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Abstract

The language faculty is physically realized in the neurobiological infrastructure of the human

brain. Despite significant efforts, an integrated understanding of this system remains a formidable

challenge. What is missing from most theoretical accounts is a specification of the neural

mechanisms that implement language function. Computational models that have been put forward

generally lack an explicit neurobiological foundation. We propose a neurobiologically informed

causal modeling approach which offers a framework for how to bridge this gap. A

neurobiological causal model is a mechanistic description of language processing that is

grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to

model the generators of language behavior at the level of implementational causality. We describe

key features and neurobiological component parts from which causal models can be built and

provide guidelines on how to implement them in model simulations. Then we outline how this

approach can shed new light on the core computational machinery for language, the long-term

storage of words in the mental lexicon and combinatorial processing in sentence comprehension.

In contrast to cognitive theories of behavior, causal models are formulated in the ‘machine

language’ of neurobiology which is universal to human cognition. We argue that neurobiological

causal modeling should be pursued in addition to existing approaches. Eventually, this approach

will allow us to develop an explicit computational neurobiology of language.

Keywords: neurobiology of language, computational modeling, implementational

causality, adaptive dynamical systems, processing memory
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CAUSAL LANGUAGE MODELING 3

Neurobiological causal models of language processing

“You can’t go to a physics conference and say: I’ve got a great theory. It accounts for

everything and is so simple it can be captured in two words: Anything goes”—Noam

Chomsky1

The core computational machinery for language

Sentence comprehension requires at least two functional components, a long-term storage

of words and their feature structure (mental lexicon) and a combinatorial device (unification) that

integrates sequential information into structured representations over time (Hagoort, 2005, 2019;

Jackendoff, 2002). These components interact during real-time, incremental processing and

mutually control each other. This process involves linguistic representations at different grain

sizes, from phonemes to words, phrases and sentences (Dehaene et al., 2015), and memory on

multiple timescales (see Glossary), ranging from milliseconds to minutes and a lifetime (Hasson

et al., 2015). An adaptive processing dynamics shaped by ontogenetic development (genes and

experience) operates on these linguistic primitives and ties them together in processing memory

(Petersson & Hagoort, 2012). The computational machinery that supports these operations is

implemented in neurobiological infrastructure at different spatial scales, from single neurons and

synapses to cortical layers, micro-columns, brain regions and large-scale networks. A theory of

language processing that aims to be complete needs to explain how this machinery is realized

within the neurobiology of the language system2 across spatial and temporal scales. This

explanatory goal is shared by most researchers in the field, but an integrated account has not been

accomplished thus far. Some have argued that we lack even the most basic understanding of how

linguistic units are represented and stored in long-term memory (Poeppel & Idsardi, 2022). In a

similar vein, the neurobiological basis of processing memory for unification is currently unknown

(Fields, 2022; Fitz et al., 2020). In this perspective article, we describe a computational modeling

1 https://garymarcus.substack.com/p/noam-chomsky-and-gpt-3
2 We use the term ‘language system’ as short-hand for ‘language-relevant brain regions’ without implying
that these regions are functionally exclusive to language.
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CAUSAL LANGUAGE MODELING 4

approach that maps out a way forward for the language sciences in order to achieve this

explanatory goal. This approach aims towards a fundamental understanding of core language

function from first principles of neurobiology.

Multiple explanatory strategies

Language as a neurobiological system needs to be distinguished from its behavioral output

which includes speech, sign or text in production and sentence interpretations in comprehension.

Although the language system is used for communication and thinking, these phenomena should

not be mistaken for the system itself (Jackendoff, 2002). A key question is how to link behavioral

output to the computational machinery of the neurobiological system that generates the output.

This is one of the fundamental challenges in explaining natural language in mechanistic terms.

The experimental approach sets out at the functional level of description3 and attempts to

infer processing theories from measured input-output relations (Figure 1). These are often

informal verbal theories that do not reach algorithmic specificity. Moreover, current experimental

methods are relatively coarse and do not allow the reconstruction of simple computational devices

whose functionality is known (Jonas & Kording, 2017). This complicates the reverse engineering

of cognitive systems from experimental data which therefore has to be complemented with other

methods. One such approach has tried to map these relations algorithmically through cognitive

modeling. Different frameworks have been proposed (e.g., connectionist, symbolic, hybrid,

Bayesian, etc.) that each captures some aspect of language behavior, but so far this approach has

not resulted in a unified picture of linguistic computation. Since any finite collection of data can

be re-coded by many different formalisms, success in approximating behavior algorithmically

does not automatically guarantee neurobiological realism. The chances that a stipulated algorithm

provides a correct description of the actual computational machinery is small, no matter how well

the formalism fits with behavioral data. Independent evidence is needed to establish realism

which, by necessity, must stem from the neurobiological characteristics of the very system that is

3 The top level refers to what is being computed, i.e., which recursive function ϕ. We therefore label it
‘functional level’. Marr’s term ‘computational level’ is unfortunate because it creates confusion with
‘algorithm’.

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00133/2205170/nol_a_00133.pdf by R
AD

BO
U

D
 U

N
IVER

SITEIT N
IJM

EG
EN

 user on 10 January 2024



CAUSAL LANGUAGE MODELING 5

being modeled. In the absence of such neurobiological constraints, cognitive models remain

high-level abstractions whose relationship to the implementational substrate is unclear.

For these reasons, we argue that a third explanatory strategy should be pursued urgently,

and concurrent with the more traditional approaches shown in Figure 1. This strategy puts a

premium on neurobiology as a primary source of evidence and attempts to model the language

system at the implementational level of description. We refer to this approach as ‘neurobiological

causal modeling’.4 A causal model is built directly on established neurobiological principles

without making ad hoc assumptions about algorithmic procedures and component parts

(Figure 2). The goal of this approach is to synthesize an explanatory language model that can

uniformly explain linguistic behavior across different experiments. Unlike most existing

approaches, causal modeling draws on a wealth of additional insights from neuroanatomy

(Petrides, 2014; Tremblay & Dick, 2016), neurophysiology (Kandel et al., 2012; Luo, 2015;

Sterling & Laughlin, 2015) and biophysics (Koch, 1999) that inform model construction. The

implementational building blocks derived from these knowledge sources can provide the

necessary constraints for a computational neurobiology of language that ultimately integrates

across all levels of description.

The case for neurobiological constraints on models of cognition was made in the seminal

work of Churchland and Sejnowski (1992) and has been reiterated by others since then (e.g.,

Astle et al., 2023; O’Reilly, 2006; Pulvermüller et al., 2021). One way to approach this issue is to

constrain existing neurocognitive architectures in order to increase their biological plausibility

(Pulvermüller et al., 2021). Another approach, which we advocate here, is to systematically

assemble computational language models from known neurobiological primitives at the

implementational level (Figure 2). Although superficially similar, the former approach is

reductive in nature while the latter is synthetic. To prevent early misunderstanding,

neurobiological causal language modeling does not strive to dispense with function or algorithm

4 In our terminology, a causal model is a set of functional equations that describes the dynamics of a system
at the level of neurobiological causality. This concept differs from the structural causal models of Pearl
(2000), dynamic causal modeling (Friston et al., 2003), or models of causality itself (Granger, 1969).
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CAUSAL LANGUAGE MODELING 6

which are an integral part of a complete explanation. On the contrary, causal modeling aims to

firmly ground linguistic behavior and cognitive theory in the causal characteristics of the actual

language system and its concrete neurobiological instantiation.

