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Abstract 

Background Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences 
in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin 
distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modu-
lated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). 
This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring 
ADHD, and to (2) link these variances to putative genomic underpinnings.

Methods We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations 
in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model includ-
ing main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modu-
lates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain 
Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings.

Results In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we 
observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures 
of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects 
and the interaction were enriched for ASD—but not for ADHD-related genes.

Limitations Although we employed a multicenter design to overcome single-site recruitment limitations, our sam-
ple size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits 
the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 
rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account 
for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical 
setting.
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Conclusion Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, 
and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially 
mediated by atypical gene expression.

Keywords ASD, ADHD, Neurodevelopmental disorders, Comorbidity, Imaging-genetics, Structural MRI

Introduction
Autism spectrum disorders (ASD) are highly heteroge-
neous neurodevelopmental conditions characterized 
by differences in social interaction and communication, 
alongside restricted, repetitive behaviors and interests 
[1]. These features are associated with a different devel-
opment of the brain [2] and regional differences in neu-
roanatomy [3, 4]. Yet, neuroanatomical differences in 
autism are highly variable across individuals and likely 
underpin different clinical phenotypes.

Autism is a condition with a high prevalence of co-
occurring conditions. More specifically, 72% autistic 
adolescents have at least one co-occurring psychiatric 
disorder, and often meet diagnostic criteria for two or 
more co-occurring conditions [5]. Among these, atten-
tion-deficit/hyperactivity disorder (ADHD) is the most 
prevalent, with estimates ranging between 16 and 80% 
of autistic individuals also having a clinical diagnosis of 
ADHD [5–8]. The large range in prevalence estimates 
has mainly been attributed to variability in diagnostic 
methods employed [5, 6, 8]. Given the large degree of 
co-occurrence between autism and ADHD, it is likely 
that inter-individual differences in the neuroanatomy 
of autism are confounded by the severity and nature of 
ADHD features and so contribute to the highly complex 
clinical and neurobiological phenotype that is charac-
teristic for autism. Overall, autism is characterized by 
neuroanatomical differences in several large-scale neural 
systems that include fronto-temporal and fronto-parietal 
regions, the amygdala-hippocampal complex, the cer-
ebellum, basal ganglia, and anterior and posterior cingu-
late regions [2–4]. Many of these brain regions overlap 
with core components of the so-called social brain net-
work, which comprises a set of brain regions that medi-
ate functions related to social cognition and/or emotional 
processing [9]. Similarly, ADHD has been linked to neu-
roanatomical differences in frontal regions (e.g., dorso-
lateral and ventromedial prefrontal cortex), the parietal 
cortex, cingulate cortices, basal ganglia, the limbic lobe 
(e.g., amygdala and hippocampus) and the cerebellum 
[10–12]. There is thus a large degree of overlap between 
the neural networks underpinning autism and ADHD. 
Even though the neural systems subserving autism and 
ADHD seem to overlap to a large degree, neuroanatomi-
cal differences between both conditions have also been 
reported. For example, the neuroanatomical differences 

in the temporal lobe are less commonly reported in 
ADHD than in autism, while differences in cingulate 
brain regions seem to be more common in ADHD than 
autism. Moreover, it has been reported that individu-
als with ADHD (without co-occurring autism) have 
significantly reduced gray matter (GM) volume in fronto-
temporal areas relative to autistic individuals, as well 
as significantly increased volume in parietal areas [13]. 
Another study reported that, compared controls, autistic 
individuals show increased cortical thickness (CT), while 
individuals with ADHD show for example decreased CT 
across the brain [14]. Taken together, these studies sug-
gest that ASD and ADHD may have separable neuroana-
tomical underpinnings.

So far, only few studies have explored the neuroanat-
omy of autism with co-occurring ADHD. A study by 
Mizuno et al. [15] reported that autistic individuals with 
co-occurring ADHD have significantly decreased volume 
in the left postcentral gyrus compared to typically devel-
oping controls [15]. However, as this study only examined 
individuals with a diagnosis of both autism and ADHD 
relative to neurotypical controls, it was not possible to 
disentangle the relative impact of autism and ADHD on 
the level of brain anatomy. Another study observed sig-
nificant differences in gray matter volume and surface 
area (SA) in the post- and precentral gyrus when com-
paring individuals with autism to individuals with autism 
and ADHD [16]. Further, there are reports of significant 
ASD-by-ADHD interactions in the parietal, temporal and 
limbic lobe for measures of CT, and in the right cingulate 
cortex for measures of cortical volume [17]. However, in 
this study, the interaction terms did not survive multiple 
comparison correction [17]. Neuroanatomical variabil-
ity may therefore exist not only between neurodevelop-
mental conditions, but also between distinct measures of 
neuroanatomy.

Traditional investigations of brain structure have 
mainly focused on cortical volume, measured on the 
whole-brain, regional, and/or vertex-level. However, cor-
tical volume is, by definition, the product of two different 
cortical features, namely CT and SA. Previous research 
by our group has shown that measures of brain volume, 
therefore, do not characterize a specific (i.e., unique) 
aspect of the neural architecture, but can be explained 
by separable variations in CT and SA (e.g., [18]). These 
two morphometric features also have distinct genetic 
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determinants and developmental trajectories [19–22]. 
Thus, to characterize neuroanatomical variability asso-
ciated with ASD and/or ADHD, it is important to inves-
tigate CT and SA separately. Using data provided by the 
EU-AIMS Longitudinal European Autism Project (LEAP; 
[23]), a large-scale European research collaboration on 
autism, we therefore examined the neuroanatomical 
underpinnings of autism with and without co-occurring 
ADHD symptomatology based on measures of CT and 
SA. Given the conceptual complexity of both ASD and 
ADHD [24–26], we utilized a categorical rather than a 
dimensional design that allowed us to establish the extent 
to which ADHD symptoms modulate the neuroanatomy 
of autism.

