oryza; perennial

1. Introduction

Facultative annual species are perennial species that have some populations displaying
annual life histories under certain conditions, completing their life cycles from germination
to seed production followed by death within one year. Although it is known that the lengths
of the life cycles of plants can vary depending on the environment, especially in bienni-
als [1], facultative annual life histories are uncommon for angiosperms. To our knowledge,
it is described in only two, unrelated, terrestrial species: wild rice Oryza perennis [2] and the
herb Erythrante guttata (syn. Mimulus guttatus [3]). Facultative perennials, i.e., annual plants
that may have perennial populations, are also uncommon [4,5]. The marine environment
is colonized by a few angiosperm species that are all clonal and perennial [6] (Supple-
mentary Information S1), but annual populations of the well-investigated seagrass species
Zostera marina were already described in the 1970s [7]. From a biological and ecological per-
spective, such a flexible life-cycle strategy is an interesting phenomenon worth exploring.

The marine environment has posed special challenges to angiosperms which required
physiological and reproductive adaptations [8,9]. Possibly, flexible life cycles are another,
until now underexplored, response to the marine environment, which we wish to address
here. We study whether other (perennial) seagrass species, in addition to the well-studied
Z. marina, present annual populations. Secondly, we review the varying environmental
settings of facultative annual seagrasses. In this review, we specifically question the
following. (1) How common is facultative annual life history among seagrass species? (2) Is
the occurrence of facultative annual life history widespread geographically? (3) Does the
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annual seed production differ with life cycle lengths? (4) Is there a relationship between life
history and environmental settings? (5) Is there evidence for shifts between life histories?

2. A Facultative Annual Life History Is Widespread among Seagrass Species and
Occurs Worldwide

Literature review shows that there are no true annual seagrass species. An annual
life cycle was suggested by Kuo et al. [10] for the understudied deep water dioecious
Halophila tricostata, but recent work by Chartrand [11] showed that this species overwintered
with quiescent rhizomes, although yearly recurring seedling recruitment was important
for persistence. Similar life history strategies with vegetative quiescent phases have been
revealed for other seagrass species (Supplementary Information S1).

Based on available evidence, at least 6 out of 63 seagrass species display a faculta-
tive annual life history, with true annual populations, namely Zostera marina, Z. japonica,
Halophila decipiens, H. beccarii, Ruppia maritima, and R. spiralis (Supplementary Information
S2). The trait is polyphyletic, as these species belong to different families (Hydrocharitaceae,
Ruppiaceae, and Zosteraceae) [12]. Z. marina is the best-known facultative annual seagrass
species. This species occurs in the temperate and tropical northern hemispheres, with
annual populations recorded at several locations (Figure 1).
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Figure 1. Map of locations of annual Zostera marina populations (arrows) and the total distribution
of Z. marina (green coastlines). Numbers indicate three types of environments. 1: Environments
with yearly recurrent heat stress. 2: Subtidal or permanently submersed environments experiencing
anoxia-related stress or shading stress. 3: Mid-intertidal environments with twice-daily exposure to
air. More explanation in Section 4 and Supplementary Information S3.

3. Seed Production Is Higher in Annual Than Perennial Populations

The seed production of annual populations tends to be higher than that of perennial
populations in the six facultative annual seagrass species identified in our study (Figure 2).
Overall, seed production is five times higher in annual populations compared to con-
specific perennial populations. However, populations vary greatly in seed production,
and some perennial populations also present high seed outputs; for example, a perennial
population of Z. marina in Chesapeake Bay had a potential maximum seed production of
40,000 seeds/m2 [13] vs. 100,000 seeds/m2 of an annual population in the subtropical Gulf
of California [14]. Annual Z. marina plants typically have limited rhizome development and
allocate most of the aboveground biomass to reproductive shoots [7]. Such differential allo-
cation to vegetative and reproductive structures has been found for terrestrial angiosperms
when comparing annual and perennial congeneric species [4,15,16].
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Figure 2. Annual seed production in the six facultative annual seagrass species. A = Annual (open
symbols), P = Perennial (grey symbols). If a range was presented, both minimal and maximal values
are indicated. Please note that the perennial populations of all species can also have zero seed
production, which is quite common for seagrasses. Literature sources and data are in Supplementary
Information S2.

