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Abstract
External	nutrient	 loading	can	cause	 large	changes	 in	 freshwater	ecosystems.	Many	
local	field	and	laboratory	experiments	have	investigated	ecological	responses	to	nu-
trient	addition.	However,	these	findings	are	difficult	to	generalize,	as	the	responses	
observed	may	depend	on	the	local	context	and	the	resulting	nutrient	concentrations	
in	the	receiving	water	bodies.	In	this	research,	we	combined	and	analysed	data	from	
131	experimental	studies	containing	3054	treatment-	control	abundance	ratios	to	as-
sess	the	responses	of	freshwater	taxa	along	a	gradient	of	elevated	nutrient	concentra-
tions. We carried out a systematic literature search in order to identify studies that 
report	 the	abundance	of	 invertebrate,	macrophyte,	 and	 fish	 taxa	 in	 relation	 to	 the	
addition	of	nitrogen,	phosphorus,	or	both.	Next,	we	established	mixed-	effect	meta-	
regression models to relate the biotic responses to the concentration gradients of 
both nutrients. We quantified the responses based on various abundance- based met-
rics. We found no responses to the mere addition of nutrients, apart from an overall 
increase	of	total	 invertebrate	abundance.	However,	when	we	considered	the	gradi-
ents	of	N	and	P	enrichment,	we	found	responses	to	both	nutrients	for	all	abundance	
metrics.	Abundance	tended	to	increase	at	low	levels	of	N	enrichment,	yet	decreased	
at	the	high	end	of	the	concentration	gradient	 (1–10 mg/L,	depending	on	the	P	con-
centration).	Responses	to	increasing	P	concentrations	were	mostly	positive.	For	fish,	
we found too few data to perform a meaningful analysis. The results of our research 
highlight the need to consider the level of nutrient enrichment rather than the mere 
addition of nutrients in order to better understand broad- scale responses of freshwa-
ter biota to eutrophication, as a key step to identify effective conservation strategies 
for freshwater ecosystems.
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1  |  INTRODUC TION

Human	activities	have	caused	massive	 increases	of	nitrogen	 (N)	and	
phosphorus	 (P)	 in	 the	 environment,	 most	 notably	 through	 sewage	
disposal,	fossil	fuel	combustion,	and	agricultural	fertilizer	applications	
(Lu & Tian, 2017; Rockström et al., 2009; Xie & Ringler, 2017).	These	
enhanced nutrient concentrations lead to major ecological changes 
in both aquatic and terrestrial ecosystems (Jackson et al., 2016; 
Mantyka-	Pringle	 et	 al.,	2014).	 In	 freshwater	 systems,	 an	 increase	 in	
nutrient loading generally leads to increasing algal abundance, which 
in	 turn	 may	 cause	 oxygen	 depletion,	 acidification,	 and	 increasing	
toxicity	(De	Vries,	2021;	Khan	&	Ansari,	2005; Smith, 2003; Smith & 
Schindler, 2009; Wurtsbaugh et al., 2019).	The	proliferation	of	algae	
may lead to a shift from clear water dominated by submerged macro-
phytes to turbid water dominated by phytoplankton (Carpenter, 2005; 
Scheffer et al., 1993).	 These	 processes	may	 have	 cascading	 effects	
on other freshwater communities, depending on the species' abiotic 
preferences, their position in the food web, and predation pressure 
(Kido & Kneitel, 2021;	Van	der	Lee	et	al.,	2021; Wang et al., 2021).	The	
abundance of stress- tolerant species likely increases with high nutri-
ent concentrations, whereas less tolerant species may decline due to 
the	loss	of	oxygen	and	light	energy	(Alexander	et	al.,	2017; Scheffer 
et al., 1993; Schrama et al., 2018).	Around	the	globe,	eutrophication	
in	freshwater	ecosystems	generally	results	in	biodiversity	loss	(Ansari	
et al., 2010; Wang et al., 2021).

Freshwater eutrophication effects are commonly studied based 
on nutrient additions under field conditions or in controlled (me-
socosm	or	 laboratory)	experiments.	Nutrient	addition	experiments	
allow for observing the effects of eutrophication on biota while con-
trolling for confounding factors, as opposed to observational studies 
exploring	species	assemblages	 in	 relation	 to	a	gradient	of	nutrient	
concentrations.	 However,	 it	 is	 difficult	 to	 generalize	 the	 results	
from	 single	 experiments,	 because	 responses	 may	 depend	 on	 the	
local	context	(Ardón	et	al.,	2021;	Nessel	et	al.,	2021).	Synthesizing	
data	 from	multiple	 individual	experiments	 through	meta-	analytical	
approaches represent a powerful approach to unravel general re-
sponses	(Midolo	et	al.,	2019).	Several	meta-	analyses	focused	on	the	
effects of nutrient additions in freshwater ecosystems, including 
studies on algae (Keck & Lepori, 2012),	 primary	 producers	 (Elser	
et al., 2007),	invertebrates	(Nessel	et	al.,	2021),	and	combinations	of	
trophic	groups	(Ardón	et	al.,	2021).	The	scope	of	these	studies	was,	
however, limited to evaluating the effect of nutrient addition com-
pared with a control situation with no addition. Thus, these studies 
did not consider the amount of nutrient added, while studies in ter-
restrial systems have revealed that this is highly decisive for ecolog-
ical	responses	(Gallego-	Zamorano	et	al.,	2023;	Midolo	et	al.,	2019).	
Moreover,	 responses	 to	nutrient	additions	have	been	more	exten-
sively studied for primary producers than for higher trophic levels. 
As	Ardón	et	al.	(2021)	point	out,	the	effects	of	nutrient	enrichment	
for higher trophic levels remain elusive and require further research, 
as it is not obvious how the response to nutrient addition differs be-
tween aquatic species groups (Kido & Kneitel, 2021; Lyche- Solheim 
et al., 2013).