Moreover, leveraging the spatial gene expression data 
provided by the Allen Human Brain Atlas (AHBA; [27]) 
we aimed at linking these neuroanatomical differences 
to putative molecular underpinnings. Overall, neuropsy-
chiatric conditions are highly heritable with an estimated 
heritability of 83% for autism [28], and 75% for ADHD 
[29]. However, the genetic architecture of autism is com-
plex, involving hundreds (or more) genetic variants that 
mediate wider autism traits [30]. Many of these genes 
map onto biological pathways underpinning neural 
development [30–32]. The genetic architecture of ADHD 
is equally complex, and implicates mechanisms under-
pinning early embryonic development and cognitive 
abilities [33]. Previous studies also suggest that there is a 
significant genetic overlap between autism and ADHD. 
Overall, the genetic correlation between both conditions 
is 0.37 [34], which is higher than the genetic correlation 
between autism and other psychiatric disorders (e.g., 
r = 0.22 for autism and schizophrenia (SCZ), r = 0.14 for 
autism and bipolar disorder; [34]). Genome-wide asso-
ciation studies (GWAS) report several single nucleotide 

polymorphisms (SNPs) that are significantly associated 
with autism or ADHD, and a significant overlap between 
the SNPs associated with autism and those associated 
with ADHD has been reported [35]. These SNPs map 
onto genes that are predominantly expressed in the brain, 
and play a crucial role in neuronal migration, neuronal 
development, neuromodulation of neurotransmission, 
and in general brain development [35]. In the present 
study, we therefore also examined whether brain regions 
where the neuroanatomy of autism is significantly modu-
lated by ADHD are enriched for genes that have previ-
ously been linked to autism and/or ADHD on the genetic 
and transcriptomic level.

Methods and materials
Participants
This study utilized data provided by the EU-AIMS LEAP 
project [23], which is a European multicenter study on 
stratification biomarkers for autism (www. aims-2- trials. 
eu). A comprehensive description of the sample has been 
published elsewhere [23]. In brief, the total sample for 
which usable structural MRI data were available included 
N = 638 individuals (N = 359 with ASD and N = 279 
non-autistic controls). For the present study, a subset 
of N = 533 individuals aged between 6 and 30 years was 
selected that included all individuals with available data 
from the ADHD DSM-5 rating scale [1] (Table 1). Based 
on autism diagnostic criteria according to DSM-IV [36], 
DSM-IV-TR [37], DSM-5 [1], or ICD-10 [38] and whether 
participants met criteria for ADHD according to the 
ADHD DSM-5 rating scale [1], we subdivided the autistic 
individuals into two subgroups: ASD only (N = 170; 112 
males, 58 females) and ASD with co-occurring ADHD 
[further referred to as ASD + ADHD group (N = 142; 107 
males, 35 females)]. From the neurodiverse control group 

Table 1 Characteristics of participants with ASD, ADHD, ASD + ADHD and control subjects

Ages range from 7 to 30 years in the ASD only group, from 10 to 30 years in the ADHD only group, from 7 to 29 years in the ASD + ADHD group and from 6 to 30 years 
in the typical developing group. Full-scale IQ ranged from 58 to 148 in the ASD only group, from 50 to 119 in the ADHD only group, from 40 to 142 in the ASD × ADHD 
group and from 69 to 142 in the typical developing group

Variable ASD only (n = 170) ADHD only (n = 25) ASD + ADHD (n = 142) TD (n = 196) Analysis

