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Duitsland)

• Dr. Konstantin Korovin (The University of Manchester, Verenigd Koninkrijk)

• Prof. dr. Jasmin Blanchette (Ludwig-Maximilians-Universität München,
Duitsland)

• Prof. dr. Mateja Jamnik (University of Cambridge, Verenigd Koninkrijk)



Synergy
of Machine Learning

and Automated Reasoning

Dissertation to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,
according to the decision of the Doctorate Board

to be defended in public on

Tuesday, December 5, 2023
at 10:30 am

by

Bartosz Pawe l Piotrowski

born on June 12, 1992
in Pruszków, Poland



Supervisor:

• Prof. dr. Herman Geuvers

Co-Supervisors:

• Dr. Josef Urban (Czech Technical University in Prague, Czech Republic)
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For it is unworthy of excellent men to lose hours like slaves
in the labor of calculation which could be safely relegated to
anyone else if the machine were used.

— Gottfried Leibniz

We may hope that machines will eventually compete with
men in all purely intellectual fields.

— Alan Turing
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Chapter 1

Introduction

1.1 The quest for mechanized reasoning

Performing rigorous reasoning in an automated, mechanized way is an old
dream. One could trace the origins of this idea, through Turing, Frege, and
Leibniz, back to the medieval period and a Christian thinker Ramon Llull.1

Born in Mallorca in the 13th century, he spent his life trying to convert
Muslims and Jews. This endeavour motivated him to create a new, rigorous
method of reasoning. He realised that typical Christians’ arguments lack solid
grounding in commonly accepted truths, and are invariably bogged down in
endless, undirected disputes.

Therefore, Llull attempted to construct a conceptual framework – or maybe
even a mechanism – for reasoning abstracted from the beliefs of any specific
religion, but based on their common grounds. The mechanism would generate
truths from the assumed premises. It should be designed in such a way that
once the input assumptions were agreed by the adversaries, they were forced to
accept the produced conclusions by the objectivity of the procedure.

Llull’s system nowadays appears to be quirky and difficult to comprehend,
and we will not attempt to demonstrate it here. However, in Figure 1.1, we pro-
vide a glimpse into the Llull’s work. It is one of the multiple graphical schemas

1For an interesting and thorough discussion of the seminal influence of Ramon Llull on the
human thought leading to the modern logic and computer science, see [50] – a book vindicating
the work of Llull, published on the occasion of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI) which took place in Barcelona in 2011. The initial part of this
section is based on the first three chapters of this book.

1
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Figure 1.1: The Fourth Figure of the Lull’s Ars brevis. It consists of three
concentric circles capable of rotating around their common centre. Each of the
circles is marked with the nine letters from B to K. The letters are constants
signifying various abstract primitive concepts, and the rotating mechanism aims
to facilitate combining the primitives into compound concepts.

included in his opus magnum. It contains three concentric, physically rotating
circles described with nine letters – constants referring to certain primitive con-
cepts. By rotating the circles, one could mechanically obtain multiple different
compound concepts. This Fourth Figure of Llull illustrates three conceptual in-
novations he pioneered, that are recognized by Jeremy Avigad in [2], and which
are now elementary ingredients of the modern formal reasoning methods:

• Concepts can be represented with symbols.

• Concepts can be combined into compound ones.

• Concepts can be manipulated in a mechanized way.

Despite its innovative qualities, the method of Ramon Llull did not get
much traction in the medieval period. However, 400 years later, the idea of
symbolic representations of concepts and rules for reasoning resonated with a
great German polymath – Gottfried Leibniz. He wrote in a letter:
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When I was young, I found pleasure in the Llullian art, yet I thought
also that I found some defects in it, and I said something about these
in a little schoolboyish essay called On the Art of Combinations,
published in 1666, and later reprinted without my permission.

Leibniz did not wish his De Arte Combinatoria to circulate widely, as he
considered it incomplete. Still, this work – and its continuation – turned out
to be highly influential. He develops there an idea of characteristica universalis
– a universal language of thought – and a calculus ratiocinator – a calculus
for reasoning. Leibniz envisions that if these ideas were perfected and widely
adopted,

[. . .] there would be no more need of disputation between two philoso-
phers than between two accountants. For it would suffice to take
their pencils in their hands, and say to each other: Let us calculate.

Leibniz made some rudimentary progress towards realizing his dream. Nowa-
days, we can recognize that along the way he developed roughly a propositional
fragment of logic. A substantial continuation of this work came later – from
Gottlob Frege at the turn of the nineteenth and twentieth centuries.

In his two-volume, seminal work – Grundgesetze der Arithmetik – he devel-
ops a logical calculus involving predicates, functions, and quantifiers. Unfortu-
nately, the axioms chosen by Frege for his system turned out to be inconsistent,
as was famously noticed by Bertrand Russell just before the publication of the
second volume of Grundgesetze. Frege acknowledges it desperately in the ap-
pendix:

There is nothing worse that can happen to a scientist than to have
the foundation collapse just as the work is finished. I have been
placed in this position by a letter from Mr. Bertrand Russell.

Despite the fatal flaw in the axioms, Frege’s work has become a landmark in
the history of logic and formal methods. His analysis of quantified statements
and the strict notion of proof are accepted from the standpoint of modern logical
standards.

An inconsistency found in Frege’s system by Russell motivated the latter
to develop his own new logical foundations for mathematics. His grand Prin-
cipia Mathematica written together with Alfred Whitehead develops the basis of
type theory, whose modern extensions have profound importance in the current
formal methods.
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Thanks to Frege, Russell, and many other pioneers in logic at the beginning
of the twentieth century, the conceptual apparatus has become rich enough, a
critical mass has been achieved, and logic became a flourishing scientific dis-
cipline. It developed a rich language and original methods. It secured firm
foundations for modern mathematics. In addition to being a useful tool, it has
become a topic of study in its own right. Its strengths, but also its inherent
limitations (viz. the famous Gödel theorems) have been discovered.

In parallel to the developments in logic and foundations of mathematics, in
the twentieth century, a digital computer was born. On the theoretical front,
Alan Turing ultimately refined the notion of an algorithm in his work “On Com-
putable Numbers, with an Application to the Entscheidungsproblem” published
in 1936. There, the Turing machine was defined – a conceptual, idealized device
for modelling all possible computations.

In addition to the theoretical advancements, physical implementations of
general-purpose computing machines became feasible. In conjunction with the
freshly created firm axiomatic foundations of mathematics, this meant that the
great dream about mechanized reasoning finally started becoming truly real –
at least within the realm of mathematics.

Since then, the discipline of automated reasoning has been advanced with
sustained efforts, driven by visionary goals and practical applications, inter-
twined with developments of computer science, formal logic, and mathematics.

Jumping to the present day, the discipline may be seen as having two major
subfields focusing on different goals: automated theorem proving and interactive
theorem proving. We briefly characterize both of them below.

1.1.1 Automated theorem proving

The main goal of automated theorem proving is to establish the truth of formal
conjectures without human intervention during the process. Somewhat surpris-
ingly, historically, researchers focused on this problem first rather than on the
seemingly easier problem of constructing formal proofs with human guidance –
the domain of interactive theorem proving discussed in Subsection 1.1.2.

One of the very first programs designed to prove theorems automatically was
Logic Theorist implemented already in 1956 by Allen Newell, Herbert Simon,
and Cliff Shaw. Famously, it was able to prove 38 of the first 52 theorems from
Principia Mathematica – and some of the automatic proofs were reportedly
more elegant than their human counterparts.

When in late 1956 Simon wrote to Russell (85 at the time) to describe the
work on Logic Theorist, Russell replied:



1.1. The quest for mechanized reasoning 5

I am delighted to know that Principia Mathematica can now be done
by machinery. I wish Whitehead and I had known of this possibility
before we wasted ten years doing it by hand. I am quite willing to
believe that everything in deductive logic can be done by machinery.

Nowadays, we know that far from everything in deductive logic can be proved
mechanically. Still, the technology of automated deduction has become a suc-
cessful and often indispensable tool in many areas – especially for industry-
originating problems. It developed several important subfields, in particular:

SAT that develops algorithms to establish the sat isfiability of propositional
formulas. Despite the theoretically unwieldy complexity of the problem (which
is NP-complete), in practice, SAT solvers are able to deal with very large formu-
las encoding various important practical problems. As expressed by Edmund
Clarke – a 2007 Turing Award recipient – “Clearly, efficient SAT solving is a
key technology for 21st-century computer science.”

SMT (satisfiability modulo theories) that generalizes SAT by incorporating
specialized decision procedures for dealing with a plethora of specific theories,
like linear integer arithmetic, arrays, or bit vectors. SMT solvers typically con-
sist of a SAT solver and a theory solver, and these two modules guide each other
in a feedback loop towards finding a contradiction or declaring the satisfiability
of the input problem. Although SMT solving was initially dedicated to ground
problems only, some SMT solvers may now also work with quantified formulas
– see Chapter 5. Examples of strong SMT solvers include cvc5 [8], Z3 [38],
veriT [24], or Yices [44].

FOL automated theorem proving that is concerned with developing algo-
rithms for proving theorems in full classical first-order logic. These provers
are based on various reasoning strategies, including tableaux calculus (where
a tree of literals is being built by applying clauses of the input problem until
all the branches contain complementary literals; see Chapter 4) or saturation
looping (where the input problem is clausified and all possible inferences are
being generated – until a contradiction is found, or no new clause can be pro-
duced). The TPTP language is the standard input language for most modern
first-order provers. CASC (CADE ATP System Competition) is an annual
“world championship” addressed to (mainly but not only) first-order provers.
Saturation-based theorem provers like E [144], iProver [91], or Vampire [92]
regularly achieve state-of-the-art performance for first-order problems in this
competition.

HOL automated theorem proving that is concerned with developing algo-
rithms for proving theorems in higher-order logic, i.e., logic that adds expres-
siveness to the first-order logic by allowing quantification for variables referring
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not only to individual elements of the universum, but also higher-order concepts
(like sets, predicates, or functions). Some of the most prominent HOL auto-
mated theorem provers are Satallax [28] and LEO-III [148], and more recently
also Zipperposition [165], and higher-order versions of E [166] and Vampire [16].

1.1.2 Interactive theorem proving

In interactive theorem proving, proofs of mathematical claims are constructed
with the use of proof assistants. These are computational systems that allow a
user to input the proof using a specialized language – much like a programming
language. The proof assistant then checks if the proof is correct – specifically,
if it follows the rules and axioms encoded in the system. Additionally, various
proof assistants provide various degree of automation or interactiveness during
the proof development. Many of them feature a variety of tactics being able to
automatically make smaller or larger leaps in the proof construction, relieving
the user from explicitly stating every atomic logical step of the reasoning.

The world of interactive theorem proving is diverse [168] and proof assistants
are based on various logical foundations. For instance, Mizar [60] builds on set
theory (with a soft-typing layer), HOL-family provers (like HOL Light [64] or
HOL4 [147]) are based on simple type theory, whereas Coq [155] and Lean [37]
use dependent type theory (more specifically, its variant known as calculus of in-
ductive constructions). Some interactive theorem provers, like Metamath [105]
or Isabelle [123], aim at being generic – agnostic with respect to any specific
logical foundational systems – and provide meta-logical frameworks.

Different logical foundations have different merits, and choosing a good foun-
dation for a proof assistant, balancing expressiveness, simplicity, and conve-
nience for mathematicians is an important research question [13].

Proof assistants are useful for at least four important reasons:2

Providing correctness guarantees. This is perhaps the main motivation
for formalizing proofs in proof assistants. As mathematics gets more complex
and specialized, it is increasingly difficult to establish the correctness of proofs
via the standard means of peer-reviewing. As a small but vivid example of
human unreliability in this domain see Figure 1.2 showing a footnote from The
Axiom Of Choice by Thomas Jech [77]. Sometimes it also happens that a proof
contains large computational component, or is complex to such an extent that
despite excessive effort reviewers are not able to achieve complete certainty
regarding the proof correctness. A remarkable example of such a situation was

2One could find many other reasons justifying the growing relevance of interactive theorem
proving nowadays – a far more complete account is presented by Jeremy Avigad in [3].
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when Thomas Hales submitted his proof of the long-standing Kepler conjecture
to the prestigious Annals of Mathematics. The referees accepted the proof for
publication [61], yet they admitted they were not completely certain, but rather
“99% certain” of its correctness. This verdict was unsatisfactory for Hales and
he decided to formalize the proof. This project (code-named Flyspeck) required
an extensive effort and a long time – but was finished successfully [62].

Figure 1.2: A footnote at the bottom of page 131 of The Axiom Of Choice by
Thomas Jech [77].

Aiding proof invention. Typically, the user should have at least a general
idea for a proof before attempting its formalization. Yet, as many proof assis-
tants have tactics automatically taking care of simpler, more mundane details of
reasoning, the attention of the mathematician can remain directed to a higher
level of reasoning. We should note, however, that currently, the automation in
modern proof assistants still tends to be weak, being able to target more obvious
reasoning steps. But the situation certainly improves, and we may anticipate
stronger tactics with the ability of making critical progress in a proof. Chapter 6
and Chapter 7 contribute towards achieving such stronger automation.

Apart from the automation, many proof assistants help in development by
keeping track of – and conveniently displaying – the current goal and a set of
(local) hypotheses that can be used to progress. This vastly helps to navigate
complex and large proofs.

Aiding proof understanding. The ability of navigating a user through a
large proof by exposing the exact proof state not only helps to construct proofs,
but also aids understanding of them.

Peter Scholze – a Fields Medal awarded mathematician – challenged the
Lean proof assistant community to formalize his research-level result in analytic
geometry, which resulted in the Liquid Tensor Experiment [142] led by Johan
Commelin. After the project was completed, Scholze said in an interview [143]:
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Really, one key problem I had when I was trying to find this proof
was that I was essentially unable to keep all the objects in my
“RAM,” and I think the same problem occurs when trying to read
the proof. Lean always gives you a clear formulation of the current
goal, and Johan confirmed to me that when he formalized the proof
of Theorem 9.4, he could — with the help of Lean — really only
see one or two steps ahead, formalize those, and then proceed to the
next step. So I think here we have witnessed an experiment where
the proof assistant has actually assisted in understanding the proof.

Facilitating collaboration. Proof assistants facilitate to develop large math-
ematical proofs collaboratively, in a similar style as programmers work together
on developing software. The formal language ensures that the notions are used
consistently, and the proof assistant guarantees eliminating mistakes. This
makes it possible for a large group of formalizers to build sizable proofs and
comprehensive, uniform libraries of formal mathematics.3 This is a big cultural
change in mathematics and possibly a trend anticipating the future norm.

Apart from the four mentioned reasons motivating the use of proof assis-
tants, there are two additional considerations important in the context of this
thesis:

Interactive and automated theorem proving benefit from each other.
Automated methods provide strong automation of the proof development, for
instance via so-called hammers [22]. On the other hand, formal libraries are
sources of hard, interesting problems motivating development of stronger meth-
ods in automated theorem proving [159].

Formal mathematics enables development of AI methods. Formal li-
braries are sources of high-quality data that can be used to develop AI /
machine-learning / data-driven approaches enhancing automation in proof as-
sistants, therefore making them easier to use. This topic is developed in Sub-
section 1.3.1.

3As an example of the scale of formal libraries today: Lean’s mathlib [104], which is hosted
on GitHub, as of 11th May 2023 has been developed by a community of 286 contributors. Since
21st July 2017, they authored 17 972 commits resulting in 863 103 lines of non-whitespace
code.
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1.2 The promise of learning from examples

Below, there is an equation expressing Kepler’s first law of planetary motion:

r =
p

1 + ϵ · cos(ϕ)
.

r is the distance of the planet from the Sun, ϕ is the angle between the
planet’s current position and its closest approach, as seen from the Sun, and
p ≥ 0 and 0 ≤ ϵ ≤ 1 are fixed parameters specific for the planet.4

How did Kepler discover this formula? It was not via a metaphysical re-
flection nor from some a priori principles, but primarily by collecting rich data
coming from his (and Tycho Brahe’s) astronomical observations, and attempt-
ing multiple times to fit some mathematical model to the collected data points.

What Kepler has done manually, machine learning (ML) algorithms are in-
tended to perform automatically. The defining aspect of these algorithms is that
they derive a useful data-processing model from a data set of examples repre-
senting the data-processing task. In machine learning vernacular, the process
of deriving such a model based on data is called training or fitting.

This data-driven paradigm can be opposed to an alternative approach where
the computer would be programmed manually with an explicit, non-adaptive
algorithm encompassing expert knowledge for performing a given task.

The tasks that machine learning algorithms are supposed to learn can be
thought of as finding an appropriate mapping f : X → Y . For instance, using
Kepler’s example, mapping the angle of the planet to its distance from the
Sun, or mapping pictures of handwritten digits to the digits themselves. The
examples used for training are then multiple different (input, output) pairs. The
output is often called a label, whereas the input is often called features.

In machine learning – as opposed to our astronomical example – the learned
mapping f is not required to be fully precise – only to be as precise as possible.

A machine learning algorithm is expected to automatically pick up patterns
and logic behind the concept represented by training examples. The produced
mapping should fit the training examples well, but crucially, it should also
generalize – predict correct outputs for new, unseen inputs. (Producing a model
that only performs well on training examples would be trivial – it would amount
just to “memorizing” all the training examples in a database.) A model that
fits training data well but does not generalize is said to overfit.

4In geometric terms, this equation means that the orbit of the planet is an ellipse with the
Sun at one of the two foci.
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Therefore, there are two measures of predictive performance of a trained
machine learning model: the training performance that measures how well the
model predicts correct outputs for the training examples, and the testing perfor-
mance that measures the correctness of the model’s predictions for new exam-
ples, unseen during training. Achieving high testing performance is essential;
training performance is more of a diagnostic measure – if a machine learning
algorithm cannot produce a model performing well on training examples, it is
an indication that either the algorithm is flawed, or the problem represented by
the examples is too complex to be modelled by the given method.

In practice, to measure the testing performance of a machine learning model,
a set of available examples is typically split into two parts: a training set (used
for training) and a testing set (used solely for evaluation).

There is a large variety of machine learning algorithms producing data-
processing models of different forms and complexity. In general, the more com-
plex the data and the task to learn, the more sophisticated machine-learning
approach is needed to achieve good results. The traditional taxonomy of ma-
chine learning approaches splits them along several orthogonal criteria. Below
we describe a split that is quite relevant in the context of this thesis (as we
apply approaches from both categories): eager algorithms vs lazy algorithms.

• Eager algorithms have a proper training phase resulting in a standalone
model. After this phase, the training data is no longer needed for the
model to produce responses, as it internalized the patterns from the data.

There is a wide spectrum in the complexity of possible models. On the
one side of it there are linear models being able to only correctly represent
linear relations. Fitting their parameters to data typically amounts to
reversing and multiplying matrices, which can be done very efficiently.

On the other side of the spectrum, we may find deep neural networks,
that may be seen as compositions of multiple layers consisting of mul-
tidimensional linear functions interspersed with simple, non-linear ones.
Their training is typically performed via the means of stochastic gradient
descent. Deep neural networks may sometimes contain billions of train-
able parameters, and their training may take months and often utilizes
specialized hardware.

• Lazy algorithms do not have an actual training phase and do not produce
a proper model that is separate from the training data. Instead, the
training dataset itself is directly used by the algorithm while producing
responses.
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The algorithms from this class are often simpler, yet for many problems
entirely sufficient. The advantage of the lack of training phase is counter-
balanced by the disadvantage of more intensive computation during the
prediction time.

A representative lazy machine learning algorithm is k-nearest neighbors
(k-NN). Given an unlabeled example, k-NN produces a prediction by ex-
tracting the labels of the k most similar examples in the data set and
returning an averaged (or most frequent) label.

Finishing this brief outline of machine learning, we need to mention impres-
sive achievements in a newly emerged domain of so-called generative artificial
intelligence. Models developed in this domain are generally based on large neu-
ral networks and instead of classifying objects or predicting simple, unstructured
responses they are trained to generate human-like, original, complex outputs in
the form of text [134, 153], image [135, 140], or audio [70]. These outputs often
are conditioned on prompts – textual inputs influencing the desired output.

The techniques of generative AI clearly belong to the data-driven paradigm,
yet they tend to escape the classical understanding of machine learning. The
generative models are still trained on sets of examples, yet they, in a sense,
transcend the information explicitly demonstrated in the examples and attain
more advanced abilities. This is the case, e.g., for large language models that are
trained using a simple objective: given a partial sentence predict a subsequent
word. When a language model is trained in such a way on sufficiently rich and
high-quality textual data (readily available in the age of the internet), one often
sees the emergence of various capacities from the model, like translation between
languages, text summarization [29,134], or simple reasoning skills. The latter is
interesting in the context of automated reasoning, and Chapter 8 is dedicated
to an initial exploration of this phenomenon.

1.3 Automated reasoning meets machine learning

Automated reasoning and machine learning have contrasting natures: the for-
mer relies on precise calculation and produces exact results; the latter learns
from borderless sets of examples to deliver only approximate solutions.

Despite these two paradigms being very different, it seems natural to incor-
porate both of them when designing methods for automating the development
of mathematics. After all, both of them are present in human mathematical
practice: On the one hand, in order to prove a theorem, one must ensure that
every step is logically correct. On the other hand, a mathematician learns how



12 Chapter 1. Introduction

to search for a proof by learning patterns appearing in the proofs of similar
problems.

This motivates the general theme of this Ph.D. thesis: joining the realms of
automated reasoning and machine learning. More specifically, the main target
of the thesis is applying various machine-learning-based methods to improve
the success rate of automated theorem provers and to facilitate construction of
formal proofs in proof assistants. Therefore, the goal is not to substitute the
existing formal tools with completely new ones, based primarily on machine
learning, but rather to incorporate into the state-of-the-art formal tools data-
driven approaches that learn from past successes and failures.

In the subsection below, we provide a high-level characterization of how
that can be achieved, and where machine learning approaches may be applied
to improve the performance of the formal techniques. Later, we emphasise that
applying machine learning in the context of automated reasoning needs to over-
come substantially different challenges than those encountered in other, more
common scenarios of using data-driven approaches. Finally, we discuss other
possible modes of applying machine learning to challenges arising in automated
reasoning where ML is not used to enhance existing formal tools, but rather
constitutes standalone, new methods.

1.3.1 Incorporating data-driven paradigm into formal tools

Given an automated theorem proving algorithm, there are essentially two ways
of enhancing it with data-driven guidance via machine learning:

• External guidance: this is a situation where machine-learned advice does
not influence the prover / solver during its run, but only its initial setting.
This may be, for instance, choosing the initial parameters of the prover
that the ML-advisor finds good for the current input problem [26,73,96].
This may be also performing premise selection – making the input problem
smaller by selecting only a subset of the axioms from it that seem the
most relevant for the conjecture included in the problem. Chapters 2
and 3 discuss the premise selection problem in more detail and propose
two novel machine learning methods for dealing with it.

• Internal guidance: this is a situation where a machine-learning advisor
influences the prover / solver during its run. This often can be done by
substituting various heuristics implemented in the provers by data-driven
approaches. This may be, for instance, using a machine-learned mech-
anism for selecting clauses for resolution in a saturation-based theorem
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prover, selecting clauses for extension steps in tableaux theorem prover
(which is the topic of Chapter 4) or selecting terms for performing instan-
tiation of quantified formulae in an SMT solver (the target of Chapter 5).

In the context of interactive theorem proving, machine learning methods
may be targeted towards two important problems:

• Searching in a formal library: All major proof assistants are associated
with large community-developed libraries containing thousands of formal-
ized definitions and theorems. Therefore, one of the major challenges in
constructing formal proofs of theorems depending on multiple other re-
sults is the prerequisite of having a good familiarity with the structure and
the contents of the library. This may be mitigated by machine-learning-
based tools for suggesting definitions and theorems already existing in the
library that may be useful in a given proof state. Chapter 7 presents such
a tool integrated with the Lean proof assistant.

Note that this problem is similar to premise selection as described in
the context of automated theorem proving. However, in the interactive
scenario, premise selection methods need to be optimized for somewhat
different goals:

– The set of suggested premises does not necessarily need to be com-
plete (containing all the premises needed for proving a theorem, as
is necessary for ATPs) but it should be precise – containing as few
irrelevant premises as possible. This is because the user can browse
through a relatively small number of suggestions, so it is better when
this set is smaller, but contains only relevant premises.

– The tool should produce suggestions fast, as a user wants a quick
feedback in real time when developing a proof. This means that
slower machine learning methods may not be appropriate.

– The machine learning model should have the possibility to be trained
in the online fashion, i.e., by incorporating training examples one-by-
one. This allows the model to be trained along with the development
of the formal theory, so that it can suggest also premises recently
formalized by the user.

– Optimally, the tool should be lightweight, tightly integrated with the
proof assistant, and easy to install, to provide a seamless user-friendly
experience.
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• Suggesting subsequent proof steps: Formal proofs contain many rou-
tine, repetitive steps, and machine learning methods may easily lower the
cognitive effort of formalizers by suggesting proof steps that with high
certainty progress the proof state in a good direction. Such suggestion
methods may be used in conjunction with a proof search algorithm so
that not only the proof state is advanced by one step, but a whole goal is
closed. Chapter 6 addresses this problem and develops methods for tactic
prediction and proof automation for the Coq proof assistant.

This problem is akin to internal guidance in automated theorem provers,
but again – the emphasis is put differently in the interactive context, and
the last three points from the list above apply also here.

1.3.2 Challenges of making machine learning enhancements

Applying machine learning techniques to problems arising in automated rea-
soning has its own specific challenges that are not characteristic for other, more
typical applications of machine learning. Below, we highlight predominant ones:

• Measuring improvements: When an automated theorem prover is aug-
mented with machine-learned advice, the effectiveness of such an improve-
ment needs to be evaluated experimentally. To design a good evaluation,
one needs to face two important questions:

– How to split data into training and testing parts for evaluation?
Doing such a split is a standard procedure when evaluating machine
learning methods (see Section 1.2), and often data is split simply
randomly into the two parts. However, corpora related to auto-
mated reasoning are often very non-uniform in terms of complexity,
and moreover, there are many dependencies hidden within them.
For these reasons, a random split may often not be appropriate for
evaluation. For instance, libraries of formalized mathematics con-
tain theorems which depend on each other, and which were formal-
ized in some particular chronological order. One should preserve the
chronology when spiting the library into training and testing parts.
However, parts developed later tend to be more complex than the
initial fragments of the library, which may skew the evaluation of the
method. See Sections 6.4 and 7.4 for more discussion related to this
issue and proposed approaches.

– How to determine if the improvement in performance is robust?
Automated theorem provers often are complex systems that are addi-
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tionally fragile – even small, seemingly insignificant changes in their
implementation (such as shuffling the order of formulae of the input
problem) may cause a failure to solve problems solvable by a prover
(under a fixed time limit) before; or the other way around – some
new problems may suddenly become solved [149].

This fragility becomes problematic when evaluating an enhancement
(ML-based or not) introduced to the prover. The enhanced prover
may solve more problems in a benchmark compared to the baseline
prover. However, we cannot be sure whether these newly solved
problems were solved thanks to the idea behind the enhancement. It
could happen that we just introduced an accidental perturbation –
not related to the original idea at all – in the complex system which
a theorem prover is, and that helped it to solve additional problems.

This issue is especially serious when the achieved improvement in
terms of the number of the benchmark problems solved is relatively
small – which is typical.

To mitigate this issue, it is important to not rely on one-off compar-
ison of the base and enhanced prover. Instead, it is recommended
that some non-essential parts of the algorithm of the enhanced prover
are randomized, and it is evaluated on a benchmark multiple times,
and the results are averaged. Randomness could be introduced, as
suggested in [149], to all these decisions of the algorithm which we
deem non-essential for the success rate of the prover. In the case of
machine-learning-based enhancements, we may not need to random-
ize other parts of the base prover, as most of the machine-learning
techniques are inherently randomized. We embrace the methodology
of evaluation by multiple randomized runs in the projects described
in Chapters 2 and 5.

• Featurizing mathematical formulae: The classical machine learning ap-
proaches (the non-neural ones) typically work on tabular data meaning
that the inputs to an ML-model are fixed-length vectors of features. The
features are numerical (or categorical) qualities meant to provide charac-
terization of the examples that is useful for the learned task. The right
design of the features often significantly influences the ability of the ML
algorithm to learn.

