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A B S T R A C T   

Background: Smartphone-based digital phenotyping enables potentially clinically relevant information to be 
collected as individuals go about their day. This could improve monitoring and interventions for people with 
Major Depressive Disorder (MDD). The aim of this systematic review was to investigate current digital pheno
typing features and methods used in MDD. 
Methods: We searched PubMed, PsycINFO, Embase, Scopus and Web of Science (10/11/2023) for articles 
including: (1) MDD population, (2) smartphone-based features, (3) validated ratings. Risk of bias was assessed 
using several sources. Studies were compared within analysis goals (correlating features with depression, pre
dicting symptom severity, diagnosis, mood state/episode, other). Twenty-four studies (9801 participants) were 
included. 
Results: Studies achieved moderate performance. Common themes included challenges from complex and missing 
data (leading to a risk of bias), and a lack of external validation. 
Discussion: Studies made progress towards relating digital phenotypes to clinical variables, often focusing on 
time-averaged features. Methods investigating temporal dynamics more directly may be beneficial for patient 
monitoring. 
European Research Council consolidator grant: 101001118, Prospero: CRD42022346264, Open Science 
Framework: https://osf.io/s7ay4   

1. Introduction 

Major depressive disorder (MDD) is one of the most common and 
debilitating mental disorders worldwide, associated with a high per
sonal and societal burden (Lim et al., 2012). Moreover, MDD is often 
linked to a high recurrence risk (Buckman et al., 2018), with over half of 
people who experience one depressive episode going on to have a sub
sequent episode (Burcusa and Iacono, 2007). Importantly, early signs of 
the development of symptoms or recurrence of depression are often not 
identified, which impedes timely preventive strategies. The broad 

integration of smartphones into people’s daily lives provides the unique 
opportunity to continuously and unobtrusively record behavioural dy
namics in a naturalistic setting with high temporal resolution (Nelson 
and Allen, 2018). As such, it can offer insights into an individual’s 
mental state and could be useful for symptom monitoring and 
just-in-time preventive efforts in both non-clinical and clinical contexts 
(e.g., predicting symptom onset, or future recurrent episodes in patients 
with MDD). 

Developing tools that leverage smartphone data to its full potential 
may therefore enable earlier identification and intervention before 
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worsening of symptoms or recurrence of depression, leading ultimately 
to better outcomes. Smartphones can collect a wide range of behavioural 
information, for example geolocation data derived from the Global 
Positioning System (GPS), an individual’s use of social media or 
communication apps, general phone use/screen time, and typing-related 
data measuring psychomotor functioning or processing speed (Harari 
et al., 2017). Other technologies, such as wearable devices (e.g., wrist
bands), act as additional digital sources of behavioural or psychophys
ical measures. All these types of data can be used to create digital 
phenotypes, i.e., markers of behaviour or physiology calculated from 
digital measures, which could be indicative of clinically relevant be
haviours. In this review we will focus on digital phenotypes for MDD 
created using smartphones, as these devices are now an integral and 
ubiquitous part of our daily lives. By installing monitoring tools on an 
individual’s own device, greater ecological validity may therefore be 
achieved than by using other devices as the risk of the monitoring 
altering participants’ behaviour may be lower than in studies where 
participants are required to adapt to wearing a device that they are not 
already accustomed to. 

Digital phenotyping is a rapidly expanding technique (e.g., Farhan 
et al., 2016; Müller et al., 2021; Saeb et al., 2015; Ware et al., 2020), and 
a variety of different features have been explored in combination with 
various methods (e.g., logistic regression classifier, support vector ma
chine (SVM), penalized logistic regression, random forest and XGBoost 
models) for classifying clinical labels or predicting clinically relevant 
information (e.g., depression scores). In order to understand how digital 
phenotyping can be used to better understand behavioural dynamics 
underlying MDD and to advance precision medicine endeavours aimed 
at earlier identification and/or intervention of (recurrent) depressive 
symptoms, high model performance is needed in addition to validation 
across multiple settings, including various symptom severities and life
styles (e.g., working vs non-working populations). The general aim of 
this review was, therefore, to investigate the current state of digital 
phenotyping research for populations with MDD, in particular to 
establish what current methods are able to achieve in terms of their 
predictive power, and where subsequent efforts need to be focused to 
advance digital phenotyping in depression. Specifically, this systematic 
review aims to answer the following questions: 

1. Of the different features that have been constructed from smart
phone data, which are correlated with clinically relevant variables in 
the context of MDD?  

2. What are the different methods that have been used for various 
depression prediction tasks using smartphone data and to what 
extent have these methods been successful? 

First, we provide an overview and general evaluation of smartphone 
features (constructed across the included studies) that have been 
correlated with clinically relevant variables for depression (e.g., self- 
reported symptom scores), as feature construction is important for 
successful prediction models. Second, digital phenotyping studies in the 
field of MDD were compared that cover a variety of prediction tasks. 

2. Method 

2.1. Protocol and registration 

This systematic review was guided by a protocol registered on 
Prospero (CRD42022346264) and the Open Science Framework 
(https://osf.io/s7ay4) and reported in line with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. 

2.2. Information sources and search strategy 

A comprehensive search was conducted on the following electronic 
databases: PubMed, PsycINFO, Embase, Scopus and Web of Science 

(November 10 2023). This search was restricted to studies published 
between January 2012 and November 2023 and included keywords 
related to (1) MDD, (2) digital phenotyping or monitoring, and (3) 
smartphones. For an overview of the exact keywords and search strings 
see S1 in the supplementary materials. 

2.3. Selection of studies and eligibility criteria 

Two authors (IL and NI) independently screened all titles and ab
stracts, to identify eligible papers for inclusion. Full texts of the selected 
papers were then examined to determine the final selection. In case of 
disagreement on inclusion, a third author (AM) was consulted to resolve 
divergent assessments. Central issues were discussed with all authors. 

Studies were considered eligible if (1) passively collected smart
phone data was utilised (e.g., GPS, use of communication apps, nearby 
Bluetooth devices), obtained with Android or iPhone smartphones; (2) 
passive data was collected over the course of the participants’ everyday 
lives (i.e., not collected during a laboratory session); and if (3) passively 
collected smartphone data was related to measures assessing depressive 
symptoms and/or diagnostic MDD status (e.g., self-reports, Ecological 
Momentary Assessments (EMA), structured clinical interviews) for the 
purpose of validating the digital phenotypes. Studies combining 
passively collected smartphone data with other data types, such as data 
from other wearable devices, were also included. Studies were excluded 
if (1) data was collected solely through means other than smartphones 
(e.g., wearable devices such as smart wristbands); (2) studies did not 
include participants with MDD (e.g., studies that included participants 
without a formal clinical diagnosis); (3) digital phenotyping-related 
studies with objectives not listed above (e.g., data collection verifica
tion studies); (4) reviews, overview articles, commentaries, etc. 

2.4. Data extraction, risk of bias assessment and quality assessment 

Two authors (IL and NI) extracted data regarding study context, 
study sample, prediction goals, data acquisition, paradigms and analysis 
methods. For an overview of the exact data that was extracted see data 
extraction form S2 in the supplementary materials. 

Each included study was independently assessed by authors (IL and 
NI) for risk of bias using the criteria proposed by the Cochrane Collab
oration Risk of Bias (RoB; Higgins, 2016) and discrepancies were 
resolved with a third author (AM) (see Table S3 in the supplementary 
materials). Five domains were rated as high risk, some concerns, low risk 
or unclear risk if there was risk of bias due to: (a) the used method for the 
randomisation sequence (selection bias); (b) allocation concealment 
(allocation bias); (c) blinding of participants and researchers (perfor
mance bias); (d) blinding of outcome assessment (detection bias); (e) 
incomplete outcome data (up to 10% drop out was rated as low risk) 
(attrition bias); (f) selective reporting (reporting bias). Items that were 
not relevant for a study were marked as ‘NA’. 

Each included study was independently assessed by authors (IL and 
NI) for quality. Quality Assessment (QA) was assessed using items 
adapted from the guidelines created by Luo et al. (2016), as well as from 
Benoit et al. (2020) (see Table S4 in the supplementary materials). The 
guidelines provided by Luo et al. (2016) relate to machine learning 
methods, therefore, not all items were relevant/applicable for each 
included study. In these cases, relevant items were assessed and others 
listed as ‘NA’. 

2.5. Outcome measures 

Outcomes included: 
(1) Correlations between passively collected smartphone data and 

clinical measures. 
(2) Type of prediction strategy used to predict clinical labels or 

symptoms, and measures of performance of the prediction strategy. 
Studies were grouped by prediction goal (i.e., studies that predict 
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depression symptom severity from smartphone features, clinical vs non- 
clinical labels or states (e.g., depressive state) and other analysis goals). 
Available metrics (e.g., classification accuracy, root mean squared error 
(RMSE)) were compared between studies against the backdrop of factors 
such as study population and included features, where informative, to 
assist meaningful comparisons. 

In addition, participant (sample type) and study information relevant 
for RoB assessment and QA was extracted. 

3. Results 

The search queries returned 24 eligible studies with several analysis 
and prediction goals (see Fig. 1 for PRISMA flow chart. Examples of 
exclusion based on study design included studies that utilised solely 
digital phenotypes calculated from digital devices other than smart
phones, or that used digital phenotypes calculated from actively 
collected smartphone data. Examples of exclusion based on publication 
type included published protocols, reviews and dissertations). Charac
teristics of included studies are provided in Table 1 and general meth
odological information for these studies is summarised in Table 2. 
Specific methodological information per analysis goal is summarised in  
Tables 3–6. Included studies used features calculated from a range of 
sensor streams, for example count-based and statistical features 
reflecting mobility sensors (e.g., GPS data) and communication sensors 
(e.g., app-based data). Studies were grouped by analysis goal to allow for 
comparison of methods with similar objectives. To this end, to investi
gate our first research question we first compared studies that correlated 
individual passive smartphone features with depression symptom 
severity (Cao et al., 2020; Sun et al., 2023; Sverdlov et al., 2021; Was
serzug et al., 2023; Zhang et al., 2022; Zou et al., 2023). To address our 

second research question, we then shifted our focus to the different 
methods that have been used for various depression prediction tasks, 
investigating the methods used for predicting symptom severity (Braund 
et al., 2022; Cao et al., 2020; Faurholt-Jepsen et al., 2022; Kathan et al., 
2022; Pedrelli et al., 2020; Pellegrini et al., 2022; Sverdlov et al., 2021; 
Zhang et al., 2021; 2022). Somewhat unexpectedly, two studies aimed to 
predict specific smartphone features from ratings of depression (Laiou 
et al., 2022; Tønning et al., 2021). We then shifted our focus towards 
studies that aimed to classify participants into different diagnostic 
classes and mood states (Bai et al., 2021; Cho et al., 2019; 
Faurholt-Jepsen et al., 2022; Lee et al., 2023; Kim et al., 2023; Sverdlov 
et al., 2021; Wasserzug et al., 2023). Some studies contained unique 
goals that were not shared with the other studies, and these goals are 
considered in a separate section. We also compared some key method
ological choices, such as feature selection and processing, dimension 
reduction, and handling of missing data. 

