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ABSTRACT
Modeling environments that are not in local thermal equilibrium, such as protoplanetary disks or planetary atmospheres, with molecular
spectroscopic data from space telescopes requires knowledge of the rate coefficients of rovibrationally inelastic molecular collisions. Here,
we present such rate coefficients in a temperature range from 10 to 500 K for collisions of CO2 with He atoms in which CO2 is (de)excited
in the bend mode. They are obtained from numerically exact coupled-channel (CC) calculations as well as from calculations with the less
demanding coupled-states approximation (CSA) and the vibrational close-coupling rotational infinite-order sudden (VCC-IOS) method. All
of the calculations are based on a newly calculated accurate ab initio four-dimensional CO2–He potential surface including the CO2 bend (ν2)

mode. We find that the rovibrationally inelastic collision cross sections and rate coefficients from the CSA and VCC-IOS calculations agree
to within 50% with the CC results at the rotational state-to-state level, except for the smaller ones and in the low energy resonance region,
and to within 20% for the overall vibrational quenching rates except for temperatures below 50 K where resonances provide a substantial
contribution. Our CC quenching rates agree with the most recent experimental data within the error bars. We also compared our results with
data from Clary et al. calculated in the 1980s with the CSA [A. J. Banks and D. C. Clary, J. Chem. Phys. 86, 802 (1987)] and VCC-IOS [D. C.
Clary, J. Chem. Phys. 78, 4915 (1983)] methods and a simple atom-atom model potential based on ab initio Hartree–Fock calculations and
found that their cross sections agree fairly well with ours for collision energies above 500 cm−1, but that the inclusion of long range attractive
dispersion interactions is crucial to obtain reliable cross sections at lower energies and rate coefficients at lower temperatures.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0174787

I. INTRODUCTION

The evolution of interstellar molecular clouds to protostars
to protoplanetary disks to planetary systems can be followed by
observing spectra emitted or absorbed by small molecules, such
as CO, CO2, HCN, C2H2, etc.1 Microwave spectra are generated
by rotational transitions in these molecules, infrared spectra by
rovibrational transitions. The shapes of the lines in the spectra
depend on the rotational and vibrational level populations, and these
populations are determined both by radiative transitions and by
transitions caused by molecular collisions with abundant species:
hydrogen and helium atoms, H2 molecules, and electrons. The
information from the spectra is used by astronomers in modeling

the processes taking place in the various stages of the evolution. Two
situations are distinguished: (1) environments from which the
spectra originate are in local thermal equilibrium (LTE) and the line
shapes in the spectra only depend on the temperature, and (2) the
spectra originate from non-LTE environments. In the first situation
it is sufficient to know the Einstein A and B coefficients for sponta-
neous and stimulated emission and absorption. In the non-LTE case
one also needs to know state-to-state transition rate coefficients from
molecular collisions. This paper is concerned with the latter case,
and in particular with the calculation of collisional transition rates
from first principles. Cross sections and rate coefficients for rota-
tionally inelastic collisions have already been calculated for several
astronomically relevant molecular systems including CO2–He,1,2
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but the additional inclusion of vibrational (de)excitations is more
demanding. In earlier work3–6 we studied rovibrational transitions
in CO in collisions with H atoms and rovibrational transitions in
the stretch modes of CO2 in collisions with He atoms.7,8 Here, we
investigate the bend mode of CO2 in collisions with He atoms.

Spectra of the CO2 bend mode in the 15 μm range originating
from different astronomical environments were observed by
the Infrared Space Observatory (ISO)9,10 and the Spitzer Space
Telescope11 and, recently, also by the James Webb Space Telescope
(JWST).12 Another process in which collisions of CO2 in the stretch
and bend modes with He atoms are important is the CO2 laser
action.13–16 Furthermore, the CO2 bend mode is relevant because it
yields the dominant contibution to the terrestial greenhouse
effect,17,18 and collisions with (oxygen) atoms in the mesosphere are
important as well.19 Finally, CO2 occurs in the atmospheres of other
planets and exoplanets20 and its spectra are important in modeling
these atmospheres.

The CO2 molecule has three vibrational modes: a twofold
degenerate bend mode with experimental frequency 667 cm−1, a
symmetric stretch mode at 1333 cm−1, and an asymmetric stretch
mode at 2349 cm−1.21 Here, we concentrate on the bend mode. In
their pioneering theoretical work on rate coefficients for vibrational
transitions in CO2 induced by collisions with rare gas (Rg) atoms
Clary et al.15,22–26 also investigated the bend mode. In scattering
calculations they used the coupled-states approximation (CSA), as
well as the VCC-IOS method, a vibrational close-coupling method
for the vibrations, combined with the infinite-order sudden (IOS)
approximation for the rotations. Although they included the rota-
tional states both in their VCC-IOS calculations15 and in their
CSA calculations,25 they only provided some illustrative data for
state-to-state rovibrational transitions. And they used a model
potential based on ab initio self-consistent field (SCF) calculations,
which can nowadays be calculated much more accurately. Exper-
imental data are available only for overall vibrational transition
rates.27,28 The more advanced models currently being developed
by astronomers29,30 and the availability of data from JWST require
rovibrational state-to-state collisional rate coefficients, which we
here present.

Section III describes the ab initio calculation of the four-
dimensional CO2–He intermolecular potential depending on the
CO2 bend coordinate. Also the analytical representation of the
potential is defined and the potential is illustrated. The bend
mode of a linear molecule like CO2 is twofold degenerate and
generates vibrational angular momentum, which makes the theory
more complicated than it is for the stretch modes or the bend
modes in nonlinear molecules. It is outlined in Sec. IV as part of
the CO2–He scattering approach. In Sec. V we present and discuss
our results and compare the overall vibrational transition rates with
the available experimental data and with the results of Clary et al.
Section VI summarizes our conclusions.

II. COORDINATES AND FRAMES
The Jacobi scattering vector points from the center-of-mass of

CO2 to the helium atom. Its Cartesian coordinates with respect to a
space-fixed (SF) frame are given by the column vector R. The spheri-
cal polar coordinates of this vector are (R,Θ,Φ), with R = ∣R∣. In the
scattering calculation we express the wave function in a two-angle

embedded body-fixed (BF) frame with the vector R as its z-axis,
which is defined by the rotation matrix R(Φ,Θ, 0). This matrix is
written in zyz-Euler angle parameterization using the active rotation
convention, see Biedenharn and Louck,31 p. 23, i.e.,

R = R(Φ,Θ, 0)RBF
= Rz(Φ)Ry(Θ)RBF, (1)

where RBF
= (0, 0, R)T are the BF coordinates of the vector R. The

rotation matrices Rz(Φ) and Ry(Θ) represent rotations around the
z- and y-axes, respectively, see, e.g., Ref. 31 or Eq. (5) in Ref. 32.

We also define a molecule-fixed (MF) frame, which has its
z-axis parallel to the vector that connects the two O atoms and which
has the bent CO2 molecule in the xz-plane. The MF coordinates of
the Jacobi vector are related to its BF coordinates through

RBF
= R(α,β, γ)RMF, (2)

where R(α,β, γ) defines the MF frame with respect to the BF frame
RBF
(Φ,Θ, 0). Inverting this equation gives

RMF
= R(α,β, γ)TRBF

= R

⎛
⎜
⎜
⎜
⎜
⎝

− sin β cos γ

sin β sin γ

cos β

⎞
⎟
⎟
⎟
⎟
⎠

. (3)

The superscript T on the rotation matrix means transpose, which
gives its inverse, since the matrix is orthonormal. The angle α
drops out of the equation because the vector RBF is invariant under
rotations around the BF z-axis. This equation shows that the angles
β and γ are related to the spherical polar angles (β′, γ′) of the vector
RMF by β′ = β and γ′ = π − γ. In Sec. III we use these angles to define
the potential.

Combining Eqs. (1) and (2) we find that the MF frame is given
with respect to the SF frame by

R(Φ,Θ, 0)R(α,β, γ) = R(Φ,Θ,α)R(0,β, γ), (4)

where on right-hand-side we have a three-angle embedded BF frame
R(Φ,Θ,α) and a two-angle embedded MF frame R(0,β, γ). We use
these frames in the VCC-IOS calculations, see Sec. IV D.