First principles of neurobiology

The language system of the human brain is a particular instance of a sparsely connected

recurrent network of biological neurons and chemical synapses. This theoretical framework is

sufficiently expressive to capture all anatomical connectivity, including connectivity between

brain regions, the laminar structure within cortical columns, synaptic motifs within and

between layers, and randomness at the microscopic scale. In the context of recurrent networks,

there is no fundamental difference between connectivity patterns at different spatial scales. Since

a static structured connectome by itself is non-explanatory (Bargmann, 2012), it is critical to also

realistically model neural interactions and the information flow across this graph.

Fast signaling in the nervous system is based on action potentials which are all-or-none

neuronal responses to analog input. Spikes are the basic units of cortical information processing

and it has been argued that their temporal relations play an important role in the encoding,

representation and transmission of processing outcomes (Brette, 2015; Gerstner et al., 1997).

Neurobiological language models are needed that can express the temporal dimension of

spike-based processing and resolve the mismatch between the timescales of action potentials and

cognitive behavior (Chaudhuri & Fiete, 2016). Biological neurons exhibit a wide range of

electrophysiological behavior, from tonic spiking to bursting and adaptation, and this diversity of

observed firing patterns is likely to have functional significance (Gerstner et al., 2014; Koch,

1999). Neuronal spike responses result from the integration of synaptic inputs on the spatial

structure of the dendritic tree which amounts to more than linear summation. The

spatio-temporal nature of dendritic integration gives rise to complex, non-linear processing effects

that are not captured by simpler point neurons (Gidon et al., 2020; London & Häusser, 2005;

Payeur et al., 2019). Thus, the input–output behavior of neurons as the fundamental

computational unit is substantially richer than has been assumed (Larkum, 2022). Dendritic
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CAUSAL LANGUAGE MODELING 7

morphology is one of the candidate features that may account for species-specific cognitive

functions (Fişek & Häusser, 2020), including language, and multi-compartment neuron models

can be viewed as interconnected computational elements that are all potential targets for learning

and adaptation (see the Tripod neuron for an explicit modeling account, Quaresima et al., 2022).

Neurons connect via excitatory or inhibitory synapses but not both at the same time and

synapses do not change sign during learning and development (Strata & Harvey, 1999), as is the

case in virtually all connectionist and deep learning models of language processing. Major

synapse types include fast and slow excitatory and inhibitory ones that generate post-synaptic

currents with different polarity, amplitudes, and rise and decay timescales (Destexhe et al., 1998).

Synaptic learning and memory are subserved by a variety of unsupervised learning principles

(Magee & Grienberger, 2020) that include activity-dependent, short-term synaptic changes

(Markram et al., 1998), mechanisms for long-term potentiation and depression based on the

timing of pre- and post-synaptic spikes (Markram et al., 1997), as well as synaptic consolidation

on much longer timescales (Clopath, 2012). In addition, reward-modulated learning (Frémaux &

Gerstner, 2016) and more powerful error-driven learning mechanisms also play a role (Payeur

et al., 2021; Whittington & Bogacz, 2019).

To temper runaway processes due to Hebbian plasticity, homeostatic mechanisms need to

ensure that single-neuron and circuit firing rates remain within physiological ranges (Tetzlaff

et al., 2012; Turrigiano & Nelson, 2004). These mechanisms act, e.g., by scaling synaptic

conductances or by downregulating neuronal excitability. Furthermore, language-relevant

networks need to function in the presence of endogenous background activity and stochastic

variability at the cellular and synaptic level (Faisal et al., 2008; Nolte et al., 2019). These noise

sources reduce the computational capacity of the system to that of Turing machines with finite

tapes, i.e., finite-state machines, by limiting processing precision and effective memory capacity

(Maass & Orponen, 1998; Petersson, 2005). In addition, we note that in parallel with the fast

processing systems outlined above, there are neuromodulatory systems (e.g., monoamines,

neuropeptides, etc.) that are different in nature from the fast conductance-based signaling
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CAUSAL LANGUAGE MODELING 8

systems. They typically originate in the midbrain/brainstem, with widespread cortical–subcortical

projections, operate on longer timescales, and directly regulate the intracellular biochemistry via

G protein coupled receptors. These systems modulate fast neural processing and it has been

suggested that they support unconventional computation and neuronal memory (Bechtel, 2022;

Bray, 2009; Koch, 1999).

This inventory of neurobiological principles constitutes the foundation of causal modeling

and imposes strong constraints on the computational realization of language (Figure 2).

Importantly, these constraints are both constructive and limitative. On the one hand, they specify

the basic building blocks of neurobiological language models and thus provide an evidence-based

implementational scaffold for causal modeling. Mathematical models of these component parts

have been carefully developed by experimental and theoretical neuroscientists to closely capture

the net effects of physiological processes quantitatively (Box 1). The objective of causal

modeling is to explain language processing in terms of these neurobiological principles that

characterize the mechanics of the real system. On the other hand, these constraints curb arbitrary

choices made in cognitive language modeling and deep learning models at the level of component

parts and algorithms. In order to establish valid abstractions, it is necessary to scientifically

demonstrate that these abstractions can be reduced to the level of neurobiological implementation.

Pending such reductions, algorithmic explanations that are obtained by abstracting away from

elementary features of the nervous system run a high risk of being spurious.

Dynamical systems view on language

The neurobiology of language fits naturally within a description of language processing in

terms of a specific continuous-time adaptive dynamical system built from neurobiological

components. Here we provide a terse mathematical formalization of such a system S in terms of

interacting functional components that are coupled via a neurobiologically specified processing

dynamics P and adaptive learning mechanisms L (Figure 3). Note that P and L are multivariate

and each component is associated with a physical measurement unit.

P maps an internal state s ∈ Ω and an input i ∈ Σ onto a new internal state
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CAUSAL LANGUAGE MODELING 9

ŝ = s(t + dt) = s(t) + ds(t). States s are real-valued tuples of dynamical variables in

neurobiology, e.g., membrane potentials and synaptic conductances, that describe the language

system across all spatial scales. Input i is provided to P by the environment that the system is

embedded in through an interface (e.g., a speech sound transduced by the cochlea) and the

optional output λ of P is translated into an internal action or an external motor response (e.g.,

articulation). State transition is characterized by coupled stochastic differential equations

ds(t) = P(s, i, m)dt + dξ(t) that are parameterized in m (see below) and coupled to noise

processes ξ(t). Thus, information processing is represented as an input-driven, or forced,

trajectory through the system’s state space Ω and, importantly, is constrained by the dynamics P .