3.1. Correlation between passive smartphone features and depressive 
symptom severity 

Six studies were identified that investigated correlations between 
features derived from passively-collected smartphone data (e.g., total 
amount of time spent at home, number of unique phone call partners/ 
day, total number and duration of phone calls) and depressive symptom 
severity quantified using sum scores of self-reports, such as the Patient 
Health Questionnaire (PHQ), and clinician-rated Montgomery–Åsberg 
Depression Rating Scale (MADRS) and Hamilton Depression Rating 
Scale (HDRS). These studies are summarised in Table 3. Sverdlov et al. 
(2021) and Cao et al. (2020) investigated various features related to 
participants’ communication behaviours. Sverdlov et al. (2021) found 

Number of records 
identified through 
PubMed (n=1211)

Number of records 
identified through 
PsycINFO (n=447)

Removed duplicates (n=3178)

Total number of unique records 
(n=3191)

Identification

Screening

Eligibility

Inclusion Number of studies included in the 
review (n=24)

Number of records screened with 
title and abstract  (n=3191)

Number of records excluded (n=3086)
- Absence of MDD population (n=1780)
- Study design (n=668)
- Publication type (n=578)
- Animal study (n=60)

Number of records screened with 
full text (n=105)

Number of records excluded (n=81)
- Absence of MDD population (n=46)
- Study design (n=16)
- Publication type (n=15)
- Full text inaccessible (n=3)
- Outcome (n=1)

Number of records 
identified through 
Embase (n=2089)

Number of records 
identified through 
Scopus (n=1288)

Number of records 
identified through 
Web of Science 
(n=1334)

Fig. 1. Flowchart of selection and inclusion process following the PRISMA Statement.  
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that more severe depressive symptom scores tended to have lower en
tropy of usage time of communication apps, lower total count of 
communication apps usage, and lower WhatsApp usage. Cao et al. 
(2020) found that a higher depression score is significantly correlated 
with lower social interaction levels (i.e., shorter phone call durations, 
fewer text messages sent), which seems consistent with Sverdlov et al.’s 
(2021) findings from app-based investigations, despite the differences in 
data type. Wasserzug et al. (2023) also found a significant correlation 
between vocal depression scores derived from prosodic vocal features 
and depressive symptom scores. 

In terms of general phone usage, Sun et al. (2023) found that unlock 
duration was positively correlated with depression score, and Zou et al. 
(2023) found a positive correlation between latest phone usage time and 
depression score, and a negative correlation with night time phone 
usage and with afternoon entertainment app usage. However, no sig
nificant correlation between symptom scores and smartphone screen 
usage was found by Cao et al. (2020), and Zou et al. (2023) noted that 
only a small number of features were found to have a significant cor
relation. Various mobility features have also been related to individuals’ 
symptom scores. Sverdlov et al. (2021) found that participants with 

higher symptom scores tended to maintain a lower average distance 
from home than participants with less severe symptom scores. Similarly, 
Sun et al. (2023) found a negative correlation between maximum dis
tance travelled from home and depression symptom scores, and a pos
itive correlation with homestay duration. Cao et al. (2020) also found 
that individuals with higher symptom scores demonstrated lower 
mobility, as indicated by decreased step count, fewer places visited, and 
lower location variance, spending their time more uniformly across 
different places. Zhang et al. (2022) investigated correlations between 
mobility features and symptom scores provided by their vector autore
gressive model. They found that within individuals, the proportion of 
time spent at their home location/s (‘homestay’) and short-term rhythm 
(i.e., behavioural rhythms with frequency higher than one day, e.g., for 
many people, going to and from their home) were positively correlated 
with symptom scores. Other features, for example long-term rhythm 
(behavioural rhythms with frequency less than one day, e.g., a weekly 
grocery shop) and circadian rhythm, were negatively correlated with 
symptom scores. Between individuals, only location variance and 
moving distance were negatively correlated with symptom scores. 
Overall, studies generally identified that higher symptom scores were 

Table 1 
Characteristics of Included Studies.  

Author (year of 
publication) 

Country Population % 
Female 

Age (M) Ethnicity Sample 
size  

Bai et al. (2021) China MDD NP NP NP  334 
Braund et al. (2022) Australia MDD (n = 79); BD (n = 42) 65.3 41.4 NP  121 
Cao et al. (2020) USA MDD 84.6 14.93 NP  13 
Cho et al. (2019) Republic of 

Korea 
MDD (n = 18); BD I (n = 18); BD II (n 
= 19) 

49.1 25.92 NP  55 

Emden et al. (2021) Germany MDD (n = 409); BD (n = 48); AD (n =
58); PD (n = 21); HC (n = 458) 

67.3 35.99 NP  997 

Faurholt-Jepsen 
et al. (2022) 

Denmark MDD (n = 75); BD (n = 65) 56.6 44.2 NP  140 

Fujino et al. (2023) Japan MDD 30.5% 41.2 NP  2143 
Kathan et al. (2022) Germany MDD 81.2% 32.8 NP  16 
Kim et al. (2023) Republic of 

Korea 
MDD (n = 24); HC (n = 10) 64.7% 14.9 NP  34 

Knights et al. (2023) USA MDD (n = 955); BD (n = 471); SZ (n =
152); personality disorder (n = 81); 
other (n = 685); missing (n = 8) 

73.6% 56.7 White = 48.9%; African American = 10.5%; 
Hispanic/Latino = 3.4%; multiracial = 2.1%; did not 
specify = 34.3%  

2352 

Laiou et al. (2022) UK, the 
Netherlands, 
Spain 

MDD 75.0 48 
(median) 

NP  164 

Lee et al. (2023) Republic of 
Korea 

MDD (n = 95); BD I (n = 78); BD II (n 
= 97) 

54.4% 23.3 NP  270 

Matcham et al. 
(2022) 

UK, the 
Netherlands, 
Spain 

MDD (n = 378); HC (n = 245) 75.6 46.4 NP  623 

Pedrelli et al. 
(2020) 

USA MDD 74.0 33.7 White = 71%; Hispanic/Latino = 23%; Asian = 16%; 
Haitian/Black/African-American = 12%; American 
Indian/Alaskan = 3%; mixed-race = 6%; other = 3%  

41 

Pellegrini et al. 
(2022) 

USA MDD (n = 10); BD (n = 10); SZ (n =
10); HC (n = 11) 

63.0 43.0 White = 71%; African-American = 20%; Asian = 7%; 
Other = 2%  

41 

Siddi et al. (2022) UK, Spain, the 
Netherlands 

MDD 74.51% 47.73 NP  255 

Sun et al. (2023) UK, Spain, the 
Netherlands 

MDD 74.5% 50.0 
(median) 

NP  479 

Sverdlov et al. 
(2021) 

the Netherlands MDD (n = 20); HC (n = 20) 33.0 31.2 White = 87.5%; Mixed = 7.5%; Asian = 2.5%; Black 
or African-American = 2.5%  

40 

Tønning et al. 
(2021) 

Denmark MDD 52.7 44.4 NP  74 

Wasserzug et al. 
(2023) 

Israel MDD (n = 40); HC (n = 104) 50.7% NP NP  144 

Zhang et al. (2021) Spain, the 
Netherlands, UK 

MDD 74.1 51.0 
(median) 

NP  316 

Zhang et al. (2022) Spain, the 
Netherlands, UK 

MDD 74.1 50.0 
(median) 

NP  290 

Zhang et al. (2023) Spain, the 
Netherlands, UK 

MDD 75.7% 49 
(median) 

KCL: white = 84.3%; VUMC: white = 92.4%; CIBER: 
NP  

614 

Zou et al. (2023) China MDD 65.7% 31.6 NP  245 

AD = Anxiety Disorder; BD (I or II) = Bipolar Disorder (Type 1 or Type 2); HC = Healthy Control; M = Mean; MDD = Major Depressive Disorder; PD = Psychotic 
Disorder; SZ = Schizophrenia/Schizoaffective Disorder; NP = Not Provided 
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Table 2 
General Methodological Information Of All Included Studies.  

Author (year of 
publication) 

Expected 
participation 
duration 

What did a single 
measurement refer to? 

Outlier removal Handling of missing values Specific variable/feature 
processing, selection, generation, 
or reduction methods used 

Bai et al. (2021) 12 weeks* 3 consecutive PHQ-9 
results (every 2 weeks) & 
corresponding 
smartphone data 

- Sample excluded if lasts < 1 week or 
contains < 3 days of effective data 

- L1-Based Feature Selection 
- Tree-Based Feature Selection 

Braund et al. 
(2022) 

10 weeks* One participant - Circadian rhythm only calculated 
when “sufficient” data available 

Circadian rhythm: Least squares 
spectral analysis 

Cao et al. (2020) 8 weeks 2 weeks of data - Not mentioned, though says fitted 
regressors for “rich sensor data” 

- Points in stationary states: K- 
means clustering 
- Speed used to categorise points as 
automobile, walking, unknown 

Cho et al. (2019) Not provided Each day - Removed days if any variable 
missing 

No specific method used 

Emden et al. 
(2021) 

2 weeks – 1 
year* 

One participant - - No specific method used 

Faurholt-Jepsen 
et al. (2022) 

6 months* Each day Points with unrealistic 
acceleration removed 

≥ 50 location samples/day required - Stops: locations sequentially 
grouped using maximum distance 
threshold 
- Places: DBSCAN clustering 

Fujino et al. 
(2023) 

120 days 60 days before & 60 days 
after “index date” (MDD- 
related visit) 

- - Excluded if missing step count data 
on 7 + consecutive days 
- Excluded day if < 50 steps 
recorded 
- Missing data not imputed 

7-day step count moving average 
calculated for each day (excluding 
index date) 

Kathan et al. 
(2022) 

8 weeks PHQ entry & ≥ 5 
days of valid passive data 
in the week prior 

- - Day valid if missing rate across all 
features < 20% 
- ≥ 5 valid days in week prior to 
PHQ required 
- Each participant needs to provide 
≥ 10 valid PHQ-2 entries 
- Imputation using mean from week 
prior 

- Location clustering: DBSCAN, k- 
means, time-based 
- Random forest regressor used to 
investigate most influential 
features for prediction 

Kim et al. (2023) - 5 weeks app 
monitoring 
- 8 weeks 
treatment* 

Classification of: 
- MDD & control groups: 
1 week of baseline 
monitoring 
- Response & 
nonresponse: 4 weeks 

- - Feature selection using "neural 
network with weighted fuzzy 
membership functions” algorithm 
performed simultaneously with 
classification 

Knights et al. 
(2023) 

≥ 4 weeks 14 days before each 
survey 

Data points > 4x Cook’s 
distance removed 

- Required ≥ 4 hours of passive 
smartphone activity in a minimum 
of 28 days 
- For each ESP interval (30 days): ≥
15 days of adequate smartphone 
usage data 
- For analysis: only 14-day intervals 
with ≥ 3 days of valid behavioural 
data included 

Phone activity aggregated into 15- 
minute bins 

Laiou et al. (2022) Up to 2 years PHQ-8 combined with 
GPS data from preceding 
2 weeks 

Points with accuracy > 20 
metres removed 

Required 14 days of GPS recordings 
available, daily median sampling 
period of GPS signal = 11 minutes, 
daily number of acquired GPS 
points = 48 

Variables transformed using 
Yeo–Johnson then zero-mean, unit- 
variance normalization 

Lee et al. (2023) ≥ 30 days 18 days before onset of 
episode 

- - Imputed missing values 
- Imputed light data for iOS phones 
as unavailable in iOS 

No specific method used 

Matcham et al. 
(2022) 

Up to 2 years One participant - - No specific method used 

Pedrelli et al. 
(2020) 

9 weeks* Features from same day 
of HDRS 

Used Theil-Sen estimator, 
random sample consensus, 
huber algorithms, allowing 
fraction of data points to be 
outliers 

- Excluded days with data missing 
due to technical problems 
- Extrapolated missing latitude & 
longitude values 

- Down-sampled location data 
- Location used to retrieve weather 
data from DarkSky API 
- kernel PCA 

Pellegrini et al. 
(2022) 

8 weeks* Biweekly MADRS & 
corresponding weekly 
smartphone summary 
measures 

- - Imputed missing GPS trajectories  
- Excluded data points with missing 
values for 1 + of the predictors 

PCA 

Siddi et al. (2022) 7 months* Three periods: pre-, 
during & post-lockdown 

- Excluded participants with missing 
PHQ-8 in pre-lockdown interval 

No specific method used 

Sun et al. (2023) Up to 2 years* - Cross-sectional analysis: 
average over all valid 
periods 
- Longitudinal analysis: 

- Coordinates excluded if 
differed from preceding & 
following 
coordinates by > 5◦

- One-time homestay durations of >
1 hour excluded due to large 
proportion of missing data 
- Valid period: ≥ 8 days of data 
present 

- GPS clustering using DBSCAN 
- Apps grouped into classes using 
classification from Google Play 
Store 

(continued on next page) 
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associated with lower mobility. 
Regarding the significance of the results and correction for multiple 

testing, a range of p-value significance thresholds were used in the 
studies, and it was mostly unclear if thresholds were corrected for 
multiple testing (see Table 3). Overall, correlations were generally weak 
to moderate, with Cao et al. (2020) reporting the strongest correlation 
magnitude of approximately 0.65 for daily step count. 