III. FOUR-DIMENSIONAL CO2(BEND)-He POTENTIAL
The coordinates in the CO2–He potential V(Q̃, R,β′, γ′) are the

spherical polar coordinates (R,β′, γ′) of the helium atom in the MF
frame defined above and the dimensionless amplitude Q̃ of the bend
mode in the harmonic approximation, which is defined in Sec. IV A
below; the classical turning points are Q̃ = ±1 for v = 0 and Q̃ = ±

√
3

for v = 1.
The potential was calculated with the ab initio coupled-cluster

method with single and double excitations and perturbative triples,
CCSD(T), using the MOLPRO package.33 The basis was the aug-
mented triple-zeta correlation-consistent polarized (aug-cc-pVTZ)
basis of Dunning,34 supplemented with a set of 3s3p2d1 f midbond
functions. These midbond functions were placed on the intersec-
tion of the vector R and an ellipsoid around CO2, as described in
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Refs. 7 and 35. This ellipsoid is chosen such that it corresponds to
the midpoint of R at T-shaped configurations with β′ = 90○ and to
the midpoint of the vector connecting He with the nearest O atom in
linear configurations with β′ = 0○ and 180○. This choice of the
location of midbond functions and the use of geometry dependent
exponents prevents overcompleteness of the basis, especially in the
short range. In all CCSD(T) calculations the T1 diagnostic was
less than 0.018, which indicates the reliability of the CCSD(T)
method. The interaction energies were computed using the Boys
and Bernardi36 counterpoise method to correct for the basis set
superposition error (BSSE).

In our calculations of the potential surface we kept the
C–O bond lengths fixed and used the O–C–O angle as the bend
coordinate, whereas in the harmonic approximation used in
Sec. IV A below the displacements of the C and O atoms in the CO2
bend coordinate Q̃ are rectilinear by definition. We tested both alter-
natives; some results are displayed in Fig. S1 of the supplementary
material. They show that the differences are very small, because the
bend amplitude remains small. Only at very short distances R where
the potential is strongly repulsive, small differences are visible.

The ab initio potential was calculated on a grid of 16 000
symmetry-unique points. This grid contained 25 points for R, with
step size 0.25 a0 for 3.5 ≤ R ≤ 7 a0 and step size 0.5 a0 for 7 ≤ R ≤
10 a0, and four logarithmically spaced points for 10 ≤ R ≤ 15 a0. For
β′ we used eight Gauss–Legendre quadrature points, ranging from 0
to π/2 because of symmetry. For γ′ we used 16 Gauss–Chebychev
equidistant quadrature points between 0 and π, again because of
the symmetry. For the bend coordinate Q̃ we used five points:
Q̃ = 0, 0.5, 1, 1.5, 2. For a number of near-linear geometries with
β′ = 8.35○ and the smallest distance R = 3.5 a0 the He atom is very
close to the nearest O atom and the ab initio calculations could not
be converged. The missing data points were provided by exponen-
tially extrapolating the interaction energies at R = 4.0 and 3.75 a0.
The potential is extremely repulsive in this region and the interac-
tion energies are much higher than the highest collision energy, so
these data points do not play a role in the scattering calculations.

The angular dependence of the 4D potential is represented by
the expansion

V(Q̃, R,β′, γ′) =
λmax

∑
λ=0

λ
∑

mλ=0
vλmλ(Q̃, R) Sλmλ(β

′, γ′) (5)

in cosine type tesseral harmonics Sλmλ = [Cλmλ + (−1)mλCλ−mλ]

/
√

2(1 + δmλ0) with mλ ≥ 0, which are real-valued linear combina-
tions of the Racah-normalized spherical harmonics Cλmλ(β

′, γ′). The
potential is symmetric with respect to reflection in the xy-plane,
which implies that only terms with even values of λ +mλ occur in
the expansion.

The expansion coefficients vλmλ(Q̃, R) were obtained at each
grid point (Q̃k, Rl) by numerical integration over β′ and γ′ using
Gauss–Legendre and Gauss–Chebyshev quadratures, respectively

vλmλ(Q̃k, Rl) =
2λ + 1

4π

16

∑
i=1

32

∑
j=1

wiw
′
jSλmλ(β

′
i , γ
′
j)V(Q̃k, Rl,β

′
i , γ
′
j) (6)

with weights wi and w′j . The expansion has converged at λmax = 15.
The expansion coefficients vλmλ(Q̃k, Rl) were fitted to a fourth-
degree polynomial in Q̃

vλmλ(Q̃, Rl) =
4

∑
p=0

vp,λmλ(Rl) Q̃ p (7)

at each grid point Rl. It follows furthermore that mλ ≤ p and since
the potential is invariant under overall rotation about the z-axis,
that the sum of p and mλ must be even. Finally, the R-dependence
of the coefficients vp,λmλ(R) was represented by the Reproducing
Kernel Hilbert space (RKHS) method,37,38 which uses two para-
meters: a smoothness parameter n and a parameter m which ensures
that the potential decays as 1/Rm+1 beyond the largest R value in the
grid. We chose n = 2 and m = 5.

In the repulsive short range of the potential at near-linear con-
figurations extremely high peaks occur at some specific geometries.
These highly repulsive peaks are not physically important because
the system cannot reach these geometries even at high collision ener-
gies. However, they cause a problem with the convergence of the
spherical expansion. In order to avoid this problem we damped
the interaction energies for values larger than V0 = 0.1 Eh with the
smooth damping function

Vdamped(Q̃, R,β′, γ′) = V0 + tanh [ζ{V(Q̃, R,β′, γ′) − V0}]/ζ, (8)

where ζ = 1/V0 and 2V0 is the maximum value of the damped
potential. The range of R values for which the damping is effective
depends on the angles β′ and γ′. At near-linear structures which β′
close to 0 and 180○, damping was applied for 3.5 ≤ R ≤ 4.75 a0 for all
γ′. For T-shaped structures the interaction energies are less than V0
and damping was not needed.

FIG. 1. The first few coefficients in the expansion of the potential in Racah-
normalized tesseral harmonics at Q̃ = 1.
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FIG. 2. Contour plots of the CO2–He potential for Q̃ = 0 (upper panel) and the dif-
ference between the potential for Q̃ = 1 and Q̃ = 0 (lower panel). The contours in
the lower panel are not drawn in the region where the repulsive interaction energy
is much higher than the highest collision energy.

The strong anisotropy of the 4D CO2–He potential is obvious
already from the large value of λmax = 15 needed to converge its
spherical expansion. It is further illustrated by showing the first few
expansion coefficients vλmλ(Q̃, R) at Q̃ = 1 in Fig. 1. The leading
anisotropic term V2,0 is larger than the isotropic term V0,0, and V3,1
is larger than V1,1. At the linear configuration with Q̃ = 0, only terms
with even λ and mλ = 0 contribute to the expansion of the potential.
Hence, the terms with odd λ and mλ > 0 which are due only to the
CO2 bend are smaller. A view of the CO2–He potential for linear
CO2 and the effect of the bending is shown for planar geometries in
Fig. 2.

Finally we note that the potential V(Q̃, R,β′, γ′) calculated with
coordinates β′, γ′ relative to the MF frame can simply be expressed
relative to the BF frame used in the scattering calculations by the
substitution β′ = β and γ′ = π − γ. This yields an additional factor
(−1)mλ in the expansion of the potential in Eq. (5) when applied to
the coordinates β and γ.

IV. SCATTERING THEORY
We obtain the cross sections and rate coefficients for rovibra-

tionally inelastic collisions of CO2 with He by means of scattering

calculations with the numerically exact coupled-channel or close-
coupling (CC) method. Since the theory for the bend mode of CO2
is more complicated than described for the two stretch modes in
Refs. 7 and 8, it is outlined below.

A. CO2 monomer Hamiltonian and wave functions
The bend mode of the CO2 monomer is twofold degenerate and

the molecule bends not only in the xz-plane but also in the yz-plane,
with the coordinates (Qx, Qy). The atoms are labeled by the indices
i = 1, 2, 3 with i = 1 and 3 for the two O atoms and i = 2 for the C
atom. The equilibrium positions in the MF frame are xe

i = ye
i = 0,

ze
1 = −ze

3 = 2.196 a0, and ze
2 = 0. We use rectilinear normal coordi-

nates Qx and Qy, which involve the atomic displacements Δxi and
Δyi from their equilibrium positions: Δxi = ciQx and Δyi = ciQy. The
coefficients c1 and c3 are equal, while c2 is fixed by the condition that
the center of mass should not move.