N % N % N % N % Χ2 df p

Sex 7.18 3 0.07

 Male 112 65.9 14 56 107 75.4 124 63.3

 Female 58 34.1 11 44 35 24.6 72 36.7

Mean SD Mean SD Mean SD Mean SD F df p

Age (years) 18.45 5.6 17.80 4.9 16.38 5.30 17.19 5.9 3.812 3 0.01**

FSIQ 101.98 18.8 79.8 21.1 94.93 20.8 108.44 14.1 28.29 3 < 2e−16***

Mean CT (mm) 2.67 0.12 2.67 0.13 2.69 0.14 2.68 0.11 1.07 3 0.36

Total SA  (m2) 0.21 0.26 0.21 0.29 0.23 0.23 0.23 0.23 5.734 3 < 0.001***

http://www.aims-2-trials.eu
http://www.aims-2-trials.eu
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without an ASD diagnosis, we collected those individu-
als who met criteria for ADHD as a third subgroup [fur-
ther referred to as ADHD only group (N = 25; 14 males, 
11 females)] and those who did not meet ADHD crite-
ria as our fourth subgroup [further referred to as typi-
cally developing (TD) controls (N = 196; 124 males, 72 
females)]. The ADHD DSM-5 rating scale was based on 
either parent- or self-report scores depending on partici-
pants’ age. For this study we used the categorical output 
of the ADHD rating scale, which measures the presence 
of symptoms, evaluated on a 0–3 scale (0 = not at all to 
3 = very often). To be evaluated with a clinical concern, a 
participant must at least score six responses with a 2 or 3 
(“Often”, “Very Often”) (for more details see [23]). There-
fore, the rating scale output is not a clinical diagnosis per 
se but the symptom count is a proxy for one. Notably, 
subsets were not matched for age, IQ, and sex to maxi-
mize the available sample size. We therefore controlled 
for these measures in all subsequent analyses (see below). 
Given the wide range in full scale IQ (FSIQ) across indi-
viduals, we also repeated our analyses in a smaller sub-
set of individuals, which excluded participants with a 
mild intellectual disability (ID, i.e., FSIQ < 70). The results 
of these analyses are presented in the Additional file  1: 
Effects of Intellectual Disability. For further details on 
demographics and exclusion criteria see Additional file 1: 
Sample Description. An independent ethics committee at 
each site approved the study, and written informed con-
sent was obtained for all participants.

MRI data acquisition
All participants underwent MR imaging in 3-T scan-
ners, at six different sites (University of Cambridge and 
King’s College London, U.K.; Central Institute for Men-
tal Health, Mannheim, Germany; Radboud University 
Medical Centre and University Medical Centre Utrecht, 
the Netherlands; Rome University, Italy). High-reso-
lution structural T1-weighted volumetric images were 
acquired with full head coverage, at 1.2 mm thickness 
with 1.2 × 1.2-mm in-plane resolution (see Additional file  
1: Table S1 for details).

Cortical surface reconstructions using FreeSurfer
Usable structural MRI data were initially available for 
708 individuals in the LEAP sample. FreeSurfer v6.0.0 
software (http:// surfer. nmr. mgh. harva rd. edu/) was 
used to derive models of the cortical surface for each 
 T1-weighted image. These well-validated and fully auto-
mated procedures have been previously described else-
where [39–43]. Each reconstructed surface underwent 
strict quality assessments (see Additional file  1: MRI 
Data Quality Assessments), resulting in a final sample 

of N = 638 individuals [44]. In brief, three independent 
raters judged the quality of each scan with three possi-
ble decisions: include, exclude, edit [44]. In our study, we 
examined measures of CT and SA. Measures of CT were 
computed as the closest distance from the outer (i.e., 
pial) to the inner (i.e., white matter) boundary at each 
vertex on the tessellated surface [43]. Measures of surface 
area were quantified as the area of the cortex at a given 
point on the cortical surface (i.e., the sum of faces in the 
polygon mesh representation of the cortex at a particu-
lar vertex) as previously described by Winkler et al. [45]. 
For each participant we also computed mean CT across 
the entire brain  (CT0), as well as total SA  (SAtotal). To 
improve detection of population changes, each param-
eter was smoothed using a 15-mm surface based smooth-
ing kernel.

Surface‑based statistical analyses of cortical thickness 
and surface area
Statistical analyses were performed using the SurfStat 
toolbox (https:// www. math. mcgill. ca/ keith/ surfs tat/) 
for MATLAB version R2021a (https:// www. mathw orks. 
com), and R for Statistical Computing (www.r- proje ct. 
org). Vertex-wise differences in neuroanatomy (Y) were 
quantified using a general linear model (GLM) with (1) 
ASD, ADHD, sex, and site (see Additional file  1: Site 
effects for further details, also using ComBat batch cor-
rection) as fixed-effect factors, (2) an ASD-by-ADHD 
interaction term, and (3) linear and quadratic age, FSIQ, 
and a total brain measure (i.e.,  CT0 or  SAtotal, respec-
tively) as continuous covariates:

where εi is the residual error at vertex i. Continuous 
covariates were mean centered across groups to improve 
interpretability of the coefficients. Corrections for multi-
ple comparisons across the whole brain were performed 
using random field theory (RFT) based cluster analy-
sis with a cluster-forming and cluster-based threshold 
of p < 0.05 (two-tailed). Effect sizes associated with each 
model term were assessed using Cohen’s f, where values 
of 0.25, 0.5, and 0.75 indicate small, medium, and large 
effects, respectively.

To specifically identify neuroanatomical differences 
between ASD individuals with and without a co-occur-
ring diagnosis of ADHD, we fitted an additional GLM on 
a subset of the total sample that only included partici-
pants with ASD and examined the main effect of ADHD 
(N = 312), i.e.,

