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back on my time very fondly, which in no small part is thanks to the many
people I have had the pleasure of working and interacting with throughout
the years I spent at Radboud University.

To start, my primary supervisor and promotor, Peter, has been a large factor
in getting to this point. Our introduction was in the course “Cryptographic
Engineering”, a Master’s course I was taking as a Bachelor’s student because
why not, and Peters enthusiasm for cryptography drew me in to my Bachelor’s
thesis project. Peter was not discouraged when I later told him that I did
not see a future for myself in low-level cryptography implementations, his
main focus area at that time. Instead, he ended up offering me a spot in the
research project that has culminated in this book, for which I am still grateful.
Douglas Stebila later joined as second supervisor, but long before that we
had very productive discussions on how to prove KEMTLS and beyond; I also
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 Introduction

Probably soon after people started talking to each other, the desire to com-
municate in secret came up. Whispering and walking out of anyone’s earshot
are probably the oldest ways to make sure that what you intend to say stays
between you and your conversation partner. As societies started to form, peo-
ple needed to communicate over greater distances. This necessitated the use
of couriers, which would carry letters or communicate the message verbally.
To keep the couriers from reading the messages, the art of cryptography was
invented, ancient Greek for “secret writing”. Ciphers and codes were used to
make sure only the intended recipient would be able to decipher or decrypt
the meaning of a particular message. One of the most famous encryption
methods is perhaps the Caesar cipher, used by and named after Julius Cae-
sar [347], which substitutes each letter by shifting it by a specified number
of spaces in the alphabet. This way, A might become E, B might become F,
and so on. The ancient Greek scytale is an early example of using a “device”
to protect a message. A scytale is a rod around which you wind a strip of
parchment, on which you then write a message. The strip is then unwound
and passed to the recipient. Only if they wrap the parchment around a rod
with the same diameter, would the message line up again and be legible.

These primitive ciphers already use a foundational principle in cryptogra-
phy. Both use some additional information to hide and recover the message.
In the Caesar cipher, this is the number of spaces by which the letters are
shifted; for the scytale, it is the width of the rod. We call this information the
secret key. Both the sender and the recipient in these schemes need to know
this shared secret key to be able to decipher the message.

Because it is very inconvenient to have to first agree on a shared secret key,
cryptographers have long sought a system where the sender of a message only
needs some public information to hide the message. In the 1970s this idea,
called public-key cryptography, finally became reality as the first schemes based
on “mathematical trapdoors” were invented [119]. They rely on mathematical
problems that are hard to solve if you leave out some extra information. For
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1 Introduction

example, RSA [303] relies on the difficulty of finding the values of the large
prime numbers 𝑝 and 𝑞 given the product 𝑛 = 𝑝 ⋅ 𝑞 (using computers based
on zeros and ones). Encrypting a message 𝑚 (represented as a number) is
as simple as computing𝑚𝑒mod𝑛, where 𝑒 and 𝑛 are the public encryption
parameters called the public key; but recovering the message𝑚 is very hard
if you do not know which 𝑝 and 𝑞 were chosen by the recipient when they
set up the scheme. We call the extra information that the recipient uses to
decrypt the private key.

. Cryptography in the internet age

The most significant development in communication after the written word
is probably the invention of the internet. Ever since its invention, usage of the
internet has only ever gone up and up. In 2022, 96.8% of people over the age
of 12 in The Netherlands had internet access at home; and 89.5% used the
internet (almost) every day [96]. They use it to interact not just with their
friends and play games: today, you might go online to talk to your doctor,
file a tax return, or order anything ranging from weekly groceries to niche
computer equipment [95, 272]. Indeed, one of the most valuable companies
in the world is the online retailer Amazon [355].

None of these applications would have been possible without a way to
communicate securely over the normally unprotected internet. The Trans-
port Layer Security (TLS) protocol, invented with the name SSL by browser
developer Netscape in 1995 [138], has perhaps been one of the most important
enablers for the digital economy by allowing secure processing of credit card
information on webshops. An ever-increasing number of websites are also just
using TLS to provide their visitors with more privacy, by protecting browsing
traffic from eavesdroppers on the network. TLS is not just used for websites;
it is used for many applications, ranging from VPNs [280], to secure file trans-
fer [146] and email [177, 275]. Even offline, TLS can be used, for example, to
secure networks inside of cars [360].

TLS has seen a lot of development since its initial version. Its latest version
is TLS 1.3, which was released in 2018 by the standardization organization
Internet Engineering Task Force (IETF) as RFC 8446 [298]. Many extensions
and additional features were developed, but the principle behind the main
protocol has stayed the same.
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1.2 Quantum Computers

TLS allows a client, such as a web browser, to connect to a server, such as the
one hosting a website. An important twist is that the client may not know the
server’s (cryptographic) identity before the connection is initiated. This is an
important requirement because it means that TLS cannot just rely on having
the keys of anyone the client might talk to beforehand. Instead, TLS relies on
a mechanism called certificates. A certificate states that a certain public key
belongs to a certain name. The certificate is signed by a trusted third party,
the certificate authority. We use certificates in TLS to transfer the identity of
the server to the client during the connection setup. The client thus receives
the identity of the server, and because the client can verify the certificate
authority’s signature on the certificate it knows that it can be trusted.

. Quantum Computers

As already alluded to above, there are different kinds of computers. All the
computing devices we rely on today are based on discrete numbers; famously
the binary zeros and ones.1 Representing information and algorithms using
these “off ” and “on” states directly translates to the electronic circuits based on
transistors that we use to build modern microchips and computer memory.
Physicists, however, figured out long ago that the rules of the universe are not
so discrete. Richard Feynman already theorized in the 1980s about simulating
quantum physics using computers based on quantum systems rather than
switches [142]. The quantum bit or qubit encodes information not as just a
0 or a 1, but as a probability of being 0 or 1. Oversimplifying this, a qubit
can be both values at the same time, which we call superposition. This and
othermechanisms like quantum interference and entanglement allow accurate
simulation of quantum systems, which cannot be represented on a “classical”
discrete computer.

For a very long time, quantum computers have been a theoretical concept.
Quantum computers are not even suitable for all computation problems.
However, quantum algorithms have been developed for various problems that
we do not know how to solve efficiently on a classical computer [199]. This
includes quantum simulation and approximation problems, as well as various
number-theoretic problems.

1Binary representation is not a strict requirement: some of the earliest computers
used decimal representations instead of binary, including the ENIAC [160].
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1 Introduction

For this thesis, we are mainly concerned with the algorithms invented by
Shor. His quantum algorithms for discrete logarithms and factoring suddenly
make themathematical trapdoors on which we built the currently widely-used
public-key cryptographic schemes trivial to solve [324]. Meanwhile, more
people than ever are working to make the quantum computer a reality. Each
year, new records get broken. At the end of 2022, IBM announced the largest
quantum processor yet. This processor, to be made available in 2023, features
433 physical qubits [190], a more than 3 times increase over their 127-qubit
processor from the year before. Although we are a long way from what is
sometimes referred to as a “cryptographically relevant” quantum computer,
these advances and advances in, for example, quantum error correction show
that the field of quantum computing is rapidly moving forward [259].