Our CO2 monomer Hamiltonian is based on Watson’s
isomorphic Hamiltonian for the bend mode of a linear triatomic
molecule.39 In the Cartesian monomer coordinates defined above
and with the use of the harmonic-oscillator rigid-rotor approxima-
tion it reads

ĤCO2(Qx, Qy) = −
h̵2

2μQ
(

∂2

∂Q2
x
+

∂2

∂Q2
y
) +

1
2

f (Q2
x +Q2

y)

+
h̵2

2I0
( ĵ2

x + ĵ2
y), (9)

where μQ = 2mCmO/(mC + 2mO) is the reduced mass associated
with the bend vibration, mC and mO are the masses of the C and O
atoms, f is the harmonic force constant, and I0 = ∑

3
i=1 mi(ze

i )
2 is the

rigid rotor moment of inertia for rotation about the x- or y-axis. The
harmonic frequency is given by ω =

√
f /μQ. In the sequel we use

dimensionless normal coordinates Q̃x = aQx and Q̃y = aQy obtained
by scaling with a =

√
μQω/h̵.

Following textbooks40 and previous work25 we may re-express
this Hamiltonian in polar coordinates (Q̃, γ) with Q̃x = Q̃ cos γ and
Q̃y = Q̃ sin γ

ĤCO2(Q̃, γ) = −
h̵ω
2
(

∂2

∂Q̃ 2 +
1
Q̃

∂

∂Q̃
+

l̂ 2
v

Q̃ 2 ) +
h̵ω
2

Q̃ 2
+

h̵2

2I0
( ĵ 2
− ĵ2

z),

(10)

where Q̃ is the bend amplitude and γ is the angle between
the plane in which CO2 bends and the xz plane. The operator
l̂ v = −i ∂

∂γ is the dimensionless vibrational angular momentum
operator with eigenvalues lv = −v,−v + 2, . . . , v − 2, v. The eigen-
values of this harmonic-oscillator rigid-rotor Hamiltonian are

εv,lv ,j = (v + 1)h̵ω +
h̵2

2I0
[j(j + 1) − l2

v] (11)

and its eigenfunctions, including rotation with respect to the BF
frame, are

∣v, lv , j,Ω⟩ =
√

2j + 1
8π2 Nv,lv Q̃ ∣lv ∣ exp (−Q̃ 2

/2) L∣lv ∣
(v−∣lv ∣)/2

(Q̃)

×D( j)
Ω,lv
(0,β, γ)∗, (12)
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where D( j)
Ω,lv

are Wigner D-matrices41 depending on the rotation
angles (β, γ) of the MF frame relative to the BF frame, and Ω is
the projection of the monomer angular momentum j on the BF
z-axis. Note that in the definition of the polar coordinates (Q̃, γ)
above γ is the angle of the plane in which CO2 bends and the func-
tions exp(ilvγ) contained in the basis of Eq. (12) actually belong
to the vibrational part. The functions L∣lv ∣

(v−∣lv ∣)/2
(Q̃) are associated

Laguerre functions in the convention of Abramowitz and Stegun42

and the normalization constants

Nv,lv =

¿
Á
Á
Á
ÁÀ2
(
v−∣lv ∣

2 )!

(
v+∣lv ∣

2 )!
. (13)

The functions in Eq. (12) may be adapted to the permutation
symmetry P̂13 that interchanges the two O nuclei, which has the
following effect

P̂13∣v, lv , j,Ω⟩ = (−1)j
∣v,−lv , j,Ω⟩. (14)

A basis adapted to P̂13 with parity ϵ reads

∣v, l̃ v , j,Ω, ϵ⟩ =
1

√
2(1 + δlv ,0)

[∣v, l̃ v , j,Ω⟩ + ϵ(−1)j
∣v,−l̃ v , j,Ω⟩],

(15)

with l̃ v = ∣lv ∣ ≥ 0. Since 16O nuclei are bosons with spin I = 0 only
functions with ϵ = 1 are allowed, which implies that for lv = 0 the
basis only contains functions with even j.

B. Coupled-channel calculations
As outlined in earlier papers,7,8 our version of the CC method

is based on the CO2–He Hamiltonian in BF coordinates

Ĥ = −
h̵2

2μR
∂2

∂R2 R + ĤCO2(Q̃, γ) +
Ĵ 2
+ ĵ 2
− 2 ĵ ⋅ Ĵ

2μR2 + V(Q̃, R,β, γ),

(16)

where μ = mCO2 mHe/(mCO2 +mHe) is the reduced mass of the
complex, ĵ the CO2 monomer rotational angular momentum oper-
ator, Ĵ the total angular momentum operator of the complex, and
Ĵ 2
+ ĵ 2
− 2 ĵ ⋅ Ĵ represents the end-over-end angular momentum

operator L2 in the BF frame.43,44 The Hamiltonian ĤCO2 for the CO2
bend mode is defined in Eq. (10).

The BF channel basis is

∣v, l̃ v , j,Ω, ϵ; J, MJ⟩ =

√
2J + 1

4π
∣v, l̃ v , j,Ω, ϵ⟩D(J)MJ ,Ω(Φ,Θ,α)∗, (17)

where Ω is also the projection of the total angular momentum J
on the intermolecular axis R. The permutation symmetry-adapted
monomer eigenfunctions ∣v, l̃ v , j,Ω, ϵ⟩ are defined in Eq. (15). The
quantum numbers J and MJ are good quantum numbers, while
functions with different Ω are mixed by the Coriolis coupling
operator ĵ ⋅ Ĵ so that Ω is an approximate quantum number.

Another symmetry is the parity of the complex under overall
inversion E∗. The BF channel basis adapted also to inversion is

∣v, l̃ v , j, Ω̃; ϵ, P, J, MJ⟩ =
1

√
2(1 + δΩ̃,0)

[∣v, l̃ v , j, Ω̃; ϵ, J, MJ⟩

+ Pϵ(−1)l̃ v+j+J
∣v, l̃ v , j,−Ω̃; ϵ, J, MJ⟩], (18)

with Ω̃ = ∣Ω∣ ≥ 0 and P = ±1 being the overall parity. Since P is an
exact quantum number the calculations can be made separately for
P = ±1, which is a considerable simplification.

In terms of the symmetry-adapted BF channel basis the
scattering wave functions are

Ψϵ,P,J,MJ =
1
R ∑

v,l̃ v ,j,Ω̃

∣v, l̃ v , j, Ω̃; ϵ, P, J, MJ⟩ψϵ,P,J,MJ

v,l̃ v , j,Ω̃
(R). (19)

The radial functions ψϵ,P,J,MJ

v,l̃ v , j,Ω̃
(R) can be obtained in the usual way

by solving a set of coupled second order differential equations, the
coupled-channel equations. As in Refs. 7 and 8 we do this with
the aid of the renormalized Numerov propagator.45,46 The required
matrix elements of the potential V(Q̃, R,β, γ) defined in Sec. III over
primitive BF channel basis functions ∣v, lv , j, Ω; J, MJ⟩ are given by

V JMJ

v′ l′v j ′Ω′ ;v jlvΩ
(R) = δΩ′ Ω (−1)Ω−l′v 1

√
2(1 + δmλ0)

× ⟨v′, l′v ∣vλmλ(Q̃, R)∣v, lv⟩
⎛

⎝

j ′ λ j
−Ω 0 Ω

⎞

⎠

×

⎧⎪⎪
⎨
⎪⎪⎩

(−1)mλ
⎛

⎝

j ′ λ j
−l′v mλ lv

⎞

⎠

+
⎛

⎝

j ′ λ j
−l′v −mλ lv

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (20)

The expressions in large round brackets are Wigner 3j symbols.41

With the symmetry-adapted BF basis of Eq. (18) one obtains linear
combinations of these matrix elements.

The expansion coefficients vλmλ(Q̃, R) are defined by Eq. (5)
in Sec. III. Their matrix elements over the monomer eigenfunc-
tions ∣v, lv⟩ defined in Eq. (12) and containing associated Laguerre
functions are calculated by numerical integration over the bend
normal coordinate Q̃ with the aid of a five-point Gauss–Laguerre
quadrature. Transformation of the matrix elements in Eq. (20) to
the symmetry-adapted channel basis in Eq. (18) is easy.

