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Abstract

The dense co-occurrence of psychiatric disorders questions the categorical classifica-

tion tradition and motivates efforts to establish dimensional constructs with neurobi-

ological foundations that transcend diagnostic boundaries. In this study, we examined

the genetic liability for eight major psychiatric disorder phenotypes under both a

disorder-specific and a transdiagnostic framework. The study sample (n = 513) was

deeply phenotyped, consisting of 452 patients from tertiary care with mood disor-

ders, anxiety disorders (ANX), attention-deficit/hyperactivity disorder (ADHD), autism

spectrum disorders, and/or substance use disorders (SUD) and 61 unaffected com-

parison individuals. We computed subject-specific polygenic risk score (PRS) profiles

and assessed their associations with psychiatric diagnoses, comorbidity status, as well

as cross-disorder behavioral dimensions derived from a rich battery of psychopathol-

ogy assessments. High PRSs for depression were unselectively associated with the

diagnosis of SUD, ADHD, ANX, and mood disorders (p < 1e-4). In the dimensional

approach, four distinct functional domains were uncovered, namely the negative

valence, social, cognitive, and regulatory systems, closely matching the major func-

tional domains proposed by the Research Domain Criteria (RDoC) framework. Criti-

cally, the genetic predisposition for depression was selectively reflected in the

Received: 6 September 2022 Revised: 31 March 2023 Accepted: 5 June 2023

DOI: 10.1002/ajmg.b.32951

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics published by Wiley Periodicals LLC.

Am J Med Genet. 2024;195B:e32951. wileyonlinelibrary.com/journal/ajmgb 1 of 12

https://doi.org/10.1002/ajmg.b.32951

https://orcid.org/0000-0003-1431-6340
https://orcid.org/0000-0002-5415-6487
mailto:yingjie.shi@radboudumc.nl
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ajmgb
https://doi.org/10.1002/ajmg.b.32951
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fajmg.b.32951&domain=pdf&date_stamp=2023-06-19


functional aspect of negative valence systems (R2 = 0.041, p = 5e-4) but not others.

This study adds evidence to the ongoing discussion about the misalignment between

current psychiatric nosology and the underlying psychiatric genetic etiology and

underscores the effectiveness of the dimensional approach in both the functional

characterization of psychiatric patients and the delineation of the genetic liability for

psychiatric disorders.
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1 | INTRODUCTION

Psychiatric disorders are among the most common, disabling, and

costly diseases in humans (GBD 2016 DALYs and HALE

Collaborators, 2017), and yet, science falls short in understanding

their etiopathogenesis. Conventional diagnostic frameworks, repre-

sented by the Diagnostic and Statistical Manual of Mental Disorders

(DSM; American Psychiatric Association, 2013) and International Clas-

sification of Diseases (ICD; World Health Organization, 1993, p. 1),

have often been employed as the scaffolding for mechanistic investi-

gation and risk factor identification within case–control designs. How-

ever, limitations of adopting such discrete diagnostic frameworks in

the research context have been well recognized, and distinct bound-

aries among diagnostic categories are challenged by the misalignment

with patient profiles. Specifically, substantial differences in symptom

profiles (Zimmerman et al., 2015; i.e., phenotypic heterogeneity) as

well as neuronal features (Alnæs et al., 2019; Wolfers et al., 2018;

i.e., biological heterogeneity) exist within the same diagnostic cate-

gory, while patients with differently classified disorders could con-

verge on overlapping symptomatology and/or pathological pathways

(Craddock & Owen, 2010). The frequent observation of co-occurrence

of multiple psychiatric disorders in clinical practice is closely tied with

such heterogeneity and overlap. The high prevalence of psychiatric

comorbidity (Plana-Ripoll et al., 2019) and the associated poorer clini-

cal outcome require research to move beyond a single diagnosis and

focus on the identification of transdiagnostic mechanisms. Several ini-

tiatives proposing dimensional alternatives have been established,

such as the NIMH Research Domain Criteria (RDoC; Cuthbert &

Insel, 2013) and the Hierarchical Taxonomy of Psychopathology

(HiTOP; Kotov et al., 2017). In particular, the RDoC framework aims

to explicate the neurobiological foundation of psychopathology using

transdiagnostic biobehavioral domains, namely Negative Valence Sys-

tems, Positive Valence Systems, Cognitive Systems, Systems for Social

Processes, Arousal/Regulatory Systems, and Sensorimotor Systems

(Kozak & Cuthbert, 2016).