In classical terminology this is the infinitesimal version of the process logic of a Turing-machine,

i.e., its machine or transition table. For instance, in language comprehension, a subsystem of P

can be understood as the parser associated with S. Since ds(t), and therefore the next state ŝ, is

recursively determined by the continuous action of P , language processing in this framework is

naturally incremental, recursive and state-dependent, as in classical theories of computation

(Buonomano & Maass, 2009; Petersson & Hagoort, 2012).

P is intertwined with a dynamics L for development, learning and adaptation that governs

the evolution of S as a function of linguistic experience and maturation. This is formalized as

dm(t) = L(m, s, t)dt + dη(t) where the learning parameters m belong to the model space M

= {m | m can be realized by S} and η(t) is another noise process. The elements of M are

high-dimensional tuples of synaptic, neuronal and other adaptive parameters in the language

network, and the dynamics L is a set of neurobiological learning principles. In contrast to P , L is

explicitly dependent on time T which captures the notion of innately guided maturation processes.

At any point in time, S is in a particular developmental state m(t) and L carves out a trajectory in

M as the system matures. However, since L is coupled back to P via m, the processing

characteristics of S themselves change over time, and the fixed points of L mark the

developmental end-state of adult competence. Prior knowledge of language (Chomsky, 1986) is

incorporated into S as a structured initial state m(t0), or as additional constraints on P , L, or M,
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CAUSAL LANGUAGE MODELING 10

the so-called language acquisition device (cf. Petersson & Hagoort, 2012). The initial state is the

outcome of gene-regulatory development of the language-ready brain, optimized by biological

evolution, and subsequently fine-tuned through linguistic experience during acquisition (Zador,

2019). Due to the fact that the complete dynamics of S is also shaped by linguistic interaction

with a cultural environment, the neurobiological language system is a biocultural hybrid (Evans &

Levinson, 2009).

Consequently, the general form of the language system S is an adaptive system of

interacting dynamical variables in neurophysiology whose state transitions are determined by the

coupled dynamics for processing P and learning/development L. At any developmental stage, the

algorithmic nature of P and L is determined by neurobiology and one objective of causal

modeling is to characterize these dynamics and interpret them in language processing terms.

Without a cognitive interpretation, S remains an unanalyzed system that moves in time. Another

important goal of causal modeling is to identify the language-relevant representational states of S

which are expected to be evoked spatio-temporal transients in ongoing processing (Petersson,

2008; Rabinovich et al., 2008).

The dynamical systems perspective characterizes language processing in full generality

and with formal precision. This allows us to clearly identify the different

explananda—processing, learning, maturation and the initial state—and how they interact.

Component parts of causal models are expressed as continuous-time differential equations

coupled into a functional architecture defined by the connectome. Every instantiation of a causal

language model built from such component parts ipso facto is a specific claim about, and a

concrete algorithmic proposal of how, the processing and learning dynamics P and L could be

implemented at the level of neurobiology. Hence, there is a natural relationship between the

neurobiological dynamical system and causal language modeling whereas this link is either

missing or contrived for models that are not formulated in causal terms.
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CAUSAL LANGUAGE MODELING 11

Hierarchy and binding in neural processing

Language is characterized in terms of hierarchical structures that describe the

representations that the comprehension system needs to compute when parsing an utterance.

Hierarchical dependencies between constituents are ubiquitous at all linguistic levels, from

phonemes and syllables to words, phrases, clauses and sentences (Hagoort, 2019; Hasson et al.,

2015; Jackendoff, 2002). At the same time, language processing is subserved by recurrent

networks of spiking neurons and chemical synapses and it is not obvious how hierarchical

linguistic structure can be mapped to neurobiology. Thus it has been an enduring debate how

neural systems can accomplish so-called ‘hierarchical processing’ and this issue is closely tied to

the binding problem.

The apparent conflict between these notions can be resolved when static structural

hierarchy (represented by parse trees) is interpreted dynamically in neural processing terms

(Figure 4) where words are retrieved from the mental lexicon by an operator R and unified

combinatorially by a universal function U. Hierarchical processing corresponds to nested function

calls, including recursion, that are executed by the neural parser at the appropriate point in logical

time, augmented with a memory structure, or unification space, to store and retrieve intermediate

results when needed. The control input for U parametrically switches unification into different

subroutines by function composition. It is supplied by the feature structure of retrieved words

(e.g., lexical categories), or computed internally within processing memory from the available

information (e.g., phrasal categories). Biological networks for unification thus require distinct

input lines for data and control, similar to the pins on a microprocessor. In neurobiology this can

be achieved by electrotonically segregated dendritic branches that integrate different input types

independently (Larkum, 2022; Spratling, 2002). For example, basal and apical dendrites of

cortical pyramidal neurons receive inputs from anatomically distinct source locations that

differentially modulate the somatic response (Binzegger et al., 2004; Lafourcade et al., 2022;

Sheperd, 2004). This spatial separation of distinct classes of inputs explains how a single neuron

(or circuit, for that matter) can play different functional roles in unification, from one time step to
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CAUSAL LANGUAGE MODELING 12

the next.

The translation in Figure 4 shows how to resolve the perceived mismatch between

hierarchy and brain networks, going from parse trees to function composition to neural

processing. When cast in functional terms, static hierarchical phrase structure trees can be given a

dynamic interpretation in terms of recurrent neural processing with the appropriate memory

structure. It also shows that hierarchical processing does not require the construction of explicit

representations of linguistic trees and their binding relations (as some models have suggested,

e.g., Martin & Doumas, 2017; Papadimitriou & Friederici, 2022; van der Velde & Kamps, 2006)

because these relations are already implicitly present in the intermediate processing outcomes of

the state-dependent neural parser. As words are being processed one-by-one, the system

incrementally computes an interpretation in neuronal memory registers, i.e., dynamical variables

in processing memory, which are a particular sub-state of the complete system state. Parsing “the

cat chases a dog” versus “a dog chases the cat” results in distinct trajectories whose end-states

represent different meanings. This procedure is analogous to evaluating a hierarchically

structured arithmetic expression by a compiled program where the final outcome is a number that

corresponds to the correct interpretation, rather than an explicit structural representation of the

binary expression tree. Introspection of constituent structure requires linguistic knowledge and

should not be considered part of automatic language processing.

Function composition and binding in comprehension rely on data structures that must be

supported by neurobiology. The nature of these data structures determines the kind of unification

procedures that can run on partial interpretations temporarily held in processing memory. Data

structures and how they are represented in memory are a key organizing principle of

neurobiological information processing systems. For example, the membrane potential, or other

dynamical variables, of a biological neuron assumes real number values. The decimal expansion

of these numbers can naturally be interpreted as a stack memory when combined with push and

pop operations. These operations can be implemented through multiplication that shifts decimals

into (push) or out of (pop) the decimal expansion and there is evidence that single neurons can
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CAUSAL LANGUAGE MODELING 13

accomplish this (Groschner et al., 2022). More broadly, scaling and other operations on

dynamical variables can be viewed as generalized push and pop operations.