The asymptotic boundary conditions to which we need to
match the scattering wave functions at large distance R are defined
in terms of a SF channel basis with partial wave quantum numbers
L. The monomer wave functions ∣v, lv , j, mj⟩ in the SF frame are the
same as those in the BF frame in Eq. (12), except that the Euler angles
(α,β, γ) now define the orientation of the MF frame relative to the
SF frame and the angular momentum componentΩ on the BF z-axis
becomes the component mj on the SF z-axis. The SF monomer basis
adapted to P̂13 with parity ϵ is

∣v, l̃ v , j, mj ; ϵ⟩ =
1

√
2(1 + δlv ,0)

[∣v, l̃ v , j, mj⟩ + ϵ(−1)j
∣v,−l̃ v , j, mj⟩]

(21)
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and the symmetry adapted SF channel basis is

∣v, l̃ v , j, L; ϵ, P, J, MJ⟩ = ∑
mj ML

∣v, l̃ v , j, mj ; ϵ⟩YLML(Θ,Φ)

× ⟨jmjLML∣JMJ⟩, (22)

with ⟨jmjLML∣JMJ⟩ being a Clebsch–Gordan coefficient41 and
YLML(Θ,Φ) a normalized spherical harmonic depending on the
polar angles of R with respect to the SF frame. This basis is
also adapted to overall inversion with parity P = ϵ(−1)

˜l v +L. The
primitive BF and SF channel bases are related by the unitary
transformation

∣v, lv , j,Ω; J, MJ⟩ =∑
L
∣v, lv , j, L; JMJ⟩UJ j

LΩ (23)

with

UJ j
LΩ = ⟨jΩL0∣JΩ⟩

√
2L + 1
2J + 1

. (24)

The unitary transformation between the parity-adapted BF and SF
channel bases then follows from Eqs. (15), (18), and (21). At the
end of the propagation of the BF scattering functions to large R we
transform them to the SF basis with partial wave quantum numbers
L and match them to spherical Bessel asymptotic boundary con-
ditions to obtain the S-matrix. We then compute the state-to-state
scattering cross sections σv′ ,l̃ ′v ,j ′←v,l̃ v , j(E) in the usual way from the
S-matrix for a large range of energies E and compute state-to-state
rate coefficients with

kv′ ,l̃ ′v ,j ′←v,l̃ v ,j(T) = (
8kBT
πμ
)

1/2

∫

∞

0
σv′ ,l̃ ′v ,j ′←v,l̃ v ,j(E)(

E
kBT
)

× exp(−
E

kBT
) d(

E
kBT
), (25)

where kB is the Boltzmann constant. The vibrational quenching rate
from a rovibrational initial state (v, l̃ v , j) to a final vibrational state
(v′, l̃ ′v) is defined as the sum over all final rotational states j′ in
(v′, l̃ ′v)

kv′ l̃ ′v←vl̃ v ,j(T) =∑
j ′

kv′ l̃ ′v j ′←vl̃ v j(T). (26)

At thermal equilibrium the total vibrational quenching rate coef-
ficient is computed by Boltzmann averaging over the thermally
populated initial states j in the initial vibrational state (v, l̃ v) with
energies ϵvl̃ v j

kv′ l̃ ′v←vl̃ v(T) =
∑j (2j + 1) exp (−ϵvl̃ v j/kBT) kv′ l̃ ′v←vl̃ v j(T)

∑j (2j + 1) exp (−ϵvl̃ v jkBT)
. (27)

C. Coupled-states approximation
In the coupled-states approximation (CSA) used in the paper

by Banks and Clary25 one neglects the Coriolis coupling terms in

the kinetic energy operator that couple BF basis functions with dif-
ferent Ω. This makes Ω an exact quantum number, so that the CC
equations can be separated into subsets of equations for each value
of Ω that are much smaller than the full set of CC equations. More-
over, the absolute value ofΩ is limited to the smallest of the initial or
final j value in the scattering process, which reduces the number of
subsets to be included. Altogether, this makes CSA calculations
much faster than full CC calculations.

In our version of the CSA method we use the full diagonal
part of the BF kinetic energy [J(J + 1) + j( j + 1) − 2Ω2

]/2 μR2, just
as in Ref. 25. As mentioned in Sec. IV B, we use the renormalized
Numerov method45,46 to obtain the radial scattering wave functions
ψϵ,P,J,MJ

v,l̃ v , j,Ω̃
(R) in Eq. (19). This method propagates the matrices Qi

defined by

ψ(Ri−1) = Qiψ(Ri), (28)

over a radial grid with points Ri with i = 1, . . . , n. The column
vectors ψ(Ri) contain the radial functions ψϵ,P,J,MJ

v,l̃ v , j,Ω̃
(Ri) at grid point

Ri. As mentioned in Sec. IV B about the CC method, the BF
Q-matrices at the end of the propagation to large R are transformed
to the SF basis with partial wave quantum numbers L with the aid
of Eqs. (23) and (24) and matched to the proper asymptotic bound-
ary conditions. In the CSA method we obtain matrices QΩ

n for all Ω
values, put them together as diagonal blocks into a large matrix Qn
over all channels, transform this large Q-matrix from the BF basis to
the SF basis with partial wave quantum numbers L in the same way
as in the full CC method, and use the asymptotic boundary condi-
tions to obtain the full S-matrix from which the CSA cross sections
are calculated.

D. Rotational infinite-order sudden approximation
We also calculated vibrational and rovibrational (de-)excitation

cross sections and rate coefficients for CO2–He collisions with the
VCC-IOS approximation. This method was extensively used in the
1980s by Clary and co-workers;15,22–25 we briefly outline the theory
for collisions with CO2 in the bend mode.

In the IOS approximation the centrifugal term in the
Hamiltonian is replaced by J(J + 1)/2μR2, so thatΩ becomes a good
quantum number, and the rotational energy of CO2 is set to zero.47

As a result, the vibrational coupled-channels problem can be solved
for fixed orientations of the molecule. Calculations are done for a
set of J values ranging from J = 0 to J = Jmax. The vibrational wave
functions for CO2 in the bend mode included in Eq. (12) are

∣v, lv⟩ = Nv,lv Q̃ ∣lv ∣ exp (−Q̃ 2
/2) L∣lv ∣

(v−∣lv ∣)/2
(Q̃)

exp (ilvγ)
√

2π
, (29)

with Nv,lv defined in Eq. (13). When the factor exp(ilvγ) contained
in the Wigner matrix D( j)

Ω,lv
(0,β, γ)∗ in Eq. (12) is removed from

it, the rotational part of the basis D( j)
Ω,lv
(0,β, 0)∗ depends only on

the angle β, which is the angle between the CO2 z-axis and the
z-axis R of the BF frame. The interaction potential is symmetric with
respect to reflection in the BF xz-plane (γ→ −γ). Vibrational wave
functions that are even or odd for this symmetry can be obtained
by writing exp(ilvγ) = cos(lvγ) + i sin(lvγ). The normalized cosine
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and sine type monomer eigenfunctions are denoted by ∣v, l̃ v , p⟩with
l̃ v = ∣lv ∣ and p being even (e) and odd (o), respectively. Only the
cosine functions with p = e are needed to calculate vibrational cross
sections for transitions involving v = 0, lv = 0.

The vibrational coupled-channel equations are solved for a grid
of fixed orientations βi of the CO2 monomer z-axis in the BF frame
for each value of J. The coupling contains the matrix elements

V(p)
v′ l̃ ′v ,vl̃ v

(R,βi) = ⟨v
′, l̃ ′v , p∣V(Q̃, R,βi, γ)∣v, l̃ v , p⟩ (30)

over the potential V(Q̃, R,β, γ) defined in Sec. III. Integration over
the angle γ, which determines the plane in which CO2 bends, can
be done analytically since the potential is expanded in cosine type
tesseral harmonics containing cos(mλγ), see Eq. (5), and the basis
contains functions cos (l̃ vγ) or sin (l̃ vγ). The Q̃-dependent part of
the basis contains associated Laguerre functions and the integration
over Q̃ is done numerically with a Gauss–Laguerre quadrature, as in
Sec. IV B.