The	aim	of	our	study	was	to	synthetize	the	effects	of	nutrient	
enrichment on multiple freshwater species groups along a gradient 
of	both	N	and	P	concentrations.	We	aimed	to	assess	and	compare	
the abundance responses of macrophytes, invertebrates, and fish to 
N	and	P	nutrient	additions	in	freshwater	systems	(rivers,	lakes,	and	
marshes)	by	synthesizing	data	from	experimental	nutrient	addition	
studies. We used three complementary metrics to quantify abun-
dance:	the	abundance	of	individual	taxa	in	an	observation	(hereafter,	
individual	abundance	[IA]),	the	mean	abundance	across	all	taxa	in	an	
observation	(hereafter,	mean	abundance	[MA]),	and	the	total	abun-
dance	across	all	taxa	in	an	observation	(hereafter,	total	abundance	
[TA]).	We	used	a	meta-	analytical	regression	modeling	approach,	syn-
thesizing	results	across	experimental	studies	with	different	setups	
(laboratory,	mesocosm,	and	field)	and	covering	a	range	of	different	
environmental	conditions.	In	line	with	the	results	of	various	recent	
studies	(Ardón	et	al.,	2021;	Nessel	et	al.,	2021),	we	expect	both	N	and	
P to induce abundance responses. Under nutrient- poor conditions, 
we	expect	additional	N	and	P	to	serve	as	nutrients,	thereby	causing	
an	increase	in	abundance.	Under	nutrient-	rich	conditions,	we	expect	
additional	nutrients	to	cause	a	decrease	 in	abundance	due	to	oxy-
gen	depletion,	increasing	turbidity	and	algal	toxicity	(De	Vries,	2021; 
Wurtsbaugh et al., 2019).	Thus,	we	expect	unimodal	(hump-	shaped)	
abundance responses to nutrient additions. For macrophytes, we 
expect	 the	 strongest	 response,	 due	 to	 their	 strong	 dependency	
on	 light	and	oxygen	 (Bornette	&	Puijalon,	2011; Carpenter, 2005).	
For	 higher	 trophic	 levels	 (invertebrates	 and	 fish	 in	 our	 study),	we	
expect	the	response	to	become	progressively	weaker	due	to	a	loss	
of energy and biomass across trophic levels, as well as the variabil-
ity	of	nutrient	requirements	among	taxa	(Cross	et	al.,	2005; Liess & 
Hillebrand,	2005).	Furthermore,	we	expect	that	few	stress-	tolerant	
taxa	may	profit	disproportionally	from	excessive	nutrient	concentra-
tions (Kido & Kneitel, 2021);	hence,	that	IA	and	MA	will	show	a	larger	
decrease	at	high	N	and	P	concentrations	than	TA.

2  |  METHODS

2.1  |  Literature search

We collected peer- reviewed primary research papers by search-
ing online databases for scientific literature, previously published 
meta- analyses, and cross- referencing. We searched for papers 
published until December 2022 in the electronic databases Web 
of	 Science,	 Scopus,	 and	 SciELO	 (Scientific	 Electronic	 Library	
Online).	 We	 constructed	 search	 strings	 for	 these	 databases	 by	
using	the	PICO	(Population,	Intervention,	Comparison,	Outcome)	
method	 (Morgan	et	 al.,	2018),	 such	 that	 each	 search	 string	 con-
sisted of a combination of search terms describing the response 
variables	 (invertebrates,	 macrophytes,	 and	 fish),	 the	 ecosystem	
type, the nutrient species, and the words “addition,” “treatment,” 
and	 “experiment.”	We	 used	 separate	 search	 strings	 for	 inverte-
brates, macrophytes, and fish, and included an additional search 
string	 to	 cover	whole-	ecosystem	 nutrient	 addition	 experiments.	
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We searched for papers with search strings in English (Web of 
Science	and	Scopus)	as	well	as	Spanish	and	Portuguese	(SciELO),	
and included papers in any of these languages in our analysis. 
We furthermore searched for research papers in the databases 
of	 the	 meta-	analyses	 performed	 by	 Ardón	 et	 al.	 (2021),	 Nessel	
et al. (2021),	 and	Elser	et	 al.	 (2007).	 Lastly,	we	 searched	 for	 rel-
evant	papers	 in	the	reference	 lists	of	papers	eligible	for	full-	text	
screening	 (see	 below).	 We	 provide	 more	 details	 on	 the	 search	
strategy	and	all	search	strings	in	Appendix	S1.

2.2  |  Study selection

We screened papers for relevant data in two rounds. First, we 
screened titles and abstracts to identify papers that may contain 
data about the effects of nitrogen and/or phosphorus addition on 
freshwater	 invertebrates,	macrophytes,	 and/or	 fish.	Next,	we	per-
formed	full-	text	screening	to	select	papers	for	data	extraction.	FKN,	
HM,	MAJH,	AMS,	and	GG	performed	first-	round	screening,	and	FKN	
and	HM	performed	full-	text	screening.	Before	screening,	all	authors	
involved discussed the inclusion criteria and went through a set of 30 
papers together to align their application of the inclusion criteria. We 
selected	papers	 that	 (1)	describe	nutrient	addition	experiments	 (N	
and/or	P)	including	a	control;	(2)	report	quantitative	abundance	data	
for	macrophytes,	 invertebrates	 (including	zooplankton)	or	 fish,	ex-
pressed	as	density	or	biomass	at	any	taxonomic	level;	and	(3)	report	

measured	nutrient	concentrations	(both	N	and	P)	for	the	treatment	
and	control.	We	included	papers	reporting	on	multifactorial	experi-
ments	only	if	other	factors	(e.g.,	light	intensity	and	temperature)	did	
not	experimentally	vary	between	treatment	and	control.

Our	 literature	search	yielded	9818	papers	 (1758	papers	 for	 in-
vertebrates, 4611 papers for macrophytes, 1603 papers for fish, 
1638	 papers	 for	 ecosystem	 experiments,	 203	 papers	 identified	
from previous meta- analyses, and five papers identified through 
cross-	referencing	with	other	papers).	After	screening,	we	selected	
131	papers	for	data	extraction,	of	which	84	papers	contained	data	
for	 invertebrates,	50	papers	 for	macrophytes,	and	 four	papers	 for	
fish	 (seven	 papers	 contained	 data	 for	 more	 than	 one	 taxonomic	
group).	We	provide	an	overview	of	 the	paper	 selection	process	 in	
Figure S1.1 (adapted from Page et al., 2021).	We	provide	a	list	of	all	
selected	papers	in	Appendix	S2. For an overview of the geographic 
distribution of all papers considered in this study, see Figure 1.