. Post-quantum cryptography

Although cryptographically-relevant quantum computers are not yet available,
it is important to start looking for alternatives to the public-key cryptography
algorithms that are threatened by them. The first reason is the simple fact that
the development of new algorithms takes time; the second reason is the fact
that any information that is protected using algorithms that are vulnerable
to cryptanalytical attacks using quantum computers might be stored now
and decrypted once the cryptographically-relevant quantum computer exists.
This also leads to what is known as Mosca’s inequality [258] (figure 1.1): if it
takes𝑋 year to deploy new algorithms, and information needs to be secure
for 𝑌 years, and we have 𝑍 years until a quantum computer is available, then,
if𝑋 + 𝑌 > 𝑍, there is a window of time in which data is vulnerable. Because
𝑍 is unknown, we have a strong incentive to make𝑋 as small as possible.

𝑋: deployment of PQ 𝑌: data security requirements

𝑍: development time of CRQC

time

𝑋 + 𝑌 > 𝑍:
security gap

Figure 1.1: Mosca’s inequality [258]
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1.4 We

Post-quantum cryptography describes the field of cryptography that aims
to resist attacks using quantum computers. Post-quantum algorithms are
based on different mathematical problems than their pre-quantum equiva-
lents. These problems are conjectured to be hard to solve even if you have a
cryptographically-relevant quantum computer. We do not need a quantum
computer for these new algorithms; we can still run them on any phone, tablet,
laptop, or smart fridge.

The proposed algorithms do behave differently from the cryptography that
we are used to today. Pre-quantum RSA [303], Diffie–Hellman [119], and
elliptic-curve algorithms [212, 256] are fast to execute and the sizes of the
keys and digital signatures are quite small. Many of the proposed new al-
gorithms present new trade-offs, however. Lattice-based schemes Kyber [319]
and Dilithium [241] are very fast, but the keys, ciphertexts, and signatures
are more that an order of magnitude larger than Diffie–Hellman or RSA.
CSIDH [91], a scheme based on isogenies between supersingular elliptic
curves, has much more modest key sizes but requires a lot of heavy computa-
tion. Some schemes have very large public keys, but very small signatures, or
vice-versa. Additionally, key exchange and signing operations in pre-quantum
schemes are very similar in performance and message size. However, in the
post-quantum world, it appears that there is a new gap between these two
operations to account for, and this makes deploying them more challenging.

. We

You and me could be we
— Unconditional II (Race and Religion) by Arcade Fire

The work done in this thesis would have been much harder without the
support of my co-authors. This is one of the reasons why, throughout this
thesis, I often write ‘we’. ‘We’ can also refer to the cryptographic community,
or to the large amount of work on which the results in this thesis build. When
for example discussing desired properties or security proofs, ‘we’ may also
refer to not just the author, but also the reader, for example when the author
takes the reader through the reasoning in the proof as Vergil guided Dante
Alighieri (through similarly dangerous and scary environments). Finally, ‘we’
just refers to me, especially when I made any mistakes.
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1 Introduction

. Organization

These new post-quantum schemes and their trade-offs present us with the
main research theme in this thesis: what trade-offs make sense? We focus on
TLS, perhaps the most important cryptographic protocol on the internet, and
investigate the impact of post-quantum cryptography on its performance.

After this introduction and the discussion of notation, definitions, and
common notions in the preliminaries in chapter 2, this book has three parts.
Part I first discusses existing proposals to transition the TLS 1.3 handshake
to post-quantum cryptography, and re-examines an early proposal for the
TLS 1.3 handshake, OPTLS, in light of the new post-quantum primitives.
Examining the trade-offs between key exchange and signing operations leads
to the proposal of KEMTLS, an alternative TLS handshake protocol that au-
thenticates the participants through a key exchange rather than a signature.
Finally, we discuss an extension to KEMTLS, called KEMTLS-PDK.

Part II covers the proofs of security of KEMTLS and KEMTLS-PDK. We first
discuss the security properties and two pen-and-paper proofs in the compu-
tational model. Finally, we model and present a computer-verified proof of
the security of KEMTLS and KEMTLS-PDK in the symbolic model.

In the last part, part III, we collect all experimental results for post-quantum
instantiations of TLS 1.3, KEMTLS, and KEMTLS-PDK. We discuss how we have
implemented and measured these protocols on simulated networks, but also
discuss an experiment that was run over the internet and an experiment that
ran KEMTLS on a microcontroller.

Finally, we wrap up with a summary of the results and discuss how post-
quantum TLS will keep developing.

. Original works

As customary in cryptography, as a subfield of mathematics, most of the
publications in this work list their authors in alphabetical order. This not just
side-steps the question of assigning an often difficult-to-determine ranking of
individual contributions; this tradition also recognizes that sometimes small
contributions can be very influential to the direction work develops in. In
this section, I provide an overview of the previously published work that has
come together in this thesis. Although I will highlight my contributions to
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1.6 Original works

these works, I again express my gratitude to my co-authors. The remainder of
this section is organized by publication, as I split many publications across
different chapters of this thesis.

Post-quantumTLS without handshake signatures (ACM CCS )

The basis of this thesis lies in this publication, which was originally presented
at ACM CCS 2020. In it, we examine the performance of post-quantum
TLS handshakes (chapter 11), and briefly discuss OPTLS (chapter 4). The
core contribution lies in the proposal of KEMTLS, an alternative to the TLS 1.3
handshake which eliminates signatures from the handshake. The proposal
of KEMTLS, which originates in this publication, is discussed in chapter 5.
The original pen-and-paper proof of KEMTLS, the full version of which first
appeared in the online version of this publication, appears in amore developed
version in chapter 7. Finally, this paper contains the initial implementation
of KEMTLS, and we compare the performance of post-quantum TLS 1.3 and
KEMTLS. Chapters 10, 11 and 13 are based on these results.

Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum
TLS Without Handshake Signatures.” In: ACM CCS 2020: 27th Con-
ference on Computer and Communications Security. Ed. by Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna. Updated version
available via url and IACR ePrint. Virtual Event, USA: ACM Press,
Nov. 9–13, 2020, pp. 1461–1480. doi: 10.1145/3372297.3423350.
IACR ePrint: ia.cr/2020/534. url: wggrs.nl/p/kemtls

In this work, I was the main author. I contributed to the design of the
protocol and the security and performance analysis. I also implemented the
protocol and collected the benchmarking results. Discussions with Peter
Schwabe and Douglas Stebila, as well as their contributions to the writing of
the paper, the protocol design, and the security analysis, were invaluable.

More efficient post-quantum KEMTLS with pre-distributed public keys

(ESORICS )

In this follow-up work to “Post-Quantum TLS Without Handshake Signa-
tures,” presented at ESORICS 2021, we investigate a variant of KEMTLS. This
variant, KEMTLS-PDK, uses the fact that often clients have some prior knowledge
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of the server’s identity. This is for example true for web browsers, connecting
to the same server many times, or mobile apps or IoT devices that have the
server information hard-coded. By using a stored server long-term public key,
the client can short-circuit the KEMTLS authentication key exchange, submit-
ting the encapsulation to the server’s long-term key in the client’s initial TLS
message. As this initial message is replayable, we require careful analysis of the
forward secrecy and authentication properties of the KEMTLS-PDK handshake.
We can also use the encapsulated key to submit early an encrypted message
containing the client certificate to the server for faster client authentication.
Although there exist session ticket- and pre-shared-key-based handshakes in
TLS 1.3, those mechanisms rely on symmetric key cryptography, which may
require secure storage and has key management concerns.