3.2. Predicting depression symptom severity 

Several studies investigated the possibility of using passively- 
collected smartphone data to predict depression symptom severity 
(displayed in Table 4; symptom scale ranges are provided in Table S5 in 
the supplementary materials to assist interpretation of model perfor
mance). Linear regression and linear mixed-effect regression models 
were popular choices for this prediction goal. Sverdlov et al. (2021) used 
a subset of the communication and mobility features discussed in the 
preceding section to predict MADRS scores using a multiple linear 
regression model. The correlation between observed and predicted 
scores calculated in leave-one-out cross-validation was r = 0.43, 
showing a moderate correlation. Pellegrini et al. (2022) conducted a 
Principal Component Analysis on a set of GPS and accelerometer fea
tures, and used the first principal component as a predictor in their 
linear mixed models. Pellegrini et al. (2022) investigated various models 
with and without this passive smartphone feature and a baseline 
depressive symptom score, demonstrating that including a smartphone 
feature did not improve the prediction of MADRS scores, but instead was 
comparable to predictions by models using only questionnaire data 

(RMSE = 4.30, 4.27 respectively). 
Applying (penalised) linear regression models to passive smartphone 

data may help ensure that the models are less likely to overfit to the data, 
however, the relationship between depression symptom severity and 
smartphone features may be non-linear. Because of this, several papers 
chose to investigate predictions of symptom severity by non-linear 
regression models, often comparing these results to linear regression 
models. In a study investigating depression in an adolescent population, 
Cao et al. (2020) used linear regression and support vector regression to 
predict PHQ-9 scores from smartphone data and personal and parental 
ratings. The most accurate model was a support vector regression model 
combining all three of these data types (RMSE = 2.65). Interestingly, the 
most accurate model using only smartphone data was a linear model 
(RMSE = 2.77). Zhang et al. (2021) used pairwise linear mixed-effect 
models to explore the relationship between Bluetooth smartphone fea
tures and PHQ-8 scores in a cross-country study in populations with a 
recent history of depression. Features reflected second-order statistics 
(e.g., the average value of the daily maximum number of nearby Blue
tooth device count (NBDC)), multiscale entropy and the frequency 
domain. Ten of the second-order statistical features, four features related 
to daily variance of NBDC, multiscale entropy at five timescales and five 
frequency domain features were associated with depression symptom 
scores. In general, it was found that for increases in depression symptom 
severity score, the variance and periodicity of the smartphone features 
sequence decreased, and it became more irregular. The models con
taining Bluetooth features provided better fits to the data than a model 
containing no Bluetooth features. Zhang et al. (2021) also investigated 
hierarchical Bayesian linear regression, LASSO regression and XGBoost 

Table 2 (continued ) 

Author (year of 
publication) 

Expected 
participation 
duration 

What did a single 
measurement refer to? 

Outlier removal Handling of missing values Specific variable/feature 
processing, selection, generation, 
or reduction methods used 

whole passive period & 
repeated PHQ-8 scores 

- Unlock intervals lasting > 4 
hours excluded 

- Principal feature analysis for 
feature selection 

Sverdlov et al. 
(2021) 

2 weeks One participant Low data quality 
observations removed 

States no missing data imputation Stepwise variable selection method 
with significance threshold p < .1 

Tønning et al. 
(2021) 

6 months* Corresponding 
smartphone data: 
- HDRS: day of & 
preceding 3 days 
- Smartphone-based 
patient-reportings: each 
day 

- Missing items from ratings & 
questionnaires not included in the 
summed scores, no imputations 
made 

No specific method used 

Wasserzug et al. 
(2023) 

Two weeks Two-week period Required minimum 45 
seconds of voice in recording 

- - Vocal analysis to calculate raw 
voice parameters 
- Parameters then calibrated using 
reference dataset & normalized 

Zhang et al. 
(2021) 

Up to 2 years* 14 days preceding PHQ-8 - - Usable days contained ≥ 12 hours 
of data 
- Included PHQ-8 intervals with ≥
10 usable days 
- Imputed missing hours using linear 
interpolation 
- Prediction task subset: ≥ 3 valid 
intervals required per participant 

Fast Fourier transformation 

Zhang et al. 
(2022) 

Up to 2 years* 14 days preceding PHQ-8 Location records with error 
> 165 metres removed 

Missing location data in a PHQ-8 
interval limited to 50% 

- Location clustering using 
DBSCAN 
- Frequency-domain: used linear 
interpolation & fast Fourier 
transformation 

Zhang et al. 
(2023) 

Up to 2 years ≤ 2 year follow-up - Right-censoring method used for 
participants whose study duration 
< observation period 

No specific method used 

Zou et al. (2023) 12 weeks* Passive data collected 
between baseline & 2 
week follow-up 

- Required ≥ 10 days available 
passive data in each 2 week period 

Input variables Z-score normalized 

MDD = Major Depressive Disorder; PHQ = Patient Health Questionnaire; HDRS = Hamilton Depression Rating Scale; MADRS = Montgomery–Åsberg Depression 
Rating Scale; DBSCAN = Density-Based Spatial Clustering of Applications with Noise; PCA = Principal Component Analysis; GPS = Global Positioning System; *In
dicates follow-up/longitudinal clinical data was collected in this period, and that the analysis used reflected this (i.e., follow-up data per participant were not treated as 
independent measurements) 
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regression models to predict symptom severity. Their hierarchical 
Bayesian linear regression model achieved the best performance in 
terms of their selected metrics for the two different cross-validation 
scenarios used (RMSE = 3.89, 4.426). Zhang et al. (2022) investigated 
relationships between smartphone features and depression score using 
vector autoregressive models. They considered (cross-)lagged effects 
between each time point and the subsequent time point occurring two 
weeks later. Residential location count was positively correlated with 
later depression scores (φ = 0.05), despite a negative correlation being 
found between this feature and depression score at the within-subjects 
level. Moreover, depressive symptom scores were shown to be nega
tively correlated with later circadian rhythm (φ = − 0.07), and preced
ing location entropy (φ = − 0.04) and homestay (φ = 0.09). 
Importantly, Zhang et al. (2022) also demonstrated individual differ
ences in cross-lagged effects related to age and circadian rhythm. 
Pedrelli et al. (2020) aimed to predict HDRS scores using average 
ensemble of boosting and random forest (AdaBoost) models. These 
models included smartphone features related to location and movement 
(using GPS, Wi-Fi and Cell tower signal), app/smartphone usage, and 
calls/SMS, as well as wearable and weather-related features. Kernel 
Principal Component Analysis was used to reduce the dimensionality of 
this feature set from 877 to 25 features, and was also carried out sepa
rately for models with only smartphone or wearable features. This study 
achieved similar performance across models, with the lowest error in a 
time-split cross-validation scenario from the model including only mo
bile features (RMSE = 4.88), and the lowest error in a user-split 
cross-validation scenario from the model including only wearable fea
tures (RMSE = 5.35). The machine learning models outperformed pre
dictions made using group median baseline and individual screen 
baseline models, but not predictions using individual median HDRS 
scores. Kathan et al. (2022) compared personalisation strategies to 
non-personalised models for prediction of PHQ-2 scores at the end of the 

day and one day ahead. For end of day prediction, the model using 
subject-dependent standardisation achieved the best performance 
(Mean Absolute Error (MAE) = 0.801), and for day ahead prediction the 
personalisation model using transfer learning achieved the best perfor
mance (MAE = 1.349). 

Braund et al. (2022) investigated participants with both bipolar 
disorder and MDD, using linear regression models to test the association 
between circadian rhythm and PHQ-9 scores, and mixed-effects linear 
models to investigate potential moderating effects of circadian rhythm 
on symptom prediction across six timepoints covering a ten week period. 
Circadian rhythm was not found to be associated with depression 
severity and similarly, no interactions were found between time point, 
circadian rhythm or diagnosis, or time point and circadian rhythm for 
depression severity. However, there was quite low variability in 
depression symptom severity indicated graphically in the study, and so 
strong interactions may be difficult to detect. Faurholt-Jepsen et al. 
(2022) used two-level mixed effects regression models to investigate 
differences in mobility patterns (quantified using GPS, Wi-Fi and cell 
tower signals) between participants with bipolar disorder and unipolar 
depression. During depressive states, participants with unipolar 
depression were found to cover a significantly larger area per day, and 
had a larger total distance and duration of moves per day compared to 
participants with bipolar disorder. Overall and during euthymic states, 
participants with unipolar depression were found to have greater loca
tion entropy during the daytime than participants with bipolar disorder. 

3.3. Predicting passive smartphone features 

Whilst many studies investigated whether depression symptom 
severity could be predicted by features derived from passively collected 
smartphone data, two studies were identified that sought to make the 
inverse prediction (i.e., predicting different smartphone features from 

Table 3 
Methodological Details Of Studies Correlating Passive Smartphone Features With Depression Symptom Severity.  