4. Annual Populations Live in More Stressful Environments

Assuming that there is a trade-off between vegetative (clonal) growth and sexual
reproduction [16–18] and that sexual reproduction competes with the vegetative functions
for necessary resources for plant growth and maintenance, an annual life cycle should
only be favored over a perennial cycle when the survivorship of the established plant
is lower than that of the seed or seedling. Such unfavorable conditions for vegetative
development may recur periodically (often seasonally) or at stochastic intervals in highly
unpredictable environments [19].

In seagrasses, such periodically unfavorable conditions may be low temperatures
combined with high turbidity, as was found in Zostera japonica (British Columbia [20]) and
Ruppia maritima (Baltic Sea [21]). Ruppia spp. may colonize shallow coastal lagoons that
are only flooded during part of the year, and annual growth forms are reported to be a
response to desiccation (Supplementary Information S2). Halophila beccarii forms annual
populations as a response to decreased salinities on tidal flats in Malaysia [22]. Additionally,
the subtidal delicate and shallow-rooted Halophila decipiens does not have a broad tolerance
to salinity or temperature changes and may therefore be susceptible to removal or die-off
during winter (Supplementary Information S2).

Annual populations of the relatively well-studied Z. marina are encountered in a myr-
iad of situations (Figure 3 and Box 1). Comparing habitats of annual populations with the
nearest perennial ones, the first seems to be more stressful than the latter. They experience
either desiccation, heat stress, anoxia-related stress, shading stress, or a combination of
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all these well-known stressors of Z. marina and other seagrass species [23]. Populations
are usually annual in the intertidal, where they experience periodic desiccation, but in
water-retaining depressions and in moist air intertidal, plants have a perennial live history
(Box 1). Subtidal or submersed annual populations seem to be exposed to higher levels
of anoxia compared to those in neighboring populations (Box 1). Anoxia-related stress
includes excessive eutrophication and/or organic matter loading, at times accompanied
by lower salinity (as a covariate of enhanced nutrient input from freshwater sources), in-
creased shading, warmer circumstances (decreasing dissolved oxygen and likely enhancing
microbial processes leading to anoxia), or muddier sediments (mud is often correlated
with organic matter and occurs in areas with less flushing). Anoxia results in the microbial
production of sulfide and ammonia, which are toxic to Zostera spp. [24,25]. In addition, tidal
or submersed annual populations occur in heat-stressed environments and in light-limited
(deep) habitats (Box 1).
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Figure 3. Overview of reported habitat characteristics of annual and perennial Zostera marina popula-
tions and alleged drivers for transitions between life histories (arrows). The numbers refer to types
of reported habitats listed in Box 1. Number 1 is the most typical growth strategy and environment
for Z. marina. Thin arrows depict relative differences between environments of annual populations
versus nearest perennial populations (correlative). Thick arrows refer to a system-scale inundation
“experiment”; see Section 5. The term “anoxia” refers to a situation of more nutrient loading and/or
muddier or more organic sediments and/or more anoxic sediment, often accompanied by higher
turbidity and lower salinity due to freshwater origin of the nutrient or organic matter loads. These
factors usually covariate in eutrophic situations [26].
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Box 1. In what environments can we find annual and perennial populations of Zostera marina?

Annual populations of Zostera marina may recur at the same sites for decades, without perennial
neighbors [27] (Supplementary Information S3), and thus are likely self-sustaining.
Perennial populations can be encountered as follows:

1. In subtidal or submersed environments with low or moderate eutrophication (this is the
typical environment and life cycle for Z. marina);

2. Exceptionally, in mid-intertidal environments that probably remain sufficiently moist during
low tide, namely (a) in tidal pools where the plants remain submersed (US [28–30]; probably
NW Europe [31]) and (b) where high air moisture during the growing season (humid climate
and sea mists) may protect the plants from desiccation in the mid-intertidal zone: along the
eastern shores of the UK and Ireland [32,33]; Z. marina is here referred to as Z. angustifolia), and
probably also along the Southwest coast of US, as suggested by the low flowering frequency
(33% in Carlsbad [28]), and the robust perennial growth form encountered in San Diego, pers.
obs. first author);

3. Even more exceptionally, in coarse sanded mid-intertidal areas, at a slightly higher tidal level
than the nearby annual population, where they experience even more desiccation. They lose
aboveground biomass during summer as a consequence, but rhizomes survive both during
summer and winter, the latter likely due to the coarse sediments that allow for flushing
(observed in the southern and northern Wadden Sea [34]).