The proposal of KEMTLS-PDK is the basis of chapter 6. We discuss the
pen-and-paper proof of the security of this protocol in chapter 8, but we
additionally adopted the more expansive model from this paper in the proof
of KEMTLS that we discuss in chapter 7. The improved implementation of post-
quantum TLS 1.3, KEMTLS, and KEMTLS-PDK from this paper forms the basis
of all the current implementations discussed in chapter 10, and we use this
code for the measurements in chapters 11, 13 and 14. This implementation is
also used as the server in the results presented in chapter 16. The comparison
of the performance of KEMTLS-PDK with TLS 1.3 (with an additional caching
mechanism) and KEMTLS is discussed in chapter 14.

Peter Schwabe, Douglas Stebila, and Thom Wiggers. “More Efficient
Post-quantum KEMTLS with Pre-distributed Public Keys.” In: ES-
ORICS 2021: 26th European Symposium on Research in Computer
Security, Part I. ed. by Elisa Bertino, Haya Shulman, and Michael
Waidner. Vol. 12972. Lecture Notes in Computer Science. Updated
version available via url and IACR ePrint. Darmstadt, Germany:
Springer, Heidelberg, Germany, Oct. 4–8, 2021, pp. 3–22. doi: 10.
1007/978-3-030-88418-5_1. IACR ePrint: ia.cr/2021/779. url:
wggrs.nl/p/kemtlspdk

In this work, I was the main author. I contributed to the design of the
protocol and the security and performance analysis. I also implemented the
protocol, collected the benchmarking results, and contributed to the write-
up. Discussions with Peter Schwabe and Douglas Stebila, as well as their
contributions to the writing and security analysis, were invaluable.
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KEMTLS with delayed forward identity protection in (almost) a single

round trip (ACNS )

This work, which was developed concurrently to the KEMTLS-PDK paper “More
Efficient Post-quantum KEMTLS with Pre-distributed Public Keys,” proposes
a variant of the KEMTLS-PDK protocol in which additional short-term keys
are used to provide some level of forward secrecy to the client certificate
message in the KEMTLS-PDK handshake. We prove the security of this variant
protocol in a different model from the previous work, and carefully analyze
the forward secrecy gained by the short-lived keys. It was originally published
in the proceedings of the ACNS 2022 conference. We briefly discuss this work
in chapter 6.

Felix Günther, Simon Rastikian, Patrick Towa, and Thom Wiggers.
“KEMTLS with Delayed Forward Identity Protection in (Almost)
a Single Round Trip.” In: ACNS 22: 20th International Conference
on Applied Cryptography and Network Security. Ed. by Giuseppe
Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes in Computer
Science. Rome, Italy: Springer, Heidelberg, Germany, June 20–23,
2022, pp. 253–272. doi: 10.1007/978-3-031-09234-3_13. IACR
ePrint: ia.cr/2021/725. url: wggrs.nl/p/kemtls-epoch

This variant of KEMTLS-PDK was originally designed by Patrick Towa, and
the proof has been constructed by Patrick Towa and Felix Günther. I helped
Simon Rastikian with the implementation of the protocol (which was based
on my implementation of KEMTLS), and I did the collection and analysis of
the measurement results.

A tale of twomodels: formal verification of KEMTLS via Tamarin

(ESORICS )

Chapter 9 discusses this work, in which we model and prove the security
of KEMTLS and KEMTLS-PDK in the Tamarin [27] symbolic analysis tool. It
was originally presented at ESORICS 2022. The work presents two differ-
ent approaches to modeling KEMTLS(-PDK). The first approach adopts the
existing model of TLS 1.3 by Cremers, Horvat, Hoyland, Scott, and Van der
Merwe [108] and adapts it to KEMTLS. The second sticks close to our pen-
and-paper models and states the security properties of KEMTLS(-PDK) in the
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same way. It focuses on the core handshake protocol, and mechanisms such
as handshake encryption were simplified or left out. The second approach
allowed us to validate our pen-and-paper models and found some minor
flaws in the security claims. These flaws are corrected in the proofs shown in
chapters 7 and 8.

Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers.
“ATale of TwoModels: Formal Verification of KEMTLS via Tamarin.”
In: ESORICS 2022: 27th European Symposium on Research in Com-
puter Security, Part III. ed. by Vijayalakshmi Atluri, Roberto Di Pietro,
Christian Damsgaard Jensen, and Weizhi Meng. Vol. 13556. Lecture
Notes in Computer Science. Extended version available via url and
IACR ePrint. Copenhagen, Denmark: Springer, Heidelberg, Ger-
many, Sept. 26–30, 2022, pp. 63–83. doi: 10.1007/978-3-031-
17143-7_4. IACR ePrint: ia.cr/2022/1111. url: wggrs.nl/p/
kemtls-tamarin

In this work, I was one of the two main authors together with Douglas
Stebila. I mainly worked on the first approach: modifying and proving the
security of KEMTLS in themodified TLS 1.3 model. Douglas Stebila contributed
to the second approach. Jonathan Hoyland was indispensable for helping
with, and giving insight into Tamarin, and together with Sofía Celi helped
with the writing of this paper.

Implementing andmeasuring KEMTLS (LATINCRYPT )

Chapter 15 discusses the work from this publication, which was originally
presented at LATINCRYPT 2021. In it, we again measure and compare the
performance of post-quantum TLS with the performance of KEMTLS(-PDK),
but instead of an emulated network environment, the experiment uses connec-
tions between two data centers, one in Portland and one in Lisbon, and runs
a real-world application over the post-quantum TLS and KEMTLS connections.
Additionally, this chapter describes how experiments with post-quantum
authentication can be done without post-quantum certificates, using a mech-
anism called delegated credentials.

Sofía Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tam-
vada, Luke Valenta, ThomWiggers, BasWesterbaan, and Christopher
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A. Wood. “Implementing and Measuring KEMTLS.” in: Progress
in Cryptology - LATINCRYPT 2021: 7th International Conference on
Cryptology and Information Security in Latin America. Ed. by Patrick
Longa and Carla Ràfols. Vol. 12912. Lecture Notes in Computer Sci-
ence. Bogotá, Colombia: Springer, Heidelberg, Germany, Oct. 6–8,
2021, pp. 88–107. doi: 10.1007/978-3-030-88238-9_5. IACR
ePrint: ia.cr/2021/1019. url: wggrs.nl/p/measuring-kemtls

In this work, the main contributions were by Sofía Celi. Armando Faz-
Hernández contributed optimized implementations of post-quantum primi-
tives. My involvement was limited to the analysis of the obtained results and
the writing of the paper. I have also made some minor contributions to the
implementation.