2.3  |  Data extraction

From	all	selected	papers,	we	extracted	for	each	species	or	higher-	
level	taxon	the	MA	values	for	the	treatment	and	the	corresponding	
control, including the sample variance and the number of measure-
ments	(replicates).	We	extracted	abundance	data	reported	per	unit	
area or volume as either biomass or the number of individuals; for 
macrophytes, we also included data reported as mass per individual. 

F I G U R E  1 Map	indicating	the	study	locations	included	in	the	analysis,	grouped	according	to	taxonomic	group.	The	point	size	indicates	the	
number	of	data	points	that	are	included	per	study	location.	Note	that	we	did	not	include	data	for	fish	in	the	analysis	after	data	extraction.	
Map	lines	delineate	study	areas	and	do	not	necessarily	depict	accepted	national	boundaries.
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When	a	paper	reported	data	for	multiple	experimental	durations,	we	
extracted	the	data	for	each	duration	separately.	We	extracted	the	
data	from	tables,	 figures,	 the	main	text	or	online	databases;	when	
a	 paper	 reported	 data	 in	 a	 figure,	 we	 extracted	 the	 values	 using	
WebPlotDigitizer	 (v4.6;	 Rohatgi,	 2022).	 If	 needed,	 we	 converted	
standard deviations to standard errors to calculate sample variances; 
furthermore, when a study reported the median abundance value 
and/or	inter-	quartile	range,	we	converted	this	to	the	MA	and	stand-
ard error (Wan et al., 2014).	We	harmonized	the	scientific	names	of	
the	species	and	taxa	based	on	the	Catalogue	of	Life	Checklist	(Bánki	
et al., 2022).	We	gave	each	paper	a	unique	study	 ID.	Within	each	
paper,	 we	 assigned	 a	 control	 ID	 to	 data	 points	with	 different	 ex-
perimental	treatment	values	sharing	the	same	control.	We	extracted	
the nutrient concentrations for all nitrogen and phosphorus species 
reported in the paper, and converted these to mg/L if not already 
reported	in	this	unit;	furthermore,	we	reported	the	N	and	P	reactive	
form	that	the	authors	measured.	Our	final	dataset	contained	5177	
abundance measurements (4367 for invertebrates, 786 for macro-
phytes,	and	24	for	fish)	for	297	taxonomic	groups	(239	for	inverte-
brates,	55	for	macrophytes,	and	three	for	fish).	Because	of	the	small	
number	of	observations	obtained	for	fish,	we	excluded	fish	from	the	
analysis.	We	provide	a	link	to	our	database	in	the	Data	Availability	
Statement.

2.4  |  Effect sizes

Based	on	the	obtained	data,	we	calculated	three	metrics	representa-
tive	of	abundance	 responses:	 the	 IA	 ratio	of	each	 reported	 taxon,	
the	 MA	 ratio	 across	 taxa	 within	 a	 taxonomic	 group,	 and	 the	 TA	
ratio	 across	 taxa	within	 a	 taxonomic	 group	 (Table 1).	 For	 all	met-
rics, values >0 reflect increases and values <0 reflect decreases 
in	 abundance	 relative	 to	 the	 control	 (Hedges	 et	 al.,	1999).	 The	 IA	
metric reflects the abundance response to nutrient additions of in-
dividual	taxa.	The	MA	metric	considers	the	arithmetic	mean	of	the	
IA	ratios	of	all	taxa	within	one	observation.	The	TA	metric	considers	
the	abundance	response	to	nutrient	additions	for	all	taxa	together	
within	one	observation.	Thus,	 IA	represents	the	responses	of	 indi-
vidual	 species	or	 species	groups,	while	MA	and	TA	 reflect	 the	 re-
sponse of the entire assemblage or community sampled at a given 
site.	While	MA	 is	 representative	of	 the	mean	 response	across	 the	
assemblage	or	community,	TA	is	more	indicative	of	productivity,	as	

it	considers	the	abundance	changes	summed	across	all	taxa.	To	pre-
vent metrics from becoming indeterminate for measured abundance 
values	of	zero	in	either	the	treatment	or	the	control,	we	transformed	
zero	abundance	values	to	the	smallest	possible	measured	non-	zero	
MA.	For	abundance	data	expressed	as	density,	we	replaced	the	zero	
abundance value of the sample as follows (De Jonge et al., 2022; 
Pustejovsky, 2015):

where Ã	represents	the	adjusted	MA,	Ā is the mean sample abun-
dance as reported in the data, n	is	the	sample	size,	and	D is a scaling 
factor that represents the sampling effort at the level of the indi-
vidual observation (e.g., a density value reported in #/mL based on 
50 mL	 samples	will	 get	 a	 scaling	 factor	 of	D = 50).	 For	 abundance	
data	expressed	as	biomass,	we	could	not	apply	this	correction,	be-
cause	 the	 smallest	 possible	 non-	zero	 abundance	 value	would	 de-
pend on the precision of the scale instrument measuring biomass, 
which	 most	 studies	 did	 not	 report.	 We	 therefore	 replaced	 zero	
abundance values for biomass by the smallest possible abundance 
given the accuracy of data reporting. For data reported in a table, 
we	replaced	the	zero	abundance	value	with	half	the	detection	limit	
δ, as indicated by the least significant digit of the data reported in 
the	table	 (e.g.,	a	biomass	value	of	1.5 mg/L	 indicates	δ = 0.1 mg/L).	
For data reported in a figure, we assumed we could measure data 
points with an accuracy of three significant digits, so we set the de-
tection limit δ	at	1/1000th	of	the	axis	length	of	the	figure;	to	obtain	
the	adjusted	abundance	value,	we	divided	the	axis	length	by	2 × 103 
(i.e., half the detection limit δ).	We	applied	a	zero-	abundance	cor-
rection to 211 treatment- control abundance pairs (176 for inverte-
brates	and	35	for	macrophytes).	In	total,	our	dataset	included	3054	
effect	sizes	for	IA	(2540	for	invertebrates	and	514	for	macrophytes)	
and	989	effect	sizes	for	TA	and	MA	(631	for	invertebrates	and	358	
for	macrophytes).	Macrophyte	effect	sizes	pertained	mostly	to	the	
species	level,	with	a	few	records	at	genus	level;	effect	sizes	for	in-
vertebrates	also	included	higher	taxonomic	levels	(Appendix	S3).