Yi =β0 + β1ASD+ β2ADHD+ β3ASD ∗ ADHD

+ β4Sex+ β5Age+ β6Age
2

+ β7FSIQ+ β8Site+ β9total Brain+ εi

http://surfer.nmr.mgh.harvard.edu/
https://www.math.mcgill.ca/keith/surfstat/
https://www.mathworks.com
https://www.mathworks.com
http://www.r-project.org
http://www.r-project.org
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Gene expression decoding analysis
To link our neuroanatomical findings to putative genomic 
underpinnings, we leveraged the spatial gene expression 
data from the Allen Human Brain Atlas (AHBA; [27]) to 
identify a list of genes with a spatial pattern of expression 
that resembles the neuroanatomical patterns highlighted 
by our statistical neuroimaging analyses. To this aim, we 
initially uploaded the statistical t-maps associated with 
the main effect of ASD, the main effect of ADHD, as 
well as the ASD-by-ADHD interaction term for CT and 
SA (Fig.  4A, C) to the Neurovault server (https:// neuro 
vault. org). Next, using python code embedded within 
Neurovault and Neurosynth (https:// neuro synth. org), 
we performed a gene expression decoding analysis that 
statistically assesses the spatial correlation between our 
statistical maps and the pattern of gene expression for 
each of a total of 20,787 protein coding genes [46]. To do 
so, the six AHBA donor brains are initially co-registered 
with the MNI atlas (also used by FreeSurfer) using non-
linear registration (transcriptomic alignment). At each 
sampling site (i.e., probe), a spherical region-of-interest 
(ROI) is drawn (default radius r = 4 mm), and the statis-
tical test parameter in each FreeSurfer overlay was aver-
aged within each ROI. This resulted in a spatial vector 
of values for each donor, which was subsequently corre-
lated with the normalized gene expression data. Here, the 
analysis constructs a linear model for each donor brain, 
where the slopes encode the spatial correlation between 
each gene’s expression pattern to the statistical neuroim-
aging map (random effects model). In line with the input 
maps, these analyses were restricted to cortical tissue. 
The slopes are then subjected to a one-sample t test to 
identify genes whose spatial expression patterns are con-
sistently highly similar to the imaging maps (i.e., across 
donor brains). The derived list of genes was thresholded 
at p < 0.01. We chose this ‘liberal’ threshold as this analy-
sis did not constitute a hypothesis test per se, but rather 
a selection step aimed at yielding an initial list of genes 
for the subsequent enrichment analyses. Given that both 
sides of our imaging contrasts were of equal relevance, we 
considered both positive and negative t-statistic values.

In addition to the Neurosynth decoding approach, we 
performed gene expression decoding using a General 
Least Squares (GLS) approach that also accounted for 
spatial autocorrelations in embedded transcriptomic 
maps, to assess the robustness of our findings. The GLS 
approach is described in detail in Additional file 1: Gen-
eral Least Square (GLS)-decoding.

Yi =β0 + β1Group+ β2Sex+ β3Age

+ β4Age
2
+ β5FSIQ+ β6Site

+ β7total Brain+ εi

Gene enrichment analyses
Next, we performed several gene enrichment analyses 
to establish the biological relevance and functional role 
of decoded genes. All enrichment testing was performed 
using the GeneOverlap package in R (https:// doi. org/ 
10. 18129/ B9. bioc. GeneO verlap). Specifically, we tested 
the decoded gene lists for an enrichment with differ-
ent gene sets known to be associated with ASD at the 
genetic and transcriptomic level. At the genetic level, 
this included the 102 rare and de novo protein truncating 
variants identified in the largest exome sequencing study 
of autism worldwide [47]. We also included an ASD-
related gene list compiled by SFARI (categories S, 1, 2, 
and 3 downloaded in November 2020 from https:// gene. 
sfari. org/). At the transcriptomic level, we included a list 
of differentially expressed genes (DEGs) (upregulated/
downregulated) in post-mortem cortex tissue in ASD 
[48], and genes that are differentially expressed in specific 
cell types in ASD [49]. Moreover, we included genes from 
differentially expressed co-expression modules in ASD 
that map onto specific biological processes [50]. ADHD-
related genes were derived based on a GWAS study pub-
lished by Demontis and colleagues [33]. Here, we used 
the MAGMA plug-in on the FUMA GWAS annotation 
platform (https:// fuma. ctglab. nl) to perform a GWAS 
analysis [51]. Here, variants were mapped onto genes 
based on their exact position, and aggregated associa-
tion p values were calculated for each gene. Taking into 
account the sample composition, a European ancestry 
reference from 1000 Genomes phase 3 was used as ref-
erence panel. Bonferroni correction was used to set the 
significance threshold (correcting for all N = 10,894 gene 
sets tested from MsigdB v5.2; [52]) The resulting gene list 
consisted of N = 22 ADHD-related genes, which was used 
for further gene enrichment analyses. Our enrichment 
tests generated enrichment odds ratios, hypergeometric 
p values, and FDR-corrected p values using a background 
total of the 20,787 Neurosynth genes. Last, we examined 
the percentage overlap between genes associated with 
both main effects and the interaction term relative to the 
total number of genes significantly associated with the 
imaging phenotypes (see Additional file 1: Figure S7 for 
details).

Results
Subject demographics
There was no significant difference in the ratio of males to 
females between any of the four subgroups (p = 0.06642) 
(Table  1). There was, however, a significant difference 
in age between the ASD group and the co-occurring 
group (ASD only: 18.45 ± 5.6; ASD + ADHD: 16.38 ± 5.30; 
p = 0.0061) (Table  1). Subgroups also differed signifi-
cantly in FSIQ (p < 2e−16) [with TD having the highest 

https://neurovault.org
https://neurovault.org
https://neurosynth.org
https://doi.org/10.18129/B9.bioc.GeneOverlap
https://doi.org/10.18129/B9.bioc.GeneOverlap
https://gene.sfari.org/
https://gene.sfari.org/
https://fuma.ctglab.nl
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IQ (108.44 ± 14.1) and the ADHD only group the lowest 
(79.8 ± 21.1)] (Table  1). We therefore covaried for these 
potential confounds in all subsequent analyses.