KEMTLS vs. post-quantumTLS: performance on embedded systems

(SPACE )

Previous chapters discuss the performance of KEMTLS clients that are run on
powerful desktop and server-grade CPUs. In chapter 16, which is based on
this work that was presented at SPACE 2022, we examine the performance of
post-quantum TLS 1.3 and KEMTLS when the client is a small microcontroller
connected over a low-bandwidth network.

Ruben Gonzalez and Thom Wiggers. “KEMTLS vs. Post-quantum
TLS: Performance on Embedded Systems.” In: Security, Privacy, and
Applied Cryptography Engineering. Ed. by Lejla Batina, Stjepan Picek,
and Mainack Mondal. Jaipur, India: Springer Nature Switzerland,
Dec. 9–12, 2022, pp. 99–117. doi: 10.1007/978-3-031-22829-2.
url: wggrs.nl/p/kemtls-embedded

In this work, Ruben Gonzalez, the main author, implemented KEMTLS on a
microcontroller, designed the experiments, and collected the results. I assisted
with the selection of parameters, the analysis, and the writing of the paper.

Improving software quality in cryptography standardization projects

(SSR )

Chapter 17 discusses the quality of the implementations that were a part of
the NIST post-quantum cryptography standardization project. This paper
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was originally presented at the Security Standardization Research (SSR) 2022
workshop, co-located with EuroS&P 2022. Many of the reference implemen-
tations of submissions in the standardization project had problems, such as a
lack of namespacing, which make them hard to integrate with other software
for scientific experiments. Furthermore, we found that most of the reference
implementations had bugs, ranging from undefined or platform-specific be-
havior to dead code. We describe in this chapter and the work it was based on
how NIST could have made the reference implementations much more useful
for the scientific field, for example to our experiments; we also fix many refer-
ence implementations by hand and by subjecting them to a testing framework
that is part of PQClean, a repository of these cleaned-up implementations.

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom
Wiggers. “Improving Software Quality in Cryptography Standardiza-
tion Projects.” In: SSR 2022: Security Standardization Research (2022
IEEE S&PWorkshops). Genoa, Italy: IEEEComputer Society, June 6–
10, 2022, pp. 19–30. doi: 10.1109/EuroSPW55150.2022.00010.
url: wggrs.nl/p/pqclean

All authors contributed equally to this paper. However, I am the main
contributor to PQClean. I have designed the majority of the testing and
CI framework and integrated many schemes into PQClean. Separately, I
maintain a set of Rust crates that package implementations from PQClean for
use in Rust and maintain the Rust library for Open Quantum Safe.

Optimizations and practicality of high-security CSIDH (preprint)

Chapter 4 discusses OPTLS, an early proposal for the TLS 1.3 handshake
that relies on non-interactive key exchange (NIKE). The performance results
discussed in chapter 12 are partially based on this work in which we exam-
ine higher-security instantiations of CSIDH, based on conservative security
analysis. The implementation of OPTLS used in the experiments was part of
this paper, and we report some measurement results for high-security CSIDH
parameters from this work.

Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez,
Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez,
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Peter Schwabe, and Thom Wiggers. “Optimizations and Practical-
ity of High-Security CSIDH.” in submission. 2023. IACR ePrint:
ia.cr/2023/793

In this manuscript, I contributed the implementation of OPTLS and the
integration of the proposed CSIDH parameters into the implementation by
providing a Rust wrapper around the optimized implementations. I have
measured the performance of OPTLS when instantiated with our CSIDH
parameters and analyzed the results.

Verifying post-quantum signatures in 𝟖 kB of RAM (PQCrypto )

This paper is not part of themain contributions of this thesis, but appears in ap-
pendix A. It was originally published in the proceedings of the PQCrypto 2021
conference and was also presented at the third National Institute of Standards
and Technology (NIST) post-quantum cryptography (PQC) standardization
conference. In it, we discuss how signatures can be verified on embedded
devices with small amounts of memory, by streaming the signature into a ver-
ification function and incrementally computing its correctness. This strategy
may, for example, be useful for hardware security modules in constrained en-
vironments, such as the automotive space: we discuss the automotive use-case
of feature activation in this work.

Ruben Gonzalez, Andreas Hülsing, Matthias J. Kannwischer, Ju-
liane Krämer, Tanja Lange, Marc Stöttinger, Elisabeth Waitz, Thom
Wiggers, and Bo-Yin Yang. “Verifying Post-Quantum Signatures in
8 kB of RAM.” in: Post-Quantum Cryptography - 12th International
Workshop, PQCrypto 2021. Ed. by Jung Hee Cheon and Jean-Pierre
Tillich. Daejeon, South Korea: Springer, Heidelberg, Germany,
July 20–22, 2021, pp. 215–233. doi: 10.1007/978-3-030-81293-5_
12. IACR ePrint: ia.cr/2021/662. url: wggrs.nl/p/verifying-
post-quantum-signatures-in-8kb-of-ram

The main contributions in this paper are by Matthias J. Kannwischer and
RubenGonzalez, who have implemented the schemes and collected the results.
I have contributed to the discussions on the use case and constraints, and
contributed appendix A.6 which describes a symmetric-cryptography-based
key-diversification scheme.
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Practically Solving LPN (IEEE ISIT )

This second paper that is not part of the main contributions in this thesis,
appears in appendix B. It was originally published at IEEE ISIT 2021. The
paper discusses the Learning Parity with Noise (LPN) problem, which is re-
lated to the security of some post-quantum schemes, and shows how different
cryptanalytical approaches can be combined to incrementally reduce and
eventually solve the problem. This approach has been previously proposed,
but we show that the search problem finding the most-efficient attack chain
for a particular LPN problem instance can be reduced. Furthermore, we show
how to find the most efficient attack that fits within a given memory limit, as
we argue that memory is often more expensive than time for realistic attacks.
As a result we were able to mount practical attacks on the largest parameters
reported as of publication of this work, using only 239 bits of memory.

Thom Wiggers and Simona Samardjiska. “Practically Solving LPN.”
in: 2021 IEEE International Symposium on Information Theory (ISIT).
Melbourne, Australia: IEEE Information Theory Society, July 12–20,
2021, pp. 2399–2404. doi: 10.1109/ISIT45174.2021.9518109.
IACR ePrint: ia.cr/2021/962. url: wggrs.nl/p/lpn

This paper is in large part based on my Master’s thesis. I have written large
parts of this paper and wrote the software that was used for the execution of
our found attack chains. Simona Samardjiska contributed the analysis and
proofs that reduce the search space for attack chains, and wrote the software
that finds the most efficient combinations of algorithms.

. The NIST post-quantum cryptography

standardization project

The work in this thesis did not take place in a vacuum but against the backdrop
of the NIST PQC standardization project and the overall discussion around
transitioning to post-quantum cryptography. While this certainly ensured
that working in this area never got stale, it does mean that some of the original
results have been caught up by the passing of time. The oldest work in this
thesis was done while the standardization project was in its second phase.
At the time, there were 17 key encapsulation mechanisms (KEMs) and 9
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signature schemes still in the running. At the end of round 3, in July 2022, NIST
announced that the KEM Kyber [319] and signature schemes Dilithium [241],
Falcon [293] and SPHINCS+ [184] would be the first PQC standards. Of the
other KEMs, only BIKE [17], Classic McEliece [7], and HQC [3] are still under
consideration for standardization; for signature schemes, NIST has opened
up submissions [267] for new proposals that our work never considered.