This thesis often tackles problems where the inputs to a machine learning
model are based on symbolic formulae which cannot be processed by the
model directly, but first need to be featurized. There is no perfect way of
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doing that – the feature encoding will either be overly complicated (mak-
ing the input space too complex for the ML model) or will not represent
the meaning of the formula sufficiently precisely. This means that fea-
turizing formulae is inherently hard and needs to be engineered carefully.
See Chapters 2, 5, 6, and 7 where the featurization problem is tackled.

• The speed versus quality trade-off: Evaluating a machine-learning pre-
dictor inside an automated theorem prover during its run introduces a
slow-down, and the more complex the ML model, the higher the slow-
down. When the evaluation involves time limits for the prover’s runs
(and it always does) this creates an issue: even if the ML model correctly
guides the prover, its overall performance under a time limit may easily
decrease. On the other hand, if the ML model is fast, it is also typi-
cally simple, and thus may provide lower-quality guidance. This trade-off
always needs to be taken into account when designing ML-augmentation
for automated theorem provers. Chapter 5, where machine-learning-based
guidance is developed for instantiation in an SMT solver, deals with this
problem.

1.3.3 Can machine learning methods reason on their own?

The main theme of the thesis is applying machine learning to enhance existing
tools in automated reasoning. However, this is not the only theme of the thesis,
and not the only way that ML can be helpful in formal domains.

Below, we discuss a few different important domains of problems where
more advanced machine learning approaches can be applied, in a sense, directly,
without an intermediary reasoning system being augmented with ML.

• Autoformalization: This is a task of automatically translating from natu-
ral language mathematics to a formal language. As manually formalizing
mathematics is tedious and requires specialized expertise, an autoformal-
ization system would have significant practical implications. For that rea-
son, various approaches to autoformalization have been attempted since
the 2000s [85, 86, 87, 173]. However, it was only after the advent of large
neural networks and neural language models when strong and practical
solutions started to emerge. Neural language models were applied to the
autoformalization problem for the first time in [167], where (unexpect-
edly) good accuracy of translation between synthetic statements in LATEX
and their formal counterparts in Mizar was achieved. Later works using
neural language models for autoformalization include [169] and [4]. [154]
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is a recent position paper concerning the importance of autoformalization
and possible ways of achieving it.

• Conjecturing: This is a task of forming mathematical conjectures, which
lies at the core of mathematical activity. Generated conjectures can either
be intermediate lemmas helping to prove hard problems, or unrestricted,
new, interesting conjectures based on a theory (a task known as theory
exploration). A pioneering work on the topic is [99]. More recent ap-
proaches based either on statistical methods or neural models started to
be developed in [55] and [160]. The Section 4.5 of Chapter 4 describes
more modest experiments on conjecturing literals on branches in tableaux
proofs using recurrent neural networks.

• Symbolic rewriting: This is a problem when one symbolic expression is
being rewritten into another, satisfying desired properties. Many common
problems can be cast as symbolic rewriting problems; examples of such
include: normalizing polynomials, integrating arithmetical expressions,
computing conjunctive normal form of propositional formulae, applying
logical inference rules, etc.

Many such problems can be solved with deterministic algorithms – either
simple ones (as for normalizing polynomials) or more complex (like the
Risch algorithm for integrating [139]). However, it was discovered that
neural network architectures designed for natural language tasks have
also the potential to efficiently deal with symbolic rewriting problems,
including the more complex ones. One of the very first explorations of this
topic was conducted by the thesis author and is reported in Chapter 8.
Works continuing this research avenue in more depth include [98] and [32].

Neural networks by their very nature are only approximate and one cannot
expect perfect correctness from a network trained for a rewriting task.
Yet, this approach is still interesting for two reasons: Firstly, in some
situations, having a solution that is only probably correct is sufficient to
be useful. This is true, for instance, in situations when generating a
solution is difficult, but verifying its correctness is easy – as is the case of
integrating complicated arithmetical expressions. Secondly, the ability of
the neural networks to perform such symbolic tasks seemingly requiring
precise algorithmic computation is an interesting phenomenon on its own
that deserves effort of explaining it by machine learning researchers.
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1.4 Thesis outline

Having sketched the background of this thesis – the research fields of automated
reasoning (Section 1.1), machine learning (Section 1.2), and their intersection
(Section 1.3) – we now outline the structure of the thesis (Subsection 1.4.1),
and we list major research questions this thesis targets (Subsection 1.4.2).

The main content of the thesis consisting of Chapters 2–8 is based on six
conference publications [76, 126, 127, 129, 130, 172] and one workshop publica-
tion [131]. I was the main author of five out of all these seven works.

The detailed contributions are specified at the end of the manuscript, on
page 165.

1.4.1 Structure of the thesis

The thesis may be split into four parts concerning four different problems on
the intersection of automated reasoning and machine learning.

The first part of the thesis focuses on the premise selection task in au-
tomated theorem proving. This is a critical task when an automated theorem
prover (ATP) is used over a large theory where typically only a small fraction of
the available facts are relevant for proving a new conjecture. Giving too many
redundant premises to the ATP significantly decreases the chances of proving
the conjecture.

Chapter 2 introduces the ATPboost system addressing this problem. It solves
sets of large-theory problems by interleaving ATP runs with machine learn-
ing of premise selection from the proofs. Unlike many approaches that use a
multi-label setting, the learning is implemented as a binary classification that
estimates the pairwise relevance of (theorem, premise) pairs. ATPboost uses
for this the gradient boosting decision tree algorithm. Learning in the binary
setting however requires negative examples, which is nontrivial due to many
alternative proofs. We implement several solutions of this problem in the con-
text of the ATP/ML feedback loop and show a significant improvement over
the multi-label approach.

In Chapter 3, a novel method for premise selection is developed based on
recurrent neural networks (RNNs). Unlike the previous method which chooses
sets of facts independently of each other by their rank, the new method uses the
notion of state that is updated each time a choice of a fact is made. The new
method is combined with data augmentation techniques. The evaluation shows
improvements in terms of the number of new problems solved in comparison to
the previous approach.
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The second part of the thesis focuses on internal guidance for ATPs.
Certain parts of their algorithms require non-deterministic choices to be made.
These choices are normally either randomized or governed by pre-designed
heuristics. The goal is to provide machine-learned advice instead, and by this
improve the performance.

In this spirit, in Chapter 4, experiments with applying RNNs for guiding
clause selection in the connection tableau proof calculus are described. The
RNN encodes a sequence of literals from the current branch of the partial proof
tree to a hidden vector state; using it, the system selects a clause for extending
the proof tree. Additionally, a conjecturing experiment is performed where
the RNN does not select an existing clause but completely generates the next
tableau goal.

In Chapter 5, we develop an approach of applying ML to solve quantified
satisfiability modulo theories (SMT) problems more efficiently. We focus on the
enumerative instantiation method of solving quantified formulas. The task is
to select the right ground terms to be instantiated. In ML parlance, this means
learning to rank ground terms. We devise a series of features of the considered
terms and train on them using gradient boosted decision trees. The experiments
demonstrate that the ML-guided solver enables us to solve more problems than
the base solver and reduce the number of quantifier instantiations.

The third part of the thesis develops ML-based automation for proof
assistants. Formalizing mathematics using proof assistants is a laborious task
requiring expert knowledge. The formal proofs need to deal with low-level
reasoning steps. Also, a mastery of the existing formal library is required in
order to reuse formalized theorems. To make proof assistants more user-friendly
various forms of automation need to be developed. Here, ML-based approaches
learning from already completed proofs are developed.

Chapter 6 focuses on the Coq proof assistant. Its proofs consist of sequences
of tactics that modify proof states. The goal is to learn to suggest the next tac-
tic in a given proof state. We build on top of Tactician, a plugin for Coq that
provides a framework for learning from proofs written by the user to synthesize
new proofs. Learning happens in an online manner, meaning that the ML model
is updated every time the user performs a step in an interactive proof. This
provides the user with a seamless, interactive experience, and it takes advantage
of the locality of proof similarity: proofs similar to the currently constructed
proof are likely to be found close by. Two online methods are implemented:
k-nearest neighbors based on locality sensitive hashing and custom online ran-
dom forest. We compare the relative performance of these methods on Coq’s
standard library.
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In Chapter 7, we introduce an ML-based tool for the Lean proof assistant
that suggests relevant premises for a theorem being proved by a user. The tool
is based on a modification of the custom random forest model used in the Coq
project. It is implemented directly in Lean, which was possible thanks to the
rich and efficient metaprogramming features of Lean 4. The random forest is
trained on data extracted from mathlib – Lean’s formal mathematics library.
The advice from the trained model is accessible to the user via a command that
can be called while constructing a proof interactively.

The last part of the thesis investigates the capabilities of neural language
models in the context of mathematics. More specifically, in Chapter 8, we
investigate if the current neural architectures are adequate for learning symbolic
rewriting. Two kinds of data sets are proposed for this investigation – one
derived from automated proofs and the other being a synthetic set of polynomial
terms. The experiments with neural machine translation models are performed
and their (surprisingly) good results are discussed.

1.4.2 Main research questions

Below we emphasise major research questions this thesis addresses and we iden-
tify specific preexisting research shortfalls it fills in.

• How far can one go with classical machine learning algorithms applied
to premise selection?

The works preceding this thesis that focused on applying data-driven
methods to premise selection either used simpler, classical machine learn-
ing approaches (like k-NN [80], naive Bayes [159], or kernel methods [156]),
or applied novel, but computationally involving deep learning methods [71].
A research gap remaining to be filled in was to investigate the possibility
of handling premise selection with the state-of-the-art, strongest available
classical, fast, non-neural machine learning method, i.e., gradient boosted
trees. The possibility of improvement compared to the simpler ML meth-
ods was not obvious as gradient boosted trees are not directly applicable
to premise selection and special preprocessing of the data is additionally
required. Chapter 2 contributes positive results regarding this research
question.

• How can the relations between the predicted premises be modelled?

So far, all the previous publications dealing with premise selection (in-
cluding [71,80,159]) cast this problem as a retrieval task, where premises
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are treated as independent entities, and a ranking of them is returned
conditioned on a theorem being proved. This approach, however, over-
simplifies the situation in that it does not model the existing – but hidden
– relations between premises: some groups of lemmas may work well to-
gether; on the other hand, it may be unlikely to see some pairs of them in
one proof. Moreover, theorems often have multiple proofs using different
sets of premises. This motivates the search for a suitable approach for
premise selection that models the hidden relations in the output. Chap-
ter 3 proposes a new approach that satisfies this requirement, and ex-
perimentally shows its advantage compared to the alternative methods
treating premises as independent entities.

• Can proving be cast as a next-word prediction task? A proof can be seen
as consisting of inter-connected proof steps that modify an implicit proof
state. A question arises whether there is a machine learning approach that
could naturally model the evolving proof state and predict (or decode)
promising proof steps conditioned on the state. In Chapter 4, we identify
connection tableau and recurrent neural networks as a proving calculus
and a machine learning method, respectively, that can embody a solution
to such a framing of the problem. Connection tableau’s proofs have the
form of trees of literals, and they are constructed by applying a limited
number of available proof steps. RNNs, on the other hand, implement an
evolving hidden vector state that can naturally model growing branches
of the tableau trees.

• How can online learning be applied to advising in proof assistants?

Providing machine-learned advice to the users of proof assistants is an
attractive and useful research goal. However, it induces unique challenges
from the perspective of machine learning algorithms. When a user de-
velops a piece of mathematical theory, it is likely that lemmas and defi-
nitions that directly precede a theorem being proved (and likely appear
in the same file) will be useful for completing the proof. To incorporate
the recent lemmas and definitions in machine-learned advisor, an online
learning algorithm is needed, i.e., an algorithm that can effectively learn
on examples digesting them one by one, as opposed to learning from a
large, static dataset. In Chapters 6 and 7, we develop a novel, custom
version of an online random forest algorithm capable of efficient learning
from sparse features, and tightly integrated with a host proof assistant
(Coq and Lean, respectively).
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• Can machine learning techniques realistically improve the performance
of a state-of-the-art SMT solver?

Machine learning has been applied as internal guidance in various first-
order ATPs (like saturation-based [35, 72, 74] or connection [81, 83, 162]
provers) and even in highly engineered SAT solvers [69]. However, its ap-
plicability to improve the performance of SMT solvers remained largely
unexplored. In Chapter 5, we picked a challenging and important sub-
domain of SMT – solving problems with quantifiers – and successfully
improved the performance for some families of problems using a carefully
engineered ML-based approach applied in place of a solid heuristic.

• Can neural networks be trained to perform symbolic rewriting?

Neural language models have emerged as the best available approach for
dealing with a variety of tasks related to natural language. However, the
applicability of these architectures to reasoning-related tasks using sym-
bolic, formal languages was mostly unexplored. Intuitively, the results of
applying neural language models in such a strict, formal setting should not
give great results given the very different nature of symbolic languages,
which do not admit the flexibility or indeterminateness of natural lan-
guages. Yet, in Chapter 8, we show that neural language models with
relatively light training can achieve good accuracy for rewriting symbolic
expressions. This was one of the first experiments on applying neural
language models to symbolic tasks.



Chapter 2

ATPboost: Learning premise
selection in binary setting
with ATP feedback

Abstract

ATPboost is a system for solving sets of large-theory problems
by interleaving ATP runs with state-of-the-art machine learning of
premise selection from the proofs. Unlike many approaches that
use multilabel setting, the learning is implemented as binary classi-
fication that estimates the pairwise-relevance of (theorem, premise)
pairs. ATPboost uses for this the fast state-of-the-art XGBoost
gradient boosting algorithm. Learning in the binary setting, how-
ever, requires negative examples, which is nontrivial due to many
alternative proofs. We discuss and implement several solutions in
the context of the ATP/ML feedback loop, and show substantial
improvement over the multilabel approach.

23
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2.1 Introduction: Machine learning
for premise selection

Assume that c is a conjecture which is a logical consequence of a large set
of premises1 P . The chance of finding a proof of c by an automated theorem
prover (ATP) often depends on choosing a small subset of P relevant for proving
c. This is known as the premise selection task [1]. This task is crucial to
make ATPs usable for proof automation over large formal corpora created with
systems such as Mizar, Isabelle, HOL, and Coq [22]. Good methods for premise
selection typically also transfer to related tasks, such as internal proof guidance
of ATPs [74,81,101,162] and tactical guidance of ITPs [56].

The most efficient premise selection methods use data-driven or machine-
learning approaches. Such methods work as follows. Let T be a set of theorems
with their proofs. Let C be a set of conjectures without proofs, each associated
with a set of available premises that can be used to prove them. We want to
learn a (statistical) model from T , which for each conjecture c ∈ C will rank its
available premises according to their relevance for producing an ATP proof of
c. Two different machine learning settings can be used for this task:

1. multilabel classification: we treat premises used in the proofs as opaque
labels and we create a model capable of labeling conjectures based on
their features,

2. binary classification: here the aim of the learning model is to recognize
pairwise-relevance of the (conjecture, premise) pairs, i.e. to decide what
is the chance of a premise being relevant for proving the conjecture based
on the features of both the conjecture and the premise.

Most of the machine learning methods for premise selection have so far used
the first setting [21, 80, 82]. This includes fast and robust machine learning
algorithms such as naive Bayes and k-nearest neighbors (k-NN) capable of mul-
tilabel classification with many examples and labels. This is needed for large
formal libraries with many facts and proofs. There are, however, several reasons
why the second approach may be better:

1. Generality: in binary classification it is possible to estimate the relevance
of (conjecture, premise) pairs where the premise was so far unseen (i.e.,
not in the training data).

1By a premise we mean either a theorem, an axiom, or a definition. The term premise is
used here interchangeably with fact.
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2. State-of-the-art ML algorithms are often capable of learning subtle aspects
of complicated problems based on the features. The multilabel approach
trades the rich feature representation of the premise for its opaque label.

3. Many state-of-the-art ML algorithms are binary classifiers or they struggle
when performing multilabel classification for a large number of labels.

Recently, substantial work [71] has been done in the binary setting. In particu-
lar, applying deep learning to premise selection has improved state of the art in
the field. There are, however, modern and efficient learning algorithms such as
XGBoost [33] that are much less computationally-intensive then deep learning
methods. Also, obtaining negative examples for training the binary classifiers is
a very interesting problem in the context of many alternative ATP proofs and
a feedback loop between the ATP and the learning system.

2.1.1 Premise selection in binary setting with multiple proofs

The existence of multiple ATP proofs makes premise selection different from
conventional machine learning applications. This is evident especially in the
binary classification setting. The ML algorithms for recognizing pairwise rele-
vance of (conjecture, premise) pairs require good data consisting of two (typ-
ically balanced) classes of positive and negative examples. But there is no
conventional way how to construct such data in our domain. For every true
conjecture (in typical proof systems) there are infinitely many formal proofs.
The ATP proofs are often based on many different sets of premises. The notions
of useful or superfluous premise are only approximations of their counterparts
defined for sets of premises.

As an example, consider the following frequent situation: a conjecture c can
be ATP-proved with two sets of axioms: {p1, p2} and {p3, p4, p5}. Learning
only from one of the sets as positives and presenting the other as negative
(conjecture, premise) pairs may considerably distort the learned notion of a
useful premise. This differs from the multilabel setting, where negative data
are typically not used by the fast ML algorithms such as naive Bayes and k-
NN. They just aggregate different positive examples into the final ranking.

Therefore, to further improve the premise selection algorithms it seems use-
ful to consider learning from multiple proofs and to develop methods producing
good negative data. The most suitable way how to do that is to allow multi-
ple interactions of the machine learner with the ATP system. In the following
section we present the ATPboost system, which implements several such al-
gorithms.
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2.2 ATPboost: Setting, algorithms and components

ATPboost2 is a system for solving sets of large-theory problems by interleaving
ATP runs with learning of premise selection from the proofs using the state-
of-the-art XGBoost algorithm. The system implements several algorithms and
consists of several components described in the following sections. Its setting
is a large theory T , extracted from a large ITP library where facts appear
in a chronological order. In more detail, we assume the following inputs and
notation:

1. T – names of theorems (and problems) in a large theory T .

2. P – names of all facts (premises) in T . We require P ⊇ T .

3. StatementsP of all p ∈ P in the TPTP format [150].

4. FeaturesP – characterizing each p ∈ P . Here we use the same features
as in [82] and write fp for the (sparse) vector of features of p.

5. OrderP (<P ) – total order on P ; p may be used to prove t iff p <P t.
We write At for {p : p <P t}, i.e. the set of premises allowed for t.

6. ProofsT ′ for a subset T ′ ⊆ T . Each t ∈ T ′ may have many proofs Pt.
Pt denotes the premises needed for at least one proof in Pt.

2.2.1 Algorithms

We first give a high-level overview and pseudocode of the algorithms imple-
mented in ATPboost. Subsection 2.2.2 then describes the used components
in detail.

Algorithm 1 is the simplest setting. Problems are split into the train/test sets,
XGBoost learns from the training proofs, and its predictions are ATP-evaluated
on the test set. This is used mainly for hyper-parameter optimization.

Algorithm 2 evaluates the trained XGBoost also on the training part, possi-
bly finding new proofs that are used to update the training data for the next
iteration. The test problems and proofs are never used for training. Negative
mining may be used to find the worst misclassified premises and to correspond-
ingly update the training data in the next iteration.

2The Python package is available at https://github.com/BartoszPiotrowski/ATPboost.

https://github.com/BartoszPiotrowski/ATPboost
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Algorithm 3 begins with no training set, starting with ATP runs on ran-
dom rankings. XGBoost is trained on the ATP proofs from the previous iter-
ation, producing new ranking for all problems for the next iteration. This is a
MaLARea-style [161] feedback loop between the ATP and the learner.

2.2.2 Components

Below we describe the main components of the ATPboost algorithms and the
main ideas behind them. As discussed in Section 2.1, they take into account
the binary learning setting, and in particular implement the need to teach the
system about multiple proofs by proper choice of examples, continuous interac-
tion with the ATP and intelligent processing of its feedback. The components
are available as procedures in our Python package.

Algorithm 1 Simple training/test split.

Require: Set of theorems T , set of premises P ⊇ T , ProofsT , FeaturesP ,
StatementsP , OrderP , paramsset, paramsmodel.

1: Ttrain, Ttest ← RandomlySplit(T )
2: D ← TrainingSet(ProofsTtrain

,FeaturesP ,OrderP ,paramsset)
3: M← TrainModel(D,paramsmodel)
4: R ← Rankings(Ttest,M,FeaturesP ,OrderP )
5: P ← ATPevaluation(R,StatementsP )

TrainingSet(ProofsT , FeaturesP , OrderP , params) This procedure con-
structs a TrainingSet for a binary learning algorithm. This is a sparse matrix
of positive/negative examples and a corresponding vector of binary labels. The
examples (matrix rows) are created from ProofsT and FeaturesP , respecting
OrderP . Each example is a concatenation of ft and fp, i.e., the features of
a theorem t and a premise p. Positive examples express that p is relevant for
proving t, whereas the negatives mean the opposite.

The default method (simple) creates positives from all pairs (t, p) where
p ∈ Pt. Another method (short) creates positives only from the short proofs of
t. These are the proofs of t with at most m+1 premises, where m is the minimal
number of premises used in a proof from Pt. Negative examples for theorem t
are chosen randomly from pairs (t, p) where p ∈ At \ Pt. The number of such
randomly chosen pairs is ratio · Npos, where Npos is the number of positives
and ratio∈ N is a hyper-parameter that needs to be optimized experimentally.
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Algorithm 2 Incremental feedback loop with training/test split.

Require: Set of theorems T , set of premises P ⊇ T , FeaturesP , State-
mentsP , ProofsT , OrderP , paramsset, paramsmodel, paramsnegmin (op-
tionally).

1: Ttrain, Ttest ← RandomlySplit(T )
2: D ← TrainingSet(ProofsTtrain

,FeaturesP ,OrderP ,paramsset)
3: repeat
4: M← TrainModel(D,paramsmodel)
5: Rtrain ← Rankings(Ttrain,M,FeaturesP ,OrderP )
6: Rtest ← Rankings(Ttest,M,FeaturesP ,OrderP )
7: Ptrain ← ATPevaluation(Rtrain,StatementsP )
8: Ptest ← ATPevaluation(Rtest,StatementsP )
9: Update(Proofstrain,Ptrain)

10: Update(Proofstest,Ptest)
11: if paramsnegmin then
12: D ← NegMin(R,Proofstrain,FeaturesP ,OrderP ,paramsnegmin)
13: else
14: D ← TrainingSet(Proofstrain,FeaturesP ,OrderP ,paramsset)

15: until Number of Proofstest not increased after Update.

Algorithm 3 Incremental feedback loop starting with no proofs.

Require: Set of theorems T , set of premises P ⊇ T , FeaturesP , State-
mentsP , OrderP , paramsset, paramsmodel, paramsnegmin (optionally).

1: ProofsT ← ∅
2: R ← RandomRankings(T )
3: P ← ATPevaluation(R,StatementsP )
4: Update(ProofsT ,P)
5: D ← TrainingSet(ProofsT ,FeaturesP ,OrderP ,paramsset)
6: repeat
7: M← TrainModel(D,paramsmodel)
8: R ← Rankings(T,M,FeaturesP ,OrderP )
9: P ← ATPevaluation(R,StatementsP )

10: Update(ProofsT ,P)
11: if paramsnegmin then
12: D ← NegMin(R,ProofsT ,FeaturesP ,OrderP ,paramsnegmin)
13: else
14: D ← TrainingSet(ProofsT ,FeaturesP ,OrderP ,paramsset)

15: until Number of ProofsT not increased after Update.
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Since |At \ Pt| is usually much larger than |Pt|, it seems reasonable to have a
large ratio. This, however, increases class imbalance and the probability of
presenting to the learning algorithm a false negative. This is a pair (t, p) where
p /∈ Pt, but there is an ATP proof of t using p that is not yet in our dataset.

TrainModel(TrainingSet, params) This procedure trains a binary learn-
ing classifier on the TrainingSet, creating a Model. We use XGBoost [33] –
a state-of-the-art tree-based gradient boosting algorithm performing very well
in machine learning competitions. It is also much faster to train compared
to deep learning methods, performs well with unbalanced training sets, and
is optimized for working with sparse data. XGBoost has several important
hyper-parameters, such as numberOfTrees, maxDepth (of trees) and eta
(learning rate). These hyper-parameters have significant influence on the per-
formance and require tuning.

Rankings(C, Model, FeaturesP , OrderP ) This procedure uses a trained
Model to construct RankingsC of premises from P for conjectures c ∈ C ⊆ T .
Each conjecture c is paired with each premise p <P c and concatenations of fc

and fp are passed to the Model. The Model outputs a real number in [0, 1],
which is interpreted as the relevance of p for proving c. The relevances are then
used to sort the premises into RankingsC .

ATPevaluation(Rankings, Statements) Any ATP can be used for eval-
uation. By default we use E [144].3 As usual, we construct the ATP problems
for several top slices (lengths 1, 2, 4, . . . , 512) of the Rankings. To remove re-
dundant premises we pseudo-minimize the proofs: only the premises needed in
the proofs are used as axioms and the ATP is rerun until a fixpoint is reached.

Update(OldProofs, NewProofs) The Update makes a union of the new
and old proofs, followed by a subsumption reduction. I.e., if premises of two
proofs of t are in a superset relation, the proof with the larger set is removed.

NegMin(ProofsT , RankingsT , FeaturesP , OrderP , params) NegMin
stands for negative mining. This procedure is used as a more advanced alterna-
tive to TrainingSet. It examines the last RankingsT for the most misclas-
sified positives. I.e., for each t ∈ T we create a set MP t of those p that were

3The default time limit is 10 seconds and the memory limit is 2GB. The exact
default command is: ./eprover --auto-schedule --free-numbers -s -R --cpu-limit=10

--memory-limit=2000 --print-statistics -p --tstp-format problem file
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previously ranked high for t, but no ATP proof of t was using p. We define
three variants:

1. negmin all: Let mt be the maximum rank of a t-useful premise (p ∈ Pt)
in RankingsT [t]. Then MP1

t = {p : rankt(p) < mt ∧ p /∈ Pt}.

2. negmin rand: We randomly choose into MP2
t only a half of MP1

t .

3. negmin 1: MP3
t = {p : rankt(p) < |Pt| ∧ p /∈ Pt}.

The set MP i
t is then added as negatives to the examples produced by the

TrainingSet procedure. The idea of such negative mining is that the learner
takes into account the mistakes it made in the previous iteration.

2.3 Evaluation

We evaluate4 the algorithms on a set of 1342 MPTP2078 [1] large (chainy)
problems that are provable in 60 s using their small (bushy) versions.

2.3.1 Parameter tuning

First we run Algorithm 1 to optimize the hyper-parameters. The dataset was
randomly split into a training set of 1000 problems and a test set of 342. For
the training set, we use the proofs obtained by the 60 s run on the bushy
versions. We tune the ratio hyper-parameter of TrainingSet, and the num-
berOfTrees, maxDepth and eta hyper-parameters of TrainModel. Due
to resource constraints we a priori assume reasonable defaults: ratio = 16,
numberOfTrees = 2000, maxDepth = 10, eta = 0.2. Then we observe
how changing each parameter separately influences the results. Table 2.1 shows
the ATP results for the ratio hyper-parameter, and Figure 2.1 for the model
hyper-parameters.

It is clear that a high number of negatives is important. Using ratio = 16
proves 6% more test problems than the balanced setting (ratio = 1). It is
also clear that a higher number of trees – at least 500 – improves the results.
However, too many trees (over 8000) slightly decrease the performance, likely
due to over-fitting. The eta hyper-parameter gives best results with values
between 0.04 and 0.64, and the maxDepth of trees should be around 10.