We	 also	 calculated	 a	 weighting	 factor	 for	 each	 effect	 size	
(Table 1).	For	 the	 IA	metric,	we	calculated	 the	weighting	 factor	as	
the	 inverse	of	 the	 sampling	 variance	 (VAR),	 calculated	 as	 (Hedges	
et al., 1999):

(1)Ã =

⎧

⎪

⎨

⎪

⎩

A , A>0

1

2nD
, A=0

,

TA B L E  1 Summary	of	the	metrics	and	weights	used	in	the	meta-	analysis.	AT and AC	represent	the	abundance	of	each	taxon	in	the	
treatment and the control, respectively, n is the number of observations, c	is	the	number	of	taxa	in	one	observation,	and	VAR	represents	the	
sampling variance (Equation 2).

Metric Description Calculation Weight

Individual	abundance	(IA) The	log-	transformed	abundance	response	ratio	for	each	taxon	in	an	
observation

IA = ln

(

ÃT

ÃC

)

1

VAR

Mean	abundance	(MA) The	mean	log-	transformed	response	ratio	for	all	taxa	in	one	
observation MA =

∑

ln

�

ÃT

ÃC

�

c

n ×

√

c

Total	abundance	(TA) The	cumulative	log-	transformed	abundance	response	ratio	for	all	taxa	
in one observation

TA = ln

�
∑

ÃT
∑

ÃC

�

n ×

√

c
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where VT and VC are the sample variance, nT and nC are the number 
of replicates, and ÃT and ÃC	are	the	adjusted	MA	in	the	treatment	
and	 the	 control,	 respectively.	 In	 order	 to	 calculate	 the	 sampling	
variance	 for	 abundance	 pairs	 with	 a	 zero	 or	 unreported	 sample	
variance,	we	used	Bracken's	approach	to	impute	the	sample	vari-
ance	 (Bracken,	1992).	We	 imputed	the	sample	variance	for	1020	
IA	effect	sizes	(955	for	invertebrates	and	65	for	macrophytes).	For	
TA	and	MA,	we	established	a	weighting	factor	based	on	the	num-
ber	of	replicates	and	the	number	of	taxa	included	in	the	estimate	
(Table 1).	We	used	the	square	root	of	the	number	of	included	taxa	
in order to reduce the skewness of the counts across the dataset 
(Schipper et al., 2020).

2.5  |  Statistical analysis

We	analysed	the	data	per	 taxonomic	group	and	per	metric,	 thus	
using	six	data	subsets	(two	taxonomic	groups	and	three	metrics).	
First, we identified the best- supported random effects structure 
using	the	corrected	Akaike's	information	criterion	(AICc).	We	per-
formed	random-	effects	model	selection	using	restricted	maximum	
likelihood	(REML)	estimation	and	including	the	full	set	of	fixed	ef-
fects	for	each	model	run	(Zuur	et	al.,	2009).	We	always	included	
experiment	ID	(�2

1
)	as	a	random	effect	to	account	for	dependency	

of observations sharing a common control and for which we in-
cluded data points of multiple measurements in a time series. We 
also	included	the	reported	nutrient	species	for	both	N	(�2

2
)	and	P	

(�2
3
)	 in	 the	 random	 effects	 structure	 to	 assess	 potential	 hetero-

geneity in the data based on the measured freshwater nutrient 
fraction. We performed model selection on the study code (�2

4
)	to	

test for additional heterogeneity at the study level that was not 
captured	by	the	experiment	ID.	For	IA,	we	additionally	performed	
model	selection	on	the	taxonomic	group	name	(�2

5
)	in	order	to	ac-

count	 for	 heterogeneity	 in	 the	 response	 across	 taxa	 within	 the	
overarching	 clade	 groups	 (invertebrates	 and	 macrophytes).	 We	
note	 that	 this	was	 neither	 needed	 nor	 possible	 for	 TA	 and	MA,	
because these metrics are calculated across species groups. For 
IA,	 we	 furthermore	 used	 the	 full	 variance–covariance	matrix	 of	
the sampling errors of the control in order to account for calcu-
lated	effect	sizes	that	use	a	single	control	data	point	for	multiple	
treatment calculations (Lajeunesse, 2011).	For	all	random-	effects	
terms, we assessed variability by fitting random intercepts, and we 
combined all terms in a crossed, non- nested manner.

After	 identifying	 the	 best-	supported	 random-	effects	 struc-
ture, we first performed a random- effects meta- analysis to as-
sess the overall effect of nutrient additions without considering 
the	resulting	concentrations.	Next,	we	established	mixed-	effects	
meta-	regression	models	 (IA	metric)	 and	mixed-	effects	 linear	 re-
gression	models	(TA	and	MA	metrics)	to	explore	the	abundance	re-
sponse	to	the	gradients	in	N	and	P	concentrations.	We	performed	