In this thesis, we update some of the results to the latest state of the sub-
missions. We will make note of the versions of the schemes when discussing
them. However, we will still discuss eliminated schemes in some chapters.
Rainbow [122], which got significantly wounded by cryptanalysis by Beullens
during the third round of the standardization project [50, 51], still features in
results in chapter 16. This signature scheme remains relevant in the context
of our results, as it is representative of schemes that have very small signa-
tures but very large public keys. (Indeed, UOV [53], a submission to the
NIST call for new signature schemes that came in too late for inclusion in
our experiments, fits in this category). SIKE [197], which was catastrophically
broken just after it was named a round-4 candidate [90, 242, 304], still features
in experimental results in chapter 15. This KEM remains illustrative of the
performance of schemes with small sizes, but large computation times.

15





 Preliminaries

In this chapter, we will provide definitions and background information on
which the remainder of this thesis will build. Though it often feels comfortable
and sometimes even more intuitive to provide descriptions of protocols and
primitives in prose, making concrete statements about the security of our
protocols requires rigid notation and formal definitions. We will describe the
primitives below, as well as formal definitions of some security properties and
security experiments that we will need for the proofs in part II of this thesis.

. Notation

Letℕ denote the set of natural numbers (0, 1,…). We write 𝑎 = 𝑏 to denote
equality, and𝑥 ← 1 denotes assignment of the value 1 to a variable𝑥. Arbitrary
sets are written as {𝑎, 𝑏, 𝑐} where 𝑎, 𝑏, and 𝑐 are elements of the set. We denote
that a variable is part of a set by 𝑎 ∈ 𝑋 and denote the Cartesian product of sets
𝑋 and 𝑌 by𝑋 × 𝑌. The notation𝑋𝑛 defines the set of 𝑛-length sequences of
elements in𝑋. For a set𝑋, the notation 𝑥←$𝑋 denotes sampling an element
uniformly at random from 𝑋 and storing it in 𝑥. If 𝒜 is a deterministic
algorithm, then 𝑦 ← 𝒜(𝑥) denotes running 𝒜 with input 𝑥 and storing
the output in 𝑦. If 𝒜 is a probabilistic algorithm, then 𝑦←$𝒜(𝑥) denotes
running 𝒜 with input 𝑥 and uniformly random coins, and storing the output
in 𝑦. The notation ⟦𝑥 = 𝑦⟧ resolves to 1 if 𝑥 = 𝑦, and 0 otherwise. We write
vectors as 𝑉 = (𝑎, 𝑏, 𝑐), and 𝑉𝑖 denotes the value at position 𝑖 in the vector,
starting from position 1. Sometimes we write (𝑣×𝑛) as shorthand for a vector
where the value 𝑣 repeats 𝑛 times. Similarly to vector indexing, for matrices
we write𝑀𝑖,𝑗 to denote the value in row 𝑖, column 𝑗, both starting from 1.

We will make use of many protocol diagrams throughout this thesis. In
figure 2.1, we show the diagram style used for sketches of protocols. In these
sketches, we often simplify the protocol, for example, leaving out message
syntax or inputs to key-derivation function. State and computations described
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on the left-hand side of the figure are executed by the party on the left-hand
side; those defined on the right-hand side are executed by the other party.
State and computations centered in the diagram describe both parties in the
protocol. The arrows describe the sending of information to the other party.
On top of the arrows, we write the information sent.

Inevitably, we will have to more carefully define the protocols that we
propose. We will have to exactly state the computations of keys, messages
sent, and encryption used. In figure 2.2, we give an example of the notation
used in the detailed protocol descriptions. We still have two parties, one
on each side of the diagram. Text aligned to the left- or right-hand sides
again indicates the state held or actions executed by that party. We write
the messages sent colored in green as message. Usually, we give some of the
relevant information included in that message. Multiple messages may be
sent in one transmission to the server. To emphasize this, we often batch the
messages in our figures before we draw a transmission arrow. Unlike in our
protocol sketches, we do not write what is sent on top of the arrows: simply all
prior unsent messages are included in the transmission. For the multi-stage
security proofs in part II, we will denote when particular keys, for which we
will make security claims, are accepted. This is denoted by accept key and
a dotted line stating the numbered stage. Messages that follow a stage may
be sent encrypted using that stage’s (or any prior stage’s) key: we denote this
by {Message}

stage𝑖
. Finally, we denote when we allow first transmission of

application traffic by a dotted, dark-gray arrow.
Even our most detailed figures will still have to leave out information that

is necessary for implementation. This includes, for example, precise message
syntax and code points; for these and other details, we defer to the referenced
(draft) TLS standards and our implementations.

As wewill frequently be discussing details of the TLS handshake, we include
a list of abbreviations used for TLS messages and handshake keys on page 405.
Usually, our notation for messages, for example ServerCertificate, indicates
which party to the handshake is the intended sender. Sometimes, when this
information is not relevant or is clear from context, we may simply write
Certificate instead. In our figures we will often use the abbreviations of
TLS messages to indicate message transcripts: we denote this by CH…CF.
This example denotes all transmitted messages starting from the moment
ClientHello was sent up to and including the ClientFinished message.
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Party A Party B

A’s action B’s action

A sends to B

Action performed by both parties

B sends to A

Figure 2.1: Example of the diagrams used to sketch protocol flows

Party A Party B

Server State
Message: message contents
Another message

Shared action
accept key 𝐾←$𝒦

stage 𝑖

{Encrypted}
stage𝑖

: encrypted message

{Encrypted}
stage𝑖

Encrypted A-to-B application traffic

Figure 2.2: Example of the diagrams used for detailed protocol definitions
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. Cryptography

Cryptography is the art of securing information and communication from
adversaries. We call hiding the information encrypting and recovering it
decrypting. This is usually done with a key, some additional information that
is the basis of the security. The key should additionally be the only secret thing
on which the security of the scheme relies; even if the adversary otherwise
knows all the details of the scheme, it should still be secure (Kerckhoff ’s
principle) [209].

The information security properties fall into three pillars:

Authentication Ensuring that arewe communicatingwith the intended party;

Confidentiality Keeping the communication unreadable to outside parties,
and;

Integrity Ensuring that the contents of the communication cannot be tam-
pered with.

These properties are closely related: for example, a lack of authentication often
allows an attacker, which we refer to as the adversary, to break confidentiality
by posing as the intended recipient.

Cryptographic schemes may rely on many assumptions and be vulnerable
to various forms of cryptanalysis. There are also some tweakable “knobs”
when schemes are designed, such as the sizes of keys, that relate to the provided
security. Usually, more security implies larger keys and slower computations.
To be able to compare and choose appropriate instances of cryptographic
primitives, the security level of an algorithm is often expressed in bits.

Definition 2.1 (Security level in bits). Given a security level of 𝑛 bits for a
given cryptographic system against a particular attack, a polynomial-time
probabilistic adversary 𝒜 has at most 2−𝑛 chance of performing the attack
successfully, i.e.:

Pr [𝒜 successful] ≤ 2−𝑛.