In classical computability theory (Cutland, 1980), binding is achieved in that variables are

physical memory addresses and the stored bit patterns are their current values. Composite data

structures are then assembled by computing references to existing memory content, e.g., using

pointers. However, since recurrent networks are fully equivalent to the classical notion of

computation (Siegelmann, 1999), binding can also be achieved by neural networks. Binding is

therefore not a fundamental barrier and it is an empirical question how it is realized within the

specific neurobiological memory architecture. For instance, similar to memory in digital

computers, any dynamical variable in physiology with a non-zero time constant is stateful and can

act as a memory register. Different information sources can be bound in these registers through

temporal integration. Whether this form of binding is sufficient to explain language

comprehension or whether other complex neurobiological data structures are required is an open

issue, and causal models together with experimental work are needed to answer this question.

Outline of a causal language model

Unification instantiates a generic sequence processor that may not be specific to language

(Jackendoff & Audring, 2020; Petersson & Hagoort, 2012) and establishes semantic relations

between constituents (e.g., who does what to whom?) within processing memory (Figure 5).

Traditionally, neurobiological short-term memory has been conceptualized as states of persistent

neural activity (Fuster & Alexander, 1971; Goldman-Rakic, 1995). Persistent activity can be

achieved through cellular bistability (Loewenstein & Sompolinsky, 2003; Zylberberg &

Strowbridge, 2017) or attractor dynamics where excitatory feedback enables the replay of

information beyond stimulus offset (Barak & Tsodyks, 2014; Durstewitz et al., 2000).

Alternatively, short-term memory has been linked to functional connectivity induced by transient

changes in synaptic efficacy (Fiebig & Lansner, 2017; Mongillo et al., 2008). These theories can

explain maintenance and cued recall but they have not been developed with language in mind. A

neurobiological processing memory for language also needs to be able to integrate and transform
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CAUSAL LANGUAGE MODELING 14

internal representations in an online, incremental fashion and actively compute an interpretation

from rapid serial input. In addition, this memory system needs to be context-dependent and

sensitive to precedence relations between words. Recent modeling work indicates that these

requirements are met by neuronal processing memory (Fitz et al., 2020; Rao et al., 2022) which is

grounded in the observation that neurons exhibit adaptive changes in excitability as a function of

experience (Marder et al., 1996; Turrigiano et al., 1996). This intrinsic plasticity is common in

excitatory cortical cells (Gouwens et al., 2019) and adaptive changes can last from milliseconds

(Koch, 1999) to seconds (Levy & Bargmann, 2020) and minutes (Titley et al., 2017). Network

simulations have shown that neuronal memory can support sentence-level semantic processing

and memory span was proportional to the time constant of spike-rate adaptation (Figure 5). The

proposed memory mechanism was also suitable to resolve temporary ambiguity and establish

binding relations between words and their semantic roles when queried (Fitz et al., 2020;

Uhlmann, 2020). It is likely that other factors contribute to neuronal memory as well, including

the kinetics of NMDA-receptors (Lisman et al., 1998) and the morphology of dendrites (Papoutsi

et al., 2014; Poirazi & Papoutsi, 2020). These two features support the generation of plateau

potentials, endowing neurons with dendritic memory that is useful for structured sequence

processing on short timescales (Quaresima et al., 2022). These findings from causal modeling

illustrate how evidence from neurobiology can generate new hypotheses about the nature of

processing memory for language. Non-causal models do not express these cellular and synaptic

features and might therefore miss crucial neurobiological memory mechanisms.

Storage in the mental lexicon requires persistent adaptation on longer timescales than

unification. Engrams in long-term memory are viewed as strongly connected cell assemblies that

encode information into synaptic conductances through STDP (Caporale and Dan, 2008; Miehl

et al., 2022; Poo et al., 2016, but see Gallistel, 2021). There is less consensus, however, on

whether engrams are exclusively located in excitatory synapses or also involve inhibitory ones

(Hennequin et al., 2017), perhaps even primarily (Mongillo et al., 2018). Previous work has

shown that engrams can emerge from sparse, random networks when multiple mechanisms for
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CAUSAL LANGUAGE MODELING 15

unsupervised learning and homeostatic regulation interact dynamically (Litwin-Kumar & Doiron,

2014; Zenke et al., 2015). In these simulations, acquired memories were relatively stable in the

presence of background noise and ongoing plasticity, and could be reactivated reliably after delay.

These causal models of long-term storage can serve as a starting point for a neurobiological

model of the mental lexicon. A promising first step in this direction has been taken in Tomasello

et al. (2018).

Words in the mental lexicon have a feature structure consisting of, among others,

semantic, syntactic and morphological attributes that are stored and maintained in the

neurobiological infrastructure of the brain.5 In retrieval, speech sounds or letter sequences have to

be recognized as particular words while, concurrently, these features are being computed from

partial cues (pattern completion). Hence, there are at least two computational tasks that need to be

solved in lexical retrieval; they happen in parallel and are likely to interact. For example, word

recognition itself might sharpen the selection of features activated prior to the recognition point,

perhaps through lateral inhibition. The computation of lexical features is currently not addressed

by existing models that have focused on recognition only (e.g., those reviewed in Hannagan et al.,

2013; Magnuson et al., 2020; Weber & Scharenborg, 2012). A causal model of the mental lexicon

is needed that can explain how words are represented within the neurobiological substrate and

how their feature structure is “activated” from perceptual input (Poeppel & Idsardi, 2022).

Furthermore, the mental lexicon is language-specific, rapidly acquired in development through

local learning mechanisms, and uniquely human. To explain these traits in neurobiological terms

is another important challenge for causal modeling (see Open Questions).

The mental lexicon and unification continuously interact through feedback loops and exert

reciprocal control (Figure 5). The feature structure of retrieved words controls the combinatorial

operations of the unification network and, conversely, the partial interpretations computed by

unification control the context-dependent retrieval process when multiple candidates are

5 For brevity, we refer to the content of the mental lexicon as ‘words’ which does not exclude larger units
such as, e.g., collocations, multi-word expressions, idioms, or argument-structure constructions.
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CAUSAL LANGUAGE MODELING 16

compatible with the sensory signal. To develop a combined architecture for adult language

processing, the synaptic pathways for information exchange between these different functional

modules can be fine-tuned using methods from control theory (Kao & Hennequin, 2019),

feedback learning (Nicola & Clopath, 2017), or error-based optimization of networks (Neftci

et al., 2019).

Compared to other cognitive domains, causal language modeling is in a privileged

position because linguistic theory/analysis provide an extensive list of conceptual primitives that

form the elementary units of language (which has been referred to as the ‘parts list’, Poeppel,

2012). In addition, a basic functional architecture can be derived from findings in cognitive

neuroscience and the theory of computation (Figure 5). Hence, causal language modeling can

draw on a rich set of reference points across Marr’s descriptive hierarchy; we know, roughly,

which units and procedures to look for in neurobiology. However, if conceptual primitives and

computational routines cannot be explicated in neurobiological terms, their theoretical status may

eventually have to be revised.