4All the scripts we used for the evaluation are available at https://github.com/Bartosz
Piotrowski/ATPboost/tree/master/experiments

https://github.com/BartoszPiotrowski/ATPboost/tree/master/experiments
https://github.com/BartoszPiotrowski/ATPboost/tree/master/experiments
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Figure 2.1: ATP performance for different values of hyper-parameters of the
XGBoost model. Number of trees shows a clear trend: up to the value of 256
increasing this parameter substantially improves the performance; above this
point, we observe diminishing returns, which is an expected behaviour of the
XGBoost algorithm. For eta parameter, which is also known as learning rate
and intuitively governs the speed of learning, the trend is less obvious, but the
optimal values appear in the middle range of the tested values (between 0.04
and 0.64). Max depth of trees influences the complexity of the model; for lower
values, we observe the phenomenon of under-fitting (the model is too simple to
represent the learned concept), whereas the higher values result in over-fitting
(the model picks up spurious correlations in the training data). The optimal
depth of trees is 8; higher values (16, 32, and 64) result in a similar performance.
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Table 2.1: Influence of the ratio of randomly generated negatives to positives.
It is visible that low ratio of negatives to positives is not beneficial.

ratio 1 2 4 8 16 32 64

proved (%) 74.0 78.4 79.0 78.7 80.1 79.8 80.1

We evaluate Algorithm 1 also on a much bigger ATP-provable part of MML
with 29 271 theorems in train part and 3253 in test. With hyper-parameters
ratio = 20, numberOfTrees = 4000, maxDepth = 10 and eta = 0.2 we
proved 58.78% theorems (1912). This is a 15.7% improvement over k-NN, which
proved 50.81% (1653) theorems. For a comparison, the improvement over k-NN
obtained (with much higher ATP timeouts) with deep learning in [71] was 4.3%.

2.3.2 Incremental feedback loop with train/test split

This experiment evaluates Algorithm 2, testing different methods of negative
mining. The train/test split and the values of the hyper-parameters ratio,
numberOfTrees, maxDepth, eta are taken from the previous experiment.
We test six methods in parallel. Two XGB methods (simple and short) are
the variants of the TrainingSet procedure, three XGB methods (negmin all,
negmin rand and negmin 1) are the variants of NegMin, and the last one
is a k-NN learner similar to the one from [82], used here for comparison. The
experiment starts with the same proofs for training theorems as in the previous
one, and we performed 30 rounds of the feedback loop. Figure 2.2 shows the
results.

All the new methods largely outperform k-NN. XGB short is much better
than XGB simple, which means that using positives from too many proofs
seem harmful, as in [95] where this was observed with k-NN. The differences
between the XGB variants short, negmin 1, negmin all, and negmin rand
do not seem significant and all perform well. At the end of the loop (30th round)
315–319 theorems of the 342 (ca. 93%) are proved.

2.3.3 Incremental feedback loop with no initial proofs

The final experiment corresponds to Algorithm 3. There is no train/test split
and no initial proofs. The first ATP evaluation is done on random rankings,
proving 335 theorems out of the 1342. Then the loop starts running with the
same options as in the previous experiment. Figure 2.3 shows the numbers of



2.3. Evaluation 33

Figure 2.2: Number of proved theorems (cumulatively) in subsequent itera-
tions of Algorithm 2. After fast increase in the first few iterations we observe
diminishing returns. All the XGBoost-based methods give substantially better
performance than the baseline k-NN approach. Using positive examples only
from the shortest proofs (XGB short) is better than using all collected posi-
tives (XGB simple). There are no significant differences between the variants
of negative mining.
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theorems that were proved in the subsequent rounds, as well as the growth of
the total number of different proofs. This is important, because all these proofs
are taken into account by the machine learning. Again, k-NN is the weakest
and XGB simple is worse than the rest of the methods, which are statistically
indistinguishable. In the last round XGB negmin rand proves 1150 (86%)
theorems. This is a 26.8% improvement over k-NN (907) and 7.7% more than
XGB simple (1068).

2.4 Conclusions and future work

In this work we distinguished between multilabel and binary machine-learning
approaches to premise selection. The latter is more complex as it requires
dealing with negative examples, which are not necessary in the former approach.

Several strategies were shown for creating the training negative examples
based on collected proofs. This included the approach where highly misclassified
positives were more likely to be used as negatives (negative mining).

The evaluation on the MPTP2078 showed that a multilabel method using
the k-NN algorithm was inferior to a binary method using the XGBoost algo-
rithm (across all tested strategies for creating negative and positive examples).

The results showed that using as positive training examples all premises used
in at least one of the proofs of a given theorem is worse than focusing only on
premises used in short proofs only. However, the results did not allow to draw
a conclusion what is the best strategy for creating negative training examples.
The answer to this may be a goal of the future work.



2.4. Conclusions and future work 35

Figure 2.3: Proved theorems (top) and number of all found proofs (bottom)
in subsequent rounds of the experiment corresponding to Algorithm 3. The
various methods seem to perform similarly as in Figure 2.2 in relation to each
other. Interestingly, the growth of the number of different proofs is substantially
steeper than the growth of the number of theorems proved (as each theorem can
have multiple proofs). This means that the training set is still quickly growing,
which gives a reason to expect more new theorems proved if more iterations of
the loop were run.
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Chapter 3

Stateful premise selection by
recurrent neural networks

Abstract

In this work we develop a new learning-based method for se-
lecting facts (premises) when proving new goals over large formal
libraries. Unlike previous methods that choose sets of facts inde-
pendently of each other by their rank, the new method uses the
notion of state that is updated each time a choice of a fact is
made. Our stateful architecture is based on recurrent neural net-
works which have been recently very successful in stateful tasks such
as language translation. The new method is combined with data
augmentation techniques, evaluated in several ways on a standard
large-theory benchmark and compared to state-of-the-art premise
approach based on gradient boosted trees. It is shown to perform
substantially better and to solve many new problems.

3.1 Introduction: Premise selection over
large libraries

Premise selection [1] is a critical task in automated theorem proving (ATP)
over large theories where typically only a small fraction of the available facts

37
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are relevant for proving a new conjecture. One of the main applications is in
ITP/ATP hammers [22] that assist ITP users to automatically discharge proof
obligations in large formalizations. Several heuristic approaches to premise
selection such as SiNE [68] and MePo [106], as well as learning-based methods
using hand-designed features have been developed so far. The latter include
naive Bayes [159], kernel methods [156], k-nearest neighbors [80,82] and gradient
boosted trees [127]. This has been followed by neural architectures that learn
the features on their own [71,94].

The learning-based premise selection methods have been so far based on the
same paradigm of ranking the available facts (premises) independently with re-
spect to the conjecture that is being proved. The highest ranked facts are then
used together as axioms and given to the ATP systems together with the conjec-
ture. This approach, although useful and reasonably successful, does not take
into account an important aspect of the premise selection problem: premises
are not independent of each other. There are important logical relations among
them. Some premises complement each other better when proving a particular
conjecture, while some highly-ranked premises might be just minor variants of
one another.

In this work, we first (Section 3.2) propose the recurrent neural network
(RNN) encoder-decoder model [34] as a suitable stateful approach for premise
selection and we describe the RNN architecture we have chosen for this task. In
Section 3.3 we develop several data augmentation methods that help training
the RNNs for the premise selection task. Section 3.4 describes the experimental
evaluation and Section 3.5 discusses the results.

3.2 Premise selection and neural machine
translation

In recent years, powerful methods for learning sequences of conditional stateful
decisions have been developed in machine translation of the natural languages.
In neural machine translation (NMT) [34] the source sentence is encoded as a
hidden vector representation by the encoder and the translated target sentence
is produced word-by-word by the decoder. Each translated word is conditioned
not only on the source sentence but also on the previously decoded words. Words
and phrases in natural languages are related in many ways and such relations
have to be taken into account for the produced sequence of words to be a sensi-
ble, grammatically correct sentence. Successful NMT methods using recurrent
encoder-decoder architectures [153] are explicitly based on a notion of a learned
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hidden state that is updated with each produced word. This corresponds to our
requirement of stateful premise selection: We want to have a (learned) hidden
state after selecting a particular fact with particular mathematical content that
should not be repeated in the next facts but rather suitably complemented by
them to justify the conjecture.

Another aspect of neural machine translation that is relevant in premise
selection is the multiplicity of correct outputs. In translation, there are often
multiple correct translations of a given sentence that deliver its meaning (per-
haps more or less clumsily). Similarly, in mathematics there is typically no
single, golden proof of a conjecture. Often there are many different proofs that
use various sets of premises and various sequences of inferences. NMT meth-
ods accommodate the multiplicity of possible outputs – typically by using beam
search [52]. Such mechanisms seem directly usable also in premise selection and
proof search. NMT systems have already been successfully applied in autofor-
malization and symbolic settings [98,131,167].

Our recurrent neural architecture There are various state-of-the-art neural
sequence-to-sequence architectures that can be applied for modelling premise se-
lection. Although ultimately a custom architecture could be designed to capture
all aspects of this task, our initial choice was to experiment with an existing es-
tablished implementation of neural machine translation system. We have chosen
the OpenNMT toolkit [90]. It implements the LSTM [67] recurrent cells and sev-
eral state-of-the-art techniques, including the attention mechanisms [103] and
beam search [52]. It has proven to be very good in natural language translation
and related tasks [90].

We have decided to use the default parameters for training OpenNMT on
our tasks – in this work we mainly investigate the influence of various forms of
training data (Section 3.3) on the predictive performance. The more important
values of the OpenNMT hyper-parameters chosen by us are as follows: the
number of training epochs: 100 000, the size of encoder’s and decoder’s LSTM
cells: 2 layers of 500 units, word embedding size: 500. Additionally, we have
used the attention mechanism by Luong [103].

3.3 Data, their representation and augmentation

A recurrent NMT system is trained on pairs of source and target sequences.
In our case, the source is a statement of a theorem and the target is a list of
names of its premises. There are multiple ways how to transform ATP proofs
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to training examples of such form, and it is not clear which way is the best for
training the RNN. In this section, we describe several methods of constructing
the training examples1. This includes the following topics: (i) representation
of the conjecture as a sequence (Subsection 3.3.2), (ii) ordering of the premises
into a sequence (Subsection 3.3.3), (iii) using subproof data for augmenting
the training data (Subsection 3.3.4), and (iv) oversampling of rare premises
(Subsection 3.3.5).

3.3.1 Initial data for training RNNs

The experimental data originate from the Mizar Mathematical Library [60]
(MML) translated [159] to the TPTP language [151]. We use the MPTP2078
benchmark [1] – a subset of 2078 Mizar theorems. Using the ATPboost [127]
system we have initially proved as many of the MPTP2078 problems as possible,
recording each distinct proof. ATPboost in turn relies on the E prover [144]
and the XGBoost machine learning system [33] using gradient boosted trees
for premise selection. 24 087 different proofs of 1469 theorems were found in
total. The number of different proofs per theorem ranged between 1 and 265
(on average 16.4). The proofs used in total 2227 different premises. Each proof
used between 1 and 50 premises (on average 11.5). Each proof determines a
pair (t, {p1, p2, . . . , pn}), where the first element t is the proved theorem and the
second element is the set of premises pi used in the proof. These pairs constitute
examples for training a machine learning model to propose useful premises for
theorems. The 1469 theorems that have an ATP proof were randomly split in
proportions 0.75 and 0.25 into training and testing parts. The 1100 training
theorems with their proofs resulted in 18 361 training pairs. From the set of
remaining 369 theorems we filtered out those which contained in all their proofs
premises not appearing in the training set. This yields our testing set of 310
theorems.

3.3.2 Representation of the statements

The simplest way of constructing the source sequences of the examples is just
using tokenized statements in standard TPTP syntax. We label this type of
source as standard. The tokenized TPTP statements can also be transformed
to other formats. A suitable one is the Polish prefix notation (labeled as prefix)
as shown in Table 3.1. The motivation is that this format is more compact as

1All the data along with scripts allowing reproduction of the experiments are available at:
https://github.com/BartoszPiotrowski/stateful-premise-selection-with-RNNs

https://github.com/BartoszPiotrowski/stateful-premise-selection-with-RNNs
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Table 3.1: An example of a Mizar statement translated to TPTP, tokenized
(standard), and additionally transformed to prefix notation (prefix).

Mizar: for A being set st A is empty holds A is finite

TPTP: ![A] : (v1 xboole 0(A) => v1 finset 1(A))

standard: ! [ A ] : ( v1 xboole 0 ( A ) => v1 finset 1 ( A ) )

prefix: ! A => v1 xboole 0 A v1 finset 1 A

the formulas do not contain brackets and commas. In our case, the average
length of a standard source training sequence is 81, whereas for prefix it is
only 39. This may be useful for NMT architectures that suffer when using long
input (and output) sequences [34]. Related work using NMT in symbolic setting
reports improvements when using prefix notation [167].

3.3.3 Ordering of the premises

In the abstract premise selection task the order of the premises is not con-
strained in any way. In practice, ATP systems may be influenced by the order
of the premises given in the input. More importantly, existing efficient learn-
ing methods that are capable of capturing dependencies among the elements
of sequences (such as RNNs, used this work) are sensitive to the order of the
elements (premises in our case). Preferably, we want to train on examples that
illustrate dependencies between the premises. On the other hand, we do not
want to rely too much on a particular order of premises in the target sequence.
We propose several possible approaches.

Permutations As a baseline approach we permute the target premises ran-
domly, thus not passing to the recurrent neural model any additional informa-
tion about the order of the premises. We either produce only one permutation
(permuted) or 100 of them (permuted 100).

Permutations preserving the proof tree Each proof produced by a refuta-
tional prover (such as E) is a tree (more precisely, a DAG), with FALSE in its
root and the premises and the conjecture in its leaves. See Figure 3.1 for an
example. We produce a compacted version of the proof by removing all in-
termediate nodes that have only one parent2 (right side of Figure 3.1). The

2This terminology is used in such a way that children are derived from their parents.
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Figure 3.1: Trees representing a refutational proof of Mizar theorem
t123 enumset (top) and its compacted version (bottom). Light-grey nodes are
the input premises and a dark-grey node represents the (negated) conjecture.
Nodes prefixed by c 0 are intermediate lemmas.
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premises t72 enumset1 and t113 enumset1 there interact directly resulting
in an intermediate lemma c 0 13. This lemma subsequently interacts with
t107 enumset1. Putting t72 enumset1 and t113 enumset1 closer together
than t107 enumset1 and t72 enumset1 tells the learner how much the premises
interact with each other. This idea is implemented in the following way. Each
tree induces its nested list representation, which we define recursively in the
following way: (i) list representation of a tree rooted in a non-leaf node n is a
list of list representations of parents of n, (ii) list representation of a leaf node
is its label. For instance, [[t123, t72], [[t72, t113], t107]] is a list rep-
resentation of the tree from Figure 3.1. Each tree has many list representations
depending on how the elements of the lists are ordered.

We say that a sequence s of labels of the leaves respects the tree if s re-
sulted from the flattening of a list representation of the tree. (In the example
shown in Figure 3.1 the sequence (t123, t72, t72, t113, t107) respects the
tree but the sequence (t123, t107, t72, t113, t72) does not.) Such sequences
have the property of keeping closer the premises that interacted closer. Note
that the sequences may contain repetitions, as in the example above, and each
tree has many sequences respecting it. For each proof tree we remove from
its sequences the conjecture. We take either only one such sequence for each
proof or (up to) 100 different sequences, which yields the permuted tree and
permuted tree 100 sets of training examples.

ATP induced order We also experiment with using the proofs as linearized
by the E prover. For a given E proof P we first order its internal lemmas:
lemma 1 <L lemma 2 iff lemma 1 appears in P (linearized by E) before lemma 2.
Then we define a non-strict ordering of the premises of P: p1 ≤P p2 iff the
<L-minimal child of p1 is smaller than the <L-minimal child of p2, where
both children are taken from the compacted tree of P. For our example proof
of t123 enumset we have: c 0 13 <L c 0 14 <L c 0 15. Hence t72 ≤P

t107 (since minL({c 0 14, c 0 13}) <L c 0 15), and t113 =P t107 (since
minL({c 0 14, c 0 13}) = c 0 13). We break the ties randomly. Different E
proofs of one theorem may result in different premise orderings. This way of
ordering premises in the target of the examples is labeled as order from proof.

3.3.4 Augmentation with subproof data

We can also augment the training data by extracting many subproofs from
the original training proofs. For this, we use the intermediate lemmas from
the compacted representations of proofs that are not derived from the negated
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conjecture. The pairs (l, {p1, p2, . . . , pn}) where pi are all premise ancestors of
lemma l constitute additional examples that can be used for augmenting the
main training data. From the subproofs of the training theorems we extracted
46 094 such different training pairs. The data set that includes these examples
together with the main ones is marked as augmented. The experiments with
sublemmas only are described in Section 3.6.

3.3.5 Oversampling rare examples

Some premises appear frequently in the training examples while some are rare.
Oversampling is a general method that often improves the performance of neural
architectures on imbalanced data [30]. We experiment with a simple oversam-
pling scheme: training examples that contain rare premises are used multiple
times. More precisely, for an example e = (t, P ) ∈ T , where T is the training
set, we define the occurrence rate (OR) of e as:

OR(e) =
1

|P |
∑
p∈P

ORpremise(p), where ORpremise(p) =
|{(t, P ) ∈ T : p ∈ P}|∑

(t,P )∈T |P |
.

The idea is simple: OR of an example is the average ORpremise of its target
premises (P ). ORpremise measures how often a premise appears in all the targets
of all the training examples.

The set of training examples T is split into 10 evenly sized chunks T1, . . . , T10
according to their occurrence rate so that a higher index of Ti implies lower OR:

x ∈ Ti ∧ y ∈ Tj ∧ i < j ⇒ OR(x) > OR(y).

Each example e ∈ Ti is oversampled i times: the more rare premises an ex-
ample e contains the more often e appears in the oversampled training set.
This scheme was applied both to the main training set and to the augmented
one (described in Subsection 3.3.4), resulting in data sets oversampled and
augmented oversampled.

3.4 Experimental evaluation

We train3 and evaluate RNNs using the OpenNMT toolkit with its default
hyper-parameters (Section 3.2) on the various premise-selection data described
in Section 3.3. When evaluating on the testing sets, we use OpenNMT’s beam

3We train on a single GeForce RTX 2080 Ti GPU. Training each model took 2–4 hours.
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search with width 10 to get for each conjecture its 10 most probable sequences
of premises. We want to compare the results also with state-of-the-art premise
selection based on gradient boosted trees using the XGBoost toolkit. For that,
we use the features and settings developed in our ATPboost system [127]. As
explained in Section 3.1, the training data used for XGBoost are unordered.
XGBoost produces a ranking of the premises and we use several segments of
the top-ranked premises for the XGBoost evaluation. While OpenNMT needs
only positive examples, XGBoost also needs negative examples. We produce
them by sampling negatives randomly, which performed well in ATPboost.

To allow a meaningful comparison of the two approaches, we shorten the
rankings produced by XGBoost according to the lengths of the sequences pro-
duced by OpenNMT for a given conjecture. In more detail: if R̂ is a ranking
produced by XGBoost and P̂1, P̂2, . . . , P̂10 are sequences of premises produced
by OpenNMT, we take R̂1, R̂2, . . . , R̂10 to be the top slices of the ranking R̂
of lengths |P̂1|, |P̂2|, . . . , |P̂10|, respectively. These 10 top slices are treated as
predictions from the XGBoost system and compared with the OpenNMT predic-
tions. We always do both the standard ML evaluation and the ATP evaluation.

ML evaluation The Jaccard index and Coverage metrics are used, defined as
follows:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

, Coverage(A,B) =
|A ∩B|
|B|

.

Each theorem T from the test set is associated with nT different sets of
premises PT

1 , PT
2 , . . . , PT

nT
that were used as axioms in its nT known proofs and

with 10 sets of premises P̂T
1 , P̂T

2 , . . . , P̂T
10 predicted by a given machine learning

model. We estimate the quality of the predictions with Jaccard(
⋃

i P̂
T
i ,

⋃
i P

T
i )

and Coverage(
⋃

i P̂
T
i ,

⋃
i P

T
i ). The Jaccard metric emphasises the precision of

the prediction: it measures how much the predicted premises intersect with the
premises used in the known proofs. At the same time the score decreases when
the predicted set is large. The Coverage does not penalize large predicted sets.
It takes into account the fact that true positives are typically more important
than true negatives. The prover may deal with some redundant axioms while
the lack of relevant premises may make conjectures unprovable.

ATP evaluation The simple ML metrics may not directly translate to ATP
performance. They compare unions of premises whereas an ATP is run for
each premise selection separately. Additionally, during the ATP evaluation new



46 Chapter 3. Stateful premise selection by RNNs

Table 3.2: Performance of the neural model on the test set, trained on ex-
amples with different formats of source sequences (statements) and differently
ordered target sequences (premises), expressed with the similarity metrics (Jac-
card index and Coverage) and with ATP success rate. standard format with
order from proof gave the best results. However, neither of the two formats
is significantly better than the other.

source format

standard prefix

target ordering Jaccard Coverage Proved Jaccard Coverage Proved

permuted 0.18 0.39 0.25 0.20 0.36 0.23
permuted 100 0.09 0.14 0.10 0.18 0.26 0.19
permuted tree 0.16 0.23 0.16 0.17 0.25 0.18
permuted tree 100 0.04 0.05 0.03 0.11 0.15 0.09
order from proof 0.22 0.46 0.29 0.22 0.43 0.27

proofs are often discovered. Such new proofs are not taken into account by the
similarity metrics (the Jaccard index and Coverage).

We perform an ATP evaluation using the E prover [144] run with a time
limit of 10 s and a memory limit of 2 GB, keeping the rest of the settings in
its default values. This limits the power of the prover, preventing e.g. its own
axiom pruning methods such as SInE [68]. To establish a simple ATP baseline,
the E prover was run for all the testing theorems with all available premises as
axioms, proving 9% of the theorems. For a given machine learning method and
for each testing theorem T we run 11 proof attempts: one for each of the 10
sets of predicted premises P̂T

1 , P̂T
2 , . . . , P̂T

10 and one with
⋃

i P̂
T
i .

3.5 Results and discussion

3.5.1 Source and target combinations

First, we evaluate combinations of the statement format (standard or prefix –
Subsection 3.3.2) and orderings of the target premises (Subsection 3.3.3). The
results are shown in Table 3.2. The first, simplest way of ordering premises
– permuted – performs well: in combination with the two formats of source
statements it resulted in predictions with ATP success rates 25% and 23%.
Many permutations of the same target sequence are bad for the NMT learner:
permuted 100 performed much worse than permuted. Using multiple permu-
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tations of the target sequences was motivated by the fact that the order of
premises should not matter in the abstract premise selection task. The recur-
rent neural network, however, likely sees them as contradictory data detrimental
to its training.

The permuted tree ordering was meant to reflect the distance of interaction
between the premises. However, it performed much worse than permuted. This
may be caused by many repetitions in the target sequences, which also increase
their lengths, making the task for the neural decoder more difficult. These rep-
etitions appear because of the repeated premises in the leaves of the proof trees.
Similarly to permuted 100, adding multiple permutations (permuted tree 100)
is detrimental also in the case of permuted tree.

The best performing way of ordering the premises for the NMT learner is
to use the order from proof. This is true both for the similarity metrics and
ATP performance and in combination with both formats of the conjecture. This
likely means that extracting the premise ordering from the proofs brings useful
and consistent information which the neural model is able to take advantage of
during the training.

There is only a small difference between the ATP performance of the standard
and prefix encoding of the conjecture. This is somewhat surprising in the con-
text of related work [167], where prefix notation is useful for NMT architectures.
Shorter sequences should be easier to process by the recurrent encoder. In our
case, however, the different structure of the prefix statements seems to be
reducing the benefit of conciseness.

3.5.2 Augmentation with subproof data and oversampling

Next, we use the best performing combination (from now on called basic) from
Subsection 3.5.1 for evaluating the augmentation and oversampling methods
(Subsections 3.3.4 and 3.3.5). The results are shown in Table 3.3 which also
contains the XGBoost results.

Oversampling trained the learner using data with changed distribution –
less frequent premises were appearing more often. This made the predictions
more diverse and less precise compared to basic. This is reflected in the change
of the similarity metrics: the Jaccard index decreased and Coverage increased.
Importantly, oversampling translates to better ATP performance of the NMT
predictions.

Augmentation with subproof data improved the ATP performance by a large
margin of 11% points over basic. It means that the RNN is helped a lot by
the additional subproof training data despite their slightly different origin and
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Table 3.3: Performance of the NMT and XGBoost systems trained on exam-
ples augmented with subproof data and with oversampling applied. The non-
modified data set is denoted as basic. The examples used standard source
format and order from proof ordering of the target sequences. Both the aug-
mentation and oversampling have substantial positive effect on the proving per-
formance. NMT has better proving performance than XGBoost on all datasets,
despite this improvement is not visible in the ML metrics. This shows that
predicting smaller, more precise sets of premises is important for ATP.

machine learning system

NMT XGBoost

training data Jaccard Coverage Proved Jaccard Coverage Proved

basic 0.22 0.46 0.29 0.26 0.56 0.25
oversampled 0.21 0.48 0.31 0.24 0.61 0.30
augmented 0.27 0.51 0.40 0.26 0.51 0.27
augmented oversampled 0.26 0.47 0.39 0.25 0.51 0.31

shape (internal clauses instead of input formulas). The last row of Table 3.3
shows the result of applying oversampling on top of the augmented training set.
This does not improve the NMT performance compared to augmented.

ATP performance of XGBoost was worse than that of NMT for all 4 data
sets, and the best XGBoost ATP result (0.31) is substantially (29%) worse than
the best NMT ATP result (0.40). However, XGBoost tends to show better
values in similarity metrics. This can be explained by the following effects:

1. The initial data come from ATPboost – a meta-system using XGBoost.
The XGBoost predictions in our experiments may be correlated with the
initial testing set.

2. Even though XGBoost achieves a higher similarity between unions of the
predicted premises and the premises used in the known proofs, the re-
current neural network wins with its diverse (but stateful and therefore
complementary) predictions for a given conjecture. I.e., when making
several ATP attempts, it seems better to use several plausible premise
sets (proof ideas) that are orthogonal to one another, rather than mak-
ing incremental additions to the initial set of premises. This is the effect
that we wanted to achieve with RNN-based premise selection, and indeed,
it makes a substantial difference. XGBoost instead just extends its sin-
gle most plausible set of premises more and more according to the single
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ranking of premises. It seems nontrivial to instruct XGBoost to produce
multiple alternative rankings with good complementary properties in the
same way as RNN does.

The NMT predictions are quite orthogonal to those from XGBoost. In all the
experiments related to the results shown in Table 3.3 there were 167 theorems
proved with predictions from NMT and 142 theorems proved with the use of
XGBoost. The size of the intersection of these sets is 121, and there were 46
theorems that were proved with NMT but not with XGBoost.

3.6 Subproofs as standalone data set

From all the proofs in the initial data set (not only the training part) we ex-
tracted 60 299 different pairs of the form(

lemma, {premise 1, premise 2, . . . , premise n}
)
,

same as those used for augmenting the training set (Subsection 3.3.4). This
means that:

• lemma is an intermediate sublemma appearing in the compacted represen-
tation of the proof (see Subsection 3.3.3 and Figure 3.1), which has no
negated conjecture of the original proof among its ancestors,

• {premise 1, premise 2, . . . , premise n} is a set of all the premises being
among ancestors of the lemma.

These pairs have 29 616 different lemmas (each lemma may have several dif-
ferent proofs). We split these lemmas into training and testing parts in propor-
tions approximately 0.75 and 0.25, respectively (independently from the main
training/testing split of the Mizar theorems). We also recorded information
about the heights of the subproof trees from which the lemmas were extracted
– to investigate how the height of the tree correlates with the difficulty of learn-
ing premise selection. The heights of the subtrees vary between 1 and 35, where
lower subtrees are much more frequent than higher ones.

The NMT system was trained on the training examples, with the same
settings as in the main experiments. Additionally, we trained the XGBoost
system for comparison.

The results of the evaluation on the testing examples, in terms of the simi-
larity metrics (Jaccard index and Coverage) as well as an ATP evaluation, are
presented in Table 3.4. The table presents the performance of the machine
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learning methods with respect to all the testing examples as well as on sub-
sets of them selected according to the heights of subtrees of proof trees a given
sublemma originated from.

Overall, in comparison to the main data, premise selection for subproofs
turned out to be a significantly easier task for both machine learning methods.
On the whole testing set the ATP performance was 83% for NMT and 61% for
XGBoost. When running the automated prover without any premise selection
advice, with all available premises as axioms, the ATP success rate was 13%.

As for the results depending on the heights of the subtrees, in the table
we present them up to the height 9 – for larger values the number of lemmas
becomes very small. There are two trends visible for both NMT and XGBoost:
with increased height the Jaccard metric goes up and Coverage goes down. The
likely explanation is that the lower trees contain fewer premises in their leaves
and precise selection of them by the predictor is less likely, hence the low Jaccard
metric. On the other hand, the higher trees have more premises in their leaves
and covering them by the predictor is more difficult, which is reflected by the
low Coverage. The dependence of ATP performance on the heights is unclear.
Surprisingly, it is not the case that the smallest subtrees contained the easiest
premise selection examples.