Alternatively, 𝒜 requires at least 2𝑛 operations to be likely to succeed.

In proofs, we often model the security properties of a particular system as
a security experiment we call a game. In such a game, the adversary can win
if they provide a certain output. This can be a particular input to a function,
such as a key, but it is often a bitvalue that was set at the start of the game.
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Definition 2.2 (Advantage). To win a security game, the adversary may be
able to do better than just guessing. We call this the advantage of the adversary
in the security game. In the game 𝐺 for a primitive 𝑃, we write the advantage
of a polynomial-time adversary 𝒜 as

Adv𝐺𝑃,𝒜.

We often need the advantage to be negligible, by which we mean that it is
less than 2−𝑛 for some large enough 𝑛: for example, the security level of 𝑛
bits.

. Symmetric cryptography

Although the focus of this thesis is on (asymmetric) key-exchange protocols,
we do make use of symmetric cryptographic primitives. The defining char-
acteristic of symmetric primitives, as opposed to asymmetric primitives, is
their lack of a “public” operation. To be able to provide confidentiality or
authenticity with a symmetric algorithm, both the sender and the recipient
of a message will use all the inputs to the algorithms. This usually means
both parties share a key that must be kept secret from anyone else; which
explains the common alternative name secret-key cryptography. This key may
be set before communication happens, but often it will be agreed upon by the
prior execution of a key-exchange protocol. Using a symmetric encryption
algorithm is in practice preferred over asymmetric encryption algorithms, as
the latter are typically less performant.

.. Authenticated Encryption

In modern versions of TLS, application data, and some handshake messages
are encrypted using authenticated-encryption algorithms. Authenticated
encryption provides both confidentiality and integrity. A subset of these al-
gorithms allows for additionally specified “associated data”, which will only
be integrity-protected. This may for example be used to specify metadata. Al-
gorithms that allow associated data are referred to as authenticated encryption
with associated data (AEAD) algorithms.

Definition 2.3 (Authenticated Encryption). We write the authenticated en-
cryption with associated data encryption of message𝑚 with algorithm AEAD
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under an appropriate key 𝐾 ∈𝒦 as follows:

AEAD𝐾(𝑚).

Algorithm AEAD gives us at least 𝑛-bit security guarantees for the integrity
and confidentiality of𝑚.

We do not make explicit use of associated data in the descriptions or proofs
contained in this thesis, so we leave it out of our notation. In all protocol
descriptions, we additionally assume that symmetric decryption and verifi-
cation are handled implicitly by the recipient, as they should know𝐾 to any
message that was (honestly) sent to them. If the recipient cannot decrypt or
verify, they will abort the protocol.

In TLS 1.3, two AEAD algorithms are currently required for implementa-
tions: 128-bit AES-GCM [309] and ChaCha20-Poly1305 [276].

.. Hash functions

Hash functions map arbitrary inputs to fixed-length outputs. In this thesis all
inputs and outputs are bitstrings.

Definition 2.4 (Hash function). A hash function

H ∶ {0, 1}∗ → {0, 1}𝜆

maps arbitrary-length messages𝑚 ∈ {0, 1}∗ to a hash value H(𝑚) ∈ {0, 1}𝜆 of
fixed length 𝜆 ∈ ℕ.

We denote the application of hash function H on message𝑚 as simply

H(𝑚).

Good cryptographic hash functions additionally provide:

pre-image resistance: it must be hard to recover the input𝑚 from any output
H(𝑚);

second pre-image resistance: it must be hard to recover any other input𝑚′ ,
𝑚′ ≠ 𝑚 that produces the given output H(𝑚); and
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collision resistance: it must be hard to find two arbitrary inputs𝑚,𝑚′ that
produce the same output H(𝑚) = H(𝑚′).

In the security analyses in part II, we will rely on collision resistance:

Definition 2.5 (Collision resistance). The collision resistance of a hash func-
tion H measures the ability of a polynomial-time adversary 𝒜 to find two
distinct messages that hash to the same output:

AdvCOLLH,𝒜 = Pr [(𝑚,𝑚′) ←$𝒜 ∶ (𝑚 ≠ 𝑚′) ∧ (H(𝑚) = H(𝑚′))] .

Many mechanisms build on hash functions. This includes key-derivation
functions and message-authentication codes which we will describe next. In
TLS, hash functions are also used as a state compression trick; it is easier to
keep track of the hash of the state rather than keeping all previous messages
in memory.

The hash functions currently supported in TLS 1.2 and TLS 1.3 are all from
the SHA-2 family: SHA256, SHA384, and SHA512 [298, 300].

.. Message-authentication codes

Message-authentication codes (MACs) allow computing an authentication
tag from a shared secret key and a message. The recipient of a tagged message
can compute the tag independently and compare it to the received tag, thus
ensuring the message is authentic and was not tampered with.

Definition 2.6 (Message-authentication code). A message-authentication
code (MAC)

MAC ∶𝒦 × {0, 1}∗ → {0, 1}𝜆

maps a key 𝑘 ∈𝒦 and a message𝑚 ∈ {0, 1}∗ to an authentication tag of fixed
length in {0, 1}𝜆 .

It must be impossible for tags for anymessages to be created by anyone other
than the legitimate participants with the keys. So in the EUF-CMA security
experiment for MACs we specify that even a polynomial adversary that can
ask for arbitrary messages and tags cannot create a valid tag for a new message
without querying the oracle.
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Definition 2.7 (Existential unforgeability under chosen-message attack for
MACs). The existential unforgeability under chosen-message attack (EUF-CMA)
forMACsmeasures the ability to forge an authentication tag on a newmessage
in polynomial time, given access to a tag-generation oracle, as shown in
figure 2.3:

AdvEUF-CMA
MAC,𝒜 = Pr [𝐺EUF-CMA

MAC,𝒜 ⇒ 1] .

𝐺EUF-CMA
MAC,𝒜

1: 𝑘 ←$𝒦
2: 𝐿 ← ∅
3: (𝑚, 𝑡) ← 𝒜𝒪

4: return ⟦(𝑡 = MAC(𝑘,𝑚)) ∧ (𝑚 ∉ 𝐿)⟧

Oracle 𝒪(𝑧)
1: 𝐿 ← 𝐿 ∪ {𝑧}
2: return MAC(𝑘, 𝑧)

Figure 2.3: Security experiment for existential unforgeability under chosen-
message attack (EUF-CMA-security) of a message-authentication
code MAC.

TLS uses the HMAC [218] algorithm for message-authentication codes.

.. Key-derivation functions

Key-exchange protocols produce cryptographic keys, but those keys are often
not immediately useful. Often, they are not the right length for the symmetric
encryption algorithms or MACs, which usually need 128- or 256-bit keys. We
may also need to expand a single secret key into multiple distinct keys. Key-
derivation functions (KDFs) serve to compute appropriate keys for symmetric
cryptographic algorithms from arbitrary-length inputs. They cannot add
entropy to their inputs, so the inputs must be of appropriate quality if the
output keys need to be unpredictable.