The VCC problem is solved using the same procedure as
outlined for the full CC equations in Sec. IV B. This yields a scat-
tering matrix for each βi and J with elements S(J,p)

v′ ,l̃ ′v ;v,l̃ v
(βi, E). The

vibrational (de)excitation cross sections can be calculated from these
S-matrices by integration over β

σv′ ,l̃ ′v←v,l̃ v(E) =
π

2k2
v

gv∑
J,p
(2J + 1)∫

π

0
∣S(J,p)

v′ ,l̃ ′v ;v,l̃ v
(β, E)∣

2
sin β dβ

(31)

with k2
v = 2 μ(E − ϵv), ϵv being the energy of the initial vibrational

state v, and gv a degeneracy factor which depends on l̃ v of the initial
state: gv = 1 for l̃ v = 0 and gv = 1/2 for l̃ v > 0. In our case gv = 1/2
and only p = e contributes. We chose a Gauss–Legendre quadrature
grid for the angles βi, so that the integral over β can be calculated by
numerical quadrature.

As explained by Clary in his 1983 paper,15 VCC-IOS can also be
used to compute rovibrational cross sections. The theory in Clary’s
paper is based on the IOS treatment of atom - symmetric rotor
collisions derived by Green.48 In this case the rotational states of
the molecule are labeled with the quantum numbers j, k and the IOS
angle-dependent S-matrix S(J)j ′k′ ; jk(β, γ, E) depends on two angles β
and γ. These angles determine the orientation of the molecule in
the BF frame and in the IOS scattering calculations they are fixed.
In the VCC-IOS method applied to CO2–He collisions with CO2 in
the bend mode the matrix S(J,p)

v′ ,l̃ ′v ;v,l̃ v
(β, E) in Eq. (31) only depends

on the angle β, however. In order to make the connection with the
theory in Refs. 15 and 48, we introduce an auxiliary angle χ, which
is similar to the extra azimuthal angle χ′ defined by Watson in his
derivation of the rovibrational Hamiltonian for linear molecules.39

As in the work of Watson, this is a mathematical trick which does
not require any additional physical asumptions. The vibrational
functions Ψv,lv(Q̃, γ) in Eq. (29) are multiplied by a phase factor
exp(−ilvχ) which gives

Ψv,lv(Q̃, γ − χ) = Ψv,lv(Q̃, γ) exp (−ilvχ) (32)

and we compensate for this factor by multiplying the pure rotational
wave function D( j)

Ω,lv
(0,β, 0)∗ in Eq. (12) with exp(ilvχ), so we get

D( j)
Ω,lv
(0,β, 0)∗ exp (ilvχ) = D( j)

Ω,lv
(0,β, χ)∗.

In the VCC part of the calculation, the rotational part of the
basis is omitted, the angle β and the auxiliary angle χ are fixed,
and the S-matrix S(J)

v′ ,l′v ;v,lv
(β, χ, E) from the VCC calculations for-

mally becomes a function of two angles, just as in the IOS treatment
of atom - symmetric rotor collisions.48 The vibrational angular
momentum lv takes the role of the rotational angular momentum
projection k in the symmetric rotor. In reality one does not need to
vary the angle χ in the IOS calculations because it can be shown that
this S-matrix is related to the β-dependent S-matrix in Eq. (31) as

S(J)
v′ ,l′v ,Ω′ ;v,lv ,Ω(β, χ, E) = S(J)

v′ ,l′v ;v,lv
(β, E) exp [i(l′v − lv)χ]. (33)

This requires the β-dependent VCC S-matrix in the complex basis.
The transformation of the VCC S-matrices in the symmetry adapted
basis of Eq. (31) to the complex basis is given by Eqs. (14) and (15)
in Ref. 15. For l̃ ′v = 0 (or l̃ v = 0) it is

S(J)
v′ ,±l̃ ′v ;v,±l̃ v

(β, χ) =
1
√

2
S(J,e)
v′ ,l̃ ′v ;v,l̃ v

(β, χ)e±i(l̃ ′v−l̃ v). (34)

Then, following Green48 and Clary,15 we define rotation-vibration
S-matrices

S(J)
v′ ,l′v ,j ′ ,Ω′ ;v,lv , j,Ω(E) = δΩ′ ,Ω⟨l

′
v , j ′,Ω∣S(J)

v′ ,l′v ;v,lv
(β, χ, E)∣lv , j,Ω⟩, (35)

containing matrix elements of these two-angle dependent S-matrices
over the rotational parts of the CO2 monomer basis functions

∣lv , j,Ω⟩ =
√

2j + 1
4π

D( j)
Ω,lv
(0,β, χ)∗. (36)

The next step is to transform the S-matrix to a P̂13 adapted basis.
In general, each element of the S-matrix in the symmetry adapted
basis is a linear combination of four unadapted S-matrix elements
[see Eq. (12) in Ref. 15], but when the final state has l̃ ′v = 0 and the
initial state has l̃ v > 0, as in our case, only two terms remain,

S(J,ϵ)
v′ ,l̃ ′v ,j ′Ω;v,l̃ v , j,Ω

(E)

=
1
√

2
[S(J)

v′ ,l̃ ′v ,j ′ ,Ω;v,l̃ v , j,Ω
(E) + ϵ(−1)j S(J)

v′ ,l̃ ′v ,j ′ ,Ω;v,−l̃ v , j,Ω
(E)]. (37)

Note that our P̂13 symmetry label ϵ is a good quantum number,
whereas the ϵ in Clary’s paper15 differs from ours by a factor (−1) j

for lv ≠ 0. For lv = 0 Clary’s ϵ is set to zero.
The rovibrationally inelastic cross sections can be obtained

from the S-matrices in Eq. (37)

σv′ ,l̃ ′v ,j ′ ,ϵ←v,l̃ v ,j,ϵ(E) =
π

k2
v (2j + 1)

∑
J,Ω
(2J + 1)

× ∣S(J,ϵ)
v′ ,l̃ ′v ,j ′ ,Ω;v,l̃ v , j,Ω

(E)∣
2
. (38)
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The calculation of the matrix elements in Eq. (35) can be carried out
analytically when the angle-dependent matrices S(J)

v′ ,l′v ;v,lv
(β, χ, E) are

expanded in spherical harmonics YLML

S(J)
v′ ,l′v ;v,lv

(β, χ, E) =
√

2π∑
L,ML

YL,ML(β, χ)S(J,L)
v′ ,l′v ;v,lv

(E). (39)

The expansion coefficients are given by

S(J,L)
v′ ,l′v ;v,lv

(E) =
√

2π∫
π

0
YL,l′v−lv(β, 0)S(J)

v′ ,l′v ;v,lv
(β, E) sin β dβ. (40)

Only ML = l′v − lv contributes, because of the phase factor
exp [i(l′v − lv)χ] in Eq. (33). The

√
2π normalizes the spherical har-

monics with the azimuthal angle set to zero. The general expression
of the cross sections in terms of the expansion coefficients is rather
complex [see Eq. (35) of Green48], but again, for our case with l̃ ′v = 0
and l̃ v > 0 it is simpler. It corresponds to Eqs. (17)–(20) of Ref. 15
and in our notation reads

σv′ ,l̃ ′v ,j ′←v,l̃ v ,j(E) =
π

2k2
v
∑

L
∣⟨L, l̃ ′v − l̃ v , j, l̃ v ∣j ′ l̃ ′v⟩∣

2

×∑
J
(2J + 1)∣S(J,L,e)

v′ ,l̃ ′v ;v,l̃ v
∣
2
, (41)

with the expansion coefficients S(J,L,e)
v′ ,l̃ ′v ;v,l̃ v

for the symmetrized p = e

basis obtained from Eq. (40) by writing S(J,e)
v′ ,l̃ ′v ;v,l̃ v

(β, E) instead of

S(J)
v′ ,l′v ;v,lv

(β, E). For our case with l′v = 0 and only even j′ the constant
B in Eq. (19) of Ref. 15 is 1 for terms with odd values of j + L, while
it is 0 for even values.

E. Technical details
In this section we specify the parameters used in our scattering

calculations. The radial grid in the renormalized Numerov propaga-
tor ranges from R = 3 to 15 a0 in 224 equal steps. We started with
an outer R value of 35 a0, but found out that this value could be
reduced to 15 a0 without loss of accuracy in the cross sections. We
included bend vibrational states with v = 0, 1, and 2, with l̃ v = 0, 1,
and (0, 2), respectively. Convergence tests were carried out in which
we also included the v = 3 functions with l̃ v = (1, 3) in the channel
basis, but the differences in the cross sections were only about
1% for low collision energies where resonances occur and for the
highest energies, and less in the intermediate energy range. So in the
final calculations we omitted the v = 3 functions. The channel basis
contained CO2 monomer rotational states with a maximum j value
of 50 for each v. The minimum j value is l̃ v .