Author (year of 
publication) 

Types of predictor variables Response 
variable/s 

Modelling techniques Quality metrics 
used 

Results 

Cao et al. 
(2020) 

- Steps 
- GPS 
- Calls 
- Text messages 
- Ambient light intensity  
- Screen usage 

Biweekly 
HAMD & 
PHQ-9 

Pearson correlation p < .1, p < .05, p <
.01 

- Participants with higher depression scores had shorter 
phone call durations, fewer text messages, fewer steps, 
had lower location variance, visited fewer places, but 
spent time more uniformly across different places (higher 
normalized entropy) 
- No significant correlation for ambient light intensity or 
screen usage 

Sun et al. 
(2023) 

- GPS 
- User interaction data 
- App usage 
- Wearable features 

PHQ-8 - Cross-sectional analysis: 
Spearman correlation 
- Longitudinal analysis: 
used repeated measures 
correlation 
& linear mixed effects 
models 

- Spearman 
correlation 
coefficient 
- p-value, 2-tailed t 
value 
- Rankings based on 
coefficients & t 
values 

- Longitudinal correlation coefficients smaller than cross- 
sectional coefficients 
- Most relevant cross-sectional smartphone features: 
maximum distance from home, homestay, unlock 
duration 
- Most relevant longitudinal smartphone feature: 
homestay 

Sverdlov et al. 
(2021) 

- GPS 
- Calls 
- WhatsApp calls 
- App usage 

MADRS Pairwise correlations - Participants with higher MADRS had lower average 
distance from home, lower entropy of communication 
apps usage time, lower total count of communication apps 
usage, lower number of WhatsApp usage 

Wasserzug et al. 
(2023) 

Prosodic vocal features 
from calls 

HDRS Pearson correlation p < .0001 Significant correlation between vocal depression scores of 
recordings & equivalent HDRS 

Zhang et al. 
(2022) 

Each PHQ-8 score & 
mobility feature (derived 
from GPS & network 
sensors) 

- Vector autoregressive 
model 

Adjusted p < .05 - Within-individual level: most mobility features 
significantly correlated with PHQ-8 
- Between-individuals: location variance, moving distance 
negatively correlated with PHQ-8 
- Individual differences found for age, work status 

Zou et al. 
(2023) 

- Calls 
- Text messages 
- App usage 
- Screen status 

% reduction 
in HAMD 

Pearson correlation p < .05 - Only 4/71 features significantly correlated with 
reduction in HAMD 
- Positive correlation: latest phone usage time 
- Negative correlations related to nighttime phone usage 
& afternoon entertainment apps usage 

PHQ = Patient Health Questionnaire; HAMD/HDRS = Hamilton Depression Rating Scale; MADRS = Montgomery–Åsberg Depression Rating Scale; GPS = Global 
Positioning System 
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Table 4 
Methodological Details Of Studies Predicting Depression Symptom Severity Or Predicting Passive Smartphone Features From Depression Symptom Severity.  

Author (year of 
publication) 

Goal of analysis Types of predictor 
variables 

Response 
variable/s 

Modelling 
techniques 

Validation/ 
assessment 
strategy 

Validation/ 
assessment 
metrics 

Results 

Braund et al. 
(2022) 

To determine 
relationship between 
circadian rhythm and 
mental health 
measures across 6 
time points in adults 
with MDD or BD 

GPS PHQ-9 - Linear 
regression models 
- Mixed linear 
models 

- p values corrected 
using Benjamini 
& Hochberg 
procedure 

- No interaction found 
between time points & 
circadian rhythm for 
people with MDD 
- No significant 
interactions found among 
time point, circadian 
rhythm, diagnosis 
category or time point & 
circadian rhythm 

Cao et al. (2020) To investigate 
whether smartphone 
apps can monitor 
depression symptoms 
in depressed 
adolescents 

- Steps 
- GPS 
- Calls 
- Text messages 
- Ambient light 
intensity - Screen 
usage 

PHQ-9 - Linear regressor 
- Support vector 
regressor with 
polynomial kernel 

- Divided dataset 
into 4:1 training & 
test sets 
- Tried different 
feature subsets 

RMSE - Model including 
parents’ evaluations, 
teens’ inputs & 
smartphone data 
achieved lowest error 
(using support vector 
regressor) 
- Lower mobility levels & 
fewer social interactions 
predictive of more severe 
symptoms 

Faurholt-Jepsen 
et al. (2022) 

To investigate 
differences in location 
data between BD & 
UD overall, during 
depressive states, 
during euthymic 
states 

- Location from 
GPS, Wifi, cell 
tower signals 
- Covariates: age, 
gender, work 
status 

Patients with 
BD & UD 

Mixed effects 
regression model 

- p ≤ 0.05 - Compared with patients 
with BD during 
depressive state, patients 
with UD during 
depressive state had 
higher mobility 
- Patients with UD 
regardless of state & 
during euthymia had 
more location entropy 
during the day 

Kathan et al. 
(2022) 

To examine different 
personalisation 
strategies for 
predicting & 
forecasting depressive 
symptoms 

- GPS 
- Calls 
- Phone usage 
- App usage 
- Active data 
including EMA 

PHQ-2 
- At end of 
day 
- One day 
ahead 

Baseline model: 
- Recurrent neural 
network with 
gated recurrent 
units 
Personalisation 
methods: 
- Transfer 
learning approach 
- Baseline but 
with subject- 
dependent 
standardisation 
- Subgroup 
models for female 
& male 
participants 

- 3-fold cross- 
validation 
- From each 
participant: 
1 fold used in 
validation set, 
80% of the other 2 
folds used in 
training, 20% used 
in development 

- MAE 
- Spearman’s rank 
correlation 
coefficient 

- Personalised models 
outperform non- 
personalised in both 
scenarios 
- End of day: best result 
from subject-dependent 
standardisation 
- One day ahead: best 
result from transfer 
learning 
- Fairness improved using 
personalisation methods 
- EMA made considerable 
contribution to 
prediction 

Laiou et al. 
(2022) 

To examine 
association between 
MDD symptom 
severity & daily 
mobility patterns 

- PHQ-8 
- Age, gender, 
occupational 
status, median 
completeness, 
sampling 
constancy 

Homestay 
(GPS) 

Linear regression 
model 

- Randomly 
selected 1 segment 
per participant, 
pooled data across 
participants & 
fitted model 
- Repeated 100x 

Significant if 95% 
2-sided CI did not 
include 0 

- Greater symptom 
severity associated with 
prolonged home stay 
- Older individuals found 
to spend more time at 
home, also unemployed 
relative to employed 
individuals 
- No significant effect 
from gender 

Pedrelli et al. 
(2020) 

To evaluate an ML 
model combining 
physiological & 
smartphone features 
to assess depressive 
symptom severity 

- GPS, WiFi, cell 
tower signal 
- App usage 
- Calls 
- SMS 
- Display on status 
- Wearable 
features, weather- 
related features 

Residual 
HDRS score 

- Average 
ensemble of 
boosting 
- Random forest 
- Boruta 
algorithm to rank 
features 

- 10-fold cross- 
validation (user- 
split & time-split 
scenarios) 
- Compared to: 
group median 
HDRS, individual 
HDRS at 
screening, 
individual median 
HDRS from 
following visits 

- Average MAE & 
RMSE 
- Pearson 
correlation 
coefficient 
between true & 
estimated HDRS 

- All ML models 
performed similarly 
- Time-split scenario: 
lowest MAE from model 
that included only mobile 
features 
- User-split scenario: 
lowest MAE obtained by 
model using only 
wearable features 
- Strongest correlation 
from time-split model 
including smartphone 

(continued on next page) 

I.E. Leaning et al.                                                                                                                                                                                                                               



Neuroscience and Biobehavioral Reviews 158 (2024) 105541

9

measures of depressive symptoms). Choice of smartphone-based 
response variables were informed by previous research and clinical 
knowledge. These studies are displayed in Table 4, alongside the studies 
in the preceding section. Laiou et al. (2022) used a linear regression 

model to predict homestay based on PHQ-8 scores, also including de
mographic variables in their model (see Table 4). They found that high 
depression symptom severity was associated with longer home stay 
during the overall study period and for weekdays only, but not for 

Table 4 (continued ) 

Author (year of 
publication) 

Goal of analysis Types of predictor 
variables 

Response 
variable/s 

Modelling 
techniques 

Validation/ 
assessment 
strategy 

Validation/ 
assessment 
metrics 

Results 

features 
- Features related to 
phone engagement, 
activity level, wearable 
features the most 
important 

Pellegrini et al. 
(2022) 

To predict future 
MADRS score from 
baseline MADRS, 
PHQ, passive 
smartphone data 

- GPS 
- Accelerometer 
- Android: calls 
- Models with & 
without PHQ-8, 
baseline MADRS 
- Demographics 

MADRS score Linear mixed 
models 

Leave-one-subject- 
out cross- 
validation 

Average RMSE 
across 
participants 

Including passive 
variables did not improve 
average RMSE 

Sverdlov et al. 
(2021) 

To explain between- 
subject variation in 
MADRS, predict 
individual MADRS 
scores, using digital 
biomarker data 

- GPS 
- Calls 
- WhatsApp calls 
- App usage 

Total MADRS 
score 

Multiple linear 
regression model 

Model fit assessed 
using plots of 
observed vs. 
predicted MADRS 
& model residual 
plots 

Proportion of 
explained 
variance in 
MADRS scores 

Correlation r = 0.43 
between observed & 
predicted MADRS 

Tønning et al. 
(2021) 

To investigate 
associations between 
social & physical 
activity with HDRS-17 
& same-day 
smartphone-based 
patient-reportings 

- HDRS-17 
- Daily patient 
reports of mood 

- Steps 
- GPS, Wifi, 
cell tower 
signal 
- Smartphone 
usage 
- Calls 
- Text 
messages 

Linear mixed- 
effects models 

- p ≤ 0.05 - Higher HDRS-17 
associated with fewer 
screen turn on’s, more 
outgoing calls, longer call 
duration 
- 4/30 statistically 
significant results, high 
risk of chance findings 
- Patient-reported mood 
negatively associated 
with screen time, call 
duration, number of 
incoming/missed calls, 
incoming/outgoing texts 

Zhang et al. 
(2021) 

- To explore 
associations between 
statistical and 
nonlinear Bluetooth 
features & PHQ-8 
- To predict depressive 
symptom severity 

- Bluetooth 
- Last PHQ-8 score 

PHQ-8 - Pairwise linear 
mixed-effect 
models 
- Hierarchical 
Bayesian linear 
regression 
- LASSO 
regression 
- XGBoost 
regression 

Leave-all-out 
(LAO) & leave- 
one-out (LOO) 
time-series cross- 
validation 

- Mixed-effect 
models: z-test, 
adjusted p < .05 
(Benjamini- 
Hochberg 
method) 
- Prediction 
models: RMSE & 
predicted 
coefficient of 
determination 

Associations with PHQ-8 
from linear mixed-effect 
models: 
- 4 NBDC daily variance 
features 
- Multiscale entropy at 
five timescales 
- 5 frequency domain 
features 
Prediction models: 
- Hierarchical Bayesian 
linear regression using all 
Bluetooth features 
performed best for LAO & 
LOO, but XGBoost 
comparable for LOO 

Zhang et al. 
(2022) 

To explore the 
(direction of) 
relationships between 
depressive symptom 
severity & mobility 
over time 

Covariates: age, 
gender, work 
status 

PHQ-8 & GPS 
and network 
features 

Vector 
autoregressive 
models 

- Adjusted p < .05 - Some positive lagged 
effects in PHQ-8 & 
mobility features 
- PHQ-8 negatively 
correlated with following 
circadian rhythm of 
mobility, preceding 
location entropy, 
homestay. Residential 
location count positively 
correlated with following 
PHQ-8 
- Individual differences 
found for age, gender, 
work status 

MDD = Major Depressive Disorder; BD = Bipolar Disorder; UD = Unipolar Disorder; PHQ = Patient Health Questionnaire; HDRS = Hamilton Depression Rating Scale; 
MADRS = Montgomery–Åsberg Depression Rating Scale; GPS = Global Positioning System; RMSE = Root Mean Squared Error; EMA = Ecological Momentary 
Assessment; MAE = Mean Absolute Error; CI = Confidence Interval; ML = Machine Learning; SMS = Short Message/Messaging Service 

I.E. Leaning et al.                                                                                                                                                                                                                               



Neuroscience and Biobehavioral Reviews 158 (2024) 105541

10

Table 5 
Methodological Details Of Studies Predicting Diagnostic Class Or Mood State/Episode Label.  