Recent psychiatric genetic studies have confirmed the overlap-

ping genetic architecture among different disorders, pointing towards

shared genetic substrates. The team efforts coordinating large-scale

genome-wide association study (GWAS) meta-analyses have identi-

fied common genetic variations contributing to psychiatric disorders

such as anxiety disorders (ANX; Purves et al., 2020), attention-deficit/

hyperactivity disorder (ADHD; Demontis et al., 2023), autism spec-

trum disorder (ASD; Grove et al., 2019), bipolar disorder (BP; Mullins

et al., 2021), schizophrenia (SCZ; Trubetskoy et al., 2022), and major

depressive disorder (MDD; Wray et al., 2018). Building upon the

GWAS knowledge base, genetic sharing among psychiatric disorders

has been evaluated, which revealed substantial genetic overlap at the

genomic level (The Brainstorm Consortium et al., 2018) from which

over a hundred genetic variants exerting pleiotropic effects on more

than one disorder could be identified (Grotzinger et al., 2022; Lee

et al., 2019). The identification of the polygenic architecture and

effect sizes carried by individual single nucleotide polymorphisms

(SNPs) enables researchers to quantify the combined genetic suscepti-

bility to disorders in the form of polygenic risk scores (PRSs), whose

usefulness has been shown in risk prediction for common diseases

(Khera et al., 2018) and treatment outcome prediction (Luykx

et al., 2022), in identifying cross-disorder associations (Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013), but also in

investigating complex traits that are relevant to multiple disorders

(Bralten et al., 2021). However, the relations of PRSs for different psy-

chiatric disorders with transdiagnostic traits have rarely been investi-

gated in clinically rather typical, highly comorbid cohorts.

In this study, we applied polygenic score analysis in a naturalisti-

cally recruited psychiatric cohort with high clinical complexity and

comorbidity with two objectives. Under the conventional DSM-based

framework, we aimed to assess the validity (i.e., significant association

with target phenotype) and specificity (i.e., selective association with

primary GWAS phenotype) of PRSs of major psychiatric disorders

(multi-PRS) for different diagnostic outcomes. The PRSs were derived

from the most recent and well-powered GWASs on ANX (Purves

et al., 2020), ADHD (Grove et al., 2019), ASD (Grove et al., 2019), BP

(Mullins et al., 2021), SCZ (Trubetskoy et al., 2022), MDD (Wray

et al., 2018), depression (DEP; Howard et al., 2019), and cross-disorder

diagnoses (cross-disorder; Lee et al., 2019) for patients from the

recruited MIND-SET cohort and individuals free of any psychiatric dis-

order. Under a transdiagnostic dimensional framework, we explored

the polygenic risk mapping to symptom and trait dimensions. For the

latter, we first performed an exploratory factor analysis to explore

latent structures in a broad range of psychopathological assessments of

psychiatric, personality, and psychological symptoms and traits. Individ-

uals' representations on the derived functional dimensions were then

examined with regard to the PRS and their comorbidity status.
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2 | PATIENTS AND METHODS

2.1 | The MIND-SET cohort

The study sample MIND-SET cohort (Eijndhoven et al., 2022) was first

established in Nijmegen, The Netherlands, in 2015. Recruited from

the outpatient population of the Department of Psychiatry at Rad-

boud University Medical Center, the sample is composed of adult

(≥18 years) patients with a clinical diagnosis in at least one of five dis-

order categories (i.e., mood disorders, ANX, ADHD, ASD, and/or

substance-related disorders). Individuals with current psychosis, IQ

lower than 70, or inadequate command of the Dutch language were

excluded from the study. A comparison group with similar demo-

graphics as the patients but free of any previous or current psychiatric

disorders was recruited from the local population. Written informed

consent was obtained from all participants included in the study. The

study was approved by the local medical ethics committee

(Commissie Mensgebonden Onderzoek Arnhem-Nijmegen).

2.2 | Disorder diagnosis

The diagnosis of patients was confirmed by a trained clinician during a

structured interview. The absence of a lifetime psychiatric diagnosis in

the control group was confirmed using the same diagnostic instru-

ments via telephone interview. Mood disorders and ANX were diag-

nosed by means of the Structured Clinical Interview for DSM-IV Axis I

Disorders (SCID-I; First et al., 1997). For ASD and ADHD, a diagnosis

was provided based on the results from the Dutch Interview for the

Diagnosis of ASD in adults (NIDA; Vuijk, 2016) and Diagnostic Inter-

view for ADHD in adults (DIVA; Kooij & Francken, 2010), respec-

tively. Substance use disorders (SUD) were diagnosed according to

DSM-5 criteria and an adapted version of the Measurements in the

Addictions for Triage and Evaluation (MATE; Schippers et al., 2010).