Main effect of ASD and ADHD on CT and SA
Following RFT-based cluster-correction (p < 0.05, two-
tailed), the main effect of autism was associated with 
increased CT in the anterior-cingulate cortex (ACC; 
approximate Brodmann areas (BA) 24/33), in the left 
superior and middle temporal gyrus (BA 21/22), and the 
right precuneus cortex (BA 31). By contrast, autism was 
associated with decreased CT in the parietal cortex (BA 
7) and the middle frontal gyrus (BA 6/8/9) (Fig. 1A). We 
also found that the main effect of autism was associated 
with decreased SA in the right anterior-cingulate cortex 
(BA 24/33) relative to non-autistic individuals (Fig.  2A; 
Additional file 1: Table S2). For the main effect of ADHD, 
we observed decreases in CT in right superior frontal 
gyrus (BA 6/8/9), right cingulate cortex (BA 23/24/33), 
and the right precuneus cortex (BA 31) (Fig. 1B). ADHD 
was also associated with increased SA in left parahip-
pocampal gyrus (BA 27/28) only (Fig.  2B; Additional 
file  1: Table  S3; see Additional file  1: Figure S3 for 
unthresholded t-maps). Vertex-level effect sizes (Cohen’s 
f) for the main effects of autism and ADHD, and all other 
model terms are displayed in the Additional file 1: Figure 
S4.

Significant interactions between ASD and ADHD
In addition to the main effects of group, we examined 
an ASD-by-ADHD interaction term. We identified 
several cortical regions, where the neuroanatomy of 
autism (or ADHD) was significantly modulated by co-
occurring ADHD (or ASD) including the left parietal 
cortex (BA 7), precentral and superior frontal gyrus 
(BA 6/8), the right temporal gyrus (BA 20/21/22), cin-
gulate cortex (BA 23/24/33), and precuneus cortex (BA 
31) for measures of CT (Fig. 1C). In these regions, we 
observed different types of interactions. For example, 
in the cingulate cortex CT in the ASD + ADHD group 
was significantly increased compared to the other 
groups (Fig.  1D), whereas in the precentral gyrus CT 
in the ASD + ADHD group was significantly decreased 
compared to all other groups (Fig.  1F). We also found 
a significant cluster in the right temporal gyrus with 
no significant difference between both ASD groups. 
Here, the interaction was mainly driven by the differ-
ence between individuals with ADHD and TD controls, 
which was significantly increased for measures of CT 
(Fig. 1E; see Additional file 1: Figure S5A for interaction 
plots of all significant clusters). For measures of SA, 
significant differences in the right dorsolateral prefron-
tal gyrus (BA 46) (Fig. 2C) were found. Here, the inter-
action was mainly driven by the difference between 
individuals with ADHD and TD controls, which was 

Fig. 1 Differences of cortical thickness for main effects of ASD, ADHD, and ASD-by-ADHD interaction. A–C Random field theory (RFT)-based 
cluster corrected t-maps (p < 0.05, 2-tailed) for CT. A Significant decreases in CT in ASD compared to non-ASD are displayed in blue and significant 
increases are displayed in orange. B Significant decrease in CT in ADHD compared to non-ADHD is displayed in blue and significant increase 
is displayed in orange, C the ASD × ADHD interaction effect for CT, D mean CT at right cingulate cortex for the interaction effect, E mean CT at right 
temporal lobe for the interaction effect and F mean CT at left parietal cortex for the interaction effect. ASD autism spectrum disorder, ADHD 
attention-deficit/hyperactivity disorder, TD typically developing, t t-statistic, CT cortical thickness, L left, R right
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significantly decreased, while small or no differences 
were observed between controls and both autism sub-
groups (Fig.  2D; see Additional file  1: Figure S5B for 
interaction plots of all significant clusters; Additional 
file 1: Table S4).

Significant differences between ASD + ADHD and ASD only
To specifically identify differences between the 
ASD + ADHD and the ASD only group, we examined 
a subsample of individuals with ASD. We observed 
that individuals with ASD + ADHD had significantly 

Fig. 2 Differences of surface area for main effects of ASD, ADHD, and ASD-by-ADHD interaction. A–C Random field theory (RFT)-based cluster 
corrected t-maps (p < 0.05, 2-tailed) for SA. A Significant decrease in SA in ASD compared to non-ASD is displayed in blue and significant increase 
is displayed in orange. B Significant decrease in SA in ADHD compared to non-ADHD is displayed in blue and significant increase is displayed 
in orange, C the ASD × ADHD interaction effect for SA. D Mean SA at right frontal gyrus for the interaction effect. ASD autism spectrum disorder, 
ADHD attention-deficit/hyperactivity disorder, TD typically developing, t t-statistic, SA surface area, L left, R right

Fig. 3 Differences of cortical thickness for ASD + ADHD versus ASD only. Random-field-theory-based cluster-corrected t-maps (p < 0.05, 2-tailed). 
A Significant decrease in CT in ASD + ADHD compared to ASD only is displayed in blue and significant increase is displayed in orange, B mean 
CT at left parietal cortex for the ASD + ADHD subgroup (blue) and the ASD only subgroup (yellow). ASD autism spectrum disorder, ADHD 
attention-deficit/hyperactivity disorder, t t-statistic, CT cortical thickness, L left, R right. **p < 0.01
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decreased CT relative to individuals with ASD only in 
the left precentral, caudal middle frontal, and postcen-
tral gyrus (BA 6/8/9) (Fig. 3; Additional file 1: Table S4). 
There were no significant differences for measures of 
SA.