fixed-	effect	 model	 selection	 on	 a	 set	 of	 candidate	models	 with	
different	 combinations	 of	 experimental	 nutrient	 concentrations	
as	 fixed	 effects.	 Prior	 to	 model	 fitting,	 we	 log-	transformed	 the	
experimental	 nutrient	 concentrations	 to	 reduce	 their	 positive	
skew.	We	tested	candidate	models	 that	 included	at	 least	 the	ex-
perimental	treatment	concentration	(either	N	or	P)	as	model	term,	
as	well	 as	 the	null	model	 (intercept	only).	We	allowed	candidate	
models to include a quadratic treatment concentration term only 
when the linear term for the respective nutrient was also included 
(Nelder,	1998).	Furthermore,	for	both	nutrients,	we	allowed	can-
didate	models	to	 include	the	experimental	control	concentration	
in interaction with the corresponding treatment concentration. 
We	 fitted	 and	 ranked	 all	 candidate	models	 based	 on	 their	 AICc	
value	 using	 maximum	 likelihood	 (ML)	 estimation.	 We	 identified	
the best- supported models as those with ΔAICc	<2 relative to 
the	 top-	supported	model	and	 refitted	 these	models	using	REML	
estimation, after which we calculated the regression coefficients, 
standard errors and the marginal and conditional R2	values	(Zuur	
et al., 2009).	Based	on	this	subset	of	best-	supported	models,	we	
calculated weighted average regression coefficients (β j)	 and	 the	
corresponding standard errors (SEj)	 across	 the	 best-	supported	
models	per	data	subset	as	(Burnham	&	Anderson,	2002):

where R is the total number of models i within 2 ΔAICc	units,	wi is 
the	Akaike	weight	for	model	i, βi,j is model coefficient j for model 
i	 (set	at	zero	when	βi,j is not included in model i),	 and	SEi,j is the 
standard error of model coefficient βi,j. We further calculated 
the	importance	of	each	moderator	term	as	the	sum	of	the	Akaike	
weights for all models i in which moderator j	is	present	(Burnham	&	
Anderson,	2002).	For	each	model	i, we also calculated the marginal 
and the conditional R2.

We performed all analyses in R Statistical Software (v4.0.4; 
R Core Team, 2021).	For	screening	the	paper	abstracts,	we	used	
the “abstract_screener” function of the R- package metagear (v0.7; 
Lajeunesse, 2016).	We	also	used	metagear to impute missing vari-
ance	 estimates,	 using	 the	 “impute_SD”	 function.	 For	 IA,	 we	 fit-
ted models using the “rma.mv” function of the R- package metafor 
(v3.0-	2;	Viechtbauer,	2010).	For	TA	and	MA,	we	fitted	all	models	
with the ‘lmer’ function of the R- package lme4	 (v1.1.27.1;	 Bates	
et al., 2015).	To	calculate	the	conditional	and	marginal	R2 for the 
TA	 and	MA	models,	 we	 used	 the	 “get_variance”	 function	 of	 the	
R- package insight	 (v0.14.5;	Lüdecke	et	al.,	2019).	For	plotting	the	
results, we used the “ggplot” function of the R- package ggplot2 
(v3.3.5;	Wickham,	2016).

(2)VAR=

VT

nT× Ã
2

T

+

VC

nC× Ã
2

C

,

(3)� j =

R
∑
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R
∑
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√
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i,j
+
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6 of 16  |     NEIJNENS et al.

2.6  |  Robustness of results

We tested for publication bias by performing Egger's tests on the 
IA	effect	size	metric,	for	which	we	modeled	the	residuals	as	a	func-
tion of the precision, and checked for significance of the intercept 
coefficient (Egger et al., 1997).	Furthermore,	we	assessed	potential	
data asymmetry with respect to the best- selected random effects 
model	by	making	funnel	plots	in	which	we	plot	the	IA	effect	sizes	as	
a function of the sampling standard error and the precision. We also 
selected two subsets of the data on which we performed full model 
selection as described above, and tested whether these data gave 
similar results compared to the model selection on the full dataset. 
For	the	first	subset,	we	excluded	effect	sizes	for	which	only	one	of	
the	nutrients	was	added	(leaving	only	effect	sizes	with	both	N	and	
P	 addition).	 For	 the	 second	 subset,	we	 excluded	 effect	 sizes	with	
a small sample mean in either the treatment or the control (which 
may	violate	the	assumption	of	a	normal	data	distribution),	based	on	
Geary's	rule	(adjusted	by	Lajeunesse,	2015):

The	dataset	containing	only	data	for	both	N	and	P	addition	con-
sisted	of	2223	IA	effect	sizes	(1983	for	invertebrates,	240	for	mac-
rophytes)	and	611	data	points	for	TA	and	MA	(446	for	invertebrates,	

165	for	macrophytes).	The	dataset	containing	only	data	that	passed	
Geary's	 rule	 consisted	 of	 2638	 IA	 effect	 sizes	 (2177	 for	 inverte-
brates,	461	 for	macrophytes)	 and	940	data	points	 for	TA	and	MA	
(597	for	invertebrates,	343	for	macrophytes).

3  |  RESULTS

3.1  |  Overall nutrient addition effects

Based	 on	 the	 random	 effects	 meta-	analysis	 (no	 moderators),	 we	
found an overall positive response to nutrient addition only for in-
vertebrate	TA	 (mean	effect	 size:	0.28	 [95%	CI:	0.08	 to	0.48]).	We	
observed	no	significant	response	of	IA	to	nutrient	addition	for	either	
invertebrates	(mean	effect	size:	0.18	[95%	CI:	−0.14	to	0.51])	or	mac-
rophytes	(mean	effect	size:	0.09	[95%	CI:	−0.22	to	0.39])	(Figure 2).	
Similarly,	we	observed	no	significant	response	of	MA	to	nutrient	ad-
dition	for	either	invertebrates	(mean	effect	size:	0.30	[95%	CI:	−0.03	
to	 0.64])	 or	 macrophytes	 (mean	 effect:	 −0.01	 [95%	 CI:	 −0.28	 to	
0.27]).	For	macrophyte	TA,	we	did	not	observe	an	overall	response	
either	(mean	effect	size:	−0.02	[95%	CI:	−0.31	to	0.28]).	For	all	met-
rics, mean effects were similar based on the two data subsets (i.e., 
including	only	effect	sizes	for	which	both	N	and	P	were	added,	and	in-
cluding	only	effect	sizes	that	passed	Geary's	rule)	(Tables S4.1–S4.2).	

(6)Ã

SE

(

4n

1+4n

)

≥3.