Patients with SCZ and other psychotic disorders based on SCID-I

were excluded. A detailed overview of the individual diagnoses

included in each abovementioned disorder category and all partici-

pants' demographic information is presented in Tables S1 and S2,

accordingly. Individuals were identified as having comorbid disorders

if they had diagnoses that fell into more than one of the disorder cate-

gories of mood disorders, ANX, ADHD, ASD, and SUD (i.e., only

comorbidity between disorder categories was considered).

2.3 | Symptoms/trait questionnaires and
exploratory factor analysis

A rich test battery was utilized to characterize the study sample with

regard to disorder-related psychiatric symptoms, personality traits,

and other psychological traits. Table S3 provides an overview of these

questionnaires and their subscales used in the subsequent factor anal-

ysis. Further, the level of dysfunction in daily life of participants was

assessed. The self-report World Health Organization Disability

Assessment Schedule (WHODAS) 2.0 (Wenzel, 2017) was used to

measure disability in six domains of functioning (i.e., cognition, mobil-

ity, self-care, getting along, life activities, and participation), and the

Outcome questionnaire-45 (OQ-45; de Jong et al., 2007) was used to

measure subjective experiences and social functioning in domains of

symptom distress, interpersonal relations, and social role.

To derive transdiagnostic dimensions measured by the scales in

Table S3, exploratory factor analysis (maximum likelihood estimation,

oblique rotation) was performed based on 387 participants

(327 patients) who had completed the entire test battery. The same

analysis was previously conducted in a subset of participants from the

same cohort, as described before (Mulders et al., 2022). A four-factor

solution outperformed the simulated eigenvectors in the parallel anal-

ysis (Figure S1; Horn, 1965), which was in line with the scree-plot.

2.4 | Base GWAS datasets

We used the most recent and well-powered GWASs for both single

psychiatric categories, including ANX (Purves et al., 2020), ADHD

(Grove et al., 2019), ASD (Grove et al., 2019), BP (Mullins et al., 2021),

SCZ (Trubetskoy et al., 2022), MDD (Wray et al., 2018), as well as

broader disorder phenotypes, including DEP (Howard et al., 2019),

and Cross-disorder (Lee et al., 2019) as the bases to derive PRSs for

each participant of the MIND-SET cohort (see Table S4 for an over-

view of the datasets). The DEP GWAS included both cases who had

clinically ascertained diagnosis of MDD (43 k, as described in Wray

et al., 2018) and cases of “broad DEP” who reported help-seeking

behavior for mental health difficulties (128 k, as described in Howard

et al., 2018). All summary statistics from these datasets, except for

ADHD, are publicly available. To our knowledge, none of the MIND-

SET participants was included in any of the base GWAS samples. Any

duplicated SNPs, ambiguous SNPs, multiallelic SNPs, and SNPs with

minor allele frequency (MAF) lower than 0.01, or INFO score lower

than 0.9 (if available) were removed from the PRS analysis.

2.5 | Genotyping, quality control, and imputation
of the target dataset

The MIND-SET cohort was genotyped on the Infinium Global Screen-

ing Array (GSA-24 v3.0). The bioinformatics pipeline Ricopili (Lam

et al., 2020; version from 2019_Oct_15.001), developed by the Psy-

chiatric Genomics Consortium (PGC) Statistical Analysis Group, was

employed to perform quality control and imputation on the genotyped

data. To comply with the informed consent of the participants of the

MIND-SET study, we removed variants known to be causative of dis-

eases or disorders (i.e., pathogenic and likely pathogenic) in the geno-

typed data. We first excluded the variants within the pathogenic

genes from the most recent list of ACMG (SF v2.0) genes recom-

mended for return of secondary findings in clinical sequencing (Kalia

et al., 2017). This step was conducted before performing any (pre-)

processing on the genotyped sample in order to eliminate their impact
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on the imputation of other variants. MAF filter of 0.01 was applied

after imputation to further remove the rare pathogenic variants that

were imputed back to the data.