Models of behavior versus the system

Computational language models that operate at the algorithmic level are often tested

against linguistic behavior, i.e., system output or data collected in some experiment. The better a

model reproduces or predicts behavior, the better it is considered to be validated. There are other

adequacy criteria as well, but behavioral fit is a primary source of evidence in cognitive modeling.

Causal models, on the other hand, are mainly concerned with the neurobiological mechanisms of

the underlying system. They aim to be explanatory at the level of implementational causality:

how do inputs give rise to outputs within the neurobiological machinery for language? Causal

models are therefore not primarily about observations or behavior but—in the first

instance—about the mechanisms that generate behavior. The extent to which a causal model

behaves human-like is determined by the degree to which it approximates the biophysical

characteristics of the actual system; fit with behavioral data is an independent outcome and not

the immediate modeling goal (Box 2). This approach is reminiscent of early connectionist
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CAUSAL LANGUAGE MODELING 17

language models which also intended to derive behavior from principles of neural information

processing (e.g., Elman, 1990; McClelland et al., 1989). Today, it is widely held that these models

incorporate too little neurobiological detail (see Figure 2) to be viewed as causal models of the

neurobiological system (Arbib et al., 2000; Craver, 2006; Karaminis & Thomas, 2012). Deep

learning approaches to natural language processing (see Young et al., 2018, for an overview),

which are an extension of the connectionist paradigm, are very powerful in generating

language-like output and might be a useful heuristic. However, Large Language Models (LLMs)

are neither models of human behavior nor models of the neurobiological machinery. They do not

model the causal structure of the language system nor cognitive function as such (language

comprehension differs from next-word prediction, Bender & Koller, 2020), and they are

sometimes inadequate behaviorally in that they fail in non-human ways and do not fail in human

ways (Marcus, 2018, but see Linzen and Baroni, 2021, for a different perspective). Using LLMs

to fit brain data (e.g., Goldstein et al., 2022; Schrimpf et al., 2021) is correlational rather than

causal in nature. Hence, it is debatable whether they contribute novel insights to the study of

human language at the implementational level of Marr’s hierarchy.

In models of behavior, variables and parameters are dimensionless scalars that do not

correspond to measurable quantities in biological reality and often lack interpretability in

cognitive terms (Eckstein et al., 2022). In causal models, they have physical units of measurement

(e.g., mV, nS, pF, etc.) that need to fall within physiological bounds. This restricts parameter

choices to empirical ranges, reduces degrees of freedom, and puts strong constraints on the model

space M (see Figure 3). Since units have to match on both sides of dynamical equations, causal

models are also internally consistent. Whereas cognitive models often attempt to capture behavior

with as few parameters as possible, the challenge for causal modeling is to deal with the

abundance of parameters provided by the neurobiological system (e.g., on the order of ≈ 1014

synaptic conductances).6 Consequently, standard model selection criteria do not apply in causal

modeling (e.g., Occam’s razor). What needs to be explained is how the neurobiological language

6 Geoffrey Hinton refers to this distinction as the statistician’s versus the neuroscientific perspective.
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CAUSAL LANGUAGE MODELING 18

system can generalize appropriately despite being nominally overparameterized (Hasson et al.,

2020). A third difference concerns the relationship between model time and real physical time. In

cognitive models of behavior, time is often expressed in terms of processing steps and the relation

to physical time is typically arbitrary. In causal models, time corresponds to real physical time

since it arises from the dynamics of neuronal integration and synaptic transmission (Gerstner

et al., 2014). Due to this inherent correspondence, a causal model would allow us, in principle, to

investigate how speech and language processing unfold in time at any desired resolution. More

importantly, however, causal models are therefore strongly constrained by real-time processing

requirements whereas models of behavior typically are not.

Another difference between models of behavior and causal models of the system is related

to their explanatory status. Output or behavior of a system should not be mistaken for the

mechanisms that generate behavior at the level of physical, or neurobiological, causes. For

example, a statistical model of weather data can have high predictive accuracy but it is not a

model of Earth’s atmosphere that generates the weather.7 By parity of reasoning, suppose a

cognitive language model reproduces all known behavioral data. This would not guarantee that

the model correctly describes the algorithms employed by the brain and it would still be unclear

whether the model is explanatory with respect to the causal generators of behavior. This

uncertainty persists until it has been demonstrated that a proposed algorithmic model can be

reduced to the relevant neurobiology. Similar uncertainty afflicts experimental approaches that

attempt to reverse engineer the computational machinery for language from behavioral output.

Neuroimaging methods (fMRI, EEG, MEG, etc.) observe sequences of brain states, i.e.,

processing outcomes or system behavior in the broadest sense, but not the neurobiological

processing dynamics itself which is hidden from the measurement devices. Another complication

is that the fMRI signal, for example, is related to the BOLD response which in turn is related

indirectly to neural activity. Language models that are inferred from such data are confounded by

7 Likewise, no one would confuse a regression model of experimental data with a model of the processes
that generated the data.
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CAUSAL LANGUAGE MODELING 19

these theoretical linking principles which need to be factored out in order to arrive at a veridical

model of the neurobiological processing machinery.

Simulations of the language system at the level of implementational causality are not

confounded in this way and enable us to study candidate processing dynamics with unrivaled

spatio-temporal precision. Moreover, component parts that lack neurobiological support do not

enter into model design to begin with. Reduction has already been achieved at the level of

computational elements and their interaction. Hence, neurobiological causal models describe the

mechanistic generators of linguistic behavior from which observed behavior can be derived.

Without a neurobiological foundation, modeling behavior is not explanatory with respect to the

causal generators of behavior unless such models can be shown to be reducible to neurobiology. It

is understood that a causal modeling approach requires a long-term perspective; it will take time

and effort for it to succeed.

Causality, reduction and abstraction

David Marr considered the functional level to be the most important one for understanding

biological information processing systems but emphasized that different questions need to be

addressed at different levels of description. He also pointed out that the different levels are

“logically and causally related” (Marr, 1982, p. 25). In particular, the algorithmic level is not

autonomous with respect to the implementational level. Amongst a number of candidate language

models, it is neurobiology that is going to select the correct one, if any. There might be multiple

abstractions that are equivalent in some deep sense but there is still a matter of fact in the brain

which of these abstractions is valid. For instance, recursive function theory itself can be

formulated within many different mathematical frameworks, but it is an empirical question which

algorithmic model the brain implements to “run” this theory.8 Thus, although methodologically

any of Marr’s levels can serve as a starting point, neurobiology is ontologically prior since it

determines the algorithms that are implemented by the real system which, ultimately, also

8 Surely, the brain does not implement language as Conway’s Game of Life or Baba Is You, both of which
are Turing universal.
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determine the range of possible language behavior we can observe. Both algorithm and behavior

are caused by the underlying neurobiology, while the converse is not true.