Annual populations can be encountered as follows:

4. In mid-intertidal environments that are twice-daily exposed to air on the east and west coast
of North America and in NW Europe. All seedlings may develop into reproductive shoots [7],
or, alternatively, a consistent part of the population may consist of vegetative shoots during
the growing season, but they disappear (including belowground parts) during winter (e.g., in
Zandkreek, Europe [35,36]). In North America (both east and west coast), transitions from
annual to perennial populations coincide with the tidal depth gradient; from the mid-intertidal
towards the low tide level, an increasing number of plants becomes perennial [7,29,30];

5. Permanently submersed environments on the east coast of the USA, in NW Europe, Japan, and
Korea, with muddier, more turbid, warmer, more eutrophicated, and/or less saline conditions
as compared to those of nearby perennial populations [37–39]. Generally, not all shoots are
reproductive; some shoots are vegetative and may last longer than the reproductive shoots
until they finally disappear (including belowground parts) during winter [13,36]. These
populations may represent a transition between perennial and annual life histories;

6. Deep submersed environments where light is limiting. Nearby perennial populations are
located shallower, described for Korea [40] and NW Europe [41];

7. Permanently submersed environments with yearly recurrent heat stress. There are no peren-
nial populations nearby, described for several populations in the Gulf of California, at the
southern distribution limit of this species. All shoots of these plants become reproductive [42].

Note: Some populations are called ‘annual’ or a separate ecotype but seem to occupy marginal
habitats incidentally colonized by incoming seed from nearby populations; thus, they are not
self-sustaining populations [43,44].

5. Shifts between Annual and Perennial Life Histories in Zostera marina

System scale ‘experiments’ in the Southwest Netherlands have shown that annual
populations can become perennial within 5 years after a change in environment. Three
estuary branches were modified for coastal protection during 1961–1986: one branch was
modified into an oligotrophic saline lake [45], one branch was modified into a brackish and
eutrophic lake [46], whereas one branch remained intertidal with a modified hydrodynamic
regime [47]. Prior to the modifications, the branches were connected, and they all hosted
intertidal, annual populations of Z. marina [48]. In the newly formed oligotrophic saline
lake, the population became perennial upon submergence within 5 years [41]. However,
in the newly formed brackish and eutrophic lake as well as the intertidal branch, the
populations continued to be annual ([36,39]; Figure 4). This shift in life history, or absence
thereof, after modification of the environment, is evidence that population life history traits
can be induced by the environment. When the plants became perennial, they presented
lower seed production and a number of flowering shoots, higher belowground biomass,
and the vegetative shoots showed vigorous growth earlier in the season than before, when
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the population was still annual and seasonal timing is earlier, suggesting that rhizomes
give the shoots a head start as compared to the seed [36].
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Figure 4. Dutch waterworks resulting in an unintended system-scale “experiment” in the southwest
Netherlands. Prior to coastal defense works, three arms of the Meuse-Rhine estuary harbored annual,
mid-intertidal Zostera marina [48]. During the 1960s and 1970s, two of the branches were closed,
forming a brackish lake (V = Veere) and a saline lake (G = Grevelingen), whereas the third arm
(O = Oosterschelde) remained tidal, though cut off from river water. The freshwater input varied
between the lakes; as a result, the brackish Lake Veere had a low salinity, high nutrient loading,
macroalgal blooms, high turbidity, and periods of anoxia, whereas the saline Lake Grevelingen had
a higher salinity, lower nutrient loading, higher water clarity, and lower algal growth [39]. In the
Oosterschelde and the eutrophic brackish lake Veere, Z. marina plants remained annual, but in the
oligotrophic saline lake Grevelingen, the plants became perennial within 5 years (comparing [48]
with [36,41]). All populations went (near) extinct during the last 3 decades.