Several filters were applied to exclude individuals and SNPs of

low genotyping quality: SNP call rate < 0.95 (prefilter), subject call

rate < 0.98 for both cases and controls, autosomal heterozygosity

deviation (FHET) outside ± 0.20, sex mismatch between genetic and

phenotypic data, SNP call rate < 0.98, differences in SNP missingness

between cases and controls > 0.02, SNP Hardy–Weinberg equilibrium

p < 10�6, and invariant SNPs. To address population stratification, we

performed principal component analysis (PCA) on the preprocessed

data and removed the genetic outliers that were more than three

standard deviations beyond the center of the European reference

cluster in the 1000 Genome Project (Fairley et al., 2020). Further,

overlapped/related individuals with pi-hat values > 0.2 were removed.

The imputation process was implemented by combining the Rico-

pili structure with the Michigan Imputation Server (Das et al., 2016;

https://imputationserver.sph.umich.edu). After alignment with the ref-

erence panel, the genotypes from 22 autosomal chromosomes were

phased (Eagle v2.4) and then imputed (Minimac 4) on the online

server. We used the largest reference panel available, the Haplotype

Reference Consortium (HRC) panel (r1.1 2016, Kretzschmar et al.,

2016), which consists of 39 million SNPs from 32,470 samples of pre-

dominantly European ancestry. The imputed data was then integrated

back to the Ricopili structure and best-guess genotypes were gener-

ated if the posterior probability of one of the genotypes was higher

than 0.8 (otherwise it was assigned as missing). SNPs with missing

rate higher than 0.02 were excluded from subsequent analysis, along

with the ones with imputation quality (INFO score) lower than 0.9

and MAF lower than 0.01. PCA was performed again on the best

guess genotypes (not including reference panels). Considering our

sample size and the recommendation of RICOPILI pipeline (Lam

et al., 2020), we included the first four derived principal components

(PCs) as covariates in the subsequent polygenic score analyses, in

addition to age and sex. As a sensitivity analysis, we also tested the

models with levels of education as an additional covariate.

2.6 | PRSs calculation and association tests

For each individual in the MIND-SET cohort, PRSs for the eight

GWAS bases mentioned in the above section were created using

PRSice 2.3.3 (Choi & O'Reilly, 2019). Mismatching SNPs that could

not be resolved by strand flipping were removed. Clumping was per-

formed using a linkage disequilibrium r2 threshold of 0.1 and a sliding

window of 250 kb to ensure independence among SNPs. A priori sets

of 10 p-value thresholds (pT; i.e., 5e-8, 1e-6, 1e-4, 0.001, 0.01, 0.05,

0.1, 0.2, 0.5, and 1) were applied to the base GWASs to compute dif-

ferent genome-wide PRSs for each subject, and the best-fit PRS pT

(i.e. the most strongly associated PRS pT) for each outcome of interest

(i.e., diagnostic outcomes, factor dimensions) was identified and

retained. To avoid overfitting during the optimization of pT, we com-

puted empirical p-values (pemp) by performing 10,000 permutations

using random phenotypes to generate the null p-value distribution

(Choi & O'Reilly, 2019). Additionally, we adopted a stringent

Bonferroni-corrected threshold α = 0.001 to account for the multiple

tests (�50 tests) performed with different base disorders/traits and

the outcome disorder statuses. We provided a rough estimation of

the statistical power of PRSs for their corresponding phenotype in

Table S5 using R package “avengeme” (Dudbridge, 2013). Pairwise

correlations among different disorder PRSs were shown in Figure S2.

To further validate the results, we also implemented a Bayesian-based

continuous shrinkage (PRS-CS) method (Ge et al., 2019) to assess the

consistency of different PRS-scoring methods.

PRSs were used as predictors in both simple and multiple logistic

regression models for diagnostic outcomes, and simple linear regres-

sion for factors scores. Variance inflation factors were calculated to

detect potential multicollinearity in the multiple regression models.

The proportion of variance explained by the PRSs in all outcomes was

estimated by Nagelkerke's pseudo-R2, computed as the difference

between the R2 of the full model, containing the PRS and the covari-

ates (i.e., age, sex, and the first four PCs), and the R2 of the null model,

containing only the covariates. One-way ANOVAs were applied to

test the differences in PRSs and factor loadings among groups with

different comorbidity statuses.