The cross sections were calculated for collision energies from
1 to 2000 cm−1, with a step size of 0.2 cm−1 for E ≤ 16 cm−1,
1 cm−1 up to 40 cm−1, 5 cm−1 up to 50 cm −1, 10 cm−1 up to
100 cm−1, and 100 cm−1 up to 2000 cm−1. Sharp peaks occur in
the cross sections at low energies, due to resonances, so we had to
use a fine energy grid in this region. The maximum value of the
total angular momentum J needed to converge the cross sections
depends on the energy; it was Jmax = 20 for E ≤ 100 cm−1, 35 for
100 < E ≤ 500 cm−1, 50 for 500 < E ≤ 1000 cm−1, 60 for 1000 < E
≤ 1500 cm−1, and 70 for 1500 < E ≤ 2000 cm−1. Not all J values were

actually used; for energies above 16 cm−1 J was increased in steps
of 4 and the cross sections were obtained for all J’s by cubic spline
interpolation over the available J values. This was allowed because
the cross sections summed over both parities vary smoothly with
J, except for the resonances at low energies. The integration over
energy in Eq. (25) for the rate coefficients was done by first making
a cubic spline interpolation of the cross sections at the energies for
which they were calculated and next applying the trapezoidal rule
on an energy grid with a spacing of 0.2 cm−1. These energies range
up to 2000 cm−1, which is sufficient to obtain rate coefficients up
to T = 300 K. In order to obtain reliable rates up to T = 500 K we
extrapolated the exponentially decaying high energy tail of the inte-
grand in Eq. (25) by a simple exponential function a exp(−bR) with
coefficients a, b fitted to the integrand at the highest two energies and
extended the integration up to an energy of 5000 cm−1.

In the VCC-IOS calculations the integration over β in Eqs. (31)
and (40) was done numerically using Gauss–Legendre quadrature.
When calculating vibrational (de)excitation cross sections from
Eq. (31) we used only 16 fixed monomer angles βi ranging from 0 to
π, but when calculating rovibrationally inelastic cross sections from
Eqs. (41) and (40) the number of quadrature points had to be much
larger (up to 100) in order to achieve convergence.

Our computer codes were written in the free and open source
script language SCILAB, version 6.1.149 and computations were done
on a cluster of linux servers.

V. RESULTS AND DISCUSSION
A. Cross sections

Before presenting our results calculated with the potential
described in Sec. III, let us mention that we also calculated v = 1,
l̃ v = 1→ v′ = 0, l̃ ′v = 0 quenching cross sections with the model
potential used by Clary et al.,15,25 which exponentially depends
on the He–O and He–C distances with parameters based on
Hartree–Fock calculations. The CSA and VCC-IOS cross sections
that we calculated with this potential differ at most by a few percent
from the results in Ref. 25, which confirms the correctness of both
their and our CSA and VCC-IOS programs. The small differences
are probably due to some technical differences between our scatter-
ing calculations and those in Ref. 25, which were not specified in all
detail.

Figure 3 shows the results of these calculations in comparison
with those obtained with the CC, CSA, and VCC-IOS methods and
our potential in Sec. III. The results are quite similar for collision
energies above 500 cm−1. For the highest energies Clary’s potential
yields slightly larger cross sections, which is probably due to this
potential being more strongly repulsive than ours and the atom-
atom model producing a stronger coupling between the v = 1 and
v = 0 bend modes of CO2. At energies below 500 cm−1 the cross
sections from our potential are much larger, with the difference
increasing to more than two orders of magnitude at collision ener-
gies below 10 cm−1. We note incidentally that in Ref. 25 the lowest
energy at which the cross sections were calculated was 0.01 eV,
which corresponds to about 80 cm−1. Clary’s potential based on
SCF calculations completely lacks the attractive dispersion inter-
actions which are present in our potential and we think that this
explains the much smaller cross sections that it yields at low collision
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FIG. 3. Vibrational v = 1, l̃ v = 1→ v′ = 0, l̃ ′v = 0 quenching cross sections sec-
tions from CC, CSA, and VCC-IOS calculations with our potential, in comparison
with CSA and VCC-IOS results calculated with the atom-atom model potential of
Clary et al.15,25 In the CC and CSA calculations the initial rotational state has j = 1
and the cross sections are summed over all final j′ states.

energies. Another noticeable difference is the presence of scattering
resonances manifested by the peaks in the cross section at energies
below 20 cm−1, which are completely missing in the results calcu-
lated with Clary’s potential. The reason that the latter potential does
not produce resonances is that it is purely repulsive, so it has no van
der Waals (vdW) minimum, which implies that it cannot give rise to
bound or quasi-bound states. Our potential based on presently avail-
able computational electronic structure methods is accurate also in
the region of the vdW minimum, and the rate coefficients of rovi-
brationally inelastic collisions presented below can also be trusted at
low temperatures.

We see also in Fig. 3 that the total vibrational v = 1, l̃ v = 1
→ v′ = 0, l̃ ′v = 0 quenching cross section obtained from the approx-
imate CSA and VCC-IOS methods agrees fairly well with the result
from the numerically exact CC method. Only the subtle resonance
structures at low energies are more different, but these depend very
sensitively on the potential and on the scattering method used. The
CSA and CC cross sections in this figure were computed with the
lowest initial v = 1, l̃ v = 1 rotational state with j = 1. Figure 4 shows
that this holds also for an initial rotational state with j = 10, with a
resonance structure that is less pronounced. Comparison of Figs. 3
and 4 shows, moreover, that the total vibrational quenching cross
section is quite similar for different initial j states.

The CC and CSA methods directly produce rotationally
resolved v = 1, l̃ v = 1, j → v′ = 0, l̃ ′v = 0, j ′ cross sections and we
explained in Sec. IV D how the VCC-IOS method has been
extended15 to also yield such rotational state-to-state cross sections.
The j′ product distributions from the different methods are dis-
played for various collision energies in Figs. 5 and 6 for initial j = 1
and j = 10, respectively. In Fig. 5 we observe that for initial j = 1
higher and higher j′ states are excited when the collision energy
is increased, which is natural of course, and that the CC, CSA,

FIG. 4. Vibrational v = 1, l̃ v = 1→ v′ = 0, l̃ ′v = 0 quenching cross sections sec-
tions from CC, CSA, and VCC-IOS calculations with our potential. In the CC and
CSA calculations the initial rotational state has j = 10, the VCC-IOS results are the
same as in Fig. 3.

and VCC-IOS methods show similar trends. The largest differences
occur at the energy of 10 cm−1, but this is in the region where
scattering resonances occur. The differences also become larger at
higher collision energies, but they typically stay in the range of
20%–50%, with the CSA method yielding smaller j′ values than CC
and the VCC-IOS method yielding larger j′. In Fig. 6 we observe that
for initial j = 10 there is a very strong preference for rotationally elas-
tic j = 10→ j′ = 10 transitions, although also here the j′ distribution
naturally becomes wider at higher collision energies. Again, the
different methods produce quite similar results, with the CSA
method yielding smaller j′ values than CC and the VCC-IOS method
yielding larger j′. Also here the largest deviations occur in the region
of the resonances at 10 cm−1.

State-to-state v = 1, l̃ v = 1, j → v′ = 0, l̃ ′v = 0, j ′ cross sections
from CC, CSA, and VCC-IOS calculations are shown as functions
of the collision energy for different j′ values in Figs. 7 and 8 for ini-
tial j = 1 and j = 10, respectively. These figures confirm that the cross
sections from the approximate CSA and VCC-IOS methods agree to
within 50% with those from the full CC method also at the state-to-
state level for energies higher than 30 cm−1 and that the deviations
become larger for lower energies where the resonances occur. Also
for larger Δj = ∣j′ − j∣ where the cross sections become smaller the
agreement gets somewhat worse. It is striking that the more approx-
imate VCC-IOS method yields cross ssections, even at the rotational
state-to-state level, that agree as well with the full CC data as the CSA
results, and in some cases even better.