F I G U R E  2 Forest	plots	for	individual	abundance	(IA)	effect	size	data	(including	95%	confidence	intervals	and	95%	prediction	intervals)	
for	invertebrates	(a)	and	macrophytes	(b).	Dots	reflect	IA	effect	sizes,	where	red	dots	indicate	that	the	IA	value	was	calculated	using	data	
point	imputation.	The	dashed	black	line	indicates	an	IA	effect	size	of	zero,	the	solid	red	line	and	diamond	indicate	the	mean	IA	effect	size,	the	
dashed	red	lines	represent	the	95%	confidence	interval,	and	the	dotted	red	lines	represent	the	95%	prediction	interval.	We	ran	all	models	
with the best- selected random effects structure and without moderators.
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    |  7 of 16NEIJNENS et al.

Furthermore, both random effects on which we performed model 
selection were retained in the best- supported random- effects struc-
ture for all metrics and biotic groups (Tables S5.1–S5.6).	The	inclusion	
of	study	ID	points	at	heterogeneity	at	the	study	level	that	was	not	
captured	by	the	control	ID.	For	IA,	species	group	name	was	selected	
as random effect for both invertebrates and macrophytes, reflecting 
that abundance responses to nutrient addition vary among species. 
We found no evidence for publication bias, either for invertebrates 
(Egger's	test:	intercept = −0.05,	p = .221)	or	for	macrophytes	(Egger's	
test:	intercept = −0.10,	p = .283).	Based	on	visual	inspection,	we	did	
not observe funnel plot asymmetry (Figures S6.1–S6.2).

3.2  |  Invertebrate responses to nutrient 
concentrations

Overall,	we	 found	 that	 invertebrates	 respond	 to	both	N	and	P	con-
centrations, yet the responses differed among metrics (Figure 3; 
Tables S7.1–S7.3, S8.1–S8.3, S9.1–S9.3).	For	IA,	we	observed	a	uni-
modal	response	primarily	to	N,	with	an	abundance	increase	for	mod-
erate	N	concentrations	(between	0.01	and	0.1 mg N/L,	given	average	
control	concentrations	of	N).	We	further	found	a	positive	linear	trend	
in	the	response	to	P,	but	less	pronounced.	For	MA,	we	found	a	similar	
pattern,	i.e.	a	unimodal	response	to	N	and	a	positive	linear	trend	for	

P, with the largest abundance increases for high concentrations of P 
(>1 mg	P/L)	and	moderate	concentrations	of	N	(~0.1 mg N/L).	For	TA,	
the response was primarily driven by the P concentration, with the 
largest	increase	at	high	P	concentrations.	We	observed	that	the	exper-
imental	control	N	concentration	modified	the	IA	and	MA	responses,	
with more pronounced responses at low background concentrations, 
and larger increases and decreases in response to lower and higher 
N	enrichment	 levels,	 respectively	 (Figure S10.1).	 In	contrast,	TA	and	
MA	responses	to	low	levels	of	P	enrichment	were	more	pronounced	
(implying	 a	 larger	 decrease)	 at	 higher	 background	 P	 concentrations	
(Figure S10.2).	 When	 including	 only	 effect	 sizes	 from	 experiments	
with	both	N	and	P	addition,	we	observed	more	positive	 IA	and	MA	
responses,	especially	for	high	N	concentrations	(IA)	and	high	P	concen-
trations	(MA)	(Figure S11.1).	For	the	data	subset	with	effect	sizes	pass-
ing	Geary's	rule,	we	observed	a	more	positive	response	for	all	metrics	
(Figure S11.2).	However,	for	both	data	subsets,	the	response	patterns	
remained similar to those based on the main dataset.

3.3  |  Macrophyte responses to nutrient 
concentration gradients

For	macrophytes,	we	observed	abundance	responses	to	both	N	and	
P concentrations (Figure 3; Tables S7.4–S7.6, S8.4–S8.6, S9.4–S9.6).	

F I G U R E  3 Heat	maps	indicating	the	responses	of	individual	abundance	(IA),	mean	abundance	(MA)	and	total	abundance	(TA)	values	
for	invertebrates	(a–c)	and	macrophytes	(d–f).	We	used	the	fitted	consensus	models	to	visualize	the	responses	along	the	gradients	of	both	
nutrients.	Blue	colors	indicate	an	effect	size	>0,	and	red	colors	indicate	an	effect	size	<0. Data points are indicated with gray dots, and dot 
size	indicates	the	weight	for	each	data	point.	Coefficients	of	the	underlying	consensus	models	are	provided	in	Appendix	S9.
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8 of 16  |     NEIJNENS et al.

IA	responded	mostly	to	N	enrichment,	with	abundance	increases	at	
concentrations	up	to	10 mg/L.	We	further	found	a	slight	positive	re-
lationship	between	IA	and	P.	MA	also	responded	mostly	to	N	enrich-
ment,	with	strong	abundance	increases	at	low	N	concentrations.	We	
further	 observed	 a	 decrease	 for	 high	N	 concentrations	 (>1 mg/L),	
with the decrease most pronounced for moderate P concentrations 
(between	0.01	and	1 mg/L).	The	TA	response	was	similar	to	MA	for	
high	N	concentrations,	but	showed	in	addition	a	decrease	for	low	N	
and	moderate	P	concentrations.	We	observed	that	the	experimental	
control	N	concentration	caused	the	IA	and	MA	response	to	increase,	
particularly at low concentrations (~0.001 mg/L),	 whereas	we	 ob-
served	no	effect	for	TA	(Figure S10.1).	For	the	control	P	concentra-
tion, we did not observe any response (Figure S10.2).	When	including	
only	effect	sizes	from	experiments	with	both	N	and	P	addition,	we	
observed	 for	 IA	a	positive	 response	 for	 low-	to-	moderate	N	and	P,	
and	a	negative	response	for	high	N	and	P	(Figure S11.1).	For	MA	and	
TA,	we	observed	a	response	to	N	enrichment,	with	increases	at	low	
concentrations and decreases at higher concentrations (>0.01 mg/L).	
For	the	data	subset	based	on	Geary's	rule,	we	observed	responses	
largely similar to the default dataset (Figure S11.2).	For	IA,	we	ob-
served	a	response	mostly	to	N,	with	a	maximal	increase	at	moderate	
concentrations (~0.1 mg N/L)	 and	 a	 negative	 response	 for	 low	 and	
high concentrations (<0.001 mg/L	and > 10 mg/L).	 For	MA	and	TA,	
we	observed	negative	responses	for	low	and	high	N	concentrations,	
and positive responses for low and high P concentrations.