3 | RESULTS

3.1 | Diagnoses and comorbidities in the MIND-
SET cohort

A total of 513 individuals of European ancestry were included in the

study: 452 had at least one diagnosis of mood disorder, ANX, ADHD,

ASD, and/or SUD, and 61 were sex- and age-matched unaffected

individuals. An overview of the refined diagnoses within each disorder

category is presented in Table S1. Among the patients, 80% (n = 360)

had at least one diagnosis in the mood disorders spectrum, 33%

(n = 147) had at least one ANX, 38% (n = 171) had ADHD, 27%

(n = 121) had ASD, and 27% (n = 121) had SUD. Psychiatric comor-

bidity was highly prevalent in the MIND-SET cohort: 70% of the

patients fell into at least two diagnostic categories, and 28% into

three or more. As shown in Figure 1a, mood disorders in combination

with ANX, ADHD, or SUD were among the most common comorbid-

ities in the current cohort.

4 | MULTI-PRS AND DISORDER
DIAGNOSTIC STATUS

PRSs computed based on the broadly defined phenotype of DEP

(i.e., DEP-PRS) were significantly associated not only with mood disor-

der status, but—even to a larger extent—with SUD, ADHD, and ANX

(Tables 1 and S6, all at pT = 0.01). Figure S3 shows model fit for all

tested thresholds. The results remain consistent using scores derived

from the PRS-CS approach (Table S7), and also after adding levels of

4 of 12 SHI ET AL.
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education as an additional covariate (Table S9). In contrast, neither

single disorder-based PRSs (incl. ANX, ADHD, ASD, BP, SCZ, and

MDD) nor the cross-disorder PRSs significantly explained the

diagnostic status of any disorder category after Bonferroni correction.

The PRS distributions of individuals within each disorder category and

unaffected comparisons are depicted in Figure 2a for DEP and in

F IGURE 1 MIND-SET participant characteristics, psychiatric diagnoses, and comorbidity status. Venn diagram of the five disorder groups
(a) and the summary of the number of diagnosis patients had (b). Multiple diagnoses within the same disorder group were regarded as one. The
distribution of gender (c), age (d), and level of education (e) of cases and the unaffected comparison group. ASD, autism spectrum disorders;
ADHD, attention-deficit/hyperactivity disorder; SUD, substance use disorders.

TABLE 1 Variance explained (pseudo-R2 (pemp values)) in diagnosis status by PRSs for different psychiatric disorders.

Phenotype ANX-PRS ADHD-PRS ASD-PRS BP-PRS SCZ-PRS MDD-PRS DEP-PRS Cross-PRS

MoodDis 0.035 (0.027) 0.013 (0.285) 0.010 (0.525) 0.020 (0.117) 0.026 (0.045) 0.021 (0.121) 0.091 (2e-4) 0.032 (0.032)

AnxDis 0.039 (0.104) 0.016 (0.438) 0.003 (0.981) 0.041 (0.062) 0.043 (0.043) 0.038 (0.096) 0.133 (5e-4) 0.052 (0.036)

ADHD 0.048 (0.042) 0.047 (0.034) 0.008 (0.804) 0.025 (0.181) 0.034 (0.070) 0.025 (0.195) 0.130 (1e-4) 0.034 (0.102)

ASD 0.039 (0.115) 0.033 (0.157) 0.006 (0.920) 0.019 (0.363) 0.029 (0.122) 0.023 (0.305) 0.063 (0.021) 0.030 (0.173)

SUD 0.060 (0.030) 0.030 (0.185) 0.022 (0.412) 0.033 (0.139) 0.024 (0.195) 0.025 (0.283) 0.132 (2e-4) 0.040 (0.103)

Note: The proportion of variance explained by each PRS in each of the five psychiatric disorder diagnoses was estimated by Nagelkerke's pseudo-R2,

computed as the difference between the R2 of the single PRS model, containing one PRS and the covariates (i.e., age, sex, and four PCs), and the R2 of the

null model, containing only the covariates. Results from an alternative polygenic scoring approach (i.e., PRS-CS) are presented in Table S7. Associations

that exceeded Bonferroni-corrected threshold of p = 0.001 were labeled in bold, and those exceeding the uncorrected threshold of p = 0.05 were labeled

in italic.

Abbreviations: ANX, anxiety disorders; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorders; BP, bipolar disorder; SCZ,

schizophrenia; MDD, major depressive disorder; DEP, depression; SUD, substance use disorders.
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Figure S4 for other PRSs. To assess the impact of the discovery sam-

ple size, we used a subset of broadly defined DEP GWAS sample

(Wray et al., 2018; n = 323 k) to construct subset-DEP-PRS, which

still showed the strongest associations with several disorder diagnoses

despite being the third largest discovery sample (Table S6).