Author (year of 
publication) 

Goal of analysis Types of 
predictor 
variables 

Response variable/s Modelling 
techniques 

Internal 
validation 

Internal 
validation 
metrics used 

Results 

Bai et al. (2021) Examine feasibility 
of monitoring mood 
status and stability 
of patients with 
MDD using ML 
models and passive 
data 

- Calls 
- Phone usage 
- App usage 
- Wearable 
features 

2 groups and 4 
subgroups: 
- Steady state 
(Remission, 
Depressed) 
- Swing state 
(Drastic, Moderate) 

- Support vector 
machines 
- K-nearest 
neighbours, 
decision trees 
- Naïve Bayes 
- Random forest 
- Logistic 
regression 

10-fold cross- 
validation 

Average accuracy 
rate and recall 
rate 

- Model using only 
smartphone features 
achieved both highest 
accuracy for 
classification between 
“steady-remission” & 
“swing-moderate” 
(0.809) and lowest 
accuracy between 
“steady-depressed” & 
“swing-drastic” (0.662) 
- Amongst various 
feature sets, accuracies 
between “steady- 
remission” & “mood 
swing” were higher than 
accuracies between 
“steady-depressed” & 
“mood swing” 
- Best performing model 
used call logs, sleep, step 
count, heart rate 

Cho et al. (2019) Determine whether 
mood states/ 
episodes can be 
predicted using only 
automatically 
recorded data by ML 

- Light exposure 
- Wearable 
features 

- Mood state (next 3 
days): biased, 
neutral (NB used 3 
different cut-off 
values to split 
groups) 
- Mood episode: 
depressive, manic, 
hypomanic, none 

Random forest Repeated 
training/testing 
evaluations by 
moving 
timepoint split 
from start to end 
of timeline 

Average 
sensitivity, 
specificity, 
accuracy, AUC 

- Mood state prediction: 
accuracy 0.61-0.67, 
sensitivity 0.39-0.61, 
specificity 0.42-0.74, 
AUC 0.56-0.69 
- Mood episode 
prediction for “No 
Episode”/“Depressive 
Episode”: accuracy 
0.751/0.712, sensitivity 
0.935/0.409, specificity 
0.395/0.878, AUC 
0.781/0.798 
- Episode prediction 
generally more 
successful than state 
prediction within next 3 
days 
- Future state prediction 
more successful for 
shorter period, all 
personalised models 
outperformed general 
model 
- Episode prediction: 
personalised models 
almost always 
outperformed general 
- Clear differences in 
light exposure according 
to mood state 

Faurholt-Jepsen 
et al. (2022) 

Investigate use of 
passively collected 
location data in 
classifying BD and 
UD 

- GPS - Classes: BD or UD 
across depressive or 
euthymic states 

Balanced 
bagging 
classifier 
(ensemble of 
decision trees) 

10-fold stratified 
cross-validation 

Sensitivity, 
specificity, 
positive 
predictive value 
and negative 
predictive value, 
AUC 

- Classifying patients 
with UD during 
depressive state vs 
patients with BD during 
depressive state 
moderately successful 
(AUC 0.79) 
- Patients with BD 
during both depressive 
& euthymic states 
classified with higher 
AUC than patients with 
UD during depressive & 
euthymic states 

Lee et al. (2023) To develop a mood 
episode prediction 
model using lifelog 
data 

- Light sensor 
- Wearable 
features 

Major depressive 
episode (MDE) vs 
none 

Random forest Same method as  
Cho et al. (2019) 

Average 
accuracy, 
sensitivity, 
specificity, AUC 

Average prediction 
accuracy for onset of 
MDE in next 3 days was 
93.8% 

(continued on next page) 
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weekends. Tønning et al. (2021) investigated the prediction of several 
smartphone features, including daily averages of physical activity 
(number of steps, total distance moved), smartphone usage (total 
screen-on time, number of times screen was turned on) and social ac
tivity (number of incoming, outgoing, missed calls, duration of calls, 
number of incoming & outgoing text messages). Using linear 
mixed-effects models to account for repeated measurements within each 
participant, it was found that more severe HDRS scores were signifi
cantly associated with fewer screen turn ons, larger number of outgoing 
calls, and longer phone call durations. However, it was noted that this 
was a small number of significant results, especially given the high risk 
of chance findings, as multiple testing was not accounted for. Unlike 
Zhang et al. (2022), Tønning et al. (2021) did not find a significant 
relationship between distance moved and symptom severity. Tønning 
et al. (2021) also investigated the relationship between the smartphone 
features and a mood score that patients provided via their smartphones. 
Lower smartphone-reported mood was associated with increased social 
activity and phone usage. In this context, incoming communication was 
suggested to be increased due to concern from external sources. 

3.4. Predicting diagnostic class 

Studies with classification-related goals are displayed in Table 5. 
Sverdlov et al. (2021) investigated two regression methods to classify 
participants as depressed or healthy. The first was a logistic regression 
method that utilised input variables (e.g., number of unique places 
visited, average distance from home, total number of WhatsApp calls, 
total usage count of apps) selected in a stepwise manner, and for the 
second method they applied a clinically-determined threshold to 
MADRS scores predicted by a multiple linear regression model (again 
using selected input variables) to split the participants into the two 
classes. The latter model achieved higher accuracy (0.75), sensitivity 
and area under the receiver operating characteristic curve (AUC) than 
the logistic regression model, and comparable specificity. Kim et al. 
(2023) also classified participants with MDD versus healthy controls, 

using deep neural networks and SVM. The deep neural network achieved 
higher accuracy in cross-validation (77%). Additionally. Kim et al. 
(2023) classified MDD patients who responded to antidepressant treat
ment versus those who did not respond, achieving 85% cross-validation 
accuracy using an SVM. 

Faurholt-Jepsen et al. (2022) classified participants with bipolar 
disorder and unipolar depression into overall diagnostic classes using an 
ensemble of decision trees. The model achieved a sensitivity of 0.70, 
specificity of 0.65, and AUC of 0.75 during cross-validation. In line with 
this, Faurholt-Jepsen et al. (2022) aimed to classify solely the depressive 
periods of participants with bipolar disorder or unipolar depression, to 
investigate whether the depressive state of participants in the two 
diagnostic groups can be differentiated, achieving again a sensitivity of 
0.70, a higher specificity of 0.77, and AUC of 0.79. Overall, it can be seen 
that these models could differentiate between classes with moderate 
success, bearing in mind that a random binary classifier would achieve 
about 50% accuracy. 

3.5. Predicting mood state/episode label 

Rather than focusing on diagnostic labels, many studies chose to 
focus on mood states (these studies are also included in Table 5). This 
approach may be a useful step towards predicting clinically relevant 
changes in state for those who already have a diagnosis, or to predict 
relapse for those in remission. Bai et al. (2021) aimed to classify par
ticipants with MDD into two groups, steady state and mood swing state, 
as well as four subgroups (steady state: in remission, currently 
depressed; mood swing: drastic (i.e., difference between maximum and 
minimum PHQ-9 scores is greater than or equal to ten), moderate (i.e., 
difference in scores is greater than or equal to five)), using a variety of 
machine learning methods. Statistical smartphone features were calcu
lated for the different types of phone calls and times of call, call dura
tion, number of people involved in the calls and the entropy of callers. 
Some features from wearable devices (e.g., step count, heart rate) were 
also used. The success rate of classification was found to vary depending 

Table 5 (continued ) 

Author (year of 
publication) 

Goal of analysis Types of 
predictor 
variables 

Response variable/s Modelling 
techniques 

Internal 
validation 

Internal 
validation 
metrics used 

Results 

Kim et al. (2023) - To predict MDD 
diagnosis in 
adolescents 
- To predict 
antidepressant 
treatment response 
in depressed 
adolescents 

- Calls 
- GPS 
- Phone usage 
- Text messages 
- Gyroscope 
- Antidepressants 
dosage 

- Classes prior to 
drug administration: 
MDD and controls 
- Treatment 
response and 
nonresponse patient 
groups 

- Deep neural 
network (DNN) 
- Support vector 
machine (SVM) 
with radial basis 
function kernel 

3-fold cross- 
validation 

Average 
accuracies 

MDD vs controls: 
- DNN: 96% training 
accuracy, 77% 3-fold 
average accuracy 
- SVM: 93% in training, 
75% in 3-fold average 
Response vs 
nonresponse: 
- DNN: 94% training 
accuracy, 76% 3-fold 
average accuracy 
- SVM: 99% in training, 
85% in 3-fold average 

Sverdlov et al. 
(2021) 

Build classifiers of 
depressed and 
healthy subjects 

- GPS 
- Calls 
- WhatsApp calls 
- App usage 

- Classes: depressed 
or healthy 

- Logistic 
regression 
- Threshold 
approach based 
on predicted 
MADRS score 
using linear 
regression 

Leave-one-out 
cross-validation 

Sensitivity, 
specificity, 
overall 
classification 
accuracy, AUC 

Linear model-based 
classifier generally 
achieved better 
performance than 
logistic classifier 

Wasserzug et al. 
(2023) 

To track 
prosodic vocal 
pattern changes in 
depression 

Prosodic vocal 
features from 
calls 

‘High depression 
state’ (MDD patients 
in acute state) vs 
‘low depression 
state’ (MDD patients 
in remission & non- 
clinical group) 

Model based on 
vocal 
parameters & 
weights that 
were correlated 
to depression 

Repeated 
random sub 
sampling 
cross-validation 

- Confusion 
matrix 
- Accuracy, 
sensitivity, 
specificity, 
precision, FPR, 
FNR 

- Cross-validation 
accuracy 72.7% 
- Averaging recording 
scores of each 
participant improved 
prediction 

MDD = Major Depressive Disorder; BD = Bipolar Disorder; UD = Unipolar Disorder; MADRS = Montgomery–Åsberg Depression Rating Scale; GPS = Global Positioning 
System; ML = Machine Learning; AUC = Area Under the Receiver Operating Characteristic Curve; FP/NR = False Positive/Negative Rate 
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Table 6 
Methodological Details Of Studies With Other Analysis Goals.  

Author (year 
of 
publication) 

Goal of analysis Types of predictor variables Response variable/s Modelling techniques Quality metrics Results 

Braund et al. 
(2022) 

Investigate differences 
in circadian rhythm 
between participants 
with MDD & BD 

Diagnostic group Circadian rhythm 2-tailed t tests Significance 
threshold p < .05 

No difference found 

Emden et al. 
(2021) 

To evaluate feasibility 
& adherence of ReMAP 
in transdiagnostic 
sample. 