Apart from the quality of the approximate CSA and VCC-IOS
results in comparison with the full CC data, we may also discuss
some general trends in the cross sections. One can observe in the
above figures that Δj, the difference between the rotational quan-
tum numbers, is more significant in determining the magnitude of
the cross sections than the energy gap between the initial v = 1,
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FIG. 5. Product j′ distributions in v = 1, l̃ v = 1, j → v′ = 0, l̃ ′v = 0, j ′ transitions with initial j = 1 from state-to-state CC, CSA, and VCC-IOS calculations at different collision
energies. Panels (a)–(d) correspond to collision energies of 10, 100, 500, and 2000 cm−1, respectively.

l̃ v = 1, j and final v′ = 0, l̃ ′v = 0, j ′ states. We note here that the
energy gap between the lowest vibrationally excited state with v = 1,
l̃ v = 1, j = 1 and the v′ = 0, l̃ ′v = 0, j ′ state is smallest for j′ = 41.
Generally the cross sections are smallest in the energy range between
30 and 100 cm−1 and increase by at least two orders of magnitude
when the energy is raised to 2000 cm−1. This increase is larger when
Δj is larger.

A feature in Figs. 7 and 8 that is particularly striking is that the
cross sections from CSA calculations become very small for collision
energies below 2 cm−1. This may be explained as follows. In the
BF coordinates on which the CSA method is based the centrifugal

barrier is represented by a term that includes diagonal and off-
diagonal Coriolis couplings, see Eq. (16). The latter are omitted in
CSA, which effectively increases the height of the centrifugal barrier.
This implies that at low energies the colliding CO2 molecule and
He atom are more strongly prevented from getting closer, where the
potential coupling is larger and the vibrational transitions occur. We
confirmed this explanation by CSA calculations in which we low-
ered the centrifugal barrier by adding a term to the diagonal angular
kinetic energy that more or less compensates for the omission of the
off-diagonal terms. Indeed, we found that this brings the CSA cross
sections at low energies substially closer to the CC results. In Fig. 8(a)

FIG. 6. Same as Fig. 5, with initial rotational state j = 10. Panels (a)–(d) correspond to collision energies of 10, 100, 500, and 2000 cm−1, respectively.
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FIG. 7. State-to-state cross sections as functions of the energy for v = 1, l̃ v = 1, j → v′ = 0, l̃ ′v = 0, j ′ transitions with initial j = 1 and different j′ from state-to-state CC,
CSA, and VCC-IOS calculations. Panels (a)–(d) correspond to v′ = 0 final states with j′ = 0, 4, 10, and 20, respectively.

the CSA cross sections are smaller than those from CC even at higher
energies, but also the CC cross sections are extremely small in that
case.

Another interesting observation regards the partial cross sec-
tions from different total angular momenta J and different parities.
Instead of the total parity P with respect to overall inversion, we
consider the spectroscopic parity P(−1)J . States with even and odd
spectroscopic parity are conventionally labeled e and f , respec-
tively. The partial cross sections for different J values summed over
both parities are displayed in Fig. S2. One observes, quite naturally,
that for higher collision energies the contributions from higher J’s
become more important. And that the maximum values of J = 20,
50, and 70 used in different energy ranges produce well converged

cross sections. Since the initial monomer angular momentum is j = 1
in this example, the total angular momentum J is nearly equal to
the orbital angular momentum L, see Sec. IV B, which is related to
the impact parameter b as L = μbv. From the data shown in Fig. S2
it follows then that the impact parameters are b = 3.24, 2.05, and
2.08 a0 for collision energies of 100, 1000, and 2000 cm−1. These
impact parameters are small, especially at higher energies, which
indicates that (ro)vibrational transitions mostly take place for nearly
head-on collisions and happen in the region where the potential is
strongly repulsive and the coupling potential is relatively large, see
Fig. 2.

The relative contributions from the scattering states with spec-
troscopic parities e and f to the total cross sections are less obvious,

FIG. 8. Same as Fig. 7, with initial rotation state j = 10. Panels (a)–(d) correspond to v′ = 0 final states with j′ = 0, 4, 10, and 20, respectively.
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FIG. 9. Partial wave distributions of the v = 1, l̃ v = 1, j to v′ = 0, l̃ ′v = 0 cross sections computed at the CC level at collision energy E = 100 cm−1 summed over all final
j′ values and resolved by spectroscopic parity e or f . Panels (a)–(c) correspond to the odd initial j values 1, 5, and 9, panels (d)–(f) to the even j values 2, 6, and 10. The
closed black curves are the total partial cross sections, the dashed red and dot-dashed blue curves are the contributions from parities e and f , respectively. Note that for odd
initial j the contributions from parity e are dominant, especially for j = 1, while for even j the contributions from parities e and f are nearly equal.

see Fig. 9. For initial j = 1 the contributions from the e states are very
dominant, and also for higher odd j values the e states contribute
more to the cross sections than the f states. For even initial j values,
on the other hand, the contributions from the e and f states are prac-
tically equal. This can be explained by considering the role of the
approximate quantum number Ω in the BF formalism explained in
Sec. IV B. The absolute value of Ω is limited by the initial j value, the
final j′ value, and the total angular momentum J. When analyzing
the state-to-state cross sections, we found that the largest allowed
absolute Ω values yield the largest contributions. It follows from
Eq. (15) that for the ground state with v′ = l̃ ′v = 0 only states with
even j′ are allowed, and from Eq. (18) that for j′ = Ω = 0 only states
with parity e occur. Furthermore, it follows from the second and
third 3j symbols in Eq. (20) with lv = 1 and l′v = 0 that mλ must be
odd, from the reflection symmetry of the potential in Sec. III that
also λ must then be odd, and from the first 3j symbol in Eq. (20) that
forΩ = 0 the sum of j and j′ must be odd as well. We already derived
that j′ must be even, so only for odd initial j values the Ω = 0 states
contribute to the cross sections. Because theseΩ = 0 states are purely
of parity e, this explains the observed dominance of the e states over
the f states in the cross sections with odd initial j. For the initial
states with even j the cross sections do not contain thisΩ = 0 compo-
nent with pure e parity and therefore the e and f parity contributions
are equal. The dominance of the e states over the f states for odd
initial j values is most pronounced for initial j = 1 and decreases with
increasing j. This follows because for the initial v = l̃ v = j = 1 state
∣Ω∣ is limited to 0 and 1, and the restriction to even j′ implies that
only the Ω = 0 state with parity e contributes to the cross section
through the potential, see Eq. (20). For larger j and j′ also Ω ≠ 0
states contribute directly to the cross sections through the potential

and the relative contribution from the Ω = 0 states becomes less
important.

Another feature that can be observed in Figs. 9(d)–9(f) where
the cross sections do not contain the Ω = 0 contribution is that for
total J smaller than j and j′, where the maximum ∣Ω∣ is limited
by J, the partial cross sections remain small and rise steeply when
J becomes equal to the minimum of j and j′. This confirms that,
indeed, functions with ∣Ω∣ equal to min(j, j′) yield the largest con-
tributions to the cross sections. Since Ω is the projection of the CO2
angular momentum j on the intermolecular axis R this suggests that
for rovibrational transitions involving the CO2 bend mode sideways
collisions are most effective. Figure S3 in the supplementary material
shows the e/ f parity-resolved state-to-state cross sections for initial
states with j = 9 and j = 10 and final j′ values ranging up to 25. This
figure shows that our findings regarding the different parity contri-
butions to the cross sections for odd and even initial j values also
hold for the state-to-state cross sections: the e parity contributions
dominate over those of f parity for odd j = 9, especially for low
final j′, while the e and f contributions are equal for even j = 10. It
also shows that the j′ dependence of the state-to-state cross sections
is similar to the total J dependence of the partial cross sections in
Fig. 9, which follows from the limitation of the maximum ∣Ω∣ by both
j′ and J.