Transplantation experiments in NW Europe and in North America confirm that
seedlings from annual populations can become perennial plants during the first win-
ter (NW Europe [34], Izembek Lagoon, Alaska [49], although their reproductive effort
remains high (NW Europe [34], Willapa bay, Washington [50]). Keddy and Patriquin [7]
cultivated seedlings in the laboratory from seeds originating from annual and perennial
populations in Nova Scotia and found that 28 out of 29 of the seedlings from the ‘annual’
seeds developed into annual plants and 1 developed into a perennial plant. Vice versa,
26 of 28 seedlings from ‘perennial’ seeds developed into perennial plants, whereas 2 of
28 developed into an annual plant. Thus, the findings of Keddy and Patriquin [7] suggest
that annual populations have the potential to produce perennial offspring and vice versa.

It is intriguing that the seedlings of the reviewed annual populations produce re-
productive shoots very early in development; in other words, they are “programmed
for scenescence” several months later. Secondly, it is intriguing that they, nevertheless,
may shift to a perennial life history when the environment becomes more favorable for
vegetative survival in critical periods.
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6. What Mechanisms May Induce an Annual or Perennial Life Cycle? Future Avenues
of Research

During early growth, the seedlings of annual Zostera marina plants may not receive
any indications from their environment that they will encounter adverse conditions for
perennial growth later in the season, and the rapid development of generative shoots and
early scenescence are perhaps “programmed”. Chartrand [11] found indications for such
programming in deep water annual populations of Halophila decipiens in tropical Australia.
However, it is also possible that a more stressful environment may already manifest early in
the season and induce lower productivity/respiration ratios in the seedlings (see Figure 3
and Box 1). This lower P/R ratio may induce the plant to invest more resources into sexual
reproduction, which is also suggested by a review of the effect of disturbance on sexual
reproduction in seagrasses by Cabaço and Santos [51], and supported by later studies, for
example, showing relations between sexual reproductive effort and temperature [52–54],
but see [55], desiccation [43,56], nutrients [57,58], mechanical disturbance [59], and high
salinity [60].

Population genetic studies in NW Europe [61] and in San Francisco Bay US [62]
suggest a lack of genetic differentiation between annual and perennial populations, as well
as high rates of gene flow between them, although genetic diversity is generally larger in
the annual than in perennial populations [63]. Muñoz-Salazar and coworkers [64] found
significant genetic differentiation between perennial Z. marina populations from the Pacific
coast and annual ones in the Gulf of California (the summer annuals, type number 1 in
Figure 1). This genetic divergence may be explained by the different life histories (annual
vs. perennial), but it could also have been generated by limited gene flow between the
two regions, as the tropical waters and current patterns of the southern Gulf of California
have presented a barrier to gene flow and migration since the end of the Pleistocene. Oetjen
and coworkers [65], using a genome scanning approach (using SNP and microsatellite
markers), found some indications of selection between the subtidal perennial and intertidal
annual populations in NW Europe. Divergent selections between the types of populations
were detected at six loci, of which three were linked to genes involved in osmoregulation,
water balance, and sexual reproduction (seed maturation). Selection could be enhanced by
the different timing of the flowering initiation, even if annual populations are located in
the immediate proximity of perennial populations via reproductive isolation [18,66].

Our review suggests that the annual vs. perennial life cycles in facultative annual
Z. marina (and possibly the other facultative annual seagrass species) may be reversible,
involving tradeoffs between vegetative and generative functions. Genetic evidence of such
inflection of tradeoff was, for example, found in the terrestrial annual Arabidopsis thaliana.
Modulation of the activities of only three genes influenced the indeterminacy of meristems
and longevity of the plants, resulting in a growth form with the increasing development
of vegetative buds, higher longevity, and extensive woodiness, indicative of perennial
plants [67]. In the two terrestrial facultative annuals described in the literature, Erythrante
guttata and Oryza sativa, possible genetic mechanisms for such reversibility between life
histories have been investigated. Friedman and coworkers [3], when identifying phenotypic
and genetic trade-offs between flowering and vegetative growth in E. guttata, found that
differential responses to photoperiod and vernalization (the induction of a plant’s flowering
process by exposure to the prolonged cold of winter) of plants from annual or perennial
populations involved quantitative trait loci (QTL) and differential gene expression. QTL
was also found to influence resource allocation in annual and perennial populations of
rice Oryza [68,69].