Combining the genetic risks across different base disorders, we

present in Figure 2b the multiaxis genetic risk profiles for the affected

and unaffected groups. Since group differences in several disorder

categories were found also for the ADHD-, ANX-, and SCZ-PRSs at

an uncorrected significance threshold (Table 1), we tested whether

adding these PRSs to the model would improve prediction for disorder

outcome compared with the DEP-PRS alone. Using all eight PRSs as

predictors, the multiple regression model explained 3.07%–7.47%

more variance than the model with DEP-PRS as the single predictor

(Figure 2c), but did not yield statistically significant improvement on

the model fit for the disorder outcomes (Table S10).

To further test whether DEP-PRS was related to disorder comor-

bidity status, we compared the DEP-PRS among groups of unaffected

individuals, patients with a single disorder and the comorbid group

(Figure 2d). The results suggested a significant overall DEP-PRS effect

on comorbidity status (F = 12.960, p = 3e-6): patients with comorbid

conditions had nominally higher DEP-PRS compared with patients

with only one diagnosis (t = 2.335, p = 0.050), who had nominally

higher DEP-PRS than unaffected individuals (t = 2.936, p = 0.009).

5 | DATA-DRIVEN FUNCTIONAL
DIMENSIONS

Converging a wide array of psychopathology assessments into cross-

disorder constructs, the factor analysis of 31 (sub)scales of psychiatric,

personality, and psychological traits measured in MIND-SET (Table S3)

yielded four factors, which together explained 67.3% of the variance

(KMO = 0.948, Bartlett's test p < 0.001). These four factors matched

the previous finding using a subsample of the same cohort with a highly

similar component matrix (Mulders et al., 2022), in which the interpre-

tation of the factors roughly corresponded to previously defined RDoC

domains (Cuthbert & Insel, 2013; Kozak & Cuthbert, 2016; Figure 3a):

(a)

(d)(c)

(b)

Unaffected

Affected

Unaffected
Affected

* * * *

F IGURE 2 Multipolygenic risk score (PRS) profile for different disorder categories and comorbidities. (a) PRS distributions for broad
depression (DEP-PRS) of unaffected (light color) and patient samples (dark color) of the disorder shown under each subplot. See Figure S3 for
distributions of anxiety disorders (ANX)-, attention-deficit/hyperactivity disorder (ADHD)-, autism spectrum disorder (ASD)-, bipolar disorder
(BP)-, schizophrenia (SCZ)-, major depressive disorder (MDD)-, and cross-disorder-PRS. (b) Eight-axis PRS profiles for each disorder group, with
each axis representing the PRS based on one genome-wide association study. PRSs were constructed using the pT that yielded the strongest
associations with the outcome of interest. *pemp <0.001. (c) Variance explained by DEP-PRS as the single predictor in comparison to eight PRS
predictors. R2 for the null model (age, sex, and four PCs) has been subtracted from both model. (d) Group differences in PRSs for depression with
regard to individuals' number of diagnoses (group with no diagnosis N = 61, single diagnosis N = 138, and multiple diagnoses N = 314). The
reference line connects the average value for each group.
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the first factor related to negative thinking, emotions, and poor self-

concept across instruments (i.e., RDoC negative valence systems); the

second factor summarized difficulties in social functioning (i.e., RDoC

social processes); the third factor described cognitive abilities

(i.e., RDoC cognitive systems); the last factor related to the ability in

regulation and inhibition (i.e., RDoC arousal/regulatory systems). To

evaluate the relevance of the derived factors to individuals' functioning

and disabilities, we assessed their relationship with self-rated quality of

life measured using OQ-45 and WHODAS 2.0 scales. We found that all

four factors had significant positive regression weights for the outcome

of individuals' subjective distress and social dysfunction measured in

OQ-45, and the first three factors had significant positive regression

weights for the outcome of overall disability measured with WHODAS

2.0 (Table S11); together, they explained the outcomes with an

adjusted R2 of 0.81 and 0.65, respectively. Different disorder categories

were represented by distinct factor profiles, which resembled their clin-

ical presentations (Figure S5). For example, patients with ADHD loaded

highly on the dysfunction in cognitive and arousal/regulatory systems,

whereas patients with ASD had higher dysfunction loading in the social

processes. Compared with unaffected individuals, all patients scored

higher on the loading of dysfunction on all factors (Figure 4 and

Table S12). Compared with the group with only one diagnosis, the

comorbid group had significantly higher loadings for dysfunction for

negative valence systems (t = 4.928, p = 3e-6), social processes

(t = 4.025, p = 2e-4), and arousal/regulatory systems (t = 4.321,

p = 5e-5). For cognitive systems, there was no significant difference in

loading between groups with single and multiple diagnoses (t = 0.483,

p = 0.878).