4  |  DISCUSSION

4.1  |  Overall abundance responses to nutrient 
addition

Eutrophication of freshwater systems has been one of the 
most pervasive influences of human activity on the biosphere 
(Rockström et al., 2009; Steffen et al., 2015).	 Although	 the	 ef-
fects of nutrient addition on freshwater ecosystems have been 
extensively	 researched	 over	 the	 past	 decades,	 these	 effects	 re-
main somewhat elusive, as ecological responses may differ with 
the amount of nutrients added, local environmental conditions, 
taxonomic	 groups,	 and	 the	 type	 of	 response	 studied	 (Wang	
et al., 2021).	 In	 line	with	 this,	we	 found	a	 large	heterogeneity	 in	
the responses of macrophytes and invertebrates to nutrient addi-
tion,	with	some	taxa	increasing	and	some	decreasing	in	abundance	
(Figure 2).	 In	our	 random	effects	meta-	analysis	 (no	moderators),	
we found a significant overall response only for total invertebrate 
abundance, which increased in response to nutrient addition. This 
positive response is in line with the positive responses reported for 
freshwater	consumers	by	Ardón	et	al.	(2021).	However,	it	is	in	con-
trast	to	the	findings	by	Nessel	et	al.	(2021),	who	observed	mainly	
decreases in freshwater invertebrate abundance and biomass in 
response to nutrient addition. For macrophytes, we observed no 
significant responses for any of the response metrics. This is in 
disagreement	with	both	Ardón	et	al.	(2021)	and	Elser	et	al.	(2007),	

who report an increase in biomass for primary producers. Possibly, 
these	differences	reflect	how	we	treated	zero-	abundance	values,	
which	in	general	pose	challenges	to	the	calculation	of	effect	sizes.	
We	replaced	zeroes	by	small	non-	zero	values	using	both	the	sam-
pling effort and the measurement precision (De Jonge et al., 2022; 
Pustejovsky, 2015, 2018).	This	allowed	us	 to	 include	data	points	
with	zero	abundance	in	the	control,	which	are	commonly	left	out	
from	meta-	analytical	 studies	 (Benítez-	López	et	 al.,	2017;	Midolo	
et al., 2019).	As	we	applied	the	same	correction	to	zero	treatment	
and	zero	control	abundance	estimates,	we	prevent	a	possible	bias	
toward	negative	effect	sizes	by	excluding	species	or	taxa	absent	
from the control yet present in the treatment.

4.2  |  Abundance responses along gradients of 
N and P enrichment

In	contrast	to	the	results	of	the	overall	meta-	analysis	without	mod-
erators,	 our	 exploratory	 meta-	regression	 models	 indicated	 that	
both nitrogen and phosphorus enrichment have an effect on the 
abundance of macrophytes as well as freshwater invertebrates. 
We	note	here	 that	 the	amount	of	 explained	variance	by	 the	 fixed	
effects in our models was relatively low (between 0.01 and 0.1; 
Appendix	S8).	Although	such	low	marginal	R2 values are not uncom-
mon	 for	mixed-	effect	meta-	regression	models	 (compare	De	 Jonge	
et al., 2022;	Gallego-	Zamorano	et	al.,	2023),	we	nonetheless	call	for	
caution	when	interpreting	the	fixed-	effect	model	selection	results,	
as	the	parameter	values	in	the	consensus	models	explain	only	on	a	
small	proportion	of	the	variance	 in	the	data.	Nevertheless,	 the	re-
sults of our meta- regression models point at the relevance of con-
sidering the level of nutrient enrichment rather than mere addition. 
The	positive	 and	unimodal	 responses	 to	N	and	P,	 as	observed	 for	
the	 invertebrates	 and	 for	 macrophyte	 IA,	 contrast	 the	 historical	
view that P supply is the main limiting factor for freshwater systems 
(Dodds & Smith, 2016; Dubey & Dutta, 2020; Schindler, 1974, 1977; 
Schindler et al., 2008; Srivastava et al., 2008),	 yet	are	 in	 line	with	
more	recent	studies	pointing	to	 limitation	by	N	or	co-	limitation	by	
N	and	P	(Allgeier	et	al.,	2011;	Ardón	et	al.,	2021; Elser et al., 2007; 
Paerl, 2009).	On	a	global	scale,	P	accumulates	faster	than	N	in	many	
freshwater	ecosystems,	causing	an	‘N	deficit’	that	might	cause	some	
taxa	 to	benefit	 from	N	enrichment	 (Yan	et	 al.,	2016).	 For	 inverte-
brates,	our	results	suggest	that	a	moderate	N	concentration	(IA	and	
MA)	 and	 a	 high	P	 concentration	 (IA,	 TA,	MA)	 result	 in	 the	 largest	
abundance increase. The abundance increases in response to both 
N	and	P	enrichment	reflect	that	both	N	and	P	are	essential	nutrients	
for growth and reproduction. For invertebrate species, the inter-
nal	tissue	N:P	ratio	depends	primarily	on	its	nutrient	requirements,	
which	are	related	to	for	example	its	life	history	and	body	size,	and	
much	less	on	external	nutrient	concentrations	(Karimi	&	Folt,	2006).	
However,	nutrient	requirements	can	vary	significantly	among	taxa,	
whereby fast- growing species tend to have larger P requirements 
(Gillooly	et	al.,	2005;	Meunier	et	al.,	2017).	This	 is	 in	 line	with	our	
results showing a positive response of total invertebrate abundance 
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    |  9 of 16NEIJNENS et al.