3.7 Examples of predictions from RNN

In this section, we show two examples of predictions from the recurrent neural
NMT system and compare them with the respective XGBoost predictions. All
the presented predictions come from the systems trained on the basic data set.
Note that in both cases below, the NMT predictions are more diverse, expressing
different proof approaches and allowing quite different proof attempts. On the
other hand, as soon as XGBoost ranks high a bad set of lemmas that mislead
the E prover, adding more premises does not help in these cases.

3.7.1 Theorem t128 zfmisc 1

The Mizar statement of the theorem

for x, y, z, Y being set holds ( [x,y] in [:{z},Y:]

iff ( x = z & y in Y ) )

The NMT predictions

1. d1 enumset1 t71 enumset1 t69 enumset1 t70 enumset1 l54 zfmisc 1
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Table 3.4: Performance of the NMT and XGBoost models evaluated on the
testing part of the subproofs data set. We use our similarity metrics (Jaccard
index and Coverage) and ATP evaluation (columns named Proved). The first
column contains information about the average height of the proof subtrees
the sublemmas originated from. The second column is the number of lemmas
in a given subset. The first numeric row refers to all the testing examples,
independently of the height. The largest numbers in the columns are marked
in bold.

machine learning model

NMT XGBoost

height # lemmas Jaccard Coverage Proved Jaccard Coverage Proved

[1,∞) 7300 0.30 0.80 0.83 0.27 0.74 0.61

1 1610 0.19 0.84 0.83 0.18 0.82 0.66
(1, 2] 1803 0.29 0.87 0.84 0.25 0.79 0.60
(2, 3] 1431 0.34 0.82 0.81 0.30 0.75 0.57
(3, 4] 936 0.36 0.75 0.82 0.31 0.69 0.56
(4, 5] 580 0.34 0.70 0.83 0.31 0.64 0.60
(5, 6] 319 0.37 0.70 0.86 0.33 0.64 0.62
(6, 7] 223 0.34 0.64 0.83 0.32 0.60 0.64
(7, 8] 124 0.37 0.70 0.89 0.34 0.66 0.79
(8, 9] 90 0.40 0.69 0.92 0.36 0.63 0.71
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2. d2 tarski t77 enumset1 t79 enumset1 t76 enumset1 t84 enumset1

l54 zfmisc 1

3. l38 zfmisc 1 t69 enumset1 t70 enumset1 t71 enumset1 t20 zfmisc 1

l54 zfmisc 1

4. d1 tarski t69 enumset1 l54 zfmisc 1 d2 tarski

5. d1 tarski t69 enumset1 l54 zfmisc 1

6. l33 zfmisc 1 t69 enumset1 t70 enumset1 t71 enumset1 t20 zfmisc 1

l54 zfmisc 1

7. t76 enumset1 d1 enumset1 l54 zfmisc 1

8. t20 zfmisc 1 t69 enumset1 t70 enumset1 t71 enumset1 t65 zfmisc 1

l54 zfmisc 1

9. d2 tarski t70 enumset1 t71 enumset1 t69 enumset1 l54 zfmisc 1

10. l24 zfmisc 1 t69 enumset1 t70 enumset1 t71 enumset1 d1 enumset1

l54 zfmisc 1

The XGBoost predictions (ranking)
1. d1 tarski

2. t69 enumset1

3. t70 enumset1

4. t71 enumset1

5. l54 zfmisc 1

6. t106 zfmisc 1

7. t77 enumset1

8. d3 tarski

9. d2 tarski

10. t82 enumset1
...

Comparison The E prover without automode was able to prove t128 zfmisc 1

with the 5th prediction proposed by NMT:

d1_tarski t69_enumset1 l54_zfmisc_1

but no proof could be found with the top slices of the ranking proposed by
XGBoost. The reason for this is that premises appearing in the top part of the
ranking:

t69_enumset1 t70_enumset1 t71_enumset1
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are very similar, and the E prover is stuck with them, even with higher CPU
time limits. Below we show the Mizar statements of the discussed premises:

d1_tarski: for x being set holds ( x in it iff x = y )

l54_zfmisc_1: [x,y] in [:X,Y:] iff x in X & y in Y

t69_enumset1: for x1 being set holds {x1,x1} = {x1}

t70_enumset1: for x1, x2 being set holds {x1,x1,x2} = {x1,x2}

t71_enumset1: for x1, x2, x3 being set holds {x1,x1,x2,x3} = {x1,x2,x3}

3.7.2 Theorem t30 tops 1

The Mizar statement of the theorem

for GX being TopStruct for R being Subset of GX holds

( R is open iff R ‘ is closed )

The NMT predictions

1. dt k3 subset 1 d1 tops 1 t52 pre topc t29 tops 1 d8 tops 1 d7 tops 1

2. t100 xboole 1 t12 setfam 1 t28 xboole 1 t48 xboole 1

commutativity k2 tarski d5 subset 1 t3 subset redefinition k9 subset 1

d3 struct 0 dt l1 pre topc t32 subset 1 dt k3 subset 1 dt k2 subset 1

d4 subset 1 d6 pre topc

3. involutiveness k3 subset 1 t29 tops 1 t101 tops 1 t52 pre topc

dt k3 subset 1 d8 tops 1 d7 tops 1

4. t100 xboole 1 t12 setfam 1 t36 xboole 1 t48 xboole 1 t7 ordinal1

t2 xboole 1 d5 xboole 0 t45 xboole 1 t47 xboole 1 dt k6 subset 1

redefinition k6 subset 1 t1 boole redefinition k7 subset 1 d3 struct 0

dt l1 pre topc t22 pre topc d6 pre topc commutativity k2 tarski

t52 pre topc

5. t100 xboole 1 t12 setfam 1 d5 subset 1 t2 boole t91 tops 1

involutiveness k3 subset 1 dt k3 subset 1 t5 boole t4 subset 1

cc3 tops 1 dt k2 subset 1 d4 subset 1 d3 tops 1 t52 pre topc fc1 xboole 0

cc1 tops 1

6. t28 xboole 1 t12 setfam 1 commutativity k3 xboole 0

t100 xboole 1 t22 xboole 1 t36 xboole 1 redefinition k7 subset 1

redefinition k4 subset 1 t65 tops 1 dt k2 tops 1 fc1 tops 1 t48 xboole 1

t74 tops 1 t69 tops 1

7. t12 setfam 1 t70 enumset1 t100 xboole 1 d5 subset 1 t71 enumset1

t72 enumset1 t73 enumset1 t74 enumset1 t75 enumset1 t2 boole d3 tops 1

d4 tops 1 dt k3 subset 1 t5 boole t4 subset 1 d1 tops 1 d3 struct 0

dt l1 pre topc involutiveness k3 subset 1 dt k2 pre topc
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8. d10 xboole 0 t2 xboole 1 t43 xboole 1 t12 xboole 1

commutativity k2 xboole 0 t41 xboole 1 t36 xboole 1 t44 xboole 1

d5 subset 1 t3 subset involutiveness k3 subset 1 dt k3 subset 1

t12 xboole 1 redefinition k7 subset 1 l78 tops 1 dt k2 pre topc

t52 pre topc fc11 tops 1 dt k2 tops 1 t62 tops 1 l80 tops 1

9. d10 xboole 0 t2 xboole 1 t43 xboole 1 t12 xboole 1

commutativity k2 xboole 0 t41 xboole 1 t36 xboole 1 t44 xboole 1

d5 subset 1 dt k3 subset 1 involutiveness k3 subset 1 t3 subset

t7 xboole 1 t44 tops 1 redefinition k7 subset 1 l78 tops 1 dt k2 pre topc

t84 tops 1 t48 pre topc

10. d10 xboole 0 t2 xboole 1 t43 xboole 1 t12 xboole 1

commutativity k2 xboole 0 t41 xboole 1 t36 xboole 1 t44 xboole 1

d5 subset 1 dt k3 subset 1 involutiveness k3 subset 1 t3 subset

dt k2 subset 1 d4 subset 1 t35 subset 1 involutiveness k3 subset 1

dt k3 subset 1 redefinition k7 subset 1 l78 tops 1 dt k2 pre topc

l80 tops 1 t52 pre topc fc11 tops 1

The XGBoost predictions (ranking)
1. d10 xboole 0

2. t3 subset

3. d4 subset 1

4. d3 struct 0

5. d5 subset 1

6. involutiveness k3 subset 1

7. dt k3 subset 1

8. dt k2 pre topc

9. dt l1 pre topc

10. d3 tarski
...

Comparison The E prover without auto mode was able to prove t30 tops 1

with the 3rd prediction proposed by NMT:

involutiveness_k3_subset_1 t29_tops_1 t101_tops_1 t52_pre_topc

dt_k3_subset_1 d8_tops_1 d7_tops_1

actually using these 3 premises:

t29_tops_1 involutiveness_k3_subset_1 dt_k3_subset_1

The E prover was not able to prove the theorem with any top slice of the
XGBoost ranking.
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3.8 Conclusions and future work

We have shown that state-of-the-art recurrent neural architectures – originally
designed for natural language tasks such as machine translation – are very
useful for premise selection. In particular, they can be used to implement
(i) stateful / conditional premise selection and (ii) beam search with multiple
output sequences that may differ a lot while being meaningful as a whole. Our
experiments show substantial improvement over the state of the art obtained
by such methods. We have also developed several data representation and
augmentation methods that result in additional improved performance of both
the old and new premise selection methods.

NMT architectures are also more natural in some aspects. There is no
need for hand-designed features of formulas and no need to construct negative
training examples. This is important, because in theorem proving it is often
difficult (or impossible) to say that a particular selection of premises cannot lead
to a proof. Once the recurrent neural network is trained, it directly outputs
the most probable sequences of candidate premises – not just their rankings.
We have used 10 most probable sequences for the experiments described here,
but larger numbers can be used and given to ATPs, depending on available
resources.

Future work includes integration into AI/ATP meta-systems interleaving
premise selection with learning such as ATPboost and MaLARea [161]. Another
direction is tighter integration between the ATPs and the neural network so
that the prover can take advantage of the order in which the premises are
presented – a similar idea was implemented in [23], where the order of selected
premises influenced the run of the SPASS theorem prover. Conditional selection
might also be implemented in learning-guided ATP systems such as rlCoP [83],
plCoP [174], TacticToe [57] and ENIGMA [35, 74]. Neural network research
is advancing quickly and experiments with other stateful neural architectures
may bring further improvement. Finally, we could provide the neural networks
with more information about the premises. Currently, the premises are just
names (words) and NMT can only learn their latent semantics [39]. Adding
more information about their logical representation and meaning [121] may be
useful.
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Chapter 4

Guiding inferences in
connection tableau by
recurrent neural networks

Abstract

We present a dataset and experiments on applying recurrent neu-
ral networks (RNNs) for guiding clause selection in the connection
tableau proof calculus. The RNN encodes a sequence of literals
from the current branch of the partial proof tree to a hidden vector
state; using it, the system selects a clause for extending the proof
tree. The training data and learning setup are described, and the
results are discussed and compared with the state of the art using
gradient boosted trees. Additionally, we perform a conjecturing ex-
periment in which the RNN does not just select an existing clause,
but completely constructs the next tableau goal.

4.1 Introduction

There is a class of machine learning sequence-to-sequence architectures based
on recurrent neural networks (RNNs) which are successfully used in the do-
main of natural language processing, in particular for translation between lan-

57
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Clauses:
c1 : P (x)

c2 : R(x, y) ∨ ¬P (x) ∨Q(y)

c3 : S(x) ∨ ¬Q(b)

c4 : ¬S(x) ∨ ¬Q(x)

c5 : ¬Q(x) ∨ ¬R(a, x)

c6 : ¬R(a, x) ∨Q(x)

Tableau: P (a)

R(a, b)

¬R(a, b) Q(b)

¬Q(b) ¬R(a, b)

¬P (a) Q(b)

S(b)

¬S(b) ¬Q(b)

¬Q(b)

Figure 4.1: Closed connection tableau for a set of clauses.

guages [34]. Recently, such architectures proved useful also in various tasks in
the domain of symbolic computation [53, 98, 131, 167]. The models encode the
source sequence to a hidden vector state and decode from it the target sequence.

In this work, we employ such neural methods to choose among the non-
deterministic steps in connection-style theorem proving. More specifically, we
want to learn the hidden proving states that correspond to the evolving proof
trees and condition the next prover steps based on them. To this end, from
a set of connection tableau proofs we create a dataset (Section 4.2) of source-
target training examples of the form (partial proof state, decision) that we then
use to train the neural models (Section 4.3). The results are reported in Sec-
tion 4.4. Section 4.5 shows an additional experiment with predicting (conjec-
turing) tableau goals.

The connection tableau seems suitable for such methods. The connection
proofs grow as branches of a tree rooted in a starting clause. The number
of options (clauses) to choose from is relatively small compared to saturation-
style provers, where the number of clauses grows quickly to millions during the
search. The tableau branches representing the proof states can be the sequential
input to the RNNs, which can then decode one or more decisions, i.e., choices
of clauses.

4.2 A data set for connection-style
internal guidance

The experimental data used in this work originate from the Mizar Mathematical
Library (MML) [60] translated [159] to the TPTP language. We have used the
leanCoP connection prover [122] to produce 13 822 connection proofs from the
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Mizar problems.
The connection tableau calculus searches for refutational proofs, i.e., proofs

showing that a set of first-order clauses is unsatisfiable. Figure 4.1 (adapted
from Letz et al. [100]) shows a set of clauses and a closed connection tableau
constructed from them, proving their unsatisfiability. A closed tableau is a
tree with nodes labeled by literals where each branch is closed. A closed branch
contains a pair of complementary literals (identical but with opposite polarities).
An open branch can be extended with descendant nodes by applying one of the
input clauses. This extension step can often be performed with several different
clauses – this is the main non-determinism point. Choosing the correct clause
advances the proof, whereas choosing wrongly leads to redundant exploration
followed by backtracking.

The training data for choosing good clauses were extracted from the proofs
as follows. First, formulas in the proofs were made more uniform by substituting
for each universal variable the token VAR and for each Skolem function the token
SKLM. For each non-root and non-leaf node n in each proof tree, we exported two
types of paths, which form two kinds of input data for the neural architecture:

(1) Plits(r → n) – the literals leading from the root r to the node n,

(2) Pcls(r → n) – the clauses that were chosen on the way from r to n.

The output data are created as follows. For each node n we record the
decision (i.e., the clause) that led to the proof. Let clause(n) be the clause
selected at node n. For instance, if n is the node labeled by R(a, b) in Figure 4.1,
clause(n) = c6.

The pairs
(
Plits(r → n), clause(n)

)
and

(
Pcls(r → n), clause(n)

)
constitute

two different sets of training examples for learning clause selection. Each of
these sets contains 567 273 pairs. Additionally, we have constructed similar
data in which the output contains not only the choice of the next clause, but
a sequence of two or three such consecutive choices. All these data sets1 were
split into training, validation and testing sets – the split was induced by an
initial split of the proofs in proportions 0.6, 0.1 and 0.3, respectively.

4.3 Neural modelling and evaluation metric

As a suitable sequence-to-sequence recurrent neural model we used an im-
plementation of a neural machine translation (NMT) architecture by Luong

1The tableau proofs and the sequential training data extracted from it are available at
https://github.com/BartoszPiotrowski/guiding-connection-tableau-by-RNNs

https://github.com/BartoszPiotrowski/guiding-connection-tableau-by-RNNs
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Table 4.1: Predictive accuracy of the NMT system trained on two types of
source paths (literals or clauses), decoding 1–3 consecutive clauses. 1 or 10 best
outputs were decoded and assessed. Predictions based on paths of literals are
substantially better than these based on path of clauses.

paths of literals paths of clauses

# clauses
to decode

1 best
output

10 best
outputs

1 best
output

10 best
outputs

1 0.64 0.72 0.17 0.36
2 0.11 0.19 0.03 0.07
3 0.05 0.07 0.01 0.02

et al. [102], which was already successfully used for symbolic tasks in [167]
and [131]. All the hyper-parameters used for training were inherited from [167].

Let subsequent clausesi(Plits/cls(r → n)) be a set of i-long sequences of
clauses found in the provided proofs, following a given path of literals/clauses
from the root to a node n.2 Let clauses from model ik(Plits/cls(r → n)) be a
set of k i-long sequences of clauses decoded from the NMT model (we de-
coded for k = 1 or k = 10 most probable sequences using the beam search
technique [52]). We consider the prediction from the model for a given path
of literals/clauses as successful if the sets subsequent clausesi(Plits/cls(r → n))

and clauses from model ik(Plits/cls(r → n)) intersect. The metric of predictive
accuracy of the model is the proportion of successful predictions on the test set.

4.4 Results

The average results for the above metric are shown in Table 4.1. We can see that
predicting the next clause is much more precise than predicting multiple clauses.
The accuracy of predicting the next clause(s) from a sequence of clauses is lower
than predicting the next clause(s) from a sequence of literals, which means the
literals give more precise information for making the correct decision.

We have also investigated how the performance of NMT depends on the
length of the input sequences. The results for the neural model trained on

2E.g., for the proof from Fig. 4.1, we have (c4) ∈ subsequent clauses1(Plits(P (a) → S(b)),
(c6, c5) ∈ subsequent clauses2(Plits(P (a) → R(a, b)), (c6) ∈ subsequent clauses1(Pcls(c1 →
c2), or (c3, c4) ∈ subsequent clauses1(Pcls(c1 → c2).
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Table 4.2: Predictive accuracy of the NMT and XGBoost systems for different
lengths of input sequences consisting of literals. The NMT model, as opposed
to the XGBoost one, can take advantage of longer input sequences (i.e., more
complex context).

length 1 2 3 4 5 6 7 8

NMT 0.19 0.48 0.64 0.70 0.68 0.72 0.79 0.85
XGB 0.43 0.35 0.42 0.39 0.47 0.41 0.51 0.46

the paths of literals as the input are shown in the second row of Table 4.2. As
expected, the longer the input sequence, the better is the prediction. The neural
model was capable of taking advantage of a more complex context. This differs
significantly with the path-characterization methods using manual features (as
in [83]) that just average (possibly with some decay factor) over the features of
all literals on the path.

To compare with such methods, we trained a classifier based on gradient
boosted trees for this task using the XGBoost system [33], which was used
for learning feature-based guidance in [83]. To make the task comparable to
the neural methods, we trained XGBoost in a multilabel setting, i.e., for each
partial proof state (a path of literals) it learns to score all the available clauses,
treated as labels. Due to limited resources, we restrict this comparison to the
MPTP2078 subset of MML which has 1383 different labels (the clause names).

The average performance of XGBoost on predicting the next clause from
the (featurized) path of literals was 0.43. This is lower than the performance
of the neural model, also using literals on the path as the input (0.64). The
XGBoost performance conditioned on the length of the input path is shown
in the third row of Table 4.2. XGBoost is outperforming NMT on shorter
input sequences of literals, but on longer paths, XGBoost gets substantially
worse. The performance of the recurrent neural model grows with the length of
the input sequence, reaching 0.85 for input length 8. This means that providing
more context significantly helps the recurrent neural methods, where the hidden
state much more precisely represents (encodes) the whole path. The feature-
based representation used by XGBoost cannot reach such precision, which is
likely the main reason for its performance flattening early and reaching at most
0.51.
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Table 4.3: Predictive accuracy of conjecturing literals by the NMT system for
input sequences of different lengths. The longer the input sequence, the higher
accuracy of the predicted literals.

length 1 2 3 4 5 6 7 all

NMT 0.04 0.05 0.08 0.11 0.14 0.16 0.34 0.08

Table 4.4: Literals conjectured by NMT vs. the correct ones. (1) is an example
of a correctly predicted output; in (2) NMT was wrong but proposed a literal
which is similar to the proper one; (3) shows a syntactically incorrect literal
produced by NMT. Shorter literals with fewer symbols were easier to predict
by the NMT system.

NMT prediction correct output

(1) m1 subset 1(np 1,k4 ordinal1) m1 subset 1(np 1,k4 ordinal1)

(2) m1 subset 1(SKLM,k1 zfmisc 1(SKLM)) m1 subset 1(SKLM,SKLM)

(3) k2 tarski(SKLM,SKLM)=k2 tarski(SKLM k2 tarski(SKLM,SKLM)=k2 tarski(SKLM,SKLM)

4.5 Conjecturing new literals

As an additional experiment demonstrating the power of the recurrent neural
methods we constructed a data set for conjecturing new literals on the paths
in the tableau proofs. The goal here is not to select a proper literal, but to
construct it from the available symbols (the number of them for the MML-based
data set is 6442). This task is impossible to achieve with the previous methods
that can only rank or classify the available options. Recurrent neural networks
are, on the other hand, well-suited for such tasks – e.g., in machine translation,
they can learn how to compose grammatically correct and meaningful sentences.

It turns out that this more difficult task is to an extent feasible with NMT.
Table 4.3 shows that NMT could propose the right next literal on the path in a
significant number of cases. Again, there is a positive dependence between the
length of the input sequence and the predictive performance. Most of the times
the correct predictions involve short literals, whereas predicting longer literals
is harder. The proposed longer literals often not only do not match the right
ones but have an improper structure (see Table 4.4 for examples of the NMT
outputs).
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4.6 Conclusions and future work

In this work, we proposed RNN-based encoding and decoding as a suitable rep-
resentation and approach for learning clause selection in connection tableau.
This differs from previous approaches – both neural and non-neural – by em-
phasizing the importance of the evolving proof state and its accurate encoding.

The approach and the constructed datasets also allow us to meaningfully try
completely new tasks, such as automatically conjecturing the next literal on the
path. The experimental evaluation is encouraging. In particular, it shows that
the longer the context, the more precise the recurrent methods are in choosing
the next steps, unlike the previous methods.

The evaluation and data sets have focused (as similar research studies [46,
79]) on the machine learning performance, which is known to underlie the theo-
rem proving performance. Future work includes integrating our neural method
into a connection prover and performing ATP evaluation similar to [35,83] that
would compare with a base connection prover in terms of proving performance.
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Chapter 5

Towards learning quantifier
instantiation in SMT∗

Abstract

This chapter describes a work where machine learning (ML)
is applied to solve quantified satisfiability modulo theories (SMT)
problems more efficiently. The motivating idea is that the solver
should learn from already solved formulas to solve new ones. This
is especially relevant in classes of similar formulas.

We focus on the enumerative instantiation – a well-established
approach to solving quantified formulas anchored in the Herbrand’s
theorem. The task is to select the right ground terms to be instan-
tiated. In ML parlance, this means learning to rank ground terms.
We devise a series of features of the considered terms and train
on them using boosted decision trees. In particular, we integrate
the LightGBM library into the SMT solver cvc5. The experimen-
tal results show that the ML-guided solver enables us to solve more
formulas than the base solver and reduce the number of quantifier
instantiations. We also do an ablation study on the features used.

∗This chapter is based on a joint work with Mikoláš Janota and Jelle Piepenbrock. I was
involved in designing features used by machine learning, and I was responsible for design-
ing, implementing and running looping-style experiments. Mikoláš Janota was responsible
for implementing featurizer within cvc5, and implementing an interface between cvc5 and
LightGBM. I wrote Section 5.4 and helped to write other sections as well.

65
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5.1 Introduction

Solving formulas containing quantifiers in the context of Satisfiability Modulo
Theories (SMT) is famously difficult. This difficulty is inherent since quantifiers
lead to undecidability or high computational complexity [51,110]. Nevertheless,
quantifiers are indispensable in practical problems. Notably, in software veri-
fication, they are used to express properties of memory, e.g., that an array is
sorted. This chapter tackles the question: Can machine learning (ML) make
SMT solvers more efficient in the context of quantifiers?

The potential of ML is to enable the solver to learn from problem instances
that it has already solved. In contrast, current SMT solvers only take into
account one formula during solving. However, integrating ML into this context
is not straightforward. We are facing two main challenges:

1. ML operates in an approximate setting, while SMT is anchored in a rigor-
ous background where inference steps need to follow the logic in question.
This means the solver inference steps must be followed and the ML inte-
grated into the solver framework.

2. SMT solvers make millions of decisions for a single problem. How can ML
be integrated without dramatically slowing down the solver?

This chapter proposes a design that enables ML to steer the state-of-the-art
SMT solver cvc5 [8]2 in quantifier instantiation (see Figure 5.1).

A general technique to handle quantifiers in SMT is to gradually instantiate
the quantified sub-formulas with ground terms until obtaining contradiction.
For instance the formula (∀x f(x) > x) ∧ (∀y f(y) < 0) is readily refuted by
instantiating both x and y with 0.

The terms to be used in instantiations may be chosen either by making use of
syntactic properties, e.g. by e-matching [40], or by utilizing semantic properties,
e.g. model-based quantifier instantiation [58]. Interestingly, the complexity of
these techniques may not always pay off: simple enumerative instantiation of
terms can often give better results [75,136]. For all of these techniques, the most
important challenge is a large number of possible terms that can be chosen for
instantiation, especially in later stages of solving.

In recent years, ML has been applied in countless settings, from computer
vision [93] to natural language processing [41]. There is also work to learn
decision-making for first-order theorem proving, cf. [72], but the use of ML for
SMT guidance still has large untapped potential.

2cvc5 is a successor to CVC4 [8,10].
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Input
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Figure 5.1: Schematic of the SMT solver with machine learning guidance for
quantifier instantiation.

In this work, we use machine learning to improve the performance of cvc5
in real-time, by learning a scoring function for terms that guides the quantifier
instantiation process. This addresses our first challenge, i.e., how to use an
inherently approximate method within SMT. The second challenge of avoiding
dramatic slowdown by ML within the solver is achieved by the choice of features,
ML model, and its tight integration into the solver.
This work has the following primary contributions.

1. We design an integration of ML guidance for quantifier instantiation in
the context of SMT. In particular, the enumerative instantiation is guided
by ML during the run of the solver, while learning from existing solutions
to already solved problems.

2. We implement the proposed method in cvc5 and the implementation shows
a substantial increase in the number of solved instances and lowers the
number of instantiations needed for many proofs.

5.2 Background

Throughout the chapter we assume familiarity with first-order logic, in partic-
ular, with satisfiability modulo theories (SMT) [12]. Formulas with no quan-
tifiers, called ground formulas, are solved using the DPLL(T) paradigm [119].
DPLL(T) abstracts first-order logic atoms as propositional variables enabling
the use of a SAT solver to reason about the Boolean structure of the formula
and theory solvers to reason about theories.

SMT solvers reason about quantifiers by instantiating with ground terms
to strengthen the ground part of the formula. Effectively, a quantified sub-
formula or quantified expression (∀x1 . . . xn ϕ) is a source of lemmas of the
form (∀x1 . . . xn ϕ) ⇒ ϕ{x1 7→ t1, . . . , xn 7→ tn}, where ϕ is quantifier-free
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and ti are ground terms. For instance, ∀x f(x) > 0 may be instantiated as
(∀x f(x) > 0)⇒ f(0) > 0. For simplicity, assume that quantifiers are removed
on preprocessing by Skolemization.

This approach results in a loop that moves back and forth between a ground
solver and the instantiation module; see Figure 5.1. The ground solver only
sees quantifiers as propositions that either should hold or not. Once the ground
solver finds a satisfying assignment for the ground part of the formula, control is
handed over to the instantiation module, which generates new instances of the
quantified sub-formulas that currently should hold. This strengthens the ground
part of the formula and the process repeats. Our contribution is to provide ML
advice for the instantiation module with the aim of suggesting instantiations
that lead to unsatisfiability in the ground solver.

There is a bevy of methods for choosing instantiations. For decidable frag-
ments, dedicated approaches exist, e.g., for bit-vectors or linear arithmetic [17,
48, 116, 137]. General quantifiers are most notably tackled by e-matching,
based on syntactic properties of the terms [40] and model-based [58] or conflict-
based [138] instantiation, relying on the semantics of the formula. Niemetz et
al. apply syntax-guided instantiation term generation [117].

The instantiation method we focus on here is enumerative instantiation.
While the method is probably the most straightforward one, it has good per-
formance on many SMT problem categories and adds to the robustness of the
solver [136].