In light of these dependencies, we should therefore not be satisfied to describe language at

a single level only; the ambition must be to link and traverse levels through explanatory bridging

principles. As an analogy, a structured computer architecture with its many layers of abstraction

can be used through an operating system because the interfaces between layers are correctly

designed (Tanenbaum & Austin, 2013). In other words, a higher level of abstraction has to

comply with and systematically relate to lower level mechanisms by reduction. Thus, it is only

under the condition of reducibility that we can “ignore” lower levels. What is currently

underspecified in cognitive theories of language are precisely these interfaces between levels of

abstraction. Despite decades of computational work it has not been possible to connect cognitive

language models to neurobiology in a substantial manner. With a few notable exceptions (Fitz

et al., 2020; Rolls & Deco, 2015; Tomasello et al., 2018), models of language processing that are

characterized as ‘neurocomputational’ or ‘neurally plausible’ do not yet make sufficient contact

with the basic neurobiological principles described in Figure 2. This also holds for language

models in deep learning. The assumption that we can abstract away from these principles needs to

be scientifically justified because abstraction without reduction is likely to result in simplifications

that may not be valid.

Within the computer metaphor, the terminology of cognitive theory is comparable to a

high-level programming language, like Python or Julia. Underneath this layer of abstraction lies

the hardware-dependent ‘machine language’ of the implementational substrate. The machine

language determines the basic set of instructions, data types and memory registers that are

instantiated by the actual neurobiological system. This ‘instruction set architecture’ (ISA)

corresponds to circuits built from biological neurons, their membrane potentials, spike generation

mechanisms, synaptic currents, dendritic integration, etc. A cognitive theory of language that is

empirically adequate must be realizable in this neurobiological ISA, otherwise it remains

disconnected from the implementational level of description. Causal models, on the other hand,
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are directly formulated in the language of the neurobiological ISA and pinpoint the fundamental

computational elements in neurobiology, their interactions, and how they support language

functions.

Although causal models describe language processing in terms of biological neurons and

synapses, one long-term goal is to abstract a homomorphic cognitive model from the

neurobiological specification that instantiates a correct algorithmic description of the language

faculty. There is, of course, no guarantee that any particular causal model will yield a correct

cognitive theory. But any cognitive theory that is correct needs to be consistent with what is

known about the language system from a neurobiological perspective.9 Through simulation,

analysis and theoretical insight, the aim is to discover rather than guess the algorithms that

operate at the neural level. These algorithms, in addition, have to explain the breathtaking speed,

fault tolerance, and energy efficiency of the brain system for language. The functionalist doctrine

and multiple realizability, which are only concerned with non-biological input-output relations,

have no bearing on these issues.

Validation of causal models involves different sources of evidence, including behavior,

none of which is sufficient on its own. In this sense, causal modeling is not intrinsically

reductionist but aims to encompass all of Marr’s levels in the final analysis (Figure 1 and Box 2).

Models that are behaviorally adequate but violate known neurobiology cannot be correct. Models

that are behaviorally inadequate but consistent with known neurobiology need to be refined.

Thus, causal modeling advocates an iterative approach that seeks to gradually approximate

language behavior from first principles of neurobiology, through cycles of model development,

validation and revision.

Concluding remarks

The nature of the language faculty—its representations, storage mechanisms, and

elementary operations—is determined by the neurobiological infrastructure that sustains it. A

large number of replicable findings from experimental neuroscience (Luo, 2015; Sterling &

9 A similar point has been made by Feldman (2006) in more general terms.
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Laughlin, 2015) have been formalized as effective mathematical models (Gerstner et al., 2014)

that can readily be used as the basic building blocks for causal language modeling. Complex

systems assembled from these neurobiological component parts are analytically intractable, and

simulation therefore becomes a methodological necessity (Einevoll et al., 2019; Gerstner et al.,

2012). With unprecedented access to computational power and neurobiological insight to

constrain these simulations, it is the appropriate time to supplement traditional methods in

language research with causal modeling in order to integrate language across levels of

description. Neurobiological causal modeling follows the classical path of science in attempting

to understand complex systems—e.g., multicellular organisms, condensed matter, or planetary

climate—from observations, to statistical modeling, to explaining the causal structure of the

physical system that generated the observations in the first place. Eventually, this approach might

even allow us to bridge into the genetic basis of language.

Computational models of cognitive function are in need of stronger neurobiological

foundations (O’Reilly, 2006) and several recent perspective articles have similarly suggested to

“close the mechanistic gap” by means of neurobiologically-grounded models of information

processing (Paquola et al., 2022; Pulvermüller et al., 2021). Our proposal is focusing on the

language domain where computational models have played a particularly prominent role.

However, neurobiological causal modeling amounts to more than neural network modeling with a

few added constraints. Rather, we propose to reconceptualize computational language modeling

and start building causal models from the ground up. This approach will not only address the

missing interfaces between levels of description but is also expected to have profound

ramifications at the algorithmic and functional levels themselves (Larkum, 2022). We call to

action the community of language researchers to engage with this complementary approach and

confront the challenges of investigating the neurobiology of language on the basis of first

principles of brain organization. A joint, multidisciplinary effort is needed to bring this research

program to fruition.

Causal models are formulated as systems of coupled differential equations which is the
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lingua franca of science. They describe the fundamental dynamical principles underlying

cognitive function in neurobiology. Hence, they provide a common, unified framework for

modeling cognition that makes different instantiations of causal models commensurable and

falsifiable (Haeffel, 2022; Popper, 1959). In the long term, this approach will lead to better

theories of language processing, the progressive accumulation of scientific knowledge, and a

deeper understanding not only of language but other cognitive phenomena as well.
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Glossary

Action potential: brief electrical pulse (spike), with a generic shape and duration (1–2 ms) generated at the cell
body when a threshold is exceeded. It propagates down the axon which connects to the dendrites of other neurons
through one or more synapses.

Conductance: the ease with which an electric current flows through an object or material; the inverse of resis-
tance.

Dendrites: branched, tree-like structure protruding from the cell body of a neuron that integrates synaptic input
to change the neuron’s membrane potential.

Dynamical variable: a physical quantity whose numerical value changes over time, describing some aspect of
the system’s state, e.g., the membrane potential of a neuron, or the conductance of a particular synapse.

Engram: a basic unit of information stored in long-term memory, e.g., a phoneme, word, or idiomatic expression.

G protein: protein that transmits signals from the exterior to the interior of a cell, acting as a molecular switch.

Homeostasis: when physiological variables deviate from a pre-set range of values, self-correcting feedback re-
stores a dynamic equilibrium to retain stability.

Laminar structure: neocortical organization into six layers with characteristic connectivity within and between
layers that forms cortical microcircuits.

Monoamine: class of neurotransmitters that alter the processing characteristics of entire circuits beyond the sin-
gle synapse, e.g., dopamine, serotonin, histamine.

Neuropeptide: signaling molecule, or chemical messenger, that diffuses over broad areas and modulates neural
activity.

Neurotransmitter: molecule that transmits signals across a chemical synapse from one neuron to another, e.g.,
glutamate or γ-aminobutyric acid (GABA).