F IGURE 3 Rotated component matrix of four factors resulting from factor analysis of psychopathology measurements. (a) Four factors were
retained after parallel analysis and were interpreted in the column headers. The Y-axis shows the (sub)scales included in the analysis following the
naming scheme—“questionnaire name abbreviation_subscale.” Please consult Table S3 for a detailed list of the questionnaires included in the
exploratory factor analysis. The component matrix contains the factor loadings (Pearson correlations between items and components) on each
subscale with color intensity corresponding to the loading strength. (b) Individuals' polygenic risk score (PRS) for depression in relation to their
scoring on each factor dimension. Line of best fit is plotted for the negative valence factor, which is significantly (p < 0.001) correlated with PRS
for depression. Color intensity is scaled according to the number of diagnoses.
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Since DEP-PRS was found to be significantly associated with mul-

tiple diagnostic status extending beyond mood disorders, we set out

to test whether this PRS was associated with specific aspect(s) of

behavioral functioning. PRSs derived from other disorders/

phenotypes were not included in this analysis. We found that the

DEP-PRS was significantly associated with the negative valence

dimension (Figure 3b; R2 = 0.041, pemp = 5e-4 at pT = 0.01), but not

with social processes (R2 = 0.029, pemp = 0.004 at pT = 0.2), cognitive

systems (R2 = 0.001, pemp = 0.960 at pT = 0.01), or arousal and regu-

latory systems (R2 = 0.018, pemp = 0.040 at pT = 0.001). The results

were consistent after adding levels of education as an additional

covariate (Table S9).

6 | DISCUSSION

Bringing genetic metrics derived from case–control samples into a

highly comorbid clinical cohort, our study provided a real-world

assessment of the validity and specificity of psychiatric PRSs, with

regard to both disorder-specific and transdiagnostic outcomes. Multi-

PRS analysis revealed that the DEP-PRS outperformed all other PRSs

and were significantly associated with the diagnostic statuses of SUD,

ADHD, ANX, and mood disorders. We reproduced four

transdiagnostic dimensions derived from a diversity of psychology

and psychopathology measurements and revealed that one specific

dimension—the negative valence system—was selectively associated

with DEP-PRS.

Our association analyses with DSM diagnoses showed that the

genetic propensity for a broadly defined depression phenotype

(i.e., DEP, SNP heritability = 0.089) was significantly associated with

disorder statuses outside of the mood disorders spectrum. With more

than 75% of cases identified based on “minimal phenotyping” (i.e., a

positive answer to the question “Have you seen a GP/psychiatrist for

nerves, anxiety, stress or depression?”), the original GWAS on which

the DEP-PRS was computed (excluding 23andMe cohort; Howard

et al., 2019) is phenotypically much broader than GWAS using clini-

cally ascertained (major) depression (Purves et al., 2020) and statisti-

cally more powerful given its sample size. Previous studies have

addressed the fact that such broad phenotyping approaches might

identify a genetic architecture that was not specific to the clinical

form of MDD (Cai et al., 2020), but noticed that those can be highly

useful for risk prediction and risk factor identification—especially

given the convenience to reach large sample sizes (Mitchell

et al., 2021).

Consistent with the previous factor analysis results from a smaller

overlapping sample (Mulders et al., 2022), we observed four

F IGURE 4 Group differences in factor loading with regard to comorbidity status. Individuals' loadings for four-factor dimensions were
stratified by whether the individual had no disorder diagnosis (N = 60), single diagnosis (N = 95), or more than one diagnosis (multiple; N = 232).
The line in each subplot connects the mean of the three groups. Higher score indicates higher dysfunction. The post hoc tests were performed
using Tukey method. *** p < 0.001. n.s., not significant.
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transdiagnostic domains (i.e., negative valence, social, and arousal/

regulatory systems) among a broad battery of psychiatric, personality,

and psychological assessments, which together explained up to 81%

of individuals' subjective experience of their functioning and disability.