(indicative	of	productivity)	primarily	to	P	enrichment,	whereas	this	is	
less	so	for	the	individual	and	mean	assemblage	level	responses	(IA,	
MA).	Our	results	for	both	macrophytes	and	invertebrates	further	in-
dicate	that	N	becomes	a	stressor	at	high	concentrations,	in	line	with	
other	studies	pointing	to	N	being	 impactful	under	high	concentra-
tions	 (Yu	et	al.,	2015).	For	macrophytes,	 an	 increase	 in	N	concen-
tration can lead to a change in community structure, with floating 
plants	 becoming	 dominant	 at	 the	 expense	 of	 plants	 rooted	 in	 the	
sediment (Feuchtmayr et al., 2009).	A	change	 in	macrophyte	com-
munity and increasing turbidity will in turn influence the inverte-
brate community, particularly benthic invertebrate groups that lose 
their habitat (Pan et al., 2015).

4.3  |  Methodological reflections

We	 based	 our	 analysis	 on	 the	 concentrations	 of	N	 and	 P	 in	 the	
receiving water bodies, rather than the amount of nutrient addi-
tion.	Most	studies	did	not	report	the	amount	of	nutrient	addition,	
and even if they did, additions were difficult to compare among 
studies because the volume of the receiving water body was often 
not reported. This contrasts with studies describing terrestrial nu-
trient	 addition	 experiments,	which	 typically	 specify	 the	 nutrient	
addition	per	unit	of	 area	 (Gallego-	Zamorano	et	al.,	2023;	Midolo	
et al., 2019).	A	downside	of	our	approach	is	that	nutrient	uptake	in	
the	system	(e.g.,	the	sediment	or	biota)	will	go	undetected,	hence	
that the observed response is not necessarily reflected by higher 
nutrient concentrations in the water. The fact that the studies in 
our database measured different nutrient species posed an addi-
tional	challenge.	We	tackled	this	by	including	the	N	and	P	species	
as	random	effect	 in	the	analysis,	and	found	that	the	variance	ex-
plained	by	the	nutrient	species	was	negligible	 (Appendix	S8).	For	
N	this	is	unexpected,	as	NO−

3
	is	considered	non-	toxic,	whereas	NH+

4
 

and NO−

2
	are	considered	toxic	even	at	low	concentrations	(Kocour	

Kroupová	et	 al.,	2018;	Mooney	et	 al.,	2019;	Moore	et	 al.,	2021).	
However,	 nitrate	 concentrations	 in	 freshwater	 are	 generally	
higher than those for nitrite or ammonium, and there are studies 
that point to NO−

3
	 toxicity	for	values	as	 low	as	10 mg/L	(Camargo	

et al., 2005),	since	NO−

3
 can negatively influence growth and sur-

vival	of	freshwater	organisms	(Gomez	Isaza	et	al.,	2020).
We acknowledge that most studies in our dataset contained data 

for	temperate	regions	in	the	northern	hemisphere	(North	America,	
Western	 Europe,	 and	 East	Asia;	Figure 1).	 Although	we	 increased	
the global coverage of our analysis by the inclusion of Spanish and 
Portuguese	search	strings	in	addition	to	English,	we	recognize	that	
the addition of more languages might have led to a better global rep-
resentation	(Zenni	et	al.,	2023).	We	are	also	aware	of	the	fact	that	
non- English language studies are more likely to publish results that 
are statistically non- significant (Konno et al., 2020).	However,	we	did	
not	find	any	proof	for	publication	bias	in	our	analysis.	Interestingly,	
the regions that are best covered in our analysis are also identified as 
being	at	high	risk	for	N	and	P	eutrophication	of	freshwater	systems	
(Steffen et al., 2015).

Finally, we note that the large residual heterogeneity in our mod-
els point at the influence of several relevant factors that we did not 
include	in	our	analysis.	For	example,	we	did	not	account	for	seasonal	
variation	 among	 experiments,	 while	 N	 and	 P	 limitation	 may	 vary	
seasonally, with P being the limiting nutrient during spring, shifting 
to	N	 limitation	over	 the	summer	 (Kolzau	et	al.,	2014; Søndergaard 
et al., 2017).	Furthermore,	we	could	not	account	 for	possible	con-
founding influences of temperature and acidity, because many 
studies	 did	 not	 report	 these	 factors.	 However,	 temperature	 may	
be	 a	 limiting	 factor	 for	 invertebrate	 species	 abundance	 (Bonacina	
et al., 2023),	hence	could	affect	the	response	to	nutrient	enrichment.	
For macrophytes, higher temperatures may increase the domination 
of floating plants on the system, causing a change in species dom-
inance comparable to nutrient additions (Feuchtmayr et al., 2009).	
Furthermore,	 temperature	 has	 an	 effect	 on	 nutrient	mobilization,	
with	higher	 temperatures	 resulting	 in	 increasing	mobilization	of	N	
species,	 causing	 more	 N	 compounds	 to	 become	 available	 for	 up-
take	(Jack	Brookshire	et	al.,	2011).	This	indicates	an	increasing	role	
of climate change in the response of species to nutrient additions 
(Greaver	et	al.,	2016).

4.4  |  Concluding remarks

Our	study	shows	that	both	N	and	P	enrichment	influence	the	abun-
dance	of	freshwater	macrophytes	and	invertebrates.	All	macrophyte	
abundance	 metrics	 and	 the	 IA	 and	 MA	 metrics	 for	 invertebrates	
tended	to	increase	at	low	levels	of	N	enrichment	(0.001–0.1 mg/L),	
yet	 decreased	 at	 the	 high	 end	 of	 the	 N	 concentration	 gradient	
(1–10 mg/L).	 For	 macrophytes,	 MA	 and	 TA	 showed	 a	 noticeable	
decrease	 in	 abundance	 at	 high	 N	 concentrations,	 in	 particular	 at	
moderate	P	concentrations	(0.01–1 mg/L).	Overall,	responses	to	in-
creasing P concentrations were mostly positive. This was visible in 
particular	 for	 the	TA	of	 invertebrates,	 as	 indicator	of	 total	 system	
productivity. We recommend future research to focus on more spe-
cies	 groups,	 and	 to	 explore	whether	 any	 differences	 in	 responses	
can be discerned between subgroups of invertebrates and macro-
phytes	(e.g.,	according	to	ecological	guild).	Since	eutrophication	will	
continue to be a main environmental problem, a better and more de-
tailed understanding of freshwater responses to nutrients remains 
crucial toward identifying appropriate management practices.
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