Point neuron: mathematical model of a biological neuron that lumps all neuronal structure into a single, homo-
geneous compartment that receives input signals and generate output spikes.

Poisson process: a stochastic event process where random events are independent of each other and the time
between events follows an exponential distribution.

Receptor: transmembrane protein that is activated by a neurotransmitter and regulates the activity of synaptic ion
channels across the cell membrane.

Rheobase: the minimal current amplitude of infinite duration that results in the discharge of an action potential.

Spike-timing dependent plasticity: adaptive mechanism that adjusts the strength of synapses based on the rel-
ative timing of a neuron’s input and output spikes, leading to, e.g., long-term synaptic potentiation (LTP) or
depression (LTD).

Synaptic motif: synaptic connectivity pattern involving a small number of neurons, e.g., the bidirectional cou-
pling between excitatory cells, or feed-forward inhibition.

Timescale: a characteristic time span within which a particular change in a dynamical variable takes place.

Unsupervised learning: innate, self-organized form of learning that detects patterns in unlabeled input without
explicit instruction.
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Figure 1
Three approaches towards understanding language as a cognitive system. Cognitive
information processing systems can be described at different levels of explanation, here
exemplified by the functional, algorithmic and implementational levels (Marr, 1982). A complete
understanding of such a system would allow us to traverse seamlessly between levels in all
directions. Although the three levels will have to be augmented with additional ones (Churchland
& Sejnowski, 1988; Tanenbaum & Austin, 2013), this broad distinction has been fruitful in
partitioning the problem space. This explanatory challenge can be approached in different ways.
Experimental language science has attempted to infer processing theories from observed
input-output relations (left). Cognitive modeling has proposed a large array of algorithms that
can each reproduce some aspects of these relations (center). Causal modeling starts from
neurobiological principles to synthesize an explanatory language model which is, first and
foremost, a model of the system itself (right). Ideally, such a model will eventually explain all
behavioral data generated by the system.
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Figure 2
First principles of neurobiology. Features of the nervous system that are largely uncontroversial
in neurobiology form the basis of causal language models. These can be viewed as boundary
conditions that constrain proposed mechanisms for language processing. Causal modeling seeks
to understand the computational role of these features in relation to language processing and
integrate the implementational level with the algorithmic and functional levels of description.
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Box 1. Causal modeling toolbox

Although causal models operate at the implementational level, the aim is not to replicate reality in all its
complexity. Instead, physiological processes are modeled in a phenomenologically effective manner. For
many of the neurobiological features in Figure 2, reduced mathematical models exist from which causal
networks of language function can be assembled, largely in the form of systems of coupled differential
equations.

The distribution of cortical spikes can, under suitable circumstances, be approximated by Poisson pro-
cesses (Softky & Koch, 1993) to encode input as frozen noise. This is an example of how one can create
a spatio-temporal code for linguistic units which carries more information than a rate-based code (Duarte
et al., 2018; Uhlmann, 2020). The two-dimensional, adaptive-exponential neuron is able to produce a wide
range of firing patterns (Brette & Gerstner, 2005) and accurately predicts in vitro spike times (Rossant et
al., 2011). Synapses can be modeled as alpha-functions or the difference between two exponentials that
describe the rise and decay times of post-synaptic currents (Roth & van Rossum, 2009) and conductance-
based coupling supports realistic population dynamics (Cavallari et al., 2014). Event-driven simulation can
be used to efficiently model axonal delays for long-range connectivity patterns. Short-term synaptic facili-
tation and depression is modeled in terms of neurotransmitter release probability and depletion (Markram
et al., 1998) and this mechanism has been implicated in working memory function (Mongillo et al., 2008).
Excitatory long-term potentiation and depression are conceptualized as Hebbian spike-timing dependent
plasticity (STDP). Several similar formalisms exist which are based, e.g., on triplets of spikes (Pfister &
Gerstner, 2006), or on pre- and post-synaptic voltage traces (Clopath et al., 2010). The latter rule allows
for strong bidirectional potentiation which has been observed experimentally. To counteract dynamic insta-
bility due to STDP, inhibitory plasticity acts on inhibitory synapses to maintain a target firing rate (Luz &
Shamir, 2012; Vogels et al., 2011). This form of plasticity also establishes a local balance between exci-
tatory and inhibitory synaptic inputs to each neuron and is conducive to achieving asynchronous, irregular
spiking activity which plays an important role in cortical information processing (Herstel & Wieringa, 2021;
van Vreeswijk & Sompolinsky, 1996). Synaptic normalization is another homeostatic principle which coun-
teracts uncontrolled synaptic growth due to STDP while preserving synaptic specificity (Turrigiano, 2008).
On longer timescales, relevance signaling and synaptic tagging models have been developed that prevent
overwriting and enable memory consolidation (Clopath et al., 2008; Ding et al., 2022; Ziegler et al., 2015).
What has been missing from this inventory of neurobiological components, until recently, are computation-
ally efficient multi-compartmental neuron models, capable of reproducing non-linear dendritic integration
effects that have been described experimentally (Koch, 1999; London & Häusser, 2005; Payeur et al., 2019;
Poirazi & Papoutsi, 2020). The Tripod neuron proposes a structural reduction of the dendritic tree to fill
this gap and can now be used to investigate the functional role of dendritic integration in large networks
(Quaresima et al., 2022).