Gene set enrichment analyses
Here, we decoded the t-maps for the main effects of 
autism and ADHD, as well as the CT and SA maps for the 
ASD-by-ADHD interaction terms (i.e., six maps in total). 
This resulted in sets of (1) NCT = 598 and NSA = 259 sig-
nificant genes associated with the main effect of autism 
for CT and SA, respectively, (2) NCT = 272 and NSA = 1005 
significant genes associated with the main effect of 
ADHD, and (3) NCT = 1258 and NSA = 233 significant 
genes associated with the ASD-by-ADHD interaction 
term. Within these gene sets, we observed a significant 
enrichment of genes known to be associated with autism, 
and particularly for genes that are known to be differ-
entially expressed in autism during childhood and ado-
lescence (see Fig.  4 for details). More specifically, in all 

decoded CT maps (i.e., for main effect of autism, ADHD, 
and the interaction term), we observed a significant 
enrichment of gene co-expression module CTX.M20, 
which is known to be upregulated in the autism cortex 
and has been linked to Gene Ontology terms represent-
ing developmental processes and the regulation of cell 
differentiation [50]. Moreover, we observed a significant 
enrichment of autism genes listed in the SFARI database. 
Notably, there was no significant enrichment of autism- 
or ADHD-related risk genes resulting from GWAS stud-
ies. However, these were also among the smallest gene 
sets tested with only N = 22 genes for ADHD (Fig. 4A, B).

Different gene sets were found to be enriched in the 
SA maps (Fig.  4C, D). Here, in all decoded maps, we 
observed an enrichment of gene co-expression module 
CTX.M16, which is associated with neuronal markers 
and synaptic genes [53], and is known to be downregu-
lated in the autism cortex. In contrast to measures of CT, 
however, where most gene sets were enriched in both 
main effects for autism and ADHD, gene set enrich-
ments were more prominent in the main effect of ADHD 

Fig. 4 Genomic underpinnings of neurodevelopmental deviations in cortical thickness and surface area in ASD, ADHD, and ASD + ADHD. Panel A 
and C show the t-maps of the main effect of ASD, the main effect of ADHD and the ASD-by-ADHD interaction term for measures of CT (A) and SA 
(C). Panel B (CT) and D (SA) show significant odds ratios at a false discovery rate (FDR) corrected p threshold of 0.05 resulting from the gene set 
enrichment analyses for genes expressed in the different output maps. Gene sets were subdivided into sets with differential gene expression 
in ASD, sets representing ASD risk genes, and a set representing ADHD risk genes. Gene sets are annotated and labeled based on their original 
publication. ASD autism spectrum disorder, ADHD attention-deficit/hyperactivity-disorder, CTX cortex, DEG differentially expressed gene, down 
downregulated expression in ASD, up upregulated expression in ASD, NGenes number of genes in each gene set, CT cortical thickness, SA surface 
area. *p < 0.05 (FDR-corrected), **p < 0.01 (FDR-corrected); red squares indicate consistently significant enrichments across both approaches (see 
Additional file11: Figure S6)
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for measures of SA. Autism-related genes hence seem to 
have a pattern of expression that more closely resembles 
the differences in CT in autism rather than differences in 
SA. Moreover, autism-related genes are equally impor-
tant to the neuroanatomy underpinning ADHD symp-
tomatology, particularly when examining measures of 
SA. Gene sets resulting from the GLS-decoding approach 
are shown in the Additional file 1: Figure S6.

Overall (i.e., across gene sets), there was little overlap 
between genes significantly associated with the main 
effect of ASD, ADHD, and/or the ASD-by-ADHD inter-
action terms on the transcriptomic level (see Additional 
file 1: Figure S7). More specifically, a total of 1,3% of all 
genes identified as being significantly enriched in any of 
the imaging phenotypes was shared between the main 
effect of ASD and ADHD for measures of CT, and a total 
of 8.1% of genes associated with these main effects for 
measures of SA.

Discussion
This study examined neuroanatomical differences 
between autistic individuals with and without co-occur-
ring ADHD relative to individuals with ADHD only 
and non-autistic controls. Moreover, to bridge the gap 
between macroscopic and microscopic differences, we 
examined whether the spatial patterns of neuroana-
tomical differences in CT and SA are enriched for genes 
implemented in the etiology of autism and ADHD, and 
genes known to be differentially expressed in autism. 
We established that it is possible to separate the effect of 
autism from the effect of ADHD on the level of neuro-
anatomy based on measures of CT and SA. Notably, we 
also observed significant ASD-by-ADHD interactions, 
and significant differences in CT between ASD individu-
als with ADHD and those without. This suggests that 
the neuroanatomy of ASD is significantly modulated by 
co-occurring ADHD. Further we showed a significant 
association of autism and ADHD-related patterns of neu-
roanatomical variability with autism—but not ADHD-
related genes. Our study thus provides important novel 
insights into the neurobiological and putative genomics 
underpinning the complex clinical phenotype of autism.