5.2.1 Enumerative instantiation

Herbrand’s theorem [66] guarantees that for an unsatisfiable first-order logic
formula, finitely many instantiations are sufficient to obtain an unsatisfiable
ground part, and, these instantiations only need to use the Herbrand universe.
Completeness is not guaranteed in theories (e.g., ∀x :R x2 ̸= 2). However, the
application of the theorem in SMT is justified as it provides a viable way to
deal with the complex problem of quantifier instantiation.

Reynolds et al. invoke a stronger variant of Herbrand’s theorem that enables
a more practical method for quantifier instantiation [136]. It is sufficient to con-
sider only the terms already within the ground part of the formula generated
so far. This insight leads to the enumerative instantiation strategy, the tech-
nique we augment with machine learning guidance in this work. For a formula
G∧∀x1 . . . xn ϕ, with G ground, collect all ground terms T in G and strengthen
G by an instantiation of ϕ by an n-tuple t1, . . . , tn with ti ∈ T ; repeat the pro-
cess until G becomes unsatisfiable or until resources are exhausted. The tuples
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are enumerated systematically to guarantee fairness.

As a motivational (toy) example consider the following conjunctive set of
formulas within the logic of uninterpreted functions and linear integer arithmetic
(UFLIA).

{f(d) > f(d+ 2), c ≤ 0 ∨ ∀x f(x) < f(x+ 1)︸ ︷︷ ︸
q

}

For the ground solver, the quantifier is abstracted as a Boolean constant q and
the instantiation module is responsible for adding lemmas of the form q ⇒
f(t) < f(t + 1) for some ground term t. Consider a context where the solver
decides that ¬(c ≤ 0), which forces q to be true. Ideally, in this situation the
solver instantiates x first with d and then with d+ 1, resulting in the following
steps:

ground formula additional ground terms
{c ≤ 0 ∨ q, f(d) > f(d+ 2)} {c, 0, d, d+ 2, f(d), f(d+ 2)}
{q ⇒ f(d) < f(d+ 1)} {d+ 1, f(d+ 1)}
{q ⇒ f(d+ 1) < f(d+ 2)} {d+ 2, f(d+ 2)}

From transitivity of >, the ground part gives a contradiction for the current
context, forcing q to false and c ≤ 0 to true. Already this small example shows
the difficulties we are facing. For instance, instantiating with the term f(d+2)
results in q ⇒ f(f(d + 2)) < f(f(d + 2) + 1), which not only is unhelpful but
also produces a harder ground instance.

Individual instantiations lead to the addition of new ground terms into a
sequence. We refer to the position of a term in the sequence as its age; in the
above example, the term d has age 0. Terms added by the same instantiation
are in the same phase; in the above example, the terms d+1, f(d+1) are added
in phase 2.

As an additional filter, cvc5 uses a technique called relevant domain, in-
troduced by Ge and de Moura [58]. Intuitively, a term becomes relevant for a
certain quantified variable if it appears in the same position as the variable, e.g.,
if f(x) appears in the quantified formula and there is a ground term f(t), the
sub-term t is relevant for x; this is further closed by equality. By default, cvc5
first considers only instantiations by terms from the relevant domain and only
after that moves on to the rest. Formulas with multiple quantified sub-formulas
are solved by instantiating the sub-formulas independently but in a fair manner.
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Figure 5.2: Schematic example of the term enumeration process with term tuple
ordering based on the sum of term rankings. The task of the ML model is to
take features based on the quantified formula, the variable, the terms, and the
context to score the terms, thus changing the term ranking to deliver better
instantiations. In cases where multiple quantifiers have to be instantiated at
the same time, we instantiate with term tuples, which are ordered by the sum
of the rankings of the individual terms.

5.3 Learning ordering of terms

When using the enumerative instantiation strategy, the SMT solver uses an
ordering of the available terms (by default, this is primarily based on the age of
the terms) and enumerates terms in this order, trying instantiations. As shown
in Figure 5.2, when there are multiple quantifiers that need to be instantiated
with a tuple of terms, the solver uses the sum of the rankings of the individual
terms to determine the ranking of the term tuple [75].

cvc5 considers one quantified expression at a time. In this work, we also
only consider the reranking of terms for a single variable at a time.3 Thus, at
each decision point of the quantifier module, we consider the current quanti-
fied expression Q, the variable V, the term T, and the wider context Context,
containing all other quantified expressions and the ground part of the problem.
Featurization is then viewed as a function F : (Q,V, T,Context)→ Rn.

The machine learning heuristic’s task is to reorder the term candidate lists
for each quantifier so that more useful instantiations are tried earlier (see Fig-
ure 5.2). For this, we use a scoring function and rank the candidates according

3The enumeration still creates tuples of terms to instantiate quantified expressions with
multiple variables.
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to this score. This scoring function S : F → [0, 1] takes as its input the features
obtained by applying the featurization F to a tuple (Q,V, T,Context).

The returned score is intended to reflect how likely it is that term T was used
to instantiate variable V in quantified expression Q with the context Context in
the final proof. The training data for the ML model is based on previously found
proofs, so that we can extract a label for each tuple (Q,V, T,Context), based on
what decision was made in a known proof of the problem. This label is 1 if the
instantiation that the tuple represents was used in a successful proof (which we
will call a positive example) or 0 otherwise. During solving, the scoring function
S is applied to each candidate term. The terms are then sorted according to
their score by stable sort, i.e., equally scored terms remain in their original order
(see Figure 5.2).

The scoring function S is implemented as an ML model. Specifically, we ex-
perimented with a logistic regression model and with gradient boosted decision
trees (GBDT). In contrast to popular neural network methods, these methods
are sufficiently fast to run at solving time within the solver loop [146]. In the ini-
tial experiments, the boosted trees performed substantially better than logistic
regression, thus we keep it for the rest of our experiments.

GBDT uses an ensemble of decision trees, where decisions of all the individ-
ual trees are aggregated into a more reliable decision. Gradient boosted trees are
widely used in machine learning applications. In particular, this algorithm is one
of the most successful approaches in machine learning competitions [120]. They
have also been used for machine learning guidance in first-order logic [72, 127].
After training, we use this ensemble of decision trees to predict the label of each
candidate term. Ideally, the trees predict 1 if the candidate leads to a proof
and 0 if it does not. In practice, the prediction of the model is a float number
between 0 and 1, which can be interpreted as a probability. We used the library
LightGBM [88], a fast and efficient implementation of the GBDT algorithm.

5.3.1 Featurization

The GBDT algorithm makes decisions based on a representation of the state
of the solver, the relevant quantified expression and the term that is being
considered. This representation of the data is called the featurization of the
data. There are several categories of features with different properties. First, we
list them here. Afterwards, there are subsections with the details of the features
in that category. Note that we use the single-letter abbreviations following the
categories to denote them in figures in later sections. Table 5.1 contains a list
of categories of the features we use and abbreviations designating them.
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Table 5.1: Short description of feature categories. The abbreviations are later
used to concisely refer to these feature categories.

category name description abbreviation

procedural features Data from the solver, such as the age of
terms, number of times a term was tried.

p

bag-of-words features Amounts of nodes of certain type in
quantified expression or term.

b

context features
The parent symbols of variables and the
parents of the head symbols in candidate
terms.

c

numeral features The minimum and maximum number
used in quantified expression or term.

n

parent features
(parent label propagation)

Terms that are necessary to create the
final proof term are also labeled as
positive examples.

P

The designed features provide a simple characterization of the training ex-
amples. However, they are extracted using existing, efficiently implemented
mechanisms of cvc5, which makes the process fast enough. All these design
decisions enable us to perform ML prediction online, during the proof search.
In Subsection 5.4.3, we show an ablation study, where impacts of each feature
category for the performance of the solver can be observed.

Procedural features

The first category of features is the set of procedural features, properties of
the solving process that can be quickly calculated within cvc5. Several of these
features were explained in Subsection 5.2.1. In this category are the age and
phase of the term. In addition to these, the features varFrequency, tried and
depth are used. VarFrequency indicates how many times the variable (V ) under
consideration appears in the quantified expression (Q). The tried feature indi-
cates how many times this term (T ) was already tried within this quantified
expression. The depth is simply the syntactic depth of the term.
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Bag-of-words (BOW) features

The bag-of-words features represent the number of occurrences of symbols in
the given quantified expression and term. In our design, uninterpreted sym-
bols are treated anonymously and interpreted symbols non-anonymously. This
means that any interpreted symbol, such as + , will get its own feature whose
value is the number of occurrences of the symbol in the formula. Uninterpreted
symbols, i.e., those that were introduced by the user are collapsed into rep-
resentative classes. For instance, all function symbols are represented by one
class. The numerals (interpreted constants) are a special case. While these are
interpreted, there are infinitely many of them and they therefore cannot have
separate features, and therefore are also collapsed into a single node type in this
feature category. However, in the numeral features (Subsection 5.3.1), we deal
with numerals in a more semantic way.

For the calculation of BOW we use the abstract syntax tree (AST) of cvc5.
For every symbol appearing in terms and formulas cvc5 determines its kind.
These kinds include, e.g., variable, skolem, not, and, plus, forall, and many
others. We use these syntactic kinds to define a bag-of-words-type featurizer
BOW(x), where x is a term or a quantified formula, and the information re-
turned by BOW consists of counts of kinds of symbols appearing in x. For
example, BOW(∀x (2+x = skl1+3)) = {forall : 1, variable: 1, const : 2, skolem :
1, plus : 2}. Non-occurring kinds are set to 0 in this representation. We remark
that cvc5 represents formulas as directed acyclic graphs, rather than trees, which
is also reflected here, i.e., any repeated sub-formula is counted only once.

Context features

The third category of features is the set of context features (see Figure 5.3).
There are two types of context features used. The first is the variable context,
which aggregates information about which symbols are used as parents of the
variable in the current quantified expression. The second type is the term head
symbol context, which contains information about which symbols are parents of
the head symbol of the current candidate term in the ground term registry of the
solver: this gives information about the whole problem, even across quantified
expressions. The feature vectors are sparse, in the sense that most node types
will not show up in every context: most of the possible features will be 0. In
the figure we have simplified mostly to the symbols that do appear, but for the
ML predictor many features are 0.



74 Chapter 5. Learning quantifier instantiation in SMT

Variable Context Term Head Symbol Context

>

f x

∀x f(x) > x
Featurization

of x:

<: 0

>: 1


FUN: 1

...


Ground Term
Registry

Featurization

of s:

/ : 1

+ : 2


Featurization
of c

/ : 1


+ /

s s

... ...

c

Candidate

Instantiation


Terms

s(5)

c

Figure 5.3: Schematic representation of the context features. The variable
context aggregates which symbols occur as the parent of the variable in the
current quantified expression. The term head symbol context aggregates which
symbols occur in the ground term registry as parents of the head symbol of the
candidate term under consideration.

Numeral features

While in the BOW features the numerals in the problems are all mapped to one
single node type, this is not optimal. Especially because the benchmark prob-
lems we test on are integer arithmetic problems, giving the machine learning
component some information about which numbers are in the formula should be
useful. To allow the machine learning system to do some elementary compari-
son operations on the terms it needs to decide the score of, we add 4 additional
features, which are the minimum and maximum number in the current quan-
tified expression (Q) and the current candidate term (T). When there are no
nodes of numeral type in Q or T, we fill in the features with a fixed combination
of numbers where the minimum is higher than the maximum, so that it can be
distinguished from the rest of the cases.

Parent label propagation

The last setting in our algorithm concerns the parents of the proof terms. Note
that this is a different kind of setting than the features before. Here we are
concerned about which candidate terms are counted as positive examples (that
is to say, for which the score function should predict 1) and which are negative
examples (for which the prediction should be 0).

When the base solver is run and produces a proof, a set of instantiations
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Figure 5.4: Example instantiation process that shows the difference between a
term that constitutes a proof and the process of getting to the point where it
is possible to instantiate that term within the cvc5 enumeration setup.

is obtained that leads to a contradiction. However, these terms are created
by iterations of the enumeration loop, creating more and more terms from the
Herbrand universe. It may be the case that these final instantiations cannot be
created in one iteration. We may need more than 1 instantiation to create the
final instantiated term that solves the problem. For example in Figure 5.4, we
see that although instantiating with x 7→ 6 will expose the contradiction, the
ground term 6 is not available at the beginning of solving. Instantiating with
0 at the beginning makes the term 2 available. Instantiating with 2 makes the
term 6 available, which leads to a contradiction. To reflect this, we propagate
the positive label of these instantiations (i.e., 6) to the parent instantiations,
i.e., the instantiations that were done to create the final instantiation candidate
terms, 2 and 0 in the example from Figure 5.4.

5.4 Experimental evaluation

cvc5 implements multiple techniques for quantifier instantiation (see Section 5.2).
Due to the inherent difficulty of the overall problem, it is not the case that one
technique is uniformly better than all the others. On the contrary, the tech-
niques exhibit a high degree of orthogonality4 in terms of the number of solved
instances [75, 136]. Therefore, it is meaningful to focus on improving the tech-
niques independently of one another. In our scenario, we let the solver use
the enumeration technique combined with the relevant domain heuristic (Sec-
tion 5.2.1); all the other techniques are explicitly turned off, which also lets us
more clearly isolate the effect of machine learning guidance.

4By saying that two techniques are orthogonal we mean that the symmetric difference of
the sets of problems they solve is large; precisely this is demonstrated for various instantiation
techniques in [75] and [136].
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We refer to cvc5 with this baseline strategy as the base solver. We remark
that this setup alone is already a very strong solver, often outperforming more
complex techniques, as shown in the literature [75]. The objective of the eval-
uation is to compare the base solver with the base solver augmented with ML
guidance.

A crucial prerequisite to training a strong ML model is to have a sizeable,
high-quality set of training examples. They can be collected by running the
solver on available problems and by recording which instantiations were positive
(appeared in a proof) and which were negative (redundant).

Note that the notion of a positive or negative example is not strict here since
a single problem may have multiple alternative proofs resulting in different sets
of positives and negatives. Moreover, the solver may arrive at a given proof in
multiple ways, performing the same set of useful instantiations but different sets
of redundant ones, which results in a different collections of negative examples.

Based on these observations, it is clear that in order to collect a rich and
illustrative set of training examples, it is beneficial to run the solver on a given
set of problems multiple times in varied ways, which will result in multiple alter-
native proofs and proof searches. Thus, we establish the following methodology
for collecting the training data. First, an unguided solver is run on a given set
of problems. The data recorded from these proof attempts give an initial set of
training examples, which is used to train an initial ML model. Then, the solver
– this time guided by the ML model – is run again on the problems. This gives
new training examples augmenting the database. Solving and training may be
interleaved an arbitrary number of times. It constitutes a positive feedback
loop – in each iteration, the solver is guided by a new, different, and hopefully
stronger ML model which results in a growing and varied training set. A similar
looping-style approach was already used in the context of automated theorem
proving [127,161].

In the evaluation, we focus on two separate, but equally important, goals:

1. the cumulative goal : solve automatically as many of the problems as pos-
sible over time. This is done by running the ML-guided solver multiple
times over them and improving it by training the ML model on data col-
lected across the runs. In this setting we gradually solve more problems
that the base solver could not prove.

2. the single-instance goal : evaluate the ability of the learning model to
improve the solver on unseen problems.

The importance of the single-instance goal is clear – this is how tradition-
ally improvement in SMT is measured, i.e., how many more problem instances
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are solved. Here we emphasize that the cumulative goal is just as important.
Indeed, in many cases users wish to solve a group of formulas and are happy to
leave the solver work on them for an extended period of time. This is particu-
larly true for groups of similar formulas. This might be the case for example
for verification conditions coming from a certain piece of software that is being
verified. In such scenarios, the user is not interested if the SMT solver solves
many instances in a competition but is interested in how many instances are
solved from this particular set.

Note that in a traditional setting (without ML) it is unclear how to improve
on the cumulative goal. In contrast, an ML-guided SMT solver naturally has
the opportunity to generalize from previously solved (easier) problems to the
harder ones.

5.4.1 Experimental setting

To assess the performance of our method for both these goals, we use the
looping-style approach described above, additionally splitting the initial set of
problems into target set and holdout set. The problems from the target set are
used to gradually collect training examples for training the ML model to be
used in the next iteration. The holdout set is only used for evaluation and not
for training. The performance for the cumulative goal is measured by how many
more instances are gradually solved from the target set. The performance for
the single-instance goal is measured by the base solver with the solver guided
by the ML model all obtained in the last iteration.

Algorithm 4 Incremental solving-training feedback loop ended with solving
holdout problems.

Require: target problems: Ptarget, holdout problems: Pholdout, number of it-
erations: N , grid of hyper-parameters: Hgrid

1: M ← {} ▷ empty initial machine-learning model
2: D ← {} ▷ empty initial set of training examples
3: for i← 0 to N − 1 do
4: L← Solve(Ptarget,M) ▷ solve target problems, save proofs and stats
5: D ← D ∪ExtractTrainingExamples(L) ▷ update training data
6: H← GridSearch(D,Hgrid) ▷ find good training hyper-parameters
7: M ← TrainModel(D,H) ▷ train new model on all training examples

8: Solve(Pholdout,M) ▷ solve holdout problems

The looping procedure is shown in Algorithm 4. The function Solve(P,M)
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runs the solver over problems in P , using the ML model M for guidance. When
M = {}, in the initial round 0, Solve(P,M) runs the solver with the standard,
age-based ordering of the terms in place of the ML guidance. In the experiments,
the number of iterations N is set to 20.

The used ML model (LightGBM) has multiple hyper-parameters governing
its training, which potentially substantially influence the predictive performance
of the model and therefore should be tuned [170]. We fix a set of several
important parameters and candidate values for them (Hgrid). These are the
following: learning rate: 0.01, 0.05, 0.1, num leaves: 16, 64, 256, max bin:
16, 64, 256.

After each update of the training set in the loop, a grid search is performed
(function GridSearch) to establish the best hyper-parameters (H) for the next
training (according to the AUC metric [49] on a random subset of validation
examples). The number of trees in LightGBMmodel is an important parameter.
However, we do not include this parameter in the grid search and just fix its
value to 100. Increasing the number of trees typically improves the “offline” ML
performance metrics. However, it also slows down producing the predictions,
which in turn may decrease the number of solutions found within a time limit.

A large majority of the instantiations tried during the proof attempts are
redundant, which results in a significant disproportion between numbers of the
positive and the negative examples being collected. To expose the ML model
more to the positives, we under-sample the negatives so that its number is kept
below 10 × number of positives.

In experiments, the ML-guided solver is compared to the base solver. How-
ever, when considering the cumulative number of problems solved across mul-
tiple iterations, one should investigate whether the extra problems solved are
really due to the learned strategy and not only due to the randomness injected
into the process. Thus, to perform an ablation study, we additionally compare
the ML-guided solver with a randomized solver. It is the same as the base
solver with the following exception: it uses the predefined, age-based ordering
additionally swapping each term randomly with a term next to it in the ranking
with the probability 0.1. This parameter is selected heuristically: we want to
have a solver which is similar to the well-performing, base solver, and at the
same time is non-deterministic to some degree. Our initial experiments also
indicate that deviating too much from the age-based ordering is detrimental to
the solver: choosing a totally random order leads to a substantial decrease in
the number of solved instances (around 30%).

In experiments, we fix a timeout of 60 s per one proof attempt for all the
solvers. Note that the ML-guided solver spends a non-negligible amount of
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time just on producing predictions from the ML model, which means that it
will be able to perform fewer steps in its proof searches than the unguided solver.
However, to have a realistic evaluation scenario, we give the same timeout for
each solver, with the outlook that the ML-guided solver will compensate for the
slowdown with its learned strategy.

5.4.2 Data for evaluation

For evaluation, we use six benchmarks from SMT-LIB [11]: (1) UFLIA boo-
gie, (2) UFLIA grasshopper, (3) UFLIA tokeneer, (4) UFNIA sledgehammer,
(5) UFNIA Preiner, (6) UFNIA vcc havoc.

UFNIA and UFLIA refer here to two different SMT logics: non-linear and
linear integer arithmetic, respectively, with uninterpreted function symbols. (1)
originates from various problems from formal verification formulated in an in-
termediate verification language Boogie [9]. (2) is a benchmark derived from a
software verification project concerning heap-manipulating programs [132]. (3)
was derived from a security verification project for biometric identification soft-
ware [111]. (4) originates from Sledgehammer, a component of the Isabelle/HOL
interactive theorem prover that enables applying SMT to discharge goals arising
in interactive proofs [20]. The Sledgehammer problems come from various areas
of mathematics and computer science. (5) was a project on verifying rewriting
rules for bit-vectors irrespective of bit-width [118]. (6) are benchmarks taken
from the VCC C program verifier [36] and HAVOC [163], a heap-aware verifier
for C programs.

Some of the problems from these benchmarks may be solved without per-
forming any instantiations. They are filtered out as not relevant for our eval-
uation. Then, the sizes of the benchmarks are: UFLIA boogie: 1005, UFLIA
grasshopper: 382, UFLIA tokeneer: 257, UFNIA sledgehammer: 1329, UFNIA
Preiner: 3897, UFNIA vcc havoc: 760. Each of the benchmarks is randomly
split into target and holdout parts (Ptarget, Pholdout) of sizes 75% and 25%,
respectively.

5.4.3 Results and discussion

This section presents the results of the evaluation of the ML-guided solver with
one initial solving iteration performed by the unguided, base solver, and 19
training-solving iterations. Because of the non-deterministic nature of the train-
ing procedure, each loop with the ML-guided and the randomized solvers is run
3 times and the presented results are averaged.
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Table 5.2: Target problems solved cumulatively across all 20 iterations of the
training-solving loop by the randomized and the ML-guided solvers. ML-guided
solver always performed better than the randomized one; however, the level of
improvement differs: for two families it is not significant, whereas for UFLIA
boogie it is surprisingly high. This shows that different families of problems are
amenable to learning approaches to varying degrees.

family randomized ML-guided improvement
(%)

number of
problems

UFLIA boogie 41.0 157.6 284.4 754
UFLIA grasshopper 159.0 183.3 15.3 287
UFLIA tokeneer 83.0 90.0 8.4 193
UFNIA sledgehammer 243.5 258.0 6.0 997
UFNIA Preiner 1228.3 1245.7 1.4 4776
UFNIA vcc havoc 513.0 515.7 0.5 570

The presentation of the results is divided into three subsections. The first
two are concerned with the cumulative and single-instance goals (see introduc-
tion to Section 5.4). The last subsection presents an ablation study evaluating
the importance of the different groups of features (see Subsection 5.3.1).

Cumulative goal

Figure 5.5 shows the number of solved instances for the considered families
across the iterations of the loop (see Algorithm 4). All, except for the last two,
families demonstrate a clear advantage of using ML guidance. When focusing
on the cumulative goal (solid lines), both the ML-guided and the randomized
solver exhibit diminishing returns – eventually they plateau. However, in the
case of a randomized solver, a plateau occurs typically far earlier than in the
ML-guided case. This is likely explained by the ability of the ML guidance to
keep inventing new approaches inspired by newly solved problems. In contrast,
randomization very quickly hits the wall since the original heuristic used by the
base solver is already good. This is further supported by the observation that
the learned ML model solves an increasing number of the overall instances,
whereas the randomized one solves roughly the same number of problems in
every iteration. More detailed numbers can be found in Table 5.2.

The last two families (UFNIA-Preiner, UFNIA-vcc-havoc) do not show any
substantial improvements with ML guidance. Possibly, this might be that we are
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Figure 5.5: Numbers of problems solved (y-axis) in the looping evaluation across
twenty iterations (x-axis) for six families. Dashed lines refer to numbers of
problems solved in a given iteration; solid lines refer to cumulative number
of problems solved in a given iteration and all past iterations. For all the
families except UFNIA-vcc-havoc, the ML-guided solver performed better than
the randomized, base solver, and for UFLIA-boogie the effect of learning is
by far the most pronounced. For UFNIA-vcc-havoc, the ML model has no
advantage for the cumulative numbers; moreover, there is an unexpected, large
dip in performance for the individual iterations statistic, which shows that the
learning dynamics on the self-collected, growing set of training examples may
be complex and chaotic.
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Table 5.3: Holdout problems solved by the base and ML-guided solvers. Sim-
ilarly as in Table 5.2, for UFLIA boogie the ML-guided solver achieves very
substantial improvement. For two families the results are actually worse com-
pared to the base solver. This may be coused by the slow-down induced by the
ML-advisor which was not compensated by the quality of the guidance.

family base ML-guided improvement
(%)

number of
problems

UFLIA boogie 11 43.0 290.9 251
UFLIA grasshopper 59 66.6 12.9 95
UFLIA tokeneer 25 30.0 20.0 64
UFNIA sledgehammer 63 59.3 −5.8 332
UFNIA Preiner 383 394.3 3.0 1592
UFNIA vcc havoc 175 145.6 −16.8 190

simply too close to the limits of what the solver can do in this configuration and
other quantifier instantiation methods need to be also considered (see discussion
on the future work in Section 5.6). On the contrary, UFLIA-boogie shows
an exceptional improvement with ML guidance and shows no improvement by
randomization.

Single-instantiation goal

Here we compare the base solver with the ML-guided solver using the ML model
obtained in the last iteration of the evaluation loop. These results are calcu-
lated on the holdout set – meaning, on a set of problems that were not used
for training of the ML model. Two types of metrics are considered. First,
we consider the number of instantiations that the solver needed to do to solve
the given problem – effectively, this is the abstract time, measuring the quality
of the guidance. Second, we consider the actual CPU time needed to solve the
problem. Figure 5.6 shows the results for these two metrics in two separate scat-
ter plots. The results in terms of the numbers of problems solved for different
families can be found in Table 5.3.

The results for the number of instantiations clearly speak for ML guidance as
the vast majority of the points are below the diagonal. Further, the histograms
for the ML-guided solver show a more even distribution of values, whereas
the base solver is mainly stacked on timeouts. This indicates that the ML
guidance improves the performance across the whole range of the difficulty
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Figure 5.6: Comparison of numbers of instantiations (left) and solving times
(right) in log scale, where each point is a testing problem. Points in dark gray
stripes were solved by only one of the solvers. For both scatter plots the majority
of the points are below the diagonal which clearly shows the advantage of the
ML-guided solver.
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Figure 5.7: Ablation analysis for different sets of features. The dataset used
here is UFLIA boogie, and the solid lines refer to the cumulative numbers of
solved problems. The letters in the names of runs refer to abbreviations in
Table 5.1. Using all the features (pbncP) is the most beneficial. Using the
procedural features (p) is crucial: subtracting it from the full set of features
reduces the performance dramatically.

of the problems as measured by instantiations / time. In the case of time-
evaluation, we still see a large portion of the instances under the diagonal and
the histogram is also more tilted towards lower values. However, we also do see
some worsening in terms of time. This is not entirely surprising because ML
guidance comes at a price because the ML model needs to be evaluated for each
considered term in every instantiation step. This is also a likely explanation
for the worsening in the havoc family. Nevertheless, given the highly positive
results in terms of the number of instantiations (the left part of Figure 5.6),
better engineering of the ML guidance has the potential to further improve
these results.
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Table 5.4: UFLIA boogie problems solved with the ML-guided solver using
different sets of features. Using all the available features is the best.

features solved cumulatively,
in target

solved,
in holdout

bncP 69.0 13.3
p 126.6 21.0
pP 132.6 27.6
pbnP 134.0 32.0
pbnc 145.3 33.3
pbncP 149.0 36.0

Ablation study

In this subsection we look at the importance of the different types of features
that were used to train the ML model (see Subsection 5.3.1). For this we
consider the boogie family, where ML guidance had the most effect and therefore
enables us to clearly observe the effect of the different features. Since it would be
impractical to try all combinations of the features, we use the standard ablation
approach, i.e., removing one feature type at a time and observe the effect of this
removal. The results are shown in Figure 5.7 and Table 5.4. The ablation study
relates two very clear messages. Firstly, the full set of features outperforms all
the other configurations. Importantly, the full set of features is also the best one
on the unseen problems (holdout set). Secondly, the performance is much worse
without the procedural features. This is definitely an interesting observation
because the procedural features depend on the previous decisions of the solver,
e.g., the number of times a term has been used so far. This observation indicates
that is important for the ML guidance to “understand” its old decisions and
therefore serves as a guideline for future research.

Training and predicting time

The time of training a single LightGBM model is negligible compared to the
solving time and it is in the order of minutes (it grows as more training examples
are collected, but it was below 10 minutes for all benchmark sets and iterations).