Causal language modeling is further supported by flexible, high-level spiking network simulators
(Gewaltig & Diesmann, 2007; Stimberg et al., 2019), code-sharing platforms (McDougal et al., 2017) and
programming languages for high performance scientific computing (Bezanson et al., 2017).
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Figure 3
Schematic of an adaptive information processing system S for language. Based on input from
the system embedding (environment; an element of Σ), the current state (an element of Ω), and
current parameters in the model space M, the processing dynamics P traces out a trajectory in
neural state space and returns language output λ. The learning mechanisms L are coupled to P
creating continuous cycles of information encoding into, and retrieval from, memory that
operates on multiple timescales for short-term and long-term storage as well as development. For
instance, in the case of ontogenesis, L implements developmental processes and
genetically-guided maturation dependent on time T, while P instantiates the parsing capacity
that evolves towards adult competence as a function of L’s trajectory through the model space M.
On shorter timescales, L implements an active processing memory and because the form of L is
structurally similar to P , it is possible that learning and memory mechanisms are actively
computing on relevant timescales as well (e.g., in transforming episodic memories into general
world knowledge as a consequence of repetition during consolidation). Figure adapted from
Petersson and Hagoort (2012).
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Figure 4
Translating linguistic hierarchy into neural processing. Phrase structure trees are rewritten in
labeled bracket notation where brackets correspond to nodes in the tree and labels indicate the
category of nodes (orange arrows represent equivalence). Labeled brackets can be expressed
functionally as NP(the, cat), and similarly for other phrasal categories in the example sentence.
Words that enter into these function calls are retrieved from the mental lexicon by an operator R
that incrementally maps speech sounds si onto word representations wi. A parameterized
function U (unification) is introduced that takes three arguments, a phrasal category and two
partial interpretations w, w* that have either been retrieved by R or computed by previous actions
of U. To establish sentence meaning, nested function calls to U are executed in the correct order
as soon as relevant information becomes available (immediacy principle) and the output of U
corresponds to the interpretation I of an utterance. During this procedure, lexical items as well as
partial interpretations previously computed by U have to be kept in processing memory until they
are being integrated. Processing memory also keeps track of which components have already
been unified, and when, in order to carry out potential revision. Grey-scale horizontal bars show
the lifetime of information content temporarily held in memory at each processing step, the
vertical arrow indicates logical time.
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Figure 5
Core computational machinery for language processing. The cognitive architecture for
language consists of a mental lexicon for the encoding, maintenance and retrieval of words and a
unification network for combinatorial processing. Both components require memory on long and
short timescales to different degrees and their interaction is a form of reciprocal control.
Downstream readouts project the neural states of unification onto a semantic interpretation in
real time. The distinction between memory, unification and control is purely functional, it is not a
claim about anatomical localizability. Any computational system, whether neural or classical,
implements these components in one way or another. Insets from left to right: word
representations in the mental lexicon, or engrams, are strongly coupled cell assemblies,
recruiting excitatory or inhibitory synapses, or both (bold arrows); figure adapted from
Hennequin et al. (2017). Retrieved words are encoded as spike trains that drive unification and
information content is better preserved in the timing of spikes than in spike rates, even in the
presence of noise; figure adapted from Uhlmann (2020). Processing memory for unification may
be implemented neurobiologically as network attractors, short-lived synaptic facilitation, or
intra-cellular adaptation that transiently changes neuronal excitability (top to bottom).
History-dependent processing in unification, where the current state is folded together with
incoming input, separates multiple occurrences of the same word (here “boy”) in neural state
space, and this can be used to establish binding relations between words and their semantic roles;
figure adapted from Fitz et al. (2020).
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Box 2. Methodological road map

Causal modeling initially puts priority on neurobiological realism over fit with behavioral data. Therefore,
a first step is to create models from neurobiological components parts that can accomplish core computa-
tional tasks involved in language processing at the algorithmic level. Network features should comply with
functionally relevant neurophysiological measurements. These include the electrophysiological properties
of different neuron types (e.g., their resting potential, rheobase, membrane time constant, spike threshold,
etc., that can be obtained from databases such as NeuroElectro (Tripathy et al., 2014) and the Allen Brain
Map10), spontaneous and evoked firing rates (Attwell & Laughlin, 2001; Roxin et al., 2011), the quan-
tized range of synaptic conductances (Bartol Jr et al., 2015), the ratio of excitation and inhibition (Abeles,
1991; Xue et al., 2014), and the distribution of major receptor types across regions in the language network
(Duarte et al., 2017; Zilles et al., 2015). Language models with these characteristics have face validity since
they are grounded in experimental neurobiology. This approach applies equally to networks of any spatial
scale, including larger-scale neocortical or cortico-striatal networks (Haber, 2016; Mountcastle, 1997; Shep-
erd, 2004). In each case, the connectivity matrix would be structured into blocks with specified neuron types
and local connectivity as well as specific between-region connectivity (cf. also Pulvermüller et al., 2021).

Key language tasks include, among others, the transduction of auditory signals onto equivalence classes
(phonemes), the retrieval of lexical features (semantic, morphosyntactic, etc.) from these units of speech,
and the integration of recognized words into a sentence-level interpretation (semantic dependency structure).
To gauge task performance, simple parallel readout classifiers can be used as a measurement device that maps
non-linear circuit activity onto linguistic categories (Buzsáki, 2010; Rigotti et al., 2013). Thus, readouts
are a diagnostic tool to probe whether a given dynamical system can be harnessed to compute linguistic
functions. The neurobiological features of this system can then be manipulated (another meaning of causal
modeling) and their computational contribution can be determined through model comparisons as a method
of investigation (Duarte & Morrison, 2019; Fitz et al., 2020; Uhlmann, 2020). Importantly, failure to achieve
these language tasks is inherently meaningful because it points directly to missing neurobiological features
that might be important for language processing. In addition, our current best models of neurobiological
components may have to be refined or extended in light of new empirical evidence while the causal modeling
framework does not need to be questioned as such.

Once a basic neurobiological language model has been established, causal modeling can begin to bridge
into empirical data and linguistic behavior. For instance, local field potentials can be synthesized from
peri-synaptic activity in simulated spiking networks (Hagen et al., 2016; Mazzoni et al., 2015) to connect
causal models to ECoG, EEG and MEG data. In similar vein, hemodynamic response models have been
proposed to link in silico network activity to fMRI data (Bonaiuto & Arbib, 2014). These methods can be
used to relate causal models to functional neuroimaging. This endeavour also involves statistical approaches
to quantifying single-neuron and population dynamics (Kass et al., 2018; Saxena & Cunningham, 2019) and
the representational analysis of biological networks (Barrett et al., 2019). Novel techniques for analytic
synthesis need to be developed that allow the abstraction of adaptive dynamical systems to discretized com-
binatorial models.

Causal modeling advances from neurobiological models of algorithmic capacities to neuroimaging data

and linguistic behavior. Through incremental model refinement, the core objective is to uncover the com-

putational role of neurobiological features and synthesize a computational neurobiology of language across

levels of explanation.
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Box 3. Open questions

• What are the elementary units of language in neurobiological terms (e.g., phonemes, syllables, words,

phrases, clauses, semantic roles, event structure)? Which neural data structures encode these units

and their composition, and how can these data structures be identified through causal modeling?

• What is the functional role of brain structure in language processing across spatial scales, including

structure in the dendritic tree of neurons, laminar structure in cortical microcircuits, and connectivity

structure between brain regions in the perisylvian language network?

• What is the neurobiological correlate of processing memory for unification? How does this system

support temporal integration, the resolution of non-adjacent dependencies, and recursive function

calls for compositional processing? How are intermediate processing outcomes stored, retrieved at

the right point in time, and broadcast to where they will be used next?

• How is prior knowledge of language expressed within the neurobiological infrastructure of the

language-ready brain and what is unique about human neurobiology that enables language in the

first place? Causal modeling is ideally suited to test specific hypotheses concerning, e.g., dendritic

morphology, cytoarchitectonic composition, receptor-architectonic fingerprints, and anatomical con-

nectivity.

• What is the structure of words stored in the mental lexicon and how does it enable combinatorial

sentence-level processing in biological networks? What kinds of representations are supported by

the underlying neurobiology? How are they encoded and maintained in long-term memory in the

presence of noise and ongoing plasticity, and how is the feature structure of words computed from

partial cues?

• How is a language-specific mental lexicon acquired given the weak, local neurophysiological learning

mechanisms currently known, and how does learning interact with innate structure during acquisition?

• The complexity of neurophysiology demands reduced mathematical models that abstract away from,

e.g., ion channels and the molecular machinery of synapses. What is the appropriate level of reduction

that is computationally feasible while still being informative at the algorithmic level?
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