Main effect of ASD and ADHD on CT and SA
Neuroanatomical differences in autism and ADHD are 
well documented and primarily affect fronto-temporal 
and fronto-parietal regions for autism [2], as well as cin-
gulate cortices for ADHD [11]. In the present study, we 
examined the neuroanatomical underpinnings of autism 
and ADHD within a 2 × 2 factorial design that included 
(1) ASD individuals with co-occurring ADHD, (2) ASD 
only individuals, (3) ADHD only individuals, and (4) 

non-autistic controls. While it remains a topic of debate 
whether autism should be encoded as a categorical vari-
able [54], this design allowed us to identify a set of brain 
regions where neuroanatomical variability in CT and 
SA are uniquely attributable to either autism or ADHD. 
By examining both main effects, we were able to sepa-
rate autism from ADHD based on patterns of neuroana-
tomical variability in fronto-temporal regions (e.g., left 
superior and middle temporal gyrus), and in limbic and 
prefrontal regions (i.e., cingulate cortex, parahippocam-
pal gyrus, and the superior frontal gyrus). Many of the 
brain regions associated with the main effect of ASD 
have previously been linked to the wider neural systems 
that mediate functions related to social cognition and/
or emotional processing, i.e., core autism traits [9]. Pre-
frontal areas such as the superior frontal gyrus, which 
showed significant differences in CT for the main effect 
of ADHD, are important for executive functioning, atten-
tion and motor planning, which are all functions known 
to be impaired in ADHD [55, 56]. Our findings of signifi-
cant neuroanatomical differences associated with ASD 
and ADHD are thus in line with previous reports using 
a categorical approach; however, it does not rule out the 
necessity of future studies using dimensional approaches. 
While a categorical approach is particularly well suited 
to examine neuroanatomical differences associated 
with both ASD and ADHD (as well as their interaction), 
future dimensional research would complement our 
study by accounting for the inter-individual differences 
in the broader phenotypes of ASD and ADHD. To date, 
autism diagnostic is still based on a categorical cutoff that 
remains largely unchanged across the human lifespan.

In addition, as studies examining the neuroanatomi-
cal underpinnings of autism and co-morbid ADHD are 
still rare, and there is currently little knowledge on basic 
case–control differences, elicited in adequately powered 
samples. In terms of ASD, several lines of ASD research 
also converge in suggesting that the condition might be 
most effectively understood as a categorical fixed effect 
rather than a dimensional construct (for review see [57]). 
For example, Frazier et al. [58] examined several indica-
tors of ASD (e.g., eye gaze metrics from social stimulus 
paradigms), establishing a categorical data structure that 
closely corresponded to a diagnosis of ASD across meas-
ures [58]. ADHD, on the other hand, is widely considered 
a dimensional construct with fluctuations in symptom 
severity and profiles across the human lifespan [11, 59, 
60]. For example, only 15% of children with ADHD still 
show criteria for a diagnosis during adulthood [60], and 
symptoms often also change from a more externalizing 
nature during childhood to a more internalizing nature 
during adulthood [11, 59]. Future studies might therefore 



Page 10 of 14Berg et al. Molecular Autism           (2023) 14:36 

benefit from employing both a categorical and a dimen-
sional approach to examine the neuroanatomy associated 
with ASD and ADHD.

The effect sizes associated with the main effect of 
ASD and ADHD were relatively small, overall, and did 
not exceed a value of 0.2 on the vertex level. Small-to-
medium effects associated with between-group differ-
ences in neuroanatomy have previously been observed 
even in large-scale neuroimaging studies with N > 500 
that compare ASD or ADHD individuals with neurotypi-
cal controls [12, 14]. The low effects reported by neuro-
imaging studies seem to be driven by small differences in 
mean, and larger phenotypic variability in neurodiverse 
study population [44], thus highlighting the significant 
inter-individual heterogeneity that is characteristic for 
neurodevelopmental conditions on the level of etiology, 
neurobiology, and symptomatology. Taken together, our 
findings indicate that autism and ADHD may have sepa-
rable neuroanatomical underpinnings that may mediate 
differences in clinical phenotypes. The main effects of 
autism and ADHD are, however, only interpretable in the 
absence of a significant ASD-by-ADHD interaction.

Significant interactions between ASD and ADHD
While previous studies have focused on the effects of 
ASD and ADHD in separate case–control designs [14, 
61], we examined to what extent, and where in the brain, 
the neuroanatomy of ASD is modulated by ADHD symp-
tomatology (i.e., the ASD-by-ADHD interaction). We 
observed a significant ASD-by-ADHD interaction term 
in the right temporal gyrus, the right cingulate gyrus and 
the left precentral gyrus for measures of CT, and in the 
right dorsolateral prefrontal gyrus for measures of SA. 
Some of these clusters (right temporal gyrus and right 
dorsolateral prefrontal gyrus) were mainly driven by 
neuroanatomical differences between individuals with 
ADHD only relative to controls, while small or no differ-
ences were observed between non-autistic controls and 
autistic individuals (including those with co-occurring 
ADHD). ADHD-related neuroanatomical variability in 
these brain regions thus seems to be modulated, or even 
masked, by also having a diagnosis of autism. However, 
other clusters associated with the ASD-by-ADHD inter-
action term, e.g., in the right cingulate gyrus and left 
precentral gyrus, also showed significant differences 
between the ASD participants with co-occurring ADHD 
and those with ASD only. A significant interaction 
between autism and ADHD indicates that the neuroana-
tomical underpinnings of ADHD in autistic individuals 
cannot be explained by either a diagnosis of autism or a 
diagnosis of ADHD alone.