The total time required to run a loop of 20 training-solving iterations (in-
cluding the hyper-parameter tuning) on one family depends on the number and
complexity of problems in it. We ran all the loops parallelizing across 20 cores.
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The total time for running one loop was between 3 and 30 hours. To optimize
this, one could apply early stopping when observing diminishing returns.

5.5 Related work

In recent years, machine learning has been widely applied in automated theorem
proving. Both gradient boosted trees and graph neural networks have been
applied for premise selection and guidance of the automated theorem prover
E [72, 130] as well as in a reinforcement learning setting for connection-style
provers [83]. ML guidance was also used in the context of SAT solving [115,146].
In the context of SMT, ML has been mostly used outside of the solver. ML
advice was used to predict the best SMT solver out of a given portfolio and
problem [124, 145]. Similarly, FastSMT uses ML to design strategies for the
SMT solver Z3 [5], where the BOW representation shows to be most successful,
strengthening our choice of this representation.

An unpublished technical report by El Ouraoui et al. [45] describes an at-
tempt to apply ML for quantifier instantiation in the SMT solver veriT [24].
The report demonstrates that ML-guided version of veriT on average decreased
the number of generated instances needed to find a proof. It also increased the
number of problems solved compared to the unguided, base solver – however,
not by much: less than 1% across several families of problems.5 The approach
presented in [45] filters out instantiation terms deemed redundant by the ML
model. Further, a different set of features – which are more expensive to com-
pute – is considered. In contrast, we apply stable ordering on the existing
terms, which enables us to piggyback on the existing good performance of the
solver. Indeed, in our approach, if ML scores some term candidates equally,
they are kept in the same order as in the base solver and candidates are never
removed from the pool. Our choice of features lets us calculate quickly the ML
predictions online without being detrimental to the solving time.

5.6 Conclusions and future work

In this work we design ML guidance of quantifier instantiation in the context
of SMT for problems with quantifiers. Quantifiers are a particularly interesting
target for ML because they typically cause undecidability and therefore repre-
sent an inherent challenge for automated solvers. In the presented approach,

5See Tables 10-13 in the report.
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the ML advice influences the solver by ordering the candidate terms to be con-
sidered for quantifier instantiations. The right choice of instantiations is crucial
for solving with quantifiers. Indeed, one particular formula is often solved by
a handful of instantiations in one ordering and it times out after hundreds of
thousands of instantiations in another. The challenge we are facing here is both
conceptual and technological. At the conceptual level, the right set of features
needs to be designed. At the technological level, we need an integration of ML
predication into the solver that does not hinder the performance of the solver
(ML prediction is run on each candidate term).

The experimental evaluation shows that our approach rises to the challenge.
When run on a set of formulas, cumulatively ML guidance enables solving sub-
stantially more problems than randomizing the solver. Improvements are also
seen on a holdout set (a set on which the solver was not trained). ML advice en-
ables us to solve more problems and reduce the number of instantiations needed.
The effect is most pronounced in the considered boogie benchmark, where the
final ML model enables to solve nearly 3 times more testing problems, and dur-
ing training it accumulates more than 3 times more solved instances compared
to a randomized solver. We also achieve improved performance on the grasshop-
per, sledgehammer and tokeneer benchmarks. In some families, we have seen
worsening in the holdout set, which could partially be explained by the CPU
time overhead of running ML prediction. This indicates that it would pay off
to better engineer the predictor so that this overhead is reduced. In an ablation
study on the boogie benchmark, we show that each of our feature categories
contributes to the final results.

This chapter shows that ML has the potential of boosting SMT solving and
it opens a number of opportunities for future work. Further ML models may be
proposed for specific logics (our method is generic). Direct interaction between
quantifiers could be taken into account. Rather than predicting an order of
terms on a single variable, the ML model could predict good combinations for
tuples of variables. Last but not least, ML advice could be applied to the other
quantifier instantiation methods that are in use in the SMT field.
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Chapter 6

Online machine learning
techniques for Coq∗

Abstract

We present a comparison of several online machine learning tech-
niques for tactical learning and proving in the Coq proof assistant.
This work builds on top of Tactician, a plugin for Coq that learns
from proofs written by the user to synthesize new proofs. Learn-
ing happens in an online manner, meaning that Tactician’s machine
learning model is updated immediately every time the user performs
a step in an interactive proof. This has important advantages com-
pared to the more studied offline learning systems: (1) it provides
the user with a seamless, interactive experience with Tactician and,
(2) it takes advantage of locality of proof similarity, which means
that proofs similar to the current proof are likely to be found close by.
We implement two online methods, namely approximate k-nearest
neighbors based on locality sensitive hashing forests and random de-
cision forests. Additionally, we conduct experiments with gradient

∗This chapter is based on a joint work with Liao Zhang, Lasse Blaauwbroek, Prokop Cerný,
Cezary Kaliszyk, and Josef Urban. The Tactician framework for machine learning experiments
with Coq was implemented by Lasse Blaauwbroek. I was responsible for implementing and
evaluating the online random forest algorithm, and I advised Liao Zhang on how to perform
experiments with gradient-boosted trees. I wrote Subsection 6.3.2 describing the random
forest algorithm, whereas the other sections were written mostly by Lasse Blaauwbroek and
Liao Zhang. Josef Urban and Cezary Kaliszyk advised with the work.
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boosted trees in an offline setting using XGBoost. We compare the
relative performance of Tactician using these three learning methods
on Coq’s standard library.

6.1 Introduction

The users of interactive theorem proving systems are in dire need of a digital
sidekick, which helps them reduce the time spent proving the mundane parts
of their theories, cutting down on the man-hours needed to turn an informal
theory into a formal one. The obvious way of creating such a digital assistant is
using machine learning. However, creating a practically usable assistant comes
with some requirements that are not necessarily conducive to the most trendy
machine learning techniques, such as deep learning.

The environment provided by ITPs is highly dynamic, as it maintains an
ever-changing global context of definitions, lemmas, and custom tactics. Hence,
proving lemmas within such environments requires intimate knowledge of all
the defined objects within the global context. This is contrasted by – for ex-
ample – the game of chess; even though the search space is enormous, the
pieces always move according to the same rules, and no new kinds of pieces
can be added. Additionally, the interactive nature of ITPs demands that ma-
chine learning techniques do not need absurd amounts of time and resources to
train (unless a pre-trained model is highly generic and widely applicable across
domains, something that has not been achieved yet). In this chapter, we are
interested in online learning techniques that quickly learn from user input and
immediately utilize this information. We do this in the context of the Coq proof
assistant [155] and specifically Tactician [19] – a plugin for Coq that is designed
to learn from the proofs written by a user and apply that knowledge to prove
new lemmas.

Tactician performs a number of functions, such as proof recording, tactic
prediction, proof search, and proof reconstruction. In this chapter, we focus on
tactic prediction. For this, we need a machine learning technique that accepts
as input a database of proofs, represented as pairs containing a proof state and
the tactic that was used to advance the proof. From this database, a machine
learning model is built. The machine learning task is to predict an appropriate
tactic when given a proof state. Because the model needs to operate in an
interactive environment, we pose four requirements the learning technique needs
to satisfy:
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1. The model (datastructure) needs to support dynamic updates. That is,
the addition of a new pair of a proof state and tactic to the current model
needs to be done in (near) constant time.

2. The model should limit its memory usage to fit in a consumer laptop. We
have used the arbitrary limit of 4 GB.

3. The model should support querying in (near) constant time.

4. The model should be persistent (in the functional programming sense [43]).
This enables the model to be synchronized with the interactive Coq doc-
ument, in which the user can navigate back and forth.

6.1.1 Contributions

In this work, we have implemented two online learning models. An improved
version of the locality sensitive hashing scheme for k-nearest neighbors is de-
scribed in detail in Subsection 6.3.1. An implementation of random forest is
described in Subsection 6.3.2. In Section 6.4, we evaluate both models, com-
paring the number of lemmas of Coq’s standard library they can prove in a
chronological setting (i.e., emulating the growing library).

In addition to the online models, as a proof of concept, we also experiment
in an offline fashion with boosted trees, specifically XGBoost [33] in Subsec-
tion 6.3.3. Even though the model learned by XGBoost cannot be used di-
rectly in the online setting described above, boosted trees are today among the
strongest learning methods. Online algorithms for boosted trees do exist [171],
and we intend to implement them in the future.

The techniques described here require representing proof states as feature
vectors. Tactician already supported proof state representation using simple
hand-rolled features [18]. In addition, Section 6.2 describes our addition of more
advanced features of the proof states, which are shown to improve Tactician’s
performance in Section 6.4.

6.2 Tactic and proof state representation

To build a learning model, we need to characterize proof states and the tactics
applied to them. To represent tactics, we first perform basic decompositions
and simplifications and denote the resulting atomic tactics by their hashes [18].

Tactician’s original proof state features [18] consist merely of identifiers and
adjacent identifier pairs in the abstract syntax tree (AST). Various other, more
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advanced features have been considered for automated reasoning systems built
over large formal mathematical knowledge bases [35, 56, 84]. To enhance the
performance of Tactician, we modify the old feature set and define new features
as follows.

Top-down oriented AST walks We add top-down oriented walks in the AST
of length up to 3 with syntax placeholders. For instance, the unit clause f(g(x))
will contain the features:

f:AppFun , g:AppFun , x:AppArg , f:AppFun(g:AppFun),

g:AppFun(x:AppArg), f:AppFun(g:AppFun(x:AppArg ))

The feature g:AppFun indicates that g is able to act as a function in the term
tree, and x:AppArg means that x is only an argument of a function.

Vertical abstracted walks We add vertical walks in the term tree from the root
to atoms in which nonatomic nodes are substituted by their syntax roles. For the
term f1(f2(f3(a))), we can convert each function symbol to AppFun whereas the
atom a is transformed to a:AppArg as above. Subsequently, we can export this
as the feature AppFun(AppFun(AppFun(a:AppArg))). Such abstracted features
are designed to better capture the overall abstract structure of the AST.

Top-level structures We add top-level patterns by replacing the atomic nodes
and substructures deeper than level 2 with a single symbol X. Additionally, to
separate the function body and arguments, we append the arity of the function
to the corresponding converted symbol. As an example, consider the term
f(g(b, c), a) consisting of atoms a, b, c, f, g. We first replace a, b, c with X because
they are of arity 0. We further transform f and g to X2 according to the number
of their arguments. However, b and c break the depth constraint and should
be merged to a single X. Finally, the concrete term is converted to an abstract
structure X2(X2(X),X). Abstracting a term to its top-level structure is useful
for determining whether a “logical” tactic should be applied. As an illustration,
the presence of X ∧X in the goal often indicates that we should perform case
analysis by the split tactic. Since we typically do not need all the nodes
of a term to decide such structural information, and we want to balance the
generalization with specificity, we use the maximum depth 2.

Premise and goal separation Because local hypotheses typically play a very
different role than the conclusion of a proof state, we separate their feature
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spaces. This can be done by serially numbering the features and adding a
sufficiently large constant to the goal features.

Adding occurrence counts In the first version of Tactician, we have used only
a simple boolean version of the features. We try to improve on this by adding
the number of occurrences of each feature in the proof state.

6.3 Prediction models

6.3.1 Locality sensitive hashing forests for online k-NN

One of the simplest methods to find correlations between proof states is to
define a metric or similarity function d(x, y) on the proof states. One can then
extract an ordered list of length k from a database of proof states that are as
similar as possible to the reference proof state according to d. Assuming that
d does a good job at identifying similar proof states, one can then use tactics
known to be useful in a known proof state for an unseen proof state. In this
chapter, we refer to this technique as the k-nearest neighbor (k-NN) method
(even though this terminology is somewhat overloaded in the literature).

Our distance function is based on the features described in Section 6.2. We
compare these features using the Jaccard index J(f1, f2). Optionally, features
can be weighted using the tf-idf statistic [78], in which case the generalized
index Jw(f1, f2) is used.

J(f1, f2) =
|f1 ∩ f2|
|f1 ∪ f2|

tf-idf(x) = log
N

|x|N
Jw(f1, f2) =

∑
x∈f1∩f2

tf-idf(x)∑
x∈f1∪f2

tf-idf(x)

Here N is the database size, and |x|N is the number of times feature x occurs
in the database. In previous work [18], there is a more detailed comparison of
similarity functions.

A naive implementation of the k-NN method is not very useful in the online
setting because the time complexity for a query grows linearly with the size of
the database. Indexing methods, such as k-d trees, exist to speed up queries [15].
However, these methods do not scale well when the dimensionality of the data
increases [63]. In this work, we instead implement an approximate version of
the k-NN method based on Locality Sensitive Hashing (LSH) [59]. This is an
upgrade of our previous LSH implementation that was not persistent and was
slower. We also describe our functional implementation of the method in detail
for the first time here.
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The essential idea of this technique is to hash feature vectors into buckets
using a family of hash functions that guarantee that similar vectors hash to the
same bucket with high probability (according to the given similarity function).
To find a k-NN approximation, one can simply return the contents of the bucket
corresponding to the current proof state. For the Jaccard index, the appropriate
family of hash functions are the MinHash functions [27].

The downside of the naive LSH method is that its parameters are difficult to
tune. The probability that the vectors that hash to the same bucket are similar
can be increased by associating more than one hash function to the bucket. All
values of the hash functions then need to pair-wise agree for the items in the
bucket. However, this will naturally decrease the size of the bucket, lowering
the number of examples k (of k-NN) that can be retrieved. The parameter k
can be increased again by simply maintaining multiple independent bucketing
datastructures. Tuning these parameters is critically dependent on the size
of the database, the length of the feature vectors, and the desired value of
k. To overcome this, we implement a highly efficient, persistent, functional
variant of Locality Sensitive Hashing Forest [14] (LSHF), which is able to tune
these parameters automatically, leaving (almost) no parameters to be tuned
manually. Below we give a high-level overview of the algorithm as it is modified
for a functional setting. For a more in-depth discussion on the correctness of
the algorithm, we refer to the previous reference.

LSHFs consist of a forest (collection) of trees T1 . . . Tn. Every tree has an
associated hash function hi that is a member of a (near) universal hashing
family mapping a feature down to a single bit (a hash function mapping to an
integer can be used by taking the result modulus two). To add a new example
to this model, it is inserted into each tree according to a path (sequence) of
bits. Every bit of this path can be shown to be locally sensitive for the Jaccard
index [14]. The path of an example is calculated using the set of features that
represents the proof state in the example.

pathi(f) = sort({hi(x) | x ∈ f})

For a given tree T , the subtree starting at a given path b1 . . . bm can be seen as
the bucket to which examples that agree on the hashes b1 . . . bm are assigned.
Longer paths point to smaller buckets containing less similar examples, while
shorter paths point to larger buckets containing increasingly similar examples.
Hence, to retrieve the neighbors of a proof state with features f , one should start
by finding examples that share the entire path of f . To retrieve more examples,
one starts collecting the subtrees starting at smaller and smaller prefixes of
pathi(f). To increase the accuracy and number of examples retrieved, this
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procedure can be performed on multiple trees simultaneously, as outlined in
Algorithm 5.

Algorithm 5 Querying the Locality Sensitive Hashing Forest

1: function QueryLSHF(F , f) ▷ F a forest, f a feature set
2: P ← ⟨pathi(f) : i ∈ [1..|F|]⟩
3: neighbors ← FilterDuplicates(SimultaneousDescend(F , P))
4: Optionally re-sort neighbors according to real Jaccard index

5: function SimultaneousDescend(F , P)
6: Frel ← ⟨if head(P) then left(T ) else right(T ) : T ∈ F when ¬ leaf(T ) ⟩
7: Firrel ← ⟨if leaf(T ) then T elseif head(P) then right(T )
8: else left(T ) : T ∈ F ⟩
9: if Frel is empty then

10: neighbors ← empty list
11: else
12: P ′ ← ⟨tail(Pi) : i ∈ [1..n]⟩
13: neighbors ← SimultaneousDescend(Frel, P ′)

14: if |neighbors| ≥ k then
15: return neighbors
16: else
17: return Append(neighbors, Concat(⟨Collect(T : T ∈ Firrel⟩)))

Tuning the LSHF model consists mainly of choosing the appropriate number
of trees that maximizes the speed versus accuracy trade-off. Experiments show
that 11 trees is the optimal value. Additionally, for efficiency reasons, it is a
good idea to set a limit on the depth of the trees to prevent highly similar
examples from creating a deep tree. For our dataset, a maximum depth of 20
is sufficient.

6.3.2 Online random forest

Random forest is a popular machine learning method combining many random-
ized decision trees into one ensemble, which produces predictions via voting [25].
Even though the decision trees are not strong learners on their own, because
they are intentionally decorrelated, the voting procedure greatly improves on
top of their individual predictive performance. The decision trees consist of
internal nodes labeled by decision rules and leaves labeled by examples. In our
case, these are tactics to be applied in the proofs.



96 Chapter 6. Online machine learning for Coq

Random forest iis a versatile method that requires little tuning of its hyper-
parameters. Their architecture is also relatively simple, which makes it easy
to provide a custom OCaml implementation easily integrable with Tactician,
adhering to its requirement of avoiding mutable data structures. Direct usage
of existing random forest implementations is impossible due to challenges in
Tactician’s learning setting. These challenges are: (1) numerous sparse features,
(2) the necessity of online learning, as detailed in the next two paragraphs.

The decision rules in nodes of the decision trees are based on the features of
the training examples. These rules are chosen to maximize the information gain,
i.e., to minimize the impurity of the set of labels in the node.2 There are more
than 37 000 binary and sparse features in Tactician. Since the learner integrated
with Tactician needs to be fast, one needs to be careful when optimizing the
splits in the tree nodes.

Random forests are typically trained in an offline manner where the whole
training data is available at the beginning of the training. In Tactician, this
would be quite suboptimal. To take advantage of the locality of proof similarity
and to be able to use data coming from new proofs written by a user, we want
to immediately update the machine learning model after each proof.

There are approaches to turn random forests into online learners [42, 141]
which inspired our implementation. The authors of [42] propose a methodology
where new training examples are passed to the leaves of the decision trees, and
under certain statistical conditions, the leaf is split and converted to a new
decision node followed by two new leaves. We take a similar approach, but
deciding a split in our implementation is simpler and computationally cheaper.

The pseudocode describing our implementation is presented below. Algo-
rithm 6 shows how the training examples are added to the decision trees. A new
training example is passed down the tree to one of its leaves. The trajectory
of this pass is governed by binary decision rules in the nodes of the tree. Each
rule checks whether a given feature is present in the example. Once the exam-
ple reaches a leaf, it is saved there, and a decision is made whether to extend
the tree (using function SplitCondition). This happens only when the Gini
impurity measure [109] on the set of examples in the leaves is greater than a
given impurity threshold i (a hyper-parameter of the model). When the split is
done, the leaf becomes an internal node with a new split rule, and the collected
examples from the leaf are passed down to the two new leaves. The new rule
(an output from GenerateSplitRule) is produced in the following way. N
features are selected from the features of the examples, where N is the square

2If we have labels {a, a, b, b, b}, ideally, we would like to produce a split which passes all
the examples with label a to one side and the examples with b to the other side.
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Algorithm 6 Adding training a example e to a decision tree T
1: function AddExampleToTree(T , e)
2: match T with
3: Node(R, Tl, Tr): ▷ R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)
6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))
7: Leaf(l, E): ▷ l – label/tactic, E – examples
8: E ← Append(E , e)
9: if SplitCondition(E) then

10: R ← GenerateSplitRule(E)
11: E l, Er ← Split(R, E)
12: ll ← label of random example from El
13: lr ← label of random example from Er
14: return Node(R, Leaf(ll, El), Leaf(lr, Er))
15: else
16: return Leaf(l, E)

root of the number of examples. The selection of the features is randomized and
made in such a way that features that are distinguishing between the examples
have higher probability: First, we randomly select two examples from the leaf,
and then we randomly select a feature from the difference of sets of features
of the two examples. Among such selected features, the one maximizing the
information gain [109] of the split rule based on it is selected. The two new
leaves get labels randomly selected from the examples belonging to the given
leaf.

When adding an example to a random forest (Algorithm 7), first, a decision
is made whether a new tree (in the form of a single leaf) should be added to
the forest. It happens with probability 1

n , where n is the number of trees in the
forest under the condition that n is lower than a given threshold.

Predicting a tactic for a given example with a random forest (Algorithm 8)
is done in two steps. First, the example is passed to the leaves of all the trees
and the labels (tactics) in the leaves are saved. Then the ranking of the tactics
is made based on their frequencies.
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Algorithm 7 Adding a training example e to a random forest F
1: function AddExampleToForest(F , e, nmax) ▷ nmax – max n. of trees
2: n ← number of trees in F
3: m ← random number from {1, . . . , n}
4: Fupdated ← empty list
5: if n < nmax and m = 1 then
6: T ← leaf labeled by tactic used in e
7: Fupdated ← Append(Fupdated, T )
8: for all T ∈ F do
9: T ← AddExampleToTree(T , e)

10: Fupdated ← Append(Fupdated, T )
11: return Fupdated

Algorithm 8 Predicting labels for unlabeled e in the random forest F
1: function PredictForest(F , e)
2: P ← empty list ▷ P – predictions
3: for all T ∈ F do
4: t ← PredictTree(e)
5: append t to P
6: R← Vote(P) ▷ R – ranking of tactics
7: return R
8: function PredictTree(T , e)
9: match T with

10: Node(R, T l, T r):
11: match R(e) with
12: Left: return PredictTree(T l, e)

13: Right: return PredictTree(T r, e)

14: Leaf(l, E): return l
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Figure 6.1: Results of hyper-parameter tuning for random forests. Two accuracy
metrics are shown: top-10 accuracy (how often the correct tactic was present
in the first 10 predictions) and top-1 accuracy (how often the correct tactic
coincided with the first prediction).
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Tuning hyper-parameters

There are two hyper-parameters in our implementation of random forests: (1)
the maximal number of trees in the forest and (2) the impurity threshold for
deciding performing the node splits. the influence of these parameters on the
predictive power, we perform a grid search. For this, we randomly split the
data that is not held out for testing (see Subsection 6.4.1) into a training and
validation part. The results of the grid search are shown in Figure 6.1. The
best numbers of trees are 160 for top-1 accuracy and 320 for top-10 accuracy,
where top-n refers to the frequency of the correct tactic being present in the
first n predictions from a machine learning model. We used these two values
for the rest of the experiments. For the impurity threshold, it is difficult to see
a visible trend in performance; thus we selected 0.5 as our default.

6.3.3 Boosted trees

Gradient boosted decision trees is a state-of-the-art machine learning algorithm
that transforms weak base learners, decision trees, into a method with stronger
predictive power by appropriate combinations of the base models. One efficient
and powerful implementation is the XGBoost library [33]. Here, we perform
some initial experiments in an offline setting for tactic prediction. Although
XGBoost can at the moment not be directly integrated with Tactician, this
gives us a useful baseline based on existing state-of-the-art technology. Below,
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we illustrate a procedure of developing our XGBoost model based on binary
logistic regression.

The input to XGBoost is a sparse matrix containing rows with the format of
(ϕP , ϕT ) where ϕP includes the features of a proof state, and ϕT characterizes
a tactic related to the proof state. We transform each proof state to a sparse
feature vector ϕP containing the features’ occurrence counts. Since there may
be a large number of features in a given Coq development environment, which
may hinder the efficiency of training and prediction, it is reasonable to decrease
the dimension of the vectors. We hash the features to 20 000 buckets by using
the modulo of the feature’s index. As above, we also remap the tactic hashes
to a 20 000-dimensional space separated from the state features.

The training examples get labels 1 or 0 based on the tactics being useful
or not for the proof state. A tactic for a certain proof state is labeled as pos-
itive if it is exactly the one applied to this state in the library. In contrast,
negative tactics are elements in the tactic space that differ from the positive
instance. We obtain negative data by two approaches: strong negatives and
random negatives. Strong negative instances are obtained by arbitrarily select-
ing a subset from the best-100 k-NN predictions for this state. In the other
approach, negative instances are arbitrarily chosen from the entire tactic space.

With a trained gradient boosted trees model, we can predict the scores of
the tactics for an unseen proof state P . First, the top-100 k-NN predictions are
preselected. Then, for each tactic, we input (ϕP , ϕT ) to the model to obtain
the score of T . The tactics are then sorted according to their scores.

Tuning hyper-parameters

Similarly as for the random forest model (Subsection 6.3.2), we optimize the
most important hyper-parameters of the XGBoost training algorithm on the
data coming from the non-sink nodes in the dependency graph of Coq’s stan-
dard library (see Subsection 6.4.1). One essential parameter is the ratio of
negative examples. Ratio n indicates that we generate n negative instances for
each recorded proof state. Other influential parameters that we tune are: eta
(learning-rate), number of trees, and max depth. Due to the limitations of com-
puting resources, we assume a set of default parameters: ratio = 8, eta = 0.2,
number of trees = 500, max depth = 10, and then separately modify each of
these parameters to observe the influence caused by the change, which is de-
picted in Figure 6.2. Both strong and random negatives are evaluated. Strong
negatives perform better than random negatives, and increasing the negative
ratios will likely lead to higher success rates. The figure also shows that a higher
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Figure 6.2: Results of hyper-parameter tuning for gradient boosted trees. As
in Figure 6.1, two metrics are shown: top-10 and top-1 accuracy. In the lower
right pane we also show the results for random negative examples sampling.

0.10

0.15

0.20

0.25

0.30

1 4 16 64 256 1024 4096
Trees

A
cc

ur
ac

y Accuracy

top 1

top 10
0.1

0.2

0.3

1 2 4 8 161 2 4 8 16
Depth

A
cc

ur
ac

y Accuracy

top 1

top 10

0.1

0.2

0.3

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.280.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28
Eta

A
cc

ur
ac

y Accuracy

top 1

top 10

0.1

0.2

0.3

1 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 32
Negatives ratio

A
cc

ur
ac

y Random

no

yes



102 Chapter 6. Online machine learning for Coq

number of trees results in better performance. Learning rates that are between
0.08 and 0.64 give good results. It is also apparent that deeper trees (at least
8) increase the accuracy.

Experimental setup

The XGBoost model is evaluated on the task of tactic prediction both in the split
setting and the chronological setting (both described in Section 6.4). We use
the strong negative examples and determine the final parameters – ratio = 16,
eta = 0.2, number of trees = 1024, max depth = 10 – for generating a model
from non-sink nodes and use that to predict for sink nodes.

Since the entire dataset contains approximately 250 000 proof states, and
it is time-consuming to generate a unique XGBoost model for each test case,
we propose several ways to speed up the chronological evaluation. Instead of
training on the data from all preceding states, we merely provide 1000 instances
occurring previously as the training data. According to the results of parameter
tuning depicted in Figure 6.2, we decide on the following hyper-parameters to
balance the accuracy and efficiency: ratio = 4, eta = 0.2, number of trees = 256,
max depth = 10.

6.4 Experimental evaluation

To compare the performance of the described machine learning models, we
perform three kinds of experiments: split evaluation, chronological evaluation,
and evaluation in Tactician. Achieving good performance in the last type of
evaluation is the main goal. All three machine learning models are evaluated
in the first two kinds of experiments, while in Tactician we only evaluate k-NN
and online random forest. This is because the XGBoost system, while being
potentially the strongest machine learner among tested, cannot be easily turned
into an online learner and integrated into Tactician. We adopt the original
features – terms and term pairs – for evaluation outside Tactician, whereas
both the original features and the new are tested on Tactician’s benchmark. To
determine the relative importance of the feature classes described in Section 6.2,
we benchmark the addition of each class separately in Tactician. All evaluations
are performed on data extracted from the standard library of Coq 8.11.
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Table 6.1: Performance of the three tested machine learning models in two
types of evaluation: using the training/testing split of the dataset and the
chronological evaluation. Random forest performs substantially better than
k-NN and XGBoost in both types of evaluation.

machine learning system

k-NN random forest XGBoost

evaluation type top-1 top-10 top-1 top-10 top-1 top-10

split 18.8% 34.2% 32.1% 41.2% 18.2% 38.2%
chronological 17.3% 43.7% 29.9% 58.9% 18.2% 43.4%

6.4.1 Split evaluation

In the directed acyclic graph of dependencies of the Coq modules, there are
545 nodes. 104 of them are sink nodes, i.e., these are the modules that do not
appear among dependencies of any other module. We used these modules as
final testing data for evaluation outside Tactician. The rest of the data was
randomly split into training and validation parts and was used for parameter
tuning of random forest and gradient boosted trees. The models with tuned
hyper-parameters were evaluated on the testing data. The results of the evalu-
ation of the three tested models are shown in the first row of Table 6.1.