Diagnosis, age, sex, 
depression severity, global 
level of functioning, 
previous psychiatric 
hospitalizations, verbal IQ, 
education 

Participation in study, two- 
week retention, one-year 
retention, duration, days 
with passive events 

- Kaplan-Meier 
survival analysis, 
multiple standard 
regression analyses, 
Cox proportional 
hazard regression 
analysis 
- Random forest 

- Significance 
threshold p < .05 
- Mean balanced 
accuracy 

No difference found 

Fujino et al. 
(2023) 

To investigate 
association between 
walking activity and 
development of MDD 

- Step count data 
- Covariates: year, month, 
participation in walking 
campaigns, age, sex, 
comorbidity, 
hospitalization events, 
antidepressant 
prescriptions 

Mean step count on the 
index (MDD-related visit) 
date 

- Generalized 
estimating equations 
(GEE) (to compare 7- 
day moving averages 
of step counts) 
- Joinpoint regression 
analysis (to identify 
when trajectory of 
step count average 
changed) 
- Subgroup analyses 
for age, sex, type of 
health insurance plan 

- GEE: statistical 
significance of 
regression 
coefficients 
- Joinpoint 
regression: slope 
significantly 
different from 0 at 
alpha = .05 

- GEE: notable decrease 
in mean daily step 
counts in 2 weeks 
before 1st MDD-related 
visit 
- Joinpoint regression 
analysis: identified 
inflection point at day 
− 14 before MDD- 
related visit 
- Effects of covariates 
found 

Kim et al. 
(2023) 

To compare features 
between: 
- MDD & 
control groups 
- Antidepressant 
treatment responders & 
nonresponders 

- Calls 
- GPS 
- Phone usage 
- Text messages 
- Gyroscope 
- Antidepressants dosage 

- Classes prior to drug 
administration: MDD and 
controls 
- Treatment response and 
nonresponse patient groups 

2-sided Student t tests Not provided - MDD (vs controls): 
used their smartphones 
for longer periods, 
received more phone 
calls, moved longer 
distances 
- Differences not found 
between treatment 
responder & 
nonresponder groups 

Knights et al. 
(2023) 

To assess relationship 
between 
smartphone 
behavioural patterns 
within inferred sleep 
periods & patient- 
reported clinical 
measures 

- Keyboard & app usage 
- Fixed effect: primary 
diagnosis of major 
depression 

Sleep disturbance, 
depressive, anxiety 
symptoms from 
DSM-5 L1 

Linear mixed-effects 
models 

p < .1, p < .05, p <
.01, p < .001 

Significant effect of 
MDD diagnosis on 
depressive symptoms 
at p < .05, on anxiety 
symptoms at p < .1 

Matcham 
et al. 
(2022) 

To examine association 
between depressed 
mood and data 
availability 

People who provided 
passive data throughout 
follow-up divided into: 
those who provided 0–25%, 
26–50%, 51–75, > 75% of 
expected data 

Symptomatic vs no/mild 
symptoms 

Chi-squared tests p-value 
significance 
threshold not 
stated 

No difference found 

Siddi et al. 
(2022) 

To explore changes in 
depression and sociality 
across pre-, during- & 
post- COVID-19 
lockdown periods 

- Contacts 
- Social app usage 
- Baseline PHQ-8 

PHQ-8 Linear mixed-effects 
regression for 
repeated measures 

p < .05 No significant 
differences for social 
activity between 
moderate/severe and 
mild/no depression 
groups 

Sun et al. 
(2023) 

Investigate 
heterogeneity in 
depression by 
clustering participants 
using behavioural 
patterns 

- GPS 
- User interaction data 
- App usage 
- Wearable features 

States: depression vs no 
depression 

Gaussian mixture 
model 

- Differences 
between the 2 
states: used 
indicator of effect 
size of rank sum 
test 
- Repeated 
measures 
correlation 
coefficients 
within each 
cluster 

During depression:  
- Cluster 1: slept 
longer, walked less, 
woke up later 
(wearables) 
- Cluster 2: minimal 
changes 
- Cluster 3: reduced 
time & frequency of 
smartphone use 

Wasserzug 
et al. 
(2023) 

To characterize vocal 
pattern differences 
between 
depressed patients & 
healthy controls 

Prosodic vocal features 
from calls 

- MDD patients & controls 
- Patients in acute phase of 
MDD vs remission 

- One-way ANOVA 
- Student’s t-test 

p < .0001, p < .02 Vocal scores from: 
- MDD patients 
significantly higher 
than non-clinical 
participants 

(continued on next page) 
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on which classes and features were included in each binary classifier. 
The set of features that generally gave models with the highest accu
racies contained features related to call logs, sleep data, step count data, 
and heart rate data. The models using features from only smartphone 
data generally achieved the lowest accuracies. Although Bai et al. (2021) 
chose to focus on binary classifiers, a multi-class classifier may have 
more clinical utility as in the real world the class label would not yet be 
known, therefore it would be uncertain which binary classifier would be 
appropriate. 

Wasserzug et al. (2023) classified MDD patients (in acute depressive 
states and in remission) and healthy controls into “high depression” and 
“low depression” states using a model developed from vocal features 
that were correlated with depression, achieving a cross-validation ac
curacy of 72.7%. 

Random forest models were used by Cho et al. (2019) to classify 
mood state as biased or neutral, and mood episode as depressive, manic, 
hypomanic, or no episode. Behavioural patterns from participants with 
bipolar disorder were also investigated. Cho et al. (2019) used statistical 
features related to light exposure during bedtime and daytime, and 
many Fitbit features. For the mood state prediction of patients with 
MDD, and various mood score cut-off values, the accuracy ranged from 
0.61–0.67. For the mood episode prediction of patients with MDD, the 
accuracy was 0.751 and 0.712 for “No Episode” and “Depressive 
Episode” respectively. Cho et al. (2019) also investigated individual 
models of mood state and episode classification, finding that the per
sonalised mood state model outperformed the general model in all cases. 
For mood episode prediction, the personalised model achieved better 
performance in almost all cases. 

3.5.1. Mood state prediction at future time points 
The mood state models reported in Cho et al. (2019) involved 

making predictions related to future time points. That is, Cho et al. 
(2019) used a classifier to predict mood states three days following the 
window covered by the data collection of passive smartphone features, 
using a mixture of smartphone-derived light exposure features and 
wearable features. The number of days used to test the model (i.e., the 
three days) and the number of days used to train the model (18 days) 
were selected during parameter tuning, with longer periods (up to 300 
days for training days and 30 days for testing) also being investigated. 
However, the shorter period of three days was found to be a more 
reasonable window for mood state prediction than longer periods during 
their parameter selection process, suggesting that later mood state 
prediction was difficult. In a follow-up study, Lee et al. (2023) classified 
the presence or absence of major depressive episodes in the next three 
days in MDD patients, achieving an average prediction accuracy of 
93.8% in their validation method. The prediction method used in Cho 
et al. (2019) and Lee et al. (2023) differed from other studies that aimed 
to make predictions for mood at the end of smartphone data collection 
(e.g., Pellegrini et al., 2022), and gives an example of how digital phe
notyping research can shift towards predicting upcoming depression 
states. 

3.6. Other analysis goals 

A few studies investigated digital phenotyping in participants with 
MDD but could not be categorised into one of the above groups, or 
contained analyses that could not be categorised into these groups. For 

Table 6 (continued ) 

Author (year 
of 
publication) 

Goal of analysis Types of predictor variables Response variable/s Modelling techniques Quality metrics Results 

- MDD patients in acute 
state significantly 
higher than MDD 
patients in remission 
- MDD patients in 
remission significantly 
higher than non- 
clinical participants 

Zhang et al. 
(2022) 

To explore the 
(direction of) 
relationships between 
depressive symptom 
severity and mobility 

Mobility features & PHQ-8 - Dynamic structural 
equation modelling 

Adjusted p-value 
threshold < .05 

Model failed to 
converge 

Zhang et al. 
(2023) 

To investigate 
association between 
participant retention & 
engagement with 
depressive symptom 
severity 

Baseline PHQ-8 - Participant retention 
- Longitudinal data 
availability (collected 
battery level logs, app use 
logs, phone interaction 
data, ambient light, nearby 
Bluetooth device count, 
GPS) 

- Multivariate Cox 
Proportional-Hazards 
models 
- K-means clustering 

- p-values 
calculated by 
Kruskal-Wallis 
tests 
- p-value threshold 
not stated 

- Baseline PHQ-8 did 
not significantly 
impact retention for 
passive data 
- Participants in “least 
engaged” cluster had 
higher depressive 
symptom severity at 
baseline 

Zou et al. 
(2023) 

To predict treatment 
responses 10 weeks in 
advance in MDD 
patients 

- Calls 
- Text messages 
- App usage 
- GPS 
- Screen status 
- Wristband features 
- Baseline and 2nd week 
follow-up HAMD scores 

Two classes: treatment 
responded; stable or not 
responded 

- Baselines: logistic 
regression, Naïve 
Bayes, support vector 
machine, random 
forest 
- Trivial baseline: 
linear fitting of 
baseline & 2nd-week 
visit HAMD scores 
- Recurrent neural 
networks: GRU-D 
(Gated Recurrent 
Unit), GRU, Long 
Short-Term Memory 

- Recall, F1 score, 
AUC 
- Pearson 
correlation 
coefficients 
between predicted 
& actual classes 

- GRU-D model 
achieved best 
performance 
- Combined features set 
performed best 

MDD = Major Depressive Disorder; BD = Bipolar Disorder; PHQ = Patient Health Questionnaire; HAMD = Hamilton Depression Rating Scale; GPS = Global Positioning 
System; DSM-5 L1 = DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure; AUC = Area Under the Receiver Operating Characteristic Curve 
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completeness, these studies are summarised in Table 6 and selected 
analyses (that were particularly relevant to clinical applications) re
ported here. Our decision to present analyses in this section was also 
informed by whether the overall study had already had key analyses 
addressed in earlier sections of the Results. Fujino et al. (2023) inves
tigated changes in smartphone step count surrounding MDD-related 
medical visits in a group-based analysis, finding that mean daily step 
count tended to decrease in the two weeks before the visits. Zou et al. 
(2023) predicted treatment response in MDD patients 10 weeks in 
advance, achieving an AUC of 0.65. Braund et al. (2022) investigated 
differences in circadian rhythm between participants with MDD and 
participants with bipolar disorder, not identifying a difference between 
groups. 

Emden et al. (2021) investigated differences in study participation or 
retention between various diagnostic groups (affective, anxiety, and 
psychotic disorder groups and healthy controls), which yielded no sig
nificant differences between groups. Focusing on participants with 
MDD, Matcham et al. (2022) investigated whether depressed mood was 
associated with data availability, not identifying a difference in data 
availability between those with no or mild depressive symptoms and 
more severe symptoms. In a later study from this consortium, Zhang 
et al. (2023) also did not find a significant impact of baseline depression 
score on participant retention for passive data, however did now find 
differences in data availability. 

3.7. Comparison of study methods 

3.7.1. Feature construction 
Due to the vast range of sensors on smartphones, there are many 

different options of feature sets that are available or chosen for digital 
phenotyping. Sensors used by the studies identified in this review 
included, for example, GPS, light, steps, app data, smartphone on-off 
status, Wi-Fi and Bluetooth. The sensor data can be processed in many 
ways to create features, for example duration, count and statistical 
features. The number of studies using the various feature types are 
displayed in Fig. 2. 

Several different processing steps were used in the calculation of 
features (see Table 2). Clustering was sometimes used to group GPS 
samples into separate locations, for example by using the Density-based 
spatial clustering of applications with noise (DBSCAN) algorithm 
(Faurholt-Jepsen et al., 2022; Kathan et al., 2022; Sun et al., 2023; 
Zhang et al., 2022) or K-means clustering (Cao et al., 2020; Kathan et al., 
2022). Various thresholds were also used, for example to set minimum 
requirements for clusters. Various requirements were used in the iden
tification of a home location. Several studies chose to use dimension 
reduction or feature selection methods to reduce the number of features 
in their feature set/s, including Principal Component Analysis (Pelle
grini et al., 2022; Pedrelli et al., 2020), L1-Based Feature Selection and 
Tree-Based Feature Selection (Bai et al., 2021), feature selection using 
neural networks (Kim et al., 2023) and Principal Feature Analysis (Sun 
et al., 2023). 