B. Rate coefficients
In Fig. 10 we display some state-to-state v = 1, l̃ v = 1, j → v′

= 0, l̃ ′v = 0, j ′ rovibrational transition rates from CC calculations
for different initial j and final j′ values as functions of the tem-
perature. Such rovibrational state-to-state rates are the data needed
in radiative transfer models. For lower initial j the rates of transi-
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FIG. 10. State-to-state transition rate coefficients from CC calculations for different initial j and final j′ values. Panels (a)–(d) correspond to v = 1 initial states with j = 1, 3, 6,
and 10, respectively.

tions to different j′ states differ by at most one order of magnitude
at low temperature and become more similar with increasing tem-
perature. For higher initial j one clearly observes that transitions to
j′ = j are the strongest and that especially transitions to j′ smaller
than j are weak. More generally, these features indicate that tran-
sitions with small Δj = ∣j′ − j∣ are favored and that transitions with
j′ > j are stronger than those with j′ < j. The latter propensity can be
explained by the energy gap law: the energy difference between the
initial v = 1, j and final v′ = 0, j′ states is smaller when j′ > j. We will
include a more complete set of rovibrational transition rates in the
LAMDA data base.50

Figures S4 and S5 in the supplementary material show the
state-to-state v = 1, l̃ v = 1, j → v′ = 0, l̃ ′v = 0, j ′ rovibrational transi-
tion rates for initial j = 1 and 10 and different final j′ values from
CC, CSA, and VCC-IOS calculations. Both the CSA and VCC-IOS
rates agree to within about 50% with the CC results, just as the cor-
responding cross sections, except when j′ is smaller than j and the
rates become insignificant.

The rates increase monotonically with the temperature, except
for transitions involving low j or low j′ states for which the rates
have minima around 50 K. The relatively large rates at low temper-
ature for these transitions are due to contributions from scattering
resonances, as shown in Fig. 7. This figure shows the strongest scat-
tering resonances in the cross sections from CC calculations, weaker
ones in the CSA results, and practically none in the VCC-IOS cross
sections, which clearly explains why the minima in the rate coeffi-
cients from the CC, CSA and VCC-IOS methods in Figs. S6 and S7
of the supplementary material are strongest for CC, weaker for CSA,
and absent for VCC-IOS.

In Figs. S6 and S7 of the supplementary material we compare
the total vibrational quenching rates, i.e., the rovibrational transition
rates summed over all final j′ values, calculated with the different
methods, with initial j = 1 and 10 in the CC and CSA methods. No
initial j value is defined in the VCC-IOS method, so the VCC-IOS
quenching rates are identical in the two figures. Also the CC and
CSA quenching rates are quite similar for j = 1 and j = 10, except at

the lowest temperatures where the minima are more pronounced for
initial j = 1, due to the stronger resonance contributions at low j. We
observe that the CSA method somewhat underestimates the rates
from CC calculations, while the VCC-IOS method yields slightly
higher rates. The differences are quite small, however, on the order
of 20% or less. These differences between the approximate CSA and
VCC-IOS methods and the CC method are smaller than in many of
the state-to-state rate coefficients shown in Figs. S4 and S5, which
is because the smaller state-to-state rates are more sensitive to the
approximations made than the most significant ones. The larger
total vibrational quenching rates from VCC-IOS and smaller rates
from CSA, as compared to the CC results, are due to the contri-
butions from higher final j′ values such as shown in Figs. S4(d)
and S5(d). We already concluded from Figs. 5 and 6 that these are
favored by VCC-IOS relative to CC and disfavored by CSA.

Figure 11 shows the total vibrational quenching rates for initial j
values ranging from 1 to 10. It shows even more clearly that the total
vibrational quenching rate hardly depends of the initial j, except at
temperatures below 50 K where the rates for low initial j values are
enhanced by resonance contributions. This figure also shows that
our calculated total vibrational quenching rate agrees with the most
recent experimental data within the error bars, which confirms the
accuracy of our results.

The rovibrational transition rate coefficients presented in this
paper refer to vibrational de-excitation from v = 1, l̃ v = 1, j to
v′ = 0, l̃ ′v = 0, j ′. The corresponding rovibrational excitation rates
can be easily obtained from the detailed balance relation.51 In our
previous papers on CO2–He collisions with CO2 excited in the
stretch modes7,8 we also investigated the accuracy of cross sections
and rate coefficients from the multi-channel distorted-wave Born
approximation (MC-DWBA) and the nearest-neighbor Coriolis
coupling (NNCC) method, which is an extension of the CSA
method, and we compared the computational efficiency of both
methods relative to CC. Our conclusion was that cross sections
and rates from the MC-DWBA method are practically equal to
those from the full CC method, or from the NNCC method when
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FIG. 11. Vibrational quenching rates from CC calculations for v = 1, l̃ v = 1,
j → v′ = 0, l̃ ′v = 0 transitions with different initial j values ranging from 1 to 10
compared with experimental results.28

MC-DWBA was combined with the latter method. The extension of
CSA to NNCC resulted in better agreement with full CC results. We
did not investigate these methods in the present paper on the bend
mode of CO2, but we expect similar results in terms of accuracy and
efficiency.

VI. CONCLUSIONS
With the use of a newly computed four-dimensional CO2–He

potential which includes the CO2 bend coordinate we calculated
the cross sections σv′ ,l′v ,j ′←v,lv , j(E) and rate coefficients kv′ ,l′v ,j ′←v,lv , j
(T) of rovibrational transitions between different bend vibrational
and rotational (v, j) states of CO2 induced by collisions with He
atoms. The quantum number lv represents the vibrational angular
momentum generated by the bend mode of CO2, which is linear at
equilibrium. In our scattering calculations we used the numerically
exact coupled-channels (CC) method, but also the coupled-states
approximation (CSA) and the vibrational close-coupling rotational
infinite-order sudden (VCC-IOS) approximation. The effects of
each of these approximations on the rovibrational cross sections and
rates was found to be less than 50% at the rotational state-to-state
level, except for the smaller ones and in the low energy resonance
region, and less than 20% on the overall vibrational quenching
rates, except for temperatures below 50 K where resonances provide
a substantial contribution. Our calculated collisional state-to-state
transition rate coefficients can be used in modeling interstellar
non-LTE environments and our results show that they may also
be obtained from the computationally less demanding CSA or
VCC-IOS methods when the high accuracy achieved by CC calcu-
lations is not required. Our CC quenching rates agree with the most
recent experimental data28 withing the error bars.

The fairly good performance of the VCC-IOS method seems
surprising, since we found in calculations on the symmetric and
asymmetric stretch modes of CO2

7 in collisions with He that the
cross sections and rate coefficients from VCC-IOS calculations

differ by one to three orders of magnitude from full CC results.
The disagreement was worse for the asymmetric stretch mode
with frequency 2349 cm−1 than for the symmetric stretch mode at
1333 cm−1 and the cross sections were larger for the latter mode,
so we concluded in Ref. 7 that the quality of VCC-IOS ameliorates
with the magnitude of the cross sections and we guessed already
that VCC-IOS might perform better for the bend mode at 667 cm−1.
Figure S8 in the supplementary material shows total quenching cross
sections from CC and VCC-IOS calculations of the bend mode at
collision energies 100 and 1000 cm−1 calculated for hypothetical
frequencies in the range from 333 to 1500 cm−1. This figure confirms
our expectations. It shows clearly that the VCC-IOS cross sections
agree fairly well with CC results up to a certain frequency, but
deviate more and more for higher frequencies. For collision energy
100 cm−1 this critical frequency is about 850 cm−1, which is higher
than the frequency of 667 cm−1 of the bend mode. For higher colli-
sion energies the cross section is larger and the critical frequency,
i.e., the energy gap between the v = 1 and v = 0 states where the
VCC-IOS cross section starts deviating from the CC result,
increases; at 1000 cm−1 it is about 1200 cm−1.

We also compared our cross sections and rates for CO2(bend)-
He collisions with data from Clary et al.15,25 calculated in the 1980s
with the CSA and VCC-IOS methods and a simple atom-atom
model potential based on ab initio Hartree–Fock calculations. Their
cross sections agree fairly well with ours for collision energies above
500 cm−1 but at lower energies the cross sections from our potential
are much larger, with the difference increasing to more than two
orders of magnitude at collision energies below 10 cm−1. This shows
that the inclusion of long range attractive dispersion interactions is
crucial to obtain reliable cross sections at lower energies and rate
coefficients at lower temperatures.

Finally we note that the computer programs and the knowledge
about the accuracy of the approximate but computationally simpler
CSA and VCC-IOS methods will also be useful to provide similar
collisional data of astronomical interest for collisions of CO2 with
H2 and for other linear molecules of which bend mode spectra have
been observed and are used in modeling, such as C2H2 and HCN.

SUPPLEMENTARY MATERIAL

The supplementary material contains Figs. S1–S8, which are
discussed in the main text. It also contains a copy of the Fortran pro-
gram that calculates the CO2–He potential for CO2 being deformed
along the bend mode normal coordinate.
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