6.4.2 Chronological evaluation

Although the split evaluation from the previous experiment is interesting, it
does not correspond entirely to the Tactician’s internal mode of operation. To
simulate the real-world scenario in an offline setting, we create an individual
model for each proof state by learning from all the previous states – data from
dependent files and preceding lines in the local file. The second row of Table 6.1
presents the results of the evaluation in chronological order.

6.4.3 Evaluation in Tactician

Table 6.2 shows the results of the evaluation of two online learners – the k-NN
and the random forest – within Tactician. The hyper-parameters of the random
forest model were chosen based on the grid search in Subsection 6.3.2. We run
the proof search for every lemma in the library with a 40-second time limit on
both the original and the improved features.
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Table 6.2: Proving performance of two online learners integrated with Tacti-
cian, k-NN and random forest, in the Coq standard library. The percentages in
the table correspond to the fraction of lemmas proved in a given Coq module.
The columns union show what fraction of the lemmas was proved by at least
one of the learners. RF is an abbreviation of random forest. Random forest
performs better than k-NN, but the improvement is not uniform across the Coq
modules.

Coq module #lemmas features type

original new

k-NN RF union k-NN RF union

all 11 370 33.7% 35.3% 39.6% 34.7% 36.2% 40.4%

Arith 293 52% 59% 65% 56% 59% 66%
Bool 130 93% 87% 93% 92% 88% 92%
Classes 191 80% 76% 81% 79% 79% 83%
FSets 1137 32% 34% 37% 32% 35% 39%
Floats 5 20% 20% 20% 40% 19% 40%
Init 164 73% 51% 73% 73% 56% 73%
Lists 388 38% 43% 47% 38% 44% 49%
Logic 341 31% 27% 34% 32% 31% 35%
MSets 830 38% 40% 43% 36% 40% 43%
NArith 288 37% 43% 44% 35% 42% 47%
Numbers 2198 23% 22% 27% 24% 23% 27%
PArith 280 31% 40% 44% 35% 39% 45%
Program 28 75% 64% 75% 78% 66% 78%
QArith 295 33% 40% 43% 31% 39% 45%
Reals 1756 19% 23% 25% 21% 24% 26%
Relations 37 29% 24% 40% 27% 26% 29%
Setoids 4 100% 100% 100% 100% 97% 100%
Sets 222 43% 42% 49% 49% 47% 53%
Sorting 136 26% 29% 33% 25% 30% 33%
Strings 74 22% 22% 27% 17% 14% 20%
Structures 390 45% 49% 54% 51% 51% 56%
Vectors 37 37% 29% 40% 21% 23% 27%
Wellfounded 36 19% 05% 19% 16% 13% 16%
ZArith 953 41% 46% 49% 40% 43% 46%
btauto 44 11% 20% 20% 20% 17% 22%
funind 4 75% 50% 75% 50% 73% 75%
micromega 339 21% 27% 29% 27% 25% 30%
nsatz 27 33% 33% 37% 40% 26% 40%
omega 37 40% 67% 67% 48% 63% 64%
rtauto 33 30% 39% 48% 33% 44% 51%
setoid ring 362 21% 23% 26% 27% 27% 30%
ssr 311 68% 55% 69% 70% 57% 71%
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Table 6.3: Proving performance of each feature modification. O,W,V, T ,S, C
denote original features, top-down oriented AST walks, vertical abstract walks,
top-level structures, premise and goal separation, and adding feature occur-
rence, respectively. The symbol ⊕ denotes that we combine the original features
and a new modification during the experiments.

features O O ⊕W O ⊕ V O ⊕ T O ⊕ S O ⊕ C
success rate (%) 32.75 32.82 34.16 33.65 34.42 34.97

The random forest performed marginally better than k-NN on both kinds
of features. With old features the k-NN proved 3831 lemmas (being 33.7% out
of all 11 370), whereas the random forest proved 4011 lemmas (35.3% of all).
With the new features, both models performed better, and again, the random
forest proved more lemmas (4117, 36.2% of all) than k-NN (3945, 34.7% of all).

It is somewhat surprising that the random forest, which performed much
better than k-NN on the split in the offline evaluation, is only better by a small
margin in Tactician. This may be related to the time and memory consumption
of random forest, which may be higher than for k-NN on certain kinds of data.3

It is worth noting that k-NN and random forest resulted in quite different
sets of proofs. The columns marked as union show that the size of the union of
proofs constructed by the two models is substantially larger than the number
of proofs found by each model separately. In total, both models resulted in
4503 (39.6%) proofs using old features and 4597 (40.4%) proofs using the new
features.

6.4.4 Feature evaluation

Table 6.3 depicts the influence of adding the new classes of features described in
Section 6.2 to the previous baseline.4 All of the newly produced features improve
the success rates. However, the top-down oriented AST walks contribute little,
probably due to Tactician having already included term tree walks up to length
2. Every other modification obtains a reasonable improvement, which confirms
the intuitions described in Section 6.2.

3Splitting the leaves has quadratic time complexity with respect to the number of exam-
ples stored in the leaf; sometimes it happens, that leaves of the trees store large number of
examples.

4The results here are not directly comparable to those in Table 6.2 mainly due to the usage
of a non-indexed version of k-NN in contrast to Algorithm 5.
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6.5 Related work

Random forests were first used in the context of theorem proving by Färber [47],
where multi-path querying of a random forest would improve on k-NN results
for premise selection. This work, however, did not integrate the machine-learned
advisor into a proof assistant as we do, but instead performed an external evalu-
ation using an automated theorem prover. Nagashima and He [113] proposed a
proof method recommendation system for Isabelle/HOL based on decision trees
on top of precisely engineered features. A small number of trees and features al-
lowed for explainable recommendations. However, their implementation do not
allow for incremental updating the trees with new examples. Frameworks based
on random boosted trees (XGBoost, LightGBM) have also been used in auto-
mated reasoning, in the context of guiding tableaux connection proof search [83]
and the superposition calculus proof search [35], as well as for handling negative
examples in premise selection [127].

Machine learning to predict tactics was first considered by Gauthier et
al. [56] in the context of the HOL4 theorem prover. His later improvements [56]
added Monte-Carlo tree search, tactic orthogonalization, and integration of both
Metis and a hammer [54]. In this line of work, for tactic prediction a k-NN algo-
rithm was used. A similar system for HOL Light, where deep learning is used,
was developed by Bansal et al. [7]. Nagashima and Kumar developed the proof
search component [114] of such a system for Isabelle/HOL. This work builds
upon Tactician [18,19], adapting and improving these works for dependent type
theory and the Coq proof assistant.

6.6 Conclusions and future work

We have implemented several new methods for learning tactical guidance of Coq
proofs in the Tactician system. This includes better proof state features and an
improved version of approximate k-nearest neighbor based on locality sensitive
hashing forests. A completely new addition is our online implementation of
random forest in Coq, which can now be used instead of or together with the
k-nearest neighbor. We have also started to experiment with strong state-of-
the-art learners based on gradient boosted trees, so far in an offline setting using
binary learning with negative examples.

Our random forest improves substantially on the k-nearest neighbor in an
offline accuracy-based evaluation. In an online theorem-proving evaluation, the
improvement is not as big, possibly due to the speed of the two methods and the
importance of backtracking during the proof search. The methods are, however,
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quite complementary and running both of them in parallel increases the overall
performance of Tactician from 33.7% (k-NN with the old features) to 40.4% in
40 s. Our best new method (RF with the new features) now solves 36.2% of
the problems in 40 s.

The offline experiments with gradient boosted trees are so far inconclusive.
They outperform k-nearest neighbor in top-10 accuracy, but the difference is
small, and the random forest performs much better in this metric. Since the
random forest learns only from positive examples, this likely shows that learning
in the binary setting with negative examples is challenging on our Tactician
data. In particular, we likely need good semantic feature characterizations of
the tactics, obtained, e.g., by computing the difference between the features
of the proof states before and after the tactic application. The experiments,
however, already confirm the importance of choosing good negative data to
learn from in the binary setting.
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Chapter 7

Machine-learned premise
selection for Lean∗

Abstract

We introduce a machine-learning-based tool for the Lean proof
assistant that suggests relevant premises for theorems being proved
by a user. The design principles for the tool are (1) tight integra-
tion with the proof assistant, (2) ease of use and installation, (3) a
lightweight and fast approach. For this purpose, we designed a cus-
tom version of the random forest model, trained in an online fashion.
It is implemented directly in Lean, which was possible thanks to the
rich and efficient metaprogramming features of Lean 4. The random
forest is trained on data extracted from mathlib – Lean’s mathe-
matics library. We experiment with various options for producing
training features and labels. The advice from a trained model is
accessible to the user via the suggest premises tactic which can
be called in an editor while constructing a proof interactively.

∗This chapter is based on a join work with Ramon Fernández Mir and Edward Ayers. I led
the project. I implemented and evaluated custom versions of the random forest and k-nearest
neighbours algorithms. Ramon Fernández Mir implemented the data extraction tool. Edward
Ayers implemented the interface allowing to use the tool in Visual Studio Code interactively.
The text, except Section 7.2, was written by me, and it was complemented and improved
together with the other authors.
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7.1 Introduction

Formalizing mathematics in proof assistants is an ambitious and hard under-
taking. One of the major challenges in constructing formal proofs of theorems
depending on multiple other results is the prerequisite of having a good famil-
iarity with the structure and contents of the library. Tools for helping users
search through formal libraries are currently limited.

In the case of Lean proof assistant [37], users may look for relevant lemmas
in its formal library, mathlib [104], either by (1) using general textual search
tools and keywords, (2) browsing the related source files manually, (3) using
mathlib’s suggest or library search tactics.

Approaches (1) and (2) are often slow and tedious. The limitation of ap-
proach (3) is the fact that suggest or library search propose premises that
strictly match the goal at the current proof state. This is often very useful, but
it also means that these tactics often fail to direct the user to relevant lemmas
not exactly matching the current goal. They may also suggest too many trivial
lemmas if the goal is simple. Sometimes they are unable to help, like in proofs
by contradiction where the only unchanging goal is simply False.

The aim of this project is to make progress towards improving the situa-
tion of a Lean user looking for relevant lemmas while building a proof. We
develop a new tool that efficiently computes a ranking of potentially useful
lemmas selected by a machine learning (ML) model trained on data extracted
from mathlib. This ranking can be accessed and used interactively via the
suggest premises tactic.

The project described here belongs to the already quite broad body of work
dealing with the problem of fact selection for theorem proving [1,71,80,97,108,
127,130]. This problem, commonly referred to as the premise selection problem,
is crucial when performing automated reasoning in large formal libraries – both
in the context of automated (ATP) and interactive (ITP) theorem proving,
and regardless of the underlying logical calculus. Most of the existing work
on premise selection focuses on the ATP context. Our main contribution is
the development of a premise selection tool that is practically usable in a proof
assistant (Lean in that case), tightly integrated with it, lightweight, extendable,
and equipped with a convenient interface. The tool is available in a public
GitHub repository: https://github.com/BartoszPiotrowski/lean-premi

se-selection.

https://github.com/BartoszPiotrowski/lean-premise-selection
https://github.com/BartoszPiotrowski/lean-premise-selection


7.2. Dataset collection 111

7.2 Dataset collection

A crucial requirement of a useful ML model is a high-quality dataset of training
examples. It should represent the learning task well and be suitable for the ML
architecture being applied.

In this work, we use simple ML architectures that cannot process raw theo-
rem statements and require featurization as a preprocessing step. The features
need to be meaningful yet simple so that the model can use them appropriately.
Our approach is described in Subsection 7.2.1. The notion of relevant premise
may be understood differently depending on the context. In Subsection 7.2.2,
we describe three specifications of this notion that we used in our experiments.

This project is implemented in Lean 4 but, at the time of writing, Lean 4’s
library is being ported from Lean 3, so we use mathlib3port2 as our main data
source.

7.2.1 Features

The features, similar to those used in [74, 127], consist of the symbols used in
the theorem statement with different degrees of structure. In particular, three
types of features are used: names, bigrams and trigrams. As an illustration,
consider this theorem from Algebra/GroupWithZero/Units/Basic.lean:

theorem div_ne_zero (ha : a ̸= 0) (hb : b ̸= 0) : a / b ̸= 0 := . . .

The most basic form of featurization is the bag-of-words model, where we
simply collect all the names (and numerical constants) involved in the theorem.
The ones starting with T appear in the conclusion, while the ones starting with
H appear in the hypotheses.

H:OfNat.ofNat H:MonoidWithZero.toZero H:0 H:Ne T:HDiv.hDiv T:0 T:Ne . . .

It would be desirable, however, to keep track of which symbols appear next
to each other in the syntactic trees of the theorem hypotheses and its statement.
Thus, we extract bigrams that are formed by the head symbol and each of its
arguments (separated by / below).

H:Ne/OfNat.ofNat H:OfNat.ofNat/0 T:OfNat.ofNat/0 T:Ne/OfNat.ofNat . . .

Similarly, we also consider trigrams, taking all paths of length 3 from the
syntactic tree of the expression:

2https://github.com/leanprover-community/mathlib3port (commit f4e5dfe)

https://github.com/leanprover-community/mathlib3port
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Table 7.1: Filters’ statistics. An example is a theorem with a non-empty list of
premises.

all source math

total premises 96 915 28 784 67 462
total examples 41 755 20 571 40 187
premises per example 3.12 2.35 2.09

H:Ne/OfNat.ofNat/0 H:Ne/OfNat.ofNat/Zero.toOfNat0

T:HDiv.hDiv/instHDiv/GroupWithZero.toDiv T:Ne/HDiv.hDiv/OfNat.ofNat . . .

7.2.2 Relevant premises

To obtain the list of all the premises used in the proof term it suffices to tra-
verse the Lean expression and keep track of all the constants whose type is a
proposition. For instance, the raw list of premises that appear in the proof of
le_of_pred_lt is:

GroupWithZero.noZeroDivisors

mul_ne_zero

inv_ne_zero

Eq.refl

div_eq_mul_inv

This approach, however, results in a large number of premises including
lemmas used implicitly by tactics, or simple facts that a user would rarely write
explicitly. Three different filters are applied to mitigate this issue: all, source,
and math. They are described below. Their overall effect is shown in Table 7.1.

1. The all filter preserves almost all premises from the original, raw list,
removing those that were generated automatically by Lean. They can
be recognized by containing a leading underscore in their names, e.g.,
RingTheory.MatrixAlgebra. auxLemma.1. In our example, there is no
such a premise. Examples from this filter are not appropriate for training
an ML advisor for interactive use as the suggestions would contain many
lemmas used implicitly by tactics. Yet, such an advisor could be used for
automated ITP approaches such as hammers [22].

2. The source filter leaves only those premises that appear in the proof’s
source code. The idea is to model the explicit usage of premises by a user.
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Following our example, we would take the following proof as a string and
list only the three mathlib premises appearing there:

by rw [div_eq_mul_inv]; exact mul_ne_zero ha (inv_ne_zero hb)

3. The math filter preserves only lemmas that are clearly of mathematical
nature, discarding basic, technical ones. The names of all theorems and
definitions from mathlib are extracted and used as a white list. In partic-
ular, this means that many basic lemmas from the Core library of Lean
(like, e.g., rfl, congr arg) are filtered out. In our running example, the
premise Eq.refl would be removed.

7.3 Machine learning models

The task modelled here with ML is predicting a ranking of likely useful premises
(lemmas and definitions) conditioned by the features of the statement of a the-
orem being proved by a user. The nature of this problem is different than
common applications of classical ML: both the number of features and labels to
predict (premises) is large, and the training examples are sparse in the feature
space. Thus, we could not directly rely on the traditional implementations of
ML algorithms, and using custom-built versions was necessary. As one of our
design requirements was tight integration with the proof assistant, we imple-
mented the ML algorithms directly in Lean 4, without a need to call external
tools. This also served as a test for the maturity and efficiency of Lean 4 as a
programming language.

In Subsections 7.3.1 and 7.3.2 we describe two ML algorithms implemented
in this work: k-nearest neighbours and random forest.

7.3.1 k-nearest neighbours

This is a classical and conceptually simple ML algorithm [65], which has already
been used multiple times for premise selection [21,80,82]. It belongs to the lazy
learning category, meaning that it does not result in a prediction model trained
beforehand on the dataset, but rather the dataset is an input to the algorithm
while producing the predictions.

Given an unlabeled example, k-NN produces a prediction by extracting the
labels of the k most similar examples in the data set and returning an averaged
(or most frequent) label. In our case, the labels are lists of premises. We
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compose multiple labels into a ranking of premises according to the frequency
of appearance in the concatenated labels.

The similarity measure in the feature space calculates how many features
are shared between the two data points, but additionally puts more weight on
those features that are more rare in the whole training data set D. The formula
for the similarity of the two examples x1 and x2 associated with sets of features
f1 and f2, respectively, is given below.

M(x1, x2) =

∑
f∈f1∩f2

t(f)∑
f∈f1

t(f) +
∑

f∈f2
t(f)−

∑
f∈f1∩f2

t(f)
,

where

t(f) = log

(
|D|
|Df |

)2

,

where Df are those training examples that contain the feature f .
The advantages of k-NN are its simplicity and the lack of training. A dis-

advantage, however, is the need to traverse the whole training data set in order
to produce a single prediction (a ranking). This may be slow, and thus not
optimal for interactive usage in proof assistants.

7.3.2 Random forest

As an alternative to k-NN, we use random forest [25] – an ML algorithm from the
eager learning category, with a separate training phase resulting in a prediction
model.

Random forest uses a collection of decision trees. The leaves of the trees
contain labels, and their nodes decision rules based on the features. In our
case, the labels are sets of premises, and the rules are simple tests that check if
a given feature appears in an example.

When predicting, unlabeled examples are passed down the trees to the
leaves, the reached labels are recorded, and the final prediction is averaged
across the trees via voting. The trees are trained in such a way as to avoid
correlations between them, and the averaged prediction from them is of better
quality than the prediction from a single tree.

Our version of random forest, adapted to deal with sparse binary features
and a large number of labels, is similar to the one used in [172]. It is trained in
the online manner, i.e., it is updated sequentially with single training examples –
not with the entire training data set at once, as is typically done. The rationale
for this is to make it easy to update the model with data coming from new
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theorems proved by a user. This allows the model to immediately provide
suggestions taking into account these recently added theorems.

Algorithm 9 provides a sketch of how a training example updates a tree – for
all the details see the actual implementation in our public GitHub repository.3

A crucial part of the algorithm is the MakeSplitRule function creating node
splitting rules. Searching for the rules resulting in optimal splits would be costly,
thus this function relies on heuristics.

Figure 7.1 schematically depicts how a simple decision tree from a trained
random forest predicts a set of premises for an input example.

Algorithm 9 Updating the tree T with the training example e in a random
forest.

1: function AddExampleToTree(T , e)
2: match T with
3: Node(R, Tl, Tr): ▷ R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with ▷ passing example e down the tree to a leaf
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)

6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))

7: Leaf(E): ▷ E – examples stored in the leaf
8: E ← Append(E, e)
9: if SplitCondition(E) then ▷ testing if the leaf should be split

10: R ← MakeSplitRule(E) ▷ new semi-optimized split rule
11: El, Er ← Split(R, E) ▷ splitting examples into two parts
12: return Node(R, Leaf(El), Leaf(Er)) ▷ new subtree
13: else
14: return Leaf(E) ▷ the original leaf with the new example e

7.4 Evaluation setup and results

To assess the performance of the ML algorithms, the data points extracted from
mathlib were split into training and testing sets. The testing examples come
from the modules that are not dependencies of any other modules (there are
592 of them). This simulates a realistic scenario in which a user utilizing the
suggestion tool develops a new mathlib module. The rest of the modules (2436)
served as the source of training examples.

3The decision tree implementation is in a file PremiseSelection/Tree.lean

https://github.com/BartoszPiotrowski/lean-premise-selection/blob/main/PremiseSelection/Tree.lean
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R, T, UR, X R, T, U
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Figure 7.1: A schematic example of a decision tree from a trained random
forest. Lowercase letters (a, b, c, ...) designate features of theorem statements,
whereas uppercase letters (P, Q, R, ...) designate names of premises. The input
(a featurized theorem statement) is being passed down the tree (along the green
arrows) in such a way that each node tests for a presence of a certain single
feature, and passes the input example to the left (or right) sub-tree in the
negative (or positive) case. The output is a set of premises in the reached leaf.

Two measures of the quality of the rankings produced by ML are defined:
Cover and Cover+. Assuming a theorem T depends on the set of premises P
of size n, and R is the ranking of premises predicted by the ML advisor for T ,
these measures are defined as follows:

Cover(T ) =

∣∣P ∩R[:n]
∣∣

n
, Cover+(T ) =

∣∣P ∩R[:n+ 10]
∣∣

n
,

where R[:k] is a set of k initial premises from ranking R. Both Cover and
Cover+ return values in [0, 1]. Cover gives the score of 1 only for a “perfect”
prediction where the premises actually used in the proof form an initial segment
of the ranking. Cover+ may also give a perfect score to less precise predictions.
The rationale for Cover+ is that the user in practice may look through 10 or
more suggested premises. This is often more than the n premises actually used
in the proof, so we consider initial segments of length n+ 10 in Cover+.

Both k-NN and random forest are evaluated on data subject to all three
premise filters described in Subsection 7.2.2. For each of these variants of
data, three combinations of features are tested: (1) names only, (2) names and
bigrams, (3) names, bigrams, and trigrams. The hyper-parameters for the ML
algorithms were selected by an experiment on a smaller data set. For k-NN,
the number of neighbours was fixed to 100. For random forest, the number of
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trees was set to 300, each example was used for training a particular decision
tree with probability 0.3, and the training algorithm passed through the whole
training data 3 times.

Table 7.2 shows the results of the experiment. In terms of the Cover metric,
random forest performed better than k-NN for all data configurations. However,
for Cover+ metric, k-NN surpassed random forest for the math filter.

It turned out that the union of names and bigrams constitutes the best
features for all the filters and both ML algorithms. It likely means that the
more complex trigrams did not help the algorithms to generalize well but
rather caused over-fitting on the training set.4

The results for the all filter appear to be much higher than for the other two
filters. However, this is because applying all results in many simple examples
containing just a few common, basic premises (e.g., just a single rfl lemma).
They increase the average score.

Overall, the random forest with names + bigrams features gives the best
results. An additional practical advantage of this model over k-NN is the speed
of outputting predictions. For instance, for the source filter and n+b features,
the average times of predicting a ranking of premises per theorem were 0.28 s
and 5.65 s for random forest and k-NN, respectively.

The evaluation may be reproduced by following the instructions in the source
code available at https://github.com/BartoszPiotrowski/lean-premise
-selection#reproducing-evaluation.

7.5 Interactive tool

The ML predictor is wrapped in an interactive tactic suggest premises that
users can type into their proof script. It will invoke the predictor and produce
a list of suggestions. This list is displayed in the ‘infoview,’ a panel in Lean
that displays goal states and other information about the prover’s state. The
display makes use of the new remote-procedure-call (RPC) feature in Lean
4, to then asynchronously run various tactics for each suggestion. Given a
suggested premise p, the system will attempt to run tactics apply p, rw [p],
simp only [p] and return the first successful tactic application that advances
the state. This will then be displayed to the user as shown in Figure 7.2 where
the user can select the resulting tactic to insert into the proof script. By using

4It means that trigrams, being more specific features than the other two types, likely
exposed spurious correlations in the training data that were exploited by the machine learning
model.

https://github.com/BartoszPiotrowski/lean-premise-selection#reproducing-evaluation
https://github.com/BartoszPiotrowski/lean-premise-selection#reproducing-evaluation
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Table 7.2: Average performance of random forest and k-NN on testing data,
for three premises filters and three kinds of features. The type of features is
indicated by a one-letter abbreviation: n = names, b = bigrams, t = trigrams.
For each configuration, Cover and Cover+ measures are reported (the latter in
brackets). In each row, the best Cover result is bolded. The random forest
consistently performed better than k-NN. Using the combination of names and
bigrams as features was optimal.

machine learning model

random forest k-nearest neighbours

premises n n+b n+b+t n n+b n+b+t

all 0.56 (0.67) 0.57 (0.67) 0.47 (0.58) 0.51 (0.65) 0.52 (0.66) 0.51 (0.62)

source 0.28 (0.36) 0.29 (0.36) 0.28 (0.36) 0.25 (0.35) 0.25 (0.36) 0.26 (0.35)

math 0.25 (0.32) 0.26 (0.33) 0.16 (0.24) 0.22 (0.34) 0.23 (0.34) 0.16 (0.26)

an asynchronous approach, we can display results rapidly without needing to
wait for a slow tactic search to complete.

7.6 Future work

The results may be improved by augmenting the dataset with all intermediate
tactic states, as well as developing better features, utilizing the well-defined
structure of Lean expressions.

Applying modern neural architectures in place of the simpler ML algorithms
used here is a promising path [157]. It would depart from our philosophy of
a lightweight, self-contained approach as the suggestions would come from an
external tool, possibly placed on a remote server. However, given the strength
of the current neural architectures, we could hope for higher-quality predictions.
Moreover, neural models do not require hand-engineered features.

Finally, premise selection is an important component of ITP hammer sys-
tems [22]. The presented tool may be readily used for a hammer in Lean, which
has not yet been developed.
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Figure 7.2: The interactive tool in Visual Studio Code. The left pane shows
the source file with the cursor over a suggest premises tactic. The right pane
shows the goal state at the cursor position and, below, the suggested lemmas
to solve the goal. Suggestions annotated with a checkbox advance the goal
state, suggestions annotated with confetti close the current goal. Clicking on a
suggested tactic (e.g. apply mul left eq self) automatically appends to the
proof script on the left.
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Chapter 8

Symbolic rewriting with
neural networks∗

Abstract

This work investigates if the current neural architectures are ad-
equate for learning symbolic rewriting. Two kinds of data sets are
proposed for this research – one based on automated proofs and the
other being a synthetic set of polynomial terms. The experiments
with use of the current neural machine translation models are per-
formed and its results are discussed. Ideas for extending this line of
research are proposed, and its relevance is motivated.

8.1 Introduction

Neural networks (NNs) turned out to be very useful in several domains. In par-
ticular, one of the most spectacular advances achieved with use of NNs has been
natural language processing. One of the tasks in this domain is a translation
between natural languages – neural machine translation (NMT) systems es-
tablished here the state-of-the-art performance. Recently, NMT produced first

∗This chapter is based on a joint work with Josef Urban, Chad Brown and Cezary Kaliszyk.
I was responsible for performing all the experiments and creating the polynomial data set.
Chad Brown produced the AIM data set. I wrote the whole text. Josef Urban and Cezary
Kaliszyk were advising with the work.
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encouraging results in the autoformalization task [85, 86, 87, 167] where given
an informal mathematical text in LATEX the goal is to translate it to its formal
(computer understandable) counterpart. In particular, the NMT performance
on a large synthetic LATEX-to-Mizar dataset produced by a relatively sophis-
ticated toolchain developed for several decades [6] is surprisingly good [167],
indicating that neural networks can learn quite complicated algorithms for sym-
bolic data. This inspired us to pose a question: Can NMT models be used in
the formal-to-formal setting? In particular: Can NMT models learn symbolic
rewriting?

The answer is relevant to various tasks in automated reasoning. For ex-
ample, neural models could compete with symbolic methods such as inductive
logic programming (ILP) [112] that have been previously experimented with
to learn simple rewrite tasks and theorem-proving heuristics from large formal
corpora [158]. Unlike (early) ILP, neural methods can, however, easily cope
with large and rich datasets without combinatorial explosion.

This work is also an inquiry into the capabilities of NNs as such, in the spirit
of works like [46].

The main contributions of our project are:

1. providing two novel reasoning datasets: one extracted from real data gen-
erated by a theorem prover run on challenging problems and one synthetic,

2. investigating the capabilities of neural networks on these datasets in a
reproducible and practical setting, i.e., using modest computational re-
sources and moderate number of training examples.

8.2 Data

We prepared two data sets for our experiments – the first consists of examples
extracted from proofs found by ATP (automated theorem prover) in a mathe-
matical domain (AIM loops), whereas the second is a synthetic set of polynomial
terms. We characterize both of them in detail below.

8.2.1 The AIM data set

The data consists of sets of ground and non-ground rewrites that came from
Prover92 proofs of theorems about AIM loops produced by Veroff [89].