In TLS 1.3, theHKDF [214, 219] KDF is used. It is a set of two algorithms that
follow an “extract-then-expand” paradigm. The HKDF.Extract algorithm takes
two inputs, namely a salt, and the input keyingmaterial. The salt is an optional,
random value that does not need to be secret. It outputs a pseudorandom key
𝑃𝑅𝐾. This key can then be used multiple times in HKDF.Expand calls. This
algorithm takes 𝑃𝑅𝐾, context information, and the desired output length.
In TLS 1.3, the context information is set to a label and optionally a hash of
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the handshake transcript. The labels separate the different domains in which
the key is used, and the transcript ensures the key is bound to the specific
TLS session. In our notation, we will omit the output length, and assume an
appropriate length for the output key is chosen implicitly.

In our security analyses, we assume HKDF is a pseudorandom function,
and we rely on the (dual-)PRF-security assumption.

Definition 2.8 (Pseudorandom function). A pseudorandom function

PRF ∶𝒦 ×ℒ→ {0, 1}𝜆

maps a key 𝑘 ∈𝒦 and a label ℓ ∈ ℒ to an output of fixed length in {0, 1}𝜆 .

Definition 2.9 ((Dual-)PRF security). The PRF-security of a pseudorandom
function PRF measures the ability of a polynomial-time adversary 𝒜 to distin-
guish the output of PRF from random:

AdvPRF-secPRF,𝒜 = |Pr [𝑘 ←$𝒦 ∶ 𝒜PRF(𝑘,⋅) ⇒ 1] − Pr [𝒜𝑅(⋅) ⇒ 1]|

where 𝑅 ∶ ℒ→ {0, 1}𝜆 is a truly random function.
A pseudorandom function PRF satisfies dual-PRF security [29] if it is a

pseudorandom function with respect to either of its inputs 𝑘 or ℓ being the
key, i.e., if both PRF and PRF′(𝑥, 𝑦) = PRF(𝑦, 𝑥) have PRF-security.

When we instantiate the PRF-security experiment for HKDF.Extract, the
input key material is the PRF key, and the salt is the PRF label. The TLS 1.3
key schedule uses the salt argument to pass through the key schedule state
while the input key material argument is used to feed in pre-shared keys and
Diffie–Hellman key exchange outputs. In TLS 1.3, the input key material may
be a string of zero bytes in, for example, handshakes where no Diffie–Hellman
key exchange is performed or in the computation of the Main Secret MS. In
those cases, as well as in cases where the input key material may be corrupted
by an adversary, we rely on the dual-PRF security of HKDF.Extract in its first
(salt) argument. For HKDF.Expand, the pseudorandom key 𝑃𝑅𝐾 is the PRF key
and the tuple of TLS label and handshake transcript are the PRF label.

Recent work has pointed out there is no security proof for the dual-PRF
security of HKDF [18]. However, their attack on the dual-PRF security of
the HMAC function underlying HKDF relies on variable-length input key
material and a lack of collision resistance in the underlying hash function.
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As collision resistance of the hash inside HKDF is required for the security
of TLS, and as all input key materials used in TLS are fixed length, we feel
comfortable relying on the dual-PRF assumption in our analyses.

. Asymmetric cryptography

As the name suggests, asymmetric cryptographic algorithms have an asymme-
try as opposed to symmetric algorithms where both parties share the inputs
and outputs to all operations. Asymmetric algorithms define a public and
private operation and split the key into appropriate parts, a public key and
private key, to facilitate those operations. A public key can be freely given to
anyone, including adversaries; without the private key, they cannot perform
the private operation. This means that in a cryptographic system with 𝑛 par-
ticipants, we only need to distribute 𝑛 key pairs to allow any two participants
to communicate securely. This is in contrast to the 𝑛(𝑛 − 1) keys that one
would need to distribute and securely store in a system based on symmetric
cryptography. The most notable asymmetric primitives are key exchange
and digital signature algorithms, which we will describe below. Public-key
encryption algorithms are not relevant to this thesis, but are closely related to
key-exchange algorithms; we leave constructing a naive public-key encryption
scheme from a KEM and AEAD as an exercise to the reader.

We point out that in many applications, the ability to execute the private
operation can serve to prove the possession of the private key, and the products
of the private operation are sometimes of arguably less importance. This
means that we can use asymmetric algorithms for authentication purposes if
instantiated correctly.

.. Digital signature schemes

A digital signature scheme allows signing of messages using a private key. The
signature of a message is publicly verifiable by anyone who knows the public
key. Digital signatures can thus serve to authenticate the message signed,
which is for example used in TLS certificates: these are essentially signed
Statements that certain public keys belong to certain identities. As noted
above, signatures can also be used to authenticate the signer, by making them
sign a challenge message.
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Definition 2.10 (Signature scheme). A signature scheme Sig defines the oper-
ations Sig.Keygen, Sig.Sign and Sig.Verify. The first operation Sig.Keygen will
probabilistically generate a keypair consisting of a public key and a private
key. Sig.Sign produces a signature given the private key and a message. Fi-
nally, Sig.Verify allows verifying this signature given the signed message and
public key, Returning whether verification succeeded. For a given message
𝑚, public key pk, and private key sk, we write signing of 𝑚 and verification
of the signature as below. We require that the following equality holds for
correctness:

Sig.Verify (pk, Sig(sk, 𝑚)) = true.

As for message-authentication codes, a polynomial-time adversary must
not be able to forge a signature on a message. We define the EUF-CMA security
experiment for signature schemes similar to the experiment for message-
authentication codes in definition 2.7.

Definition 2.11 (Existential unforgeability under chosen-message attack for
signature schemes). The existential unforgeability under chosen-message at-
tack (EUF-CMA) for a signature scheme Sig measures the ability to forge a
signature on a new message in polynomial time, given access to a signing
oracle, as shown in figure 2.4:

AdvEUF-CMA
Sig,𝒜 = Pr [𝐺EUF-CMA

Sig,𝒜 ⇒ 1] .

𝐺EUF-CMA
Sig,𝒜

1: (pk, sk) ←$ Sig.Keygen()
2: 𝐿 ← ∅
3: (𝑚, 𝜎) ← 𝒜𝒪(pk)
4: return ⟦Sig.Verify(sk, 𝜎) ∧ (𝑚 ∉ 𝐿)⟧

Oracle 𝒪(𝑧)
1: 𝐿 ← 𝐿 ∪ {𝑧}
2: return Sig(sk, 𝑧)

Figure 2.4: Security experiment for existential unforgeability under chosen-
message attack (EUF-CMA-security) of a signature scheme Sig.

The TLS 1.3 handshake supports RSA [303] and both the ECDSA [13] and
EdDSA [44, 201] elliptic-curve signature algorithms.
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.. Diffie–Hellman key exchange

Diffie–Hellman (DH) key exchange [119] based on finite fields or elliptic
curves is not resistant to attacks by quantum computers. However, it is used
in current versions of TLS for ephemeral key exchange.

A B

𝑎 ←$𝔾 𝑏←$𝔾

𝐴 ← 𝑎𝐺

𝐵 ← 𝑏𝐺
𝐾 ← 𝑎𝐵 𝐾′ ← 𝑏𝐴

𝐾 = 𝐾′

Figure 2.5: Unauthenticated Diffie–Hellman key exchange

In DH key exchange, sketched in figure 2.5, the two participants fix a finite
cyclic group𝔾 and a generator 𝐺 ∈ 𝔾. In practice, DH is often instantiated
over elliptic curves, which is generally more efficient than the finite-field-
based instantiations of DH. This is also referred to as elliptic-curve Diffie–
Hellman (ECDH). Both finite-field DH and ECDH support non-interactive
key exchange, which we define next.