Importantly, the finding that DEP-PRS was selectively linked to the

functioning of the negative valence system points to the direction of a

shared domain of functioning that underlies its associations with mul-

tiple disorders. This underscores the importance of a paradigm shift in

mechanistic investigations towards data-driven dimensional con-

structs that acknowledge the intertwined nature of different catego-

rized psychiatric disorders. Uncovering the latent dimensions of

psychopathology from dense symptom- and trait-level data, on the

one hand, will help to identify individuals' unique (dys-)functional pro-

file and enable targeted interventions for specific functional spectra;

on the other hand, it can provide neurobiological studies with an

improved scaffolding to investigate underlying pathogenic processes.

Although attempts of genomic enquiry on dimensional traits estab-

lished in a data-driven fashion are still scarce, efforts of GWAS on

theory-based psychopathology traits (e.g., extracted from clinical

notes [McCoy et al., 2018], neurocognitive tests [de la Fuente

et al., 2021], self-report assessments [Genetics of Personality

Consortium, 2015]) are blooming and provide important leads for

follow-up causal assessments.

With its broad relevance, the DEP-PRS explained different diag-

nostic outcomes in our cohort to a higher magnitude than previously

reported in other cohorts (Howard et al., 2019; Kember et al., 2021).

While an independent sample is required to further validate the pre-

dictive accuracy, we postulate that the contrast between highly

severe and comorbid cases recruited from a specialized academic hos-

pital and a “clean” comparison group free of any psychiatric history

could have amplified the variance explained by the PRS. This would

lead to a larger R2 compared with previous reports where patients

may have had less complex, less comorbid clinical profiles, and con-

trols were not always screened for other major psychiatric disorders

(Howard et al., 2019). Furthermore, we recognize that the composi-

tion of disorders of the current cohort might align well with the con-

stellation of psychiatric characteristics probed by such “minimal

phenotyping” (Cai et al., 2020) definition of the broad DEP PRS, which

will also give rise to a more effective PRS.

In the current study sample, the psychiatric heterogeneity

spanned a large spectrum of mental health and functioning, including

individuals free of mental health complaints and tertiary care patients

with multiple diagnoses. Unlike previous studies where comorbid con-

ditions were either ignored (i.e., participants are unscreened for other

disorders) or treated as confounding variables or exclusion criteria, we

addressed the topic of psychiatric comorbidity explicitly and charac-

terized it on both the genetic and cross-disorder behavioral scales.

We showed that individuals displaying comorbidity were bearing

higher genetic liability and displayed a higher degree of dysfunction in

most functional aspects. This adds functional and biological evidence

to the large body of comorbidity literature showing phenotypic associ-

ations between psychiatric comorbidity and higher severity and more

chronicity of impairment (e.g., Klein Hofmeijer-Sevink et al., 2012;

Overbeek et al., 2002). Rather than regarding psychiatric disorders as

distinct entities that deserve separate treatments on top of each

other, it is crucial to acknowledge the shared underlying vulnerability

factors and etiopathogenesis that push individuals to the higher end

of the psychopathology spectrum.

The present study provides a thorough assessment of the validity

and specificity of PRSs for major psychiatric disorders against categor-

ical as well as dimensional outcomes by exploiting a clinically well-

assessed cohort spanning a wide spectrum of psychopathology. How-

ever, several limitations need to be taken into account when inter-

preting the results. First, the low sample size of our cohort, especially

that of the unaffected comparison group, could limit the statistical

power and contribute to the lack of associations of PRSs other than

DEP-PRS. Second, while a permutation procedure was performed to

adjust association p-values, the observed phenotypic variance

explained (R2) requires an independent sample to further evaluate the

predictive accuracy of the PRSs. Third, only comorbidities among the

defined nonpsychotic disorder categories (as opposed to within disor-

der categories) were considered, which may yield an incomplete pic-

ture of the functional and genetic characterization of psychiatric

comorbidity.

In conclusion, our polygenic scoring analysis revealed low speci-

ficity to psychiatric disorders as defined by conventional classifica-

tion systems, but enhanced specificity to data-driven functional

domains. Domain-based genetic analyses targeting traits and symp-

toms not restricted to a single disorder or clinically ascertained group

could help reduce the clinical and biological heterogeneity of the

study sample and enable more fine-grained mapping to the biological

basis of psychopathology at different levels. It also supports further

initiatives of targeted treatments based on neurocognitive domains

that eventually can provide an important avenue for psychiatric

interventions.
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