2https://www.cs.unm.edu/~mccune/prover9/

https://www.cs.unm.edu/~mccune/prover9/
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Table 8.1: Example of a ground rewrite in the AIM data set.

rewrite rule b(s(e, v1), e) = v1

before rewriting k(b(s(e, v1), e), v0)

after rewriting k(v1, v0)

Table 8.2: Example of a non-ground rewrite in the AIM data set.

rewrite rule o(V0, e) = V0

before rewriting t(v0, o(v1, o(v2, e)))

after rewriting t(v0, o(v1, v2))

Many of the inferences in the proofs are paramodulations from an equation
and have the form

s = t u[θ(s)] = v

u[θ(t)] = v

where s, t, u, v are terms and θ is a substitution. For the most common equations
s = t, we gathered corresponding pairs of terms

(
u[θ(s)], u[θ(t)]

)
which were

rewritten from one to another with s = t. We put the pairs to separate data
sets (depending on the corresponding s = t): in total 8 data sets for ground
rewrites (where θ is trivial) and 12 for non-ground ones. The goal will be to
learn rewriting for each of these 20 rules separately.

Terms in the examples are treated as linear sequences of tokens where tokens
are single symbols (variable / constant / predicate names, brackets, commas).
Numbers of examples in each of the data sets vary between 251 and 34 101.
Lengths of the sequences of tokens vary between 1 and 343, with the mean
around 35. These 20 data sets were split into training, validation and test sets
for our experiments (60%, 10%, 30%, respectively).

In Table 8.1 and Table 8.2 there are presented examples of pairs of AIM
terms in TPTP [152] format, before and after rewriting with, respectively,
ground and non-ground rewrite rules.3

3All the described AIM data are available at https://github.com/BartoszPiotrowski/r
ewriting-with-NNs/tree/master/data/AIM

https://github.com/BartoszPiotrowski/rewriting-with-NNs/tree/master/data/AIM
https://github.com/BartoszPiotrowski/rewriting-with-NNs/tree/master/data/AIM
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Table 8.3: Examples in the polynomial data set.

before rewriting after rewriting

(x*(x+1))+1 x^2+x+1

(2*y)+(1+(y*y)) y^2+2*y+1

(x+2)*(((2*x)+1)+(y+1)) 2*x^2+5*x+y+3

8.2.2 The polynomial data set

This is a synthetically created data set where the examples are pairs of equiv-
alent polynomial terms. The first element of each pair is a polynomial in an
arbitrary form, and the second element is the same polynomial in a normalized
form. The arbitrary polynomials are created randomly in a recursive manner
from a set of available (non-nullary) function symbols, variables and constants.
First, one of the symbols is randomly chosen. If it is a constant or a variable,
it is returned and the process terminates. If a function symbol is chosen, its
subterm(s) are constructed recursively in a similar way.

The parameters of this process are set in such a way that it creates poly-
nomial terms of average length around 25 symbols. Terms longer than 50 are
filtered out. Several data sets of various difficulties were created by varying the
number of available symbols. These were quite limited – at most 5 different
variables and constants being a few first natural numbers. The reason for this
limited complexity of the input terms is because normalizing even a relatively
simple polynomial can result in a very long term with very large constants –
which is related especially to the operation of exponentiation in polynomials.

Each data set consists of different 300 000 examples – see Table 8.3 for
examples. These data sets were split into training, validation and test sets for
our experiments (60%, 10%, 30%, respectively).4

8.3 Experiments

For experiments with both data sets, we used an established NMT architecture
[102] based on LSTMs (long short-term memory cells) and implementing the
attention mechanism.5

4The described polynomial data are available at https://github.com/BartoszPiotrows

ki/rewriting-with-NNs/tree/master/data/polynomial
5We also experimented with the transformer model [164] but the results were worse. This

could be due to a limited grid search we performed as transformer is known to be very sensitive

https://github.com/BartoszPiotrowski/rewriting-with-NNs/tree/master/data/polynomial
https://github.com/BartoszPiotrowski/rewriting-with-NNs/tree/master/data/polynomial
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After a small grid search, we decided to inherit most of the hyper-parameters
of the model from the best results achieved in [167] where LATEX-to-Mizar trans-
lation is learned. We used relatively small LSTM cells consisting of 2 layers with
128 units. The “scaled Luong” version of the attention mechanism was used, as
well as dropout with rate equal 0.2. The number of training steps was 10 000.
This setting was used for all our experiments described below.

8.3.1 AIM data set

First, NMT models were trained for each of the 20 rewrite rules in the AIM
data set. It turned out that the models, as long as the number of examples
was greater than 1000, were able to learn the rewriting task very well, reaching
90% of accuracy on separated test sets. This means that the task of applying a
single rewrite step seems relatively easy to learn by NMT. See Table 8.4 for all
the results.

We also run an experiment on the joint set of all rewrite rules (consisting of
41 396 examples). Here the task was more difficult as a model needed not only
to apply rewriting correctly, but also choose “the right” rewrite rule applicable
for a given term. Nevertheless, the performance was also very good, reaching
83% accuracy.

8.3.2 Polynomial data set

Then experiments on more challenging but also much larger data sets for poly-
nomial normalization were performed. Depending on the difficulty of the data,
accuracy on the test sets achieved in our experiments varied between 70% and
99%. The results in terms of accuracy are shown in Table 8.5.

This high performance of the model encouraged a closer inspection of the
results. First, we checked if in the test sets there are input examples which differ
from these in training sets only by renaming of variables. Indeed, for each of
the data sets in test sets are 5–15% of such “renamed” examples. After filtering
them out, the measured accuracy drops – but only by 1–2%.

An examination of the examples wrongly rewritten by the model was done.
It turns out that the wrong outputs almost always parse (in 97–99% of cases,
they are legal polynomial terms). Notably, depending on the difficulty of the
data set, as much as 18–64% of incorrect outputs are wrong only with respect
to the constants in the terms. (Typically, the NMT model proposes too low

to hyper-parameters.
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Table 8.4: Results of experiments with AIM data. (Names of the rules corre-
spond to folder names in the GitHub repo.) Low number of training examples
implies low predictive performance.

rule training
examples

test
examples

accuracy
on test

abstrused1u 2472 1096 86.5%
abstrused2u 2056 960 89.2%
abstrused3u 1409 666 84.3%
abstrused4u 1633 743 87.4%
abstrused5u 2561 1190 89.5%
abstrused6u 81 40 12.5%
abstrused7u 76 37 0.0%
abstrused8u 79 39 2.5%
abstrused9u 1724 817 86.7%
abstrused10u 3353 1573 82.9%
abstrused11u 10230 4604 79.0%
abstrused12u 7201 3153 87.2%
instused1u 198 97 20.6%
instused2u 196 87 25.2%
instused3u 83 41 29.2%
instused4u 105 47 2.1%
instused5u 444 188 59.5%
instused6u 1160 531 87.5%
instused7u 307 144 13.8%
instused8u 116 54 3.7%
union of all 41396 11826 83.2%
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Table 8.5: Chosen results of experiments with polynomials. Characteristic of
formulas concerns the input polynomials. (Labels of the data sets correspond
to folder names in the GitHub repo). The more complex input polynomials, the
lower the predictive performance of the NMT model.

label function
symbols

constant
symbols

number of
variables

accuracy
on test

poly1 +, ∗ 0, 1 1 99.2%
poly2 +, ∗ 0, 1 2 97.4%
poly3 +, ∗ 0, 1 3 88.2%
poly4 +, ∗ 0, 1, 2, 3, 4, 5 5 83.4%
poly5 +, ∗, ˆ 0, 1 2 85.5%
poly6 +, ∗, ˆ 0, 1, 2 3 71.8%

constants compared to the correct ones.) Below 1% of wrong outputs is correct
modulo variable renaming.

8.4 Integration data sets from Facebook Research
experiments

The work of [98] joined recently the line of research pursued by us here:6 ap-
plying sequence-to-sequence neural architectures to symbolic rewriting tasks.
In case of [98], the symbolic tasks are integration of a chosen set of functions
(basically polynomials plus trigonometry, exp and log) and solving a class of
differential equations. These tasks are less abstract than rewriting in the AIM
loops theory and involve some more operations than our polynomial dataset.
The datasets are orders of magnitude larger than ours.

The training examples were generated by a randomized procedure, similarly
to our polynomial dataset. The neural model used there – transformer [164] –
is also a non-modified architecture originally designed for the neural machine
translation. A step in their pipe-line was preprocessing the symbolic expressions
by translating them to more compact prefix notation. This preprocessing step
was used by us in the first version of our earlier work on guiding theorem provers

6The first version of our work was submitted to AITP’19 in December 2018 [125] and
presented several times at workshops and conferences in the first half of 2019. See e.g. invited
talks at SAT’19 http://grid01.ciirc.cvut.cz/~mptp/sat19.pdf and FORMAL’19 http:

//grid01.ciirc.cvut.cz/~mptp/formal19.pdf.

http://grid01.ciirc.cvut.cz/~mptp/sat19.pdf
http://grid01.ciirc.cvut.cz/~mptp/formal19.pdf
http://grid01.ciirc.cvut.cz/~mptp/formal19.pdf
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Table 8.6: Prediction accuracies of the three NMT models – the model used in
the previous experiments in this work, the default OpenNMT model, and the
transformer model used in [98] – on the three integration data sets. The smallest
model performs poorly, but the standard, off-the-shelf OpenNMT model trained
with a modest computational budget already gives decent performance.

data set small
NMT

default
OpenNMT

transformer

BWD 18.4% 67.7% 99.6%
FWD 14.8% 55.7% 97.2%
IBP 17.7% 64.5% 99.3%

by recurrent neural networks [128]. No experimental justification of usefulness
of prefix notation is provided in [98]. In the work presented in Chapter 3 we
have found that this is not always beneficial.

The performance of the trained models in [98] was quite high, reaching
99%. Here we analyze closer this experiment and compare with our methods
and datasets. First, we wanted to see how the relatively small models used
originally by us perform on this data. We took 3 data sets related to various
kinds of integration operations (BWD, FWD, IBP) used in [98] and applied
the NMT model with exactly the same hyper-parameters as described in 8.3.
Additionally, we trained an NMT model implemented in OpenNMT, leaving all
the hyper-parameters in their default settings.7 Table 8.6 shows the accuracy
of the trained models on the test sets, along with the reported accuracies of the
transformer.

We see that the small NMT model performs much worse than the trans-
former model from [98], while the performance of the default OpenNMT model
is already quite good. However, the transformer model in [98] was much larger.
The authors do not report on how long the model was trained and what infras-
tructure was used. Our small NMT model was trained for about one hour on
one GPU and our default OpenNMT model was trained for two hours on two
GPUs. With such straightforward, unmodified training procedure and short
training times the achieved performance may still be seen as surprisingly high.
By tuning the hyper-parameters and increasing the number of training steps we

7In particular: the number of training steps was 100 000, the number of layers in the
encoder and the decoder was 2, the number of units in the encoder and decoder was 500, the
“scaled Luong” version of the attention mechanism was used; the predictions were generated
using beam search of width 10 and 1 best output was considered only.
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Table 8.7: Number of unique (not overlapping with the training set) testing
examplesmodulo constant ormodulo constant and sign. All the polynomial data
sets and the integration data sets from [98] were checked. Some datasets (FWD,
IBP) contain many testing examples that are similar to the training examples,
which motivates a question whether such a situation should be considered as a
leak in the dataset.

data set # unique
mod. constant

# unique
mod. constant

and sign

# all test
examples

BWD 7421 (80%) 6999 (75%) 9319
FWD 4404 (44%) 3497 (35%) 9986
IBP 2345 (30%) 1895 (24%) 7777

poly1 34 877 (58%) – 60 000
poly2 69 160 (77%) – 90 000
poly3 82 680 (92%) – 90 000
poly4 77 225 (86%) – 90 000
poly5 79 185 (88%) – 90 000
poly6 77 764 (86%) – 90 000

could likely easily increase the performance.

To get more understanding of the data, we have done a simple analysis of
the similarity between the training and testing sets. We substituted all the
constants (i.e., digits) with CONST token and checked how many such modified
testing examples appear in the training examples, and how many are unique to
the testing set. We did this for all the polynomial data sets and the integration
data sets. For the latter, we also substituted plus sign for all the minus signs to
ignore the sign of integers when comparing the examples. (In the polynomial
data there is no negative integers.) The results of such analysis are shown in
Table 8.7.

We see that for some of the integration data sets the number of examples
unique modulo constant (or constant and sign) may be as low as 24% (IBP). This
means that for this data set 75% of the testing examples appear in the training
set as very similar expressions, just with changed constants and their signs.
This motivates the need for more careful/complex analysis of the performance of
machine learning models in new domains like the symbolic rewriting. Reporting
only accuracy on the separated testing set may not be enough. It may happen
that the performance of the model is dependent on some hidden factors, e.g.,
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undesired “leaks” in the data.
The analysis done here is initial and more detailed examination would be use-

ful to measure the level of generalization and memorization done by the neural
models used. Our experiments on the polynomial data show that just increas-
ing the number of constants and variables from two to three between poly5 and
poly6 decreased the testing performance from 85.5% to 71.8%. Similar abla-
tions should be done with related experiments. Methods such as decreasing the
size of the training set, making it on average more diverse, and measuring the
average Levenshtein distance between the training and testing examples [167]
are relatively straightforward to apply.

8.5 Conclusions and future work

NMT is not typically applied to symbolic problems, but surprisingly, it per-
formed very well for both described tasks. The first one was easier in terms
of complexity of the rewriting (only one application of a rewrite rule was per-
formed), but the number of examples was quite limited. The second task in-
volved more difficult rewriting – multiple different rewrite steps were performed
to construct the examples. Nevertheless, provided many examples, NMT could
learn normalizing polynomials.

We hope this work provides a baseline and inspiration for continuing this
line of research. We see several interesting directions this work can be extended.

Firstly, more interesting and difficult rewriting problems need to be provided
for better delineation of the strength of the neural models. The described data
are relatively simple and with no direct relevance to the real unsolved symbolic
problems. But the results on these simple problems are encouraging enough
to try with more challenging ones, related to real difficulties – e.g., these from
TPDB data base.8

Secondly, we are going to develop and test new kinds of neural models tai-
lored for the problem of comprehending symbolic expressions. Specifically, we
are going to implement an approach based on the idea of TreeNN, which may
be another effective approach for this kind of tasks [31, 46, 107]. TreeNNs are
built recursively from modules, where the modules correspond to parts of sym-
bolic expression (symbols) and the shape of the network reflects the parse tree
of the processed expression. This way model is explicitly informed on the exact
structure of the expression, which in case of formal logic is always unambiguous
and easy to extract. Perhaps this way the model could learn more efficiently

8http://termination-portal.org/wiki/TPDB

http://termination-portal.org/wiki/TPDB
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from examples (and achieve higher results even on the small AIM data sets).
The authors have a positive experience of applying TreeNNs to learn remainders
of arithmetical expressions modulo small natural numbers – TreeNNs outper-
formed here neural models based on LSTM cells, giving almost perfect accuracy.
However, this is unclear how to translate this TreeNN methodology to the tasks
with the structured output, like the symbolic rewriting task.

Thirdly, there is an idea of integrating neural rewriting architectures into
the larger systems for automated reasoning. This can be motivated by the
interesting contrast between some simpler ILP systems suffering from the com-
binatorial explosion in the presence of a large number of examples and neural
methods which definitely benefit from large data sets.

We hope that this work will inspire and trigger a discussion on the above
(and other) ideas.
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[1] Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., and Ur-
ban, J. Premise selection for mathematics by corpus analysis and kernel
methods. J. Autom. Reasoning 52, 2 (2014), 191–213.

[2] Avigad, J. The mechanization of mathematics. Notices of the AMS 65,
6 (2018), 681–90.

[3] Avigad, J. Mathematics and the formal turn. https://www.andrew.c

mu.edu/user/avigad/Papers/formal_turn.pdf, 2023.

[4] Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W.,
Radev, D., and Avigad, J. ProofNet: Autoformalizing and formally
proving undergraduate-level mathematics. CoRR abs/2302.12433 (2023).

[5] Balunovic, M., Bielik, P., and Vechev, M. T. Learning to solve
SMT formulas. In Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada (2018), S. Ben-
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Research data management

The following research datasets have been produced during this PhD research:

• Chapter 2: code and data are stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/ATPboost

• Chapter 3: code and data are stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/stateful-premise-selec

tion-with-RNNs

• Chapter 4: code and data are stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/guiding-connection-tab

leau-by-RNNs

• Chapter 5: code and data are stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/ml-guidance-for-instant

iation-in-CVC5

• Chapter 6: code is stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/random-forest

• Chapter 7: code is stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/lean-premise-selection

• Chapter 8: data is stored in a GitHub repository available at
https://github.com/BartoszPiotrowski/rewriting-with-NNs
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Summary

This thesis develops various machine-learning-based methods that improve the
success rate of automated theorem provers and facilitate constructing formal
proofs in proof assistants. These methods are based on classical machine learn-
ing (ML), as well as on modern neural network approaches, emerging as a
promising research direction that may further advance automated reasoning.

The first part of the thesis focuses on the premise selection task in au-
tomated theorem proving. This is a critical task when an automated theorem
prover (ATP) is used over a large theory where typically only a small fraction of
the available facts are relevant for proving a new conjecture. Giving too many
redundant premises to the ATP significantly decreases the chances of proving
the conjecture.

The ATPboost system addressing this problem is introduced. It solves sets
of large-theory problems by interleaving ATP runs with machine learning of
premise selection from the proofs. Unlike many approaches that use a multi-
label setting, the learning is implemented as a binary classification that esti-
mates the pairwise relevance of (theorem, premise) pairs. ATPboost uses for this
the gradient boosting decision tree algorithm. Learning in the binary setting,
however, requires negative examples, and accumulating them is nontrivial due
to many alternative proofs. We implement several solutions in the context of the
ATP/ML feedback loop and show significant improvement over the multi-label
approach.

Later, a new method for premise selection is developed based on recurrent
neural networks (RNNs). Unlike the previous method which chooses sets of
facts independently of each other by their rank, the new method uses the no-
tion of state that is updated each time a choice of a fact is made. The new
method is combined with data augmentation techniques. The evaluation shows
improvements in terms of the number of new problems solved in comparison to
the previous approach.
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The second part of the thesis focuses on internal guidance for ATPs.
Certain parts of their algorithms require non-deterministic choices to be made.
These choices are normally either randomized or governed by pre-designed
heuristics. The goal is to provide there machine-learned advice instead, and
by this improve the performance.

In this spirit, experiments with applying RNNs for guiding clause selection
in the connection tableau proof calculus are performed. The RNN encodes a
sequence of literals from the current branch of the partial proof tree to a hidden
vector state; using it, the system selects a clause for extending the proof tree.
Additionally, a conjecturing experiment is performed where the RNN does not
select an existing clause but completely generates the next tableau goal.

Later, we develop an approach of applying ML to solve quantified satis-
fiability modulo theories (SMT) problems more efficiently. We focus on the
enumerative instantiation method of solving quantified formulas. The task is
to select the right ground terms to be instantiated. In ML parlance, this means
learning to rank ground terms. We devise a series of features of the considered
terms and train on them using gradient boosted decision trees. The experiments
demonstrate that the ML-guided solver enables us to solve more problems than
the base solver and reduce the number of quantifier instantiations.

The third part of the thesis develops ML-based automation for proof
assistants. Formalizing mathematics using proof assistants is a laborious task
requiring expert knowledge. The formal proofs need to deal with low-level
reasoning steps. Also, a mastery of the existing formal library is required in
order to reuse formalized theorems. To make proof assistants more user-friendly
various forms of automation need to be developed. Here, ML-based approaches
learning from already completed proofs are developed.

First, we focus on the Coq proof assistant. Its proofs consist of sequences of
tactics that modify proof states. The goal is to learn to suggest the next tactic
in a given proof state. We build on top of Tactician, a plugin for Coq that
provides a framework for learning from proofs written by the user to synthesize
new proofs. Learning happens in an online manner, meaning that the ML model
is updated every time the user performs a step in an interactive proof. This
provides the user with a seamless, interactive experience, and it takes advantage
of the locality of proof similarity: proofs similar to the current proof are likely
to be found close by. Two online methods are implemented: k-nearest neigh-
bors based on locality sensitive hashing and custom online random forest. We
compare the relative performance of these methods on Coq’s standard library.

Later, we introduce an ML-based tool for the Lean proof assistant that
suggests relevant premises for a theorem being proved by a user. The tool is
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based on a modification of the custom random forest model used in the Coq
project. It is implemented directly in Lean, which was possible thanks to the
rich and efficient metaprogramming features of Lean 4. The random forest is
trained on data extracted from mathlib – Lean’s formal library. The advice from
the trained model is accessible to the user via a command that can be called
while constructing a proof interactively.

The last part of the thesis investigates the capabilities of neural language
models in the context of mathematics. More specifically, we investigate if
the current neural architectures are adequate for learning symbolic rewriting.
Two kinds of data sets are proposed for this investigation – one derived from
automated proofs and the other being a synthetic set of polynomial terms.
The experiments with neural machine translation models are performed and
their (surprisingly) good results are discussed. These were one of the very first
experiments on applying neural language models to symbolic tasks.
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Samenvatting

Dit proefschrift ontwikkelt verschillende op machinaal leren gebaseerde metho-
den die de succespercentages van geautomatiseerde stellingbewijzers verbeteren
en het construeren van formele bewijzen in bewijsassistenten vergemakkelijken.
Deze methoden zijn gebaseerd op klassiek machinaal leren (ML), maar ook op
moderne neurale netwerkbenaderingen, een opkomende, veelbelovende onder-
zoeksrichting die geautomatiseerd redeneren verder kan verbeteren.

Het eerste deel van het proefschrift richt zich op de premisselectietaak in
geautomatiseerde stellingbewijzers. Dit is een belangrijke taak wanneer een
geautomatiseerde stellingbewijzer (ATP, van het Engelse automated theorem
prover) wordt gebruikt over een grote theorie, waar typisch slechts een kleine
fractie van de beschikbare feiten relevant is voor het bewijzen van een nieuwe
stelling. Te veel overbodige premissen geven aan de ATP, vermindert aanzienlijk
de kans op het bewijzen van de beoogde stelling.

Het systeem ATPboost wordt gëıntroduceerd om dit probleem aan te pakken.
Het lost collecties van grote theorie-problemen op door stellingbewijzers te com-
bineren met machinaal leren van premisselectie uit eerdere bewijzen. In tegen-
stelling tot vele benaderingen die een multi-label opzet gebruiken, wordt het
leren gëımplementeerd als een binaire classificatie die de paarsgewijze relevantie
van (stelling, premisse) voorspelt. ATPboost gebruikt hiervoor het gradient
boosting beslissingsboomalgoritme. Leren in de binaire opzet vereist echter
negatieve voorbeelden, wat niet triviaal is door de vele alternatieve bewijzen.
Wij implementeren verschillende oplossingen in de context van de ATP/ML
feedback loop en tonen aanzienlijke verbetering ten opzichte van de multi-label
aanpak.

Later wordt een nieuwe methode voor premisselectie ontwikkeld op basis van
recurrent neural networks (RNNs). In tegenstelling tot de vorige methode, die
reeksen feiten kiest onafhankelijk van elkaar, gebruikt de nieuwe methode een
bewaarde staat, die wordt bijgewerkt telkens wanneer een keuze voor een feit
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wordt gemaakt. De nieuwe methode wordt gecombineerd met strategieën voor
data-augmentatie. De evaluatie toont verbeteringen in termen van het aantal
opgeloste nieuwe problemen in vergelijking met de vorige aanpak.

Het tweede deel van het proefschrift richt zich op de interne begelei-
ding van ATPs. Voor bepaalde delen van hun algoritmen moeten niet-deter-
ministische keuzes worden gemaakt. Deze keuzes zijn normaal gesproken ofwel
willekeurig ofwel gestuurd door vooraf ontworpen heuristiek. Het doel is om
daar machinaal aangeleerd advies te geven en daardoor de prestaties te ver-
beteren.

Met dit doel worden experimenten gedaan met het toepassen van RNNs
voor het begeleiden van clausule-selectie in de connection tableau bewijscalculus.
Het RNN encodeert een reeks literalen van de huidige tak van de incomplete
bewijsboom naar een vector; met behulp daarvan selecteert het systeem een
clausule om de bewijsboom uit te breiden. Daarnaast wordt een experiment
uitgevoerd waarbij het RNN niet een bestaande clausule selecteert, maar het
volgende tableau doel volledig genereert.

Later ontwikkelen we een aanpak waarbij ML wordt toegepast om gekwan-
tificeerde satisfiability modulo theorieën (SMT) efficiënter op te lossen. We
richten ons op de enumeratieve instantiatie-methode voor het oplossen van gek-
wantificeerde formules. De taak is het selecteren van de juiste termen te se-
lecteren om mee te instantiëren. In ML-taal betekent dit het leren rangschikken
van termen. Wij ontwerpen een reeks kenmerken van de beschikbare termen en
trainen daarop met gradient boosted beslissingsbomen. De experimenten tonen
aan dat het ML-geleide systeem ons in staat stelt meer problemen op te lossen
dan de basisoplosser en het aantal benodigde instantiaties kan verminderen.

Het derde deel van het proefschrift ontwikkelt ML-gebaseerde automa-
tisering voor bewijsassistenten. Het formaliseren van wiskunde met behulp
van bewijsassistenten is een bewerkelijke taak, waarvoor expertise nodig is. De
formele bewijzen moeten omgaan met zeer precieze redeneerstappen. Ook is
beheersing van de bestaande formele bibliotheek vereist om geformaliseerde
stellingen te kunnen hergebruiken. Om bewijsassistenten gebruiksvriendeli-
jker te maken, moeten verschillende vormen van automatisering worden on-
twikkeld. Hier worden ML-gebaseerde benaderingen ontwikkeld die leren van
reeds voltooide bewijzen.

Eerst richten we ons op de Coq-bewijsassistent. In deze software bestaan
bewijzen uit reeksen van tactieken die de bewijstoestand wijzigen. Het doel is
om te leren de volgende tactiek voor te stellen in een gegeven bewijstoestand.
We bouwen voort op Tactician, een plugin voor Coq die een raamwerk biedt
voor het leren op basis van bewijzen geschreven door de gebruiker om nieuwe
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bewijzen te synthetiseren. Het leren gebeurt online, wat betekent dat het ML-
model wordt bijgewerkt telkens wanneer de gebruiker een stap uitvoert in een
interactief bewijs. Dit biedt de gebruiker een naadloze, interactieve ervaring,
en het maakt gebruik van de localiteit van bewijsovereenkomsten: bewijzen
die vergelijkbaar zijn met het huidige bewijs zijn waarschijnlijk in de buurt
te vinden. Twee online methodes zijn gëımplementeerd: k-nearest neighbors
gebaseerd op localiteitsgevoelige hashing en aangepaste online random forest.
We vergelijken de relatieve prestaties van deze methoden op de standaardbib-
liotheek van Coq.

Vervolgens introduceren we een op ML gebaseerde tool voor de Lean be-
wijsassistent die suggesties doet voor relevante premissen voor een stelling die
door een gebruiker wordt bewezen. Het systeem is gebaseerd op een aanpass-
ing van het random forest model gebruikt in het Coq project. Het is recht-
streeks gëımplementeerd in Lean, wat mogelijk was dankzij de rijke en efficiënte
metaprogrammeerfuncties van Lean 4. Het random forest-algoritme wordt ge-
traind op gegevens uit mathlib – de formele bibliotheek van Lean. Het advies
van het getrainde model is toegankelijk voor de gebruiker via een commando
dat kan worden opgeroepen tijdens de interactieve constructie van een bewijs.

Het laatste deel van het proefschrift onderzoekt de mogelijkheden van
neurale taalmodellen in de context van wiskunde. Meer specifiek onderzoeken
we of de huidige neurale architecturen geschikt zijn voor het leren van symbol-
isch herschrijven. Voor dit onderzoek worden twee soorten datasets voorgesteld
– één afgeleid van geautomatiseerde bewijzen en de andere is een synthetische
set van polynomiale termen. De experimenten met neurale automatische ver-
taalmodellen modellen worden uitgevoerd en hun (verrassend) goede resultaten
worden besproken. Deze waren enkele van de allereerste experimenten met de
toepassing van neurale taalmodellen op symbolische taken.
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