3.7.2. Handling of missing and invalid data 
A common issue amongst the studies in this review was the preva

lence of missing smartphone data. Various tactics were used to handle 
this issue (see Table 2). Some studies did not mention any strategy for 
handling missing data, whilst others did not explicitly indicate the 
strategy used to deal with this, but acknowledge some kind of criteria. 
For example, by mentioning the use of “rich sensor data” (Cao et al., 
2020), or stating that analyses were only performed when sufficient data 
was deemed to be available (Braund et al., 2022). Other studies 
explicitly stated thresholds for data inclusion (Bai et al., 2021; 
Faurholt-Jepsen et al., 2022; Fujino, Tokuda, and Fujimoto, 2023; 
Kathan et al., 2022; Knights, Shen, Mysliwiec, and DuBois, 2023; Laiou 
et al., 2022; Sun et al., 2023; Zhang et al., 2021; 2022; Zou et al., 2023); 
if too high a percentage of data for a sample was missing then the sample 

was excluded. There was no consistent selection of thresholds for data 
inclusion across studies. 

In other studies, researchers chose to exclude days that had any 
variable missing (Pellegrini et al., 2022; Pedrelli et al., 2020; Cho et al., 
2019). However, Cho et al. (2019) indicated that not being able to 
incorporate missing data in models can lead to loss of large volumes of 
data, as illustrated by the exclusion of approximately 89% of their 
samples due to the inability of the selected model to account for missing 
data. Occasionally imputation was carried out on missing data (Kathan 
et al., 2022; Lee et al., 2023; Pedrelli et al., 2020; Pellegrini et al., 2022; 
Zhang et al., 2021), usually in combination with a minimum criterion of 
available data. 

Smartphone measures may also contain invalid data, for example 
implausible outlier values. The handling of outliers was not consistently 
addressed and in many cases not referred to (see Table 2), although it 
was more common for this to be addressed in studies using location data 
by excluding unrealistic points (Faurholt-Jepsen et al., 2022; Laiou 
et al., 2022; Sun et al., 2023; Zhang et al., 2022). The optimal strategy 
for handling outliers is highly dependent on the types of measures that 
are included as well as their distributions, further limiting the compa
rability across studies. 

4. Discussion 

MDD is a very common and debilitating mental disorder, associated 
with a high recurrence risk. The recent decade witnessed an upsurge of 
digital phenotyping studies to better understand dynamics of MDD and 
to advance precision methods efforts for (relapse) prevention. This 

Fig. 2. Number of studies (out of the 24 selected studies) using each broad 
category of feature type (N.B., studies generally used more than one 
feature type). 
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systematic review investigated the different features and methods used 
in smartphone-based digital phenotyping research for MDD and their 
associated predictive power, identifying a total of 24 studies. These 
studies overall supported the use of digital phenotyping in MDD, but 
conjunctively showed that the field is still in relatively early stages, with 
much room for improvement in predictive performance and the under
standing of individual differences in digital phenotypes still to be more 
rigorously developed. Six of the studies investigated correlations be
tween smartphone-derived features and depressive symptoms, and nine 
studies predicted depressive symptom scores from passive smartphone 
data (or in two studies, the inverse prediction). Seven studies also sought 
to predict classes of data, including diagnosis, mood state or mood 
episode, with two studies predicting mood state three days in advance 
(Cho et al., 2019; Lee et al., 2023). 

Our first research question aimed to establish which passive smart
phone features are correlated with clinically relevant variables in MDD. 
Features generally fell into three broad categories: communication, 
phone usage and mobility. Despite differences in the specific features, 
meaning that few similar features were calculated in more than one 
study, common themes arose: higher depression symptom scores were 
associated with lower mobility and social interaction measures. 

Our second research question aimed to investigate the different 
methods that have been used for depression prediction tasks using 
smartphone data, and their performance. For predicting depressive 
symptom severity, linear (mixed) models were commonly used, with 
nonlinear methods less common. To predict classes of diagnosis, mood 
state and mood episode, classic classification algorithms such as random 
forest and support vector machines were popular choices. Overall, 
studies tended to achieve moderate predictive performance. For 
example, with the exception of one classification study achieving over 
90% accuracy in the internal validation procedure (Lee et al., 2023), the 
highest out-of-sample classification accuracies achieved during 
cross-validation tended to be in the high 70 s to low 80 s. Lower accu
racies were frequently reported, indicating relatively varied predictive 
value of current smartphone-based digital phenotyping methods. 
Moreover, few studies aimed to predict responses across time points. Of 
note, Fujino et al. (2023) carried out a time-resolved analysis that 
investigated changes in step count surrounding MDD-related medical 
visits. Finally, a small number of studies investigated individual differ
ences, demonstrating differences between participants of different ages 
and employment statuses (e.g., in time spent at home (Zhang et al., 
2022; Laiou et al., 2022)), as well as some gender differences (e.g., in 
location entropy and residential location count (Zhang et al., 2022)). 
This is consistent with the common intuition that individuals have 
different phone use and behavioural habits, and suggests that factors 
such as these could be included in prediction models to improve per
sonalised predictions. 

In the following sections, we describe key methodological themes 
identified in this review, and discuss the importance of feature con
struction in digital phenotyping. We then discuss important study dif
ferences that affect the comparison between studies, and identify 
limitations of this review, before discussing recommendations for the 
field of digital phenotyping. 

4.1. Key methodological themes 

The richness and complexity of digital phenotyping data brings 
about several challenges that need to be overcome through making 
careful methodological decisions. Due to the high temporal resolution of 
the data and many available feature options that contribute to high 
heterogeneity of the data, many studies chose to include time-averaged 
features to summarise their data. This is a practical way to reduce the 
large volumes of data to a smaller, more manageable, number of fea
tures. However, depending on the chosen level of granularity, this 
approach can greatly reduce information relating to the temporal dy
namics of individual time series. Inclusion of measures reflecting 

variations in rhythm may have been done to overcome this disadvan
tage. For some features, the duration of data collection may affect their 
utility. For example, features such as circadian rhythm may be more 
reliably calculated when data is collected over a longer period of time, as 
this may provide indications of the relevance of variations given a per
son’s “usual” behaviours. As many studies focused on shorter periods (e. 
g., two week windows), future studies may seek to focus on changes in 
digital phenotypes over longer periods of time, such as in the range of 
months/years rather than weeks. Of note, approximately half of the 
studies involved follow-up/longitudinal clinical data, with the 
remainder either not collecting follow-up data, or not reflecting this 
element of study design in the subsequent analysis (see Table 2). Studies 
also generally validated time-averaged digital phenotyping measures 
against symptom measures that are also time-averaged, for example by 
comparing averages from two weeks of digital phenotyping data to a 
PHQ score reflecting depressive symptoms over two weeks. Whilst this is 
a necessary step during the early stages of digital phenotyping, it may 
detract from one of the original motivations behind digital phenotyping; 
i.e., to develop tools that can be used for real-time patient monitoring. 

In this review we use the term “external validation” to refer to the use 
of datasets that are independent from the main analysis dataset, for 
example datasets that were collected through a separate study, to 
evaluate model performance. We do not consider withheld data from the 
same dataset to be external validation due to a lack of independence. 
None of the included studies used external validation datasets to assess 
model performance, with results either reflecting the overall dataset, or 
an internal validation dataset (i.e., a subset of the overall dataset). 
Methods such as k-fold cross-validation help to give an indication of 
performance on withheld data, but do increase the risk of bias. External 
validation/testing sets may be difficult to obtain due to limited data 
availability, which could be aided in the future through more cross- 
collaboration and sharing of datasets. 

High prevalence of missing data is a serious concern in smartphone- 
based digital phenotyping research, as the various different functional
ities of smartphones may be unable to function under certain conditions 
(e.g., low battery, poor Wi-Fi connection, or intended smartphone 
switch-offs by users). Strategies for handling missing data therefore need 
to be applied. Studies identified by this review used minimum data in
clusion criteria, exclusion of samples with missing values and/or 
imputation of missing values. The latter two options allow flexibility in 
the chosen models as they do not need to be able to account for missing 
data. However, as data may be missing due to the behaviours of the 
participants (e.g., missingness as a result of an ongoing depressive 
episode), it is possible that imputing missing data may disguise impor
tant behavioural changes. For example, Cohen et al. (2023) found that 
their “data quality” feature, calculated based on the data that was suc
cessfully collected relative to the amount of data that was expected to be 
collected, was useful in predicting relapse in schizophrenia. This may 
also be the case for predicting clinically significant changes in depres
sion. One study included in this review also investigated the impact of 
missing data on feature quality (Sun et al., 2023), finding that a range of 
days’ worth of data (2–12 of 14 days) are needed to reliably calculate 
different features. Results such as these could inform the selection of 
missing data thresholds for different feature types. 

4.2. Feature construction 

As a large number of available sensors and options exist that re
searchers can select from before data collection begins, appropriate 
feature construction is key in digital phenotyping. This feature con
struction seems particularly guided by the technical availability of 
specific sensors and options, as different smartphone operating systems 
(e.g., Android, iOS) and applications have various restrictions. For 
example, Apple smartphones tend to have more restrictions on what 
data can be collected, and in applications such as WhatsApp, informa
tion about calls and messages cannot be accessed. Besides “technically- 
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driven feature construction”, concerns about ethics and/or privacy (e.g., 
Maher et al., 2019) can also drive the choice of features. For example, no 
study analysed the predictive value of content of general phone text 
messages, and only one study utilised voice recordings (Wasserzug et al., 
2023). Passive voice collection is likely less popular due to ethical issues 
and privacy concerns, although active voice recordings have shown 
promise in differentiating between people with depression and healthy 
controls (Silva et al., 2021). Of the excluded studies, some did record 
voices in defined settings or through using specific exercises or assess
ments (e.g., Abbas et al., 2021). 

Moreover, selected feature sets tended to be influenced by domain 
knowledge of depression symptoms (“theory-driven feature construc
tion”). For example, measures of home stay were common, and many 
studies included measures of behavioural rhythm, such as circadian 
rhythm (see Fig. 2). Two studies (Cao et al., 2020; Kathan et al., 2022) 
included a proxy measure of sleep in their prediction models, although 
with known limitations as it is not expected that participants use their 
smartphones immediately before and after sleep. Relatedly, more 
“data-driven” feature constructions were also seen to be used, in which a 
broad range of features are calculated to investigate which are most 
useful (e.g., statistical features calculated for a measure of movement). 
There are also other features that seem to fall between theory- and 
data-driven; for example, screen time is a commonly used feature yet 
despite its common perception, it may not have a notable negative 
impact on mental health (Aschbrenner et al., 2019). As we do not yet 
fully understand the impact of this behaviour on mental health, its use as 
a digital marker cannot be considered to be completely theory-driven. 
Studies also did not record reasons a person may have for greater 
screen time (e.g., family or work commitments), so these features are 
lacking context that could contribute to our understanding of their po
tential relationship with depression. 