In general, gene expression may be involved in frequent and precocious flowering.
Perennial plants require reprogramming of some meristems to start the production of repro-
ductive organs. Overexpression of the Flowering Locus (FT) gene from A. thaliana resulted
in precocious flower development independent of photoperiod [70]. In the same plant, it
was found that micro RNAs are involved in gene expression; miRNA 172 (miR172) caused
early flowering through disruption of the downregulation of floral repression genes [71].
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Interspecies gene transfer between perennial Arabis alpina and A. thaliana, showed a peren-
nial and an annual signaling pathway to flowering, involving Squamosa promotor binding
protein-like 15 (SPL15) and FL pathways, respectively [72]. The functional overlap between
the pathways may enable flexible responses to shifting environments, as well as life history
variation [72]. In general, from an evolutionary perspective, life history traits are among
the most labile trait syndromes in flowering plants and annuality has evolved convergently
in different lineages of flowering plants, though mechanisms underlying transitions are
still unclear [16].

Chartrand [11] found that the general condition of the seagrass plants of the deep-
water annual population of the seagrass H. decipiens declined before the light levels fell
below the critical threshold for growth, from which she suggests that senescence and
sexual reproduction were programmed. She observed shifts in hormones involved in
these processes similar to shifts previously reported in terrestrial plants [4]. Up- and
downregulation of corresponding areas could be confirmed with metabolomic profile
analysis. Such changes in metabolomic expression may be heritable (epigenetic); epigenetic
changes may last through cell divisions for the duration of the plant’s life and may also
last for multiple generations, even though they do not involve changes in the underlying
DNA sequence of the organism [73]. In short, annual life cycles in facultative annual
species seem to be induced by the environment (for example, by low P/R ratios) or (epi-)
genetic programming. Further research into mechanisms that induce the annual life cycle
is needed, and the six seagrass species detected in this review may be good candidates for
such studies.

7. Perspectives for Plant Culture

The tradeoff between investment in generative or vegetative plant parts becomes
visible and tangible in facultative annual species, making this type of species of interest
for plant biological and ecological studies. Moreover, when seagrass plants are to be
cultured at a large scale, for example, to rewild the sea with domesticated seagrass when
donor populations are scarce [74], knowing the factors that determine the life history may
help to maximize seed production. Though seagrass domestication is still in its infancy,
the facultative annual live strategy may allow a culture aiming at a balance between seed
production and whole-year maintenance of ecosystem services provided by vegetative plant
parts typically provided by perennial populations (such as carbon sequestration and erosion
control). Such an ‘ideal’ tradeoff is presently targeted in terrestrial crops such as wheat
and rice for a more sustainable agricultural practice, where perennial strains or species are
domesticated to not only maintain food security but also ecosystem services such as erosion
control and improved nitrogen use efficiency [4,75–80]. It is probably not a coincidence
that perennial rice development, being one of the rare terrestrial facultative annual species,
is more advanced than the development of perennial wheat, which requires de novo
domestication of a congeneric species [78]. Our review shows that facultative annual
species could potentially be brought to an optimum of seed production and vegetative
development. Further research should elucidate whether this could be accomplished via
manipulation of stresses or through other means such as (epi)genetic selection. Considering
this, the study of facultative annual seagrasses may reveal a “rice from the sea” in the
future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12102002/s1, Supplementary Information S1: Seagrasses
with vegetative quiescent phases [11,81–113], Supplementary Information S2: Facultative annual
species [7,11,13,14,20–22,28–30,35–40,42–44,52,54,59,92,99,114–188], Supplementary Information S3:
Table with reproductive traits of Zostera marina populations, comparing annual populations with the
nearest perennial population [7,13,14,28–31,34–40,42,43,64,92,166,173,175–178,189,190].
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