Significant differences between ASD + ADHD and ASD only
Our additional analysis within the ASD ± ADHD subsam-
ple showed significant differences between both groups 
in the left precentral gyrus for measures of CT. Here, 
individuals with co-occurring autism and ADHD had a 
significantly thinner cortex compared to those individu-
als with autism alone. For measures of SA, no significant 
clusters for this contrast were observed. Taken together, 
our findings suggest that (1) the neuroanatomy of autism 
is significantly modulated by co-occurring ADHD symp-
tomatology, and (2) although ADHD is highly co-occur-
ring in autism, both conditions seem to have separable 
neuroanatomical underpinnings.

Gene set enrichment analyses
In a next analysis step, we examined whether the patterns 
of CT and SA attributed to the main effects and the inter-
action term are linked to the genetic etiology of autism 
or ADHD. Similar to Romero-Garcia et al. [62], we found 
that all decoded CT maps were enriched for genes and 
co-expression modules that have previously been impli-
cated in the etiology of autism, and particularly for genes 
associated with brain development and the regulation of 
cell differentiation [50]. For measures of SA, an enrich-
ment of genes and co-expression modules that are asso-
ciated with neuronal markers and synaptic genes was 
found [53]. Notably, the pattern of neuroanatomical dif-
ferences in SA associated with the main effect of ADHD 
also showed a robust enrichment of autism-related genes, 
implying that these genes may not be specific to autism, 
but may also affect the neuroanatomy of other neurode-
velopmental conditions such as ADHD.

This finding agrees with previous genetic studies dem-
onstrating that ASD and ADHD are genetically corre-
lated, with a SNP-based genetic correlation of 0.37 [34]. 
Many of the genetic loci implicated in ASD and ADHD 
are therefore ‘pleiotropic’, i.e., can influence two or more 
clinical phenotypes. Moreover, the effects of ASD sus-
ceptibility genes on the brain are known to be pleio-
tropic and may exert their influence via gene regulatory 
mechanisms during childhood and adolescence [30, 63, 
64]. This could also account for highly individualized 
patterns of neuroanatomical variations or ‘fingerprints’ 
that are commonly observed in ASD [44]. It is there-
fore possible that similar genotypes underpin distinct 
phenotypes, which could explain why we observed an 
enrichment of ASD-related genes both in the ASD and 
ADHD imaging phenotype, even though the neuroana-
tomical patterns characteristic for each phenotype were 
different.
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Moreover, while ASD and ADHD are known to be 
genetically related, little is currently known about the 
functional involvement of genes that are specific to ASD 
and/or ADHD. Moreover, distinct imaging phenotypes 
could be caused by more complex genetic interactions 
between ASD- and ADHD-related genes, which cannot 
be identified based on the gene set enrichment analyses 
performed in the present study. This highlights the need 
for conducting future large-scale genome wide associa-
tion studies (GWAS) to link genetic variation associated 
with neurodevelopmental conditions to differences in 
neuroanatomical phenotypes.

Also, while we observed a significant enrichment of 
autism-related genes, there was no significant enrich-
ment of ADHD risk genes in the main effect of ASD or 
ADHD. However, the number of recognized ADHD-
susceptibility genes remains as yet small, which limits 
the statistical power of enrichment tests. Moreover, little 
is currently known about the functional role of ADHD 
genes and their impact on cortical gene expression. 
Future genetic and/or transcriptomic studies are there-
fore needed to provide further insights into the genomic 
underpinnings of ADHD, and to expand the set of genes 
that might be utilized to link ADHD-related differences 
in brain anatomy to putative underlying mechanisms.

Limitations
The present study needs to be interpreted in light of sev-
eral limitations. Although we employed a multicenter 
design to overcome single-site recruitment limitations, 
our sample size of N = 25 individuals in the ADHD only 
group is relatively small compared to the other subgroups, 
which limits the generalizability of the results. Also, we 
assigned subjects into ADHD positive groupings accord-
ing to the DSM-5 rating scale. While this is sufficient for 
obtaining a research diagnosis of ADHD, our approach 
did not take into account for how long the symptoms 
have been present, which is typically considered when 
assessing ADHD in the clinical setting. It will therefore 
be important to repeat our analyses in a bigger sample 
of pure ADHD cohorts that were diagnosed according to 
clinical gold standards to make our study comparable to 
previous findings in these cohorts. Furthermore, future 
studies employing a dimensional approach are also 
required to provide a more nuanced picture of the het-
erogeneity associated with autism. Last, our gene expres-
sion decoding analysis was based on the Allen Human 
Brain Atlas [27], which is the most comprehensive gene 
expression atlas to date. However, the Allen atlas is 
based on adult donors exclusively, and provides a cover-
age that is significantly lower than the spatial resolution 

of our neuroimaging data. We therefore acknowledge the 
importance of repeating the analyses in high-resolution 
age-specific gene expression data sets once these become 
available, to corroborate the important link between 
molecular and macroscopic pathology in autism.

Conclusion
Our findings indicate that the neuroanatomy of ASD 
is significantly modulated by ADHD, and that autistic 
individuals with co-occurring ADHD may have specific 
neuroanatomical underpinnings potentially mediated by 
atypical gene expression.
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