Interestingly, several studies investigated individual differences in 
age, gender and occupational status, to inform predictions for in
dividuals. Understanding the impact these differences have on 
smartphone-related behaviours may enable the development of more 
personalised digital phenotyping or prevention tools, for example 
through stratifying individuals into informative groups for detecting 
recurrence in depression. It is likely that the smartphone-derived fea
tures themselves may vary in usefulness between individuals (e.g., some 
individuals may never use the basic call function, whereas others may 
regularly make calls using this function). As such, feature selection could 
perhaps be carried out for each individual for use in individual models, 
or for subsets of individuals, although it would need to be investigated 
whether this extra computational step would lead to increases in model 
performance. Studies were yet to consider other factors that could affect 
smartphone measures that may impact individual predictions, such as 
family- or work-related smartphone usage or locations. For example, in 
the case of an individual who works from home, minimal mobility away 
from the home location and large call volume are likely unrelated, or 
rather inseparable, from their mood status. Measures related to expected 
smartphone usage and lifestyle may, therefore, help to inform 
smartphone-derived predictions on the individual level and interactions 
with changing contexts, and could be collected in future studies. With all 
of the smartphone-derived features used, it should be noted that digital 
phenotyping is limited to the assessment of data on behaviours, activ
ities or physical responses that can be passively registered by a smart
phone. That is, it cannot assess underlying motives or experiences 
behind these behaviours, activities or physical responses (unless EMA or 
self-report are additionally administered). For example, for an individ
ual the qualitative inference can be made that using their smartphone at 
night may lead to depression, but the more direct relationship could be 
that the smartphone use during the night might indicate insomnia 
associated with depression. Without assessments of underlying motives 
or experiences, digital phenotyping results must be interpreted with 
care. 

4.3. Important study differences 

The aim of this review was not to compare smartphone-derived 
digital phenotypes to other phenotypes, such as wearable-derived digi
tal phenotypes, however as some studies combined smartphone features 
with other features, we can make some preliminary comments on the 
effect of combining different types of phenotypes. For example, Pedrelli 
et al. (2020) included wearable features, and found that it was incon
clusive which modality performed better to predict residual depressive 
symptom scores. In their models classifying mood states, Bai et al. 
(2021) found that their best performing model combined a smartphone 
feature (call logs) with wearable features (sleep, step count, heart rate), 
therefore outperforming models using smartphone data alone. To pre
dict treatment response, Zou et al. (2023) also achieved the best per
formance in a model using a combination of smartphone and wearable 
features. Future reviews could seek to compare studies focusing on 
wearables more generally in predictions for MDD. Aside from using 
passive features from other devices, Pellegrini et al. (2022) chose to use 
previous depressive symptom scores to predict the following score, 
finding that this improved prediction. This same study found that 
including smartphone data in their various models did not always 
improve predictions, but noted that due to the convenience of smart
phone data, smartphone-based models may still be worthwhile (also 
noted by Cao et al., 2020). Kathan et al. (2022) also found that including 
active data, in this case EMA data, improved prediction of depressive 
symptom severity. Zou et al. (2023) also included baseline and follow-up 
depressive symptom scores as features in their models. Another study 
included historical weather data in their model (Pedrelli et al., 2020), 
showing that it is possible to include broader contextual information 
that may affect an individual’s behaviour in models. Interestingly, 
Pedrelli et al. (2020) found that individual median HDRS scores pro
vided better predictions than their machine learning models using pas
sive data. Digital phenotyping researchers could seek to incorporate 
more contextual information in prediction models, including 
seasonal/time-related information. 

Regarding studies that focused on predicting depressive symptom 
severity, several studies (Braund et al., 2022; Cao et al., 2020; Kathan 
et al., 2022; Zhang et al., 2021; 2022) used participant-rated depressive 
symptoms in the form of PHQ scores. Others focused on clinician-rated 
depressive symptoms, such as the MADRS (Sverdlov et al., 2021; Pel
legrini et al., 2022) and the HDRS (Pedrelli et al., 2020). Using 
participant-rated symptom severity scores may allow for more frequent 
symptom assessment and therefore a higher temporal resolution of 
symptom course to be predicted, whereas clinician-rated symptom 
severity may allow for more consistent measurements between partici
pants, but is less convenient for frequent assessments. Varying quantities 
of data (i.e., units of analysis) were defined as a sample by each study, 
with some studies treating each day as a separate sample. As the 
commonly used PHQ tool assesses symptoms over a period of 2 weeks, 
most studies using this tool selected passive smartphone features 
calculated from the two weeks preceding the administration of the 
questionnaire. Other studies chose to focus on a participant’s entire 
data, which allows for longer periods to be analysed. Thus, the unit of 
analysis that is selected highly depends on research aims or the intended 
clinical application. 

As is the case for other health applications, an open question in 
digital phenotyping research is whether to develop individual or group 
models, or perhaps combinations of the two. This review identified 
studies that predominantly applied group models, with individual fac
tors commonly addressed in models as covariates (Faurholt-Jepsen 
et al., 2022; Fujino et al., 2023; Zhang et al., 2021; 2022), or as pre
dictors of interest themselves (Kim et al., 2023; Laiou et al., 2022; Pel
legrini et al., 2022). Three studies compared group models to individual 
models (Cho et al., 2019; Kathan et al., 2022; Pedrelli et al., 2020). In 
these studies, it was found that individual models often outperformed 
group models. In terms of developing models that are useful in practice, 
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it may be worthwhile to investigate how other patients’ data may be 
useful for individual predictions, as varying amounts of data can be 
expected per patient; for example, some patients may have more than a 
year’s worth of data available, whereas new patients may only have a 
few weeks of data available but could still be experiencing clinically 
significant changes. Models with some shared group parameters (such as 
in Kathan et al., 2022) may therefore be able to contribute to clinical 
predictions, which could also be informed by appropriate clustering of 
patients using factors such as employment status and other important 
individual differences. 

4.4. Limitations 

This systematic review identified several studies that have made 
important progress in linking behavioural phenotypes to clinically- 
relevant variables such as symptom severity and mood state, despite 
challenges arising from the nature of digital phenotyping data. These 
included frequent issues with missing data, and the need to combine 
various high temporal resolution channels in a meaningful way. This 
often led to the exclusion of large volumes of data and the common use 
of time-averaged features, risking the loss of useful information relating 
to temporal dynamics. The digital phenotyping field still needs to ach
ieve higher model performance before the models can be clinically 
useful without adding additional burden to clinicians in the form of 
difficult-to-interpret-models or models with low predictive power and 
consequently high rates of false positive and false negative predictions. 

Our review has some limitations, especially with regards to the effect 
of our search criteria. Studies were restricted to those with MDD pop
ulations to avoid too much heterogeneity between different psychiatric 
populations and/or too general populations with relatively low symp
tom scores. This may have introduced a selection bias in favour of 
studies from research groups in WEIRD (“Western, Educated, Industri
alized, Rich, and Democratic”) countries or regions, which could have 
more resources contributing to their mental health care systems and 
easier access to a population with diagnosed major depression. This 
criterion also led to online studies being excluded, as possible MDD 
diagnosis of participants could not be confirmed using clinical tools. By 
restricting to studies including an MDD population, this consequently 
limited the number of studies that could be compared within each 
analysis goal. In addition, differences in the methodologies used by each 
of the studies make it more complicated to determine what the overall 
most predictive variables are for the different goals, limiting the possi
bilities to make direct comparisons. Future reviews could seek to focus 
more broadly on studies of depressive symptoms and/or other psychi
atric populations within single prediction goals, for a more in-depth 
comparison of the methods. 

4.5. Recommendations 

The popularity of digital phenotyping continues to grow as the 
smartphone maintains its place in today’s world. In order to fully take 
advantage of digital phenotyping’s clinical potential in MDD, attention 
should be paid to careful model development. 

Firstly, given the changing nature of human behaviour, it is impor
tant to acknowledge the temporal dynamics of clinically-relevant 
changes in the formulation of prediction goals and selection of predic
tion methods. That is, future approaches may seek to investigate tem
poral dynamics more directly through choosing models which can 
handle time series data. Currently only a small number of studies were 
found to take this approach. Outside of MDD research, a recent paper on 
predicting schizophrenia relapse using smartphone data applied an 
anomaly detection approach to investigate whether daily features are 
anomalous relative to nearby days (Cohen et al., 2023). To gain further 
insight into temporal dynamics of individuals’ experiences associated 
with change, digital phenotyping approaches can be combined with 
EMA data. A shift towards investigations of temporal dynamics may 

provide more timely predictions of clinically-relevant changes. 
Secondly, before models can reasonably be expected to be used by 

clinicians in practice, their performance should be improved. Greater 
collaboration between research groups could allow for larger datasets to 
be used in model development, and more investigations of general
isability. Replicating results in external validation datasets aids in gen
eralising results to broader settings. As such, increasing efforts to 
externally validate model performance can help strengthen arguments 
that digital phenotyping tools can be useful in clinical practice. Kathan 
et al. (2022) carried out initial investigations of bias in their models; it 
will be important to ensure models perform as fairly between patients as 
possible. 

Thirdly, models should account for missing data to avoid excessive 
sample exclusions. To summarise the steps that can be taken to handle 
the challenge of missing data, efforts can be made to minimise missing 
data during data collection. Clear instructions should be given to par
ticipants so they do not accidentally switch off app functionalities 
required for collection. However, even if users do not accidentally cause 
data collection to be impacted, large volumes of missing data can still 
occur. Incoming data should be regularly inspected to ensure prolonged 
periods of missing data are not occurring, and researchers can then take 
action to restore app functionality if this is indeed the case. Data should 
be inspected across the various sensors that are investigated in case the 
issue is not affecting all sensors. It could be useful to develop automatic 
data-checking tools to identify periods of missing data, especially before 
incorporating prediction models in clinical practice. Even once all has 
been done to minimise missing data occurring during data collection, 
there will inevitably still be some instances of missing data that need to 
be handled. Ideally, minimal participants/samples need to be discarded, 
although minimum data availability requirements may be needed to 
filter out participants/samples that are missing large volumes of data. 
Thresholds for missing value requirements do not necessarily need to be 
consistent across studies, but could be investigated during model se
lection/training. For the remaining participants/samples, an appro
priate imputation method could be considered (and models with and 
without imputation compared). Models could also be chosen based on 
their ability to manage missing data, for example, Hidden Markov 
Models can accommodate for missing timepoints. Whilst there is not 
necessarily a one-size-fits-all approach to handling missing data, overall, 
it seems that to model digital phenotyping data, minimum data avail
ability requirements are needed, and ideally models allowing for data to 
be missing should be used. The potential bias arising due to the non- 
randomness of missing data and the optimal strategies used to handle 
missing data remain unexplored. 

5. Conclusion 

As the field of digital phenotyping develops, we get closer towards 
the goal of making insightful clinical predictions that can help people 
with depression, through earlier identification of changes in symptom 
course and possible onset of future episodes. The studies identified in 
this review demonstrated moderate success across various prediction 
goals, including predicting symptom severity and mood state, despite 
challenges from complex, high-dimensional time series and a high 
propensity for missing data. Once models with current prediction goals 
can achieve higher performance across different settings and MDD 
populations, digital phenotyping research could start to shift towards 
investigating how to implement these models in practice, for example 
whether rolling windows should be used to analyse the incoming tem
poral data. With careful model decisions and implementations, 
including clinically- and technically-informed feature construction and 
appropriate validations, digital phenotyping methods for MDD could be 
generalised to other disorders, with the eventual goal to one day be able 
to make online predictions of mental disorders that can be directly used 
by clinicians for improved individualised interventions and patient 
outcomes. 
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