.. Non-interactive key exchange

NIKE schemes go back to the original Diffie–Hellman paper, but have not
been studied much until recent years. We will give a slightly simplified version
of the definition given by Freire, Hofheinz, Kiltz, and Paterson [147].

Definition 2.12 (Non-interactive key exchange). A non-interactive key ex-
change algorithm NIKE defines operations NIKE.Keygen and NIKE.SharedSecret.
The operation NIKE.Keygen probabilistically produces a public key pk and a
private key sk. The NIKE.SharedSecret operation takes a public key pk along
with a private key sk, and deterministically computes a shared secret ss in
key space 𝒦. For correctness, we require that for any two sets of public and
private keys (pk1, sk1) and (pk2, sk2),

NIKE.SharedSecret(pk1, sk2) = NIKE.SharedSecret(pk2, sk1).
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Non-interactive key exchange only has two operations and requires no
exchange of information except for the public keys. As you can pre-generate
and publish the public keys anywhere, this allows computing the shared
secret completely without interaction. Keys often correspond with identities.
ANIKE allows combining a sender’s secret key with a recipient’s authenticated
public key; thus establishing an immediately mutually authenticated key. This
property is for example used in Signal’s X3DH handshake [245].

It is easy to see that Diffie–Hellman can be used as a (pre-quantum) NIKE,
as 𝑏(𝑎𝐺) = 𝑎(𝑏𝐺). However, as of writing, the only known and somewhat ef-
ficient post-quantumNIKEs areCSIDH [91] and its variants, and Swoosh [153].
CSIDH, which is based on isogenies, is much slower than most KEMs, and
its security is hotly debated [42, 49, 58, 71, 289]. Swoosh, which is based on
Module-LWE, was only proposed in 2023; its public key size exceeds 120 kB
for the actively-secure variant, and no parameters have yet been put forward
for a passively secure variant. CSIDH and Swoosh are also not part of the
NIST PQC standardization project.

TLS 1.3 and prior versions of TLS do not use the non-interactive properties
of DH key exchange. However, the original OPTLS proposal for TLS 1.3,
which we will discuss in chapter 4, did make use of DH’s non-interactive key
exchange properties.

.. Key EncapsulationMechanisms

A key encapsulation mechanism (KEM) is an asymmetric cryptographic
primitive that allows two parties to establish a shared secret key. Although
TLS 1.3 is currently not specified to use a KEM, all the key exchange algorithms
considered for standardization in the NIST PQC standardization project are
KEMs. The ephemeral key exchange in TLS 1.3 can be straightforwardly
replaced by a KEM, as we will show in chapter 3. KEMs also form the basis of
KEMTLS, which we will discuss in chapter 5.

Definition 2.13 (Key Encapsulation Mechanism). A key encapsulation mech-
anism KEM defines three operations. These are KEM.Keygen, KEM.Encapsulate
and KEM.Decapsulate. The KEM.Keygen operation probabilistically generates
a public and private keypair (pk, sk). Public operation KEM.Encapsulate takes
a pk and probabilistically generates a shared secret ss in key space 𝒦 and a
ciphertext (encapsulation) ct against a given public key. Finally, private op-
eration KEM.Decapsulate takes sk with the encapsulation ct and decapsulates
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the shared secret ss′ ∈𝒦 from ct. In a 𝛿-correct scheme (definition 2.14), ss′

is equal to ss with probability at least 1 − 𝛿.

Figure 2.6 shows a schematic example of unauthenticated key exchange via
KEM. Note that KEMs cannot be used to instantiate a NIKE scheme. KEMs
require exchanging the ciphertext; they do not allow combining a secret key
with a public key in the same way that the NIKE.SharedSecret operation does.

A B

(pk𝑎, sk𝑎) ←$ KEM.Keygen()

pk𝑎

(ss, ct) ←$ KEM.Encapsulate(pk𝑎)

ct

ss′ ← KEM.Decapsulate(sk𝑎, ct)

ss = ss′ with probability 1 − 𝛿

Figure 2.6: Simple key exchange via KEM

Some schemes have a failure probability, in which the two parties in a key
exchange disagree on the computed shared secret. As these failures may allow
adversaries in our security proofs to distinguish keys from random, we define
the delta-correctness of KEMs.

Definition 2.14 (Delta-correctness of KEMs). A key encapsulation mecha-
nism KEM is 𝛿-correct [178] if

Pr [KEM.Decapsulate(sk, ct) ≠ ss |(ss, ct) ←$ KEM.Encapsulate(pk)] ≤ 𝛿,

taking the probability over (pk, sk) ←$ KEM.Keygen() and the random coins
that are used in KEM.Encapsulate.

The standard security definitions for a KEM require that the shared secret
be indistinguishable from random (IND), given just the public key (chosen
plaintext attack (CPA)) or additionally given access to a decapsulation oracle
(chosen ciphertext attack (CCA)).Wemake use of a restricted formof IND-CCA
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𝐺IND-𝑎𝑡𝑘KEM,𝒜

1: (pk⋆, sk⋆) ←$ KEM.Keygen()
2: 𝑏 ←$ {0, 1}
3: (ss⋆0 , ct⋆) ←$ KEM.Encapsulate(pk⋆)
4: ss⋆1 ←$𝒦
5: 𝑏′ ←$𝒜𝒪(pk⋆, ct⋆, ss⋆𝑏 )
6: return ⟦𝑏′ = 𝑏⟧

Oracle 𝒪(ct) for IND-CPA
1: return ⊥

Oracle 𝒪(ct) for IND-1CCA and IND-CCA

1: if ct ≠ ct⋆ (for IND-1CCA: and this is first 𝒪 query) then
2: return KEM.Decapsulate(sk⋆, ct)
3: else
4: return ⊥
5: end if

Figure 2.7: Security experiments for indistinguishability (IND) of KEMs under
chosen plaintext (𝑎𝑡𝑘 = CPA), single chosen ciphertext (𝑎𝑡𝑘 =
1CCA), and (multiple) chosen ciphertext (𝑎𝑡𝑘 = CCA) attacks.

security where the adversary can make only a single query to its decapsulation
oracle; we denote this IND-1CCA. Although no IND-1CCA KEMs are expected
to be standardized in the NIST PQC standardization project, Huguenin-
Dumittan andVaudenay have shown that IND-1CCAKEMsmay be constructed
that aremore efficient than IND-CCAKEMs that require the Fujisaki–Okamoto
transform [182].

Definition 2.15 (Indistinguishability security of KEMs). The indistinguishabil-
ity experiments IND-CPA, IND-1CCA, and IND-CCA for KEMs are shown in
figure 2.7. The advantage of 𝒜 in breaking IND-𝑎𝑡𝑘 security of KEM, for
𝑎𝑡𝑘 ∈ {CPA, 1CCA, CCA}, is

AdvIND-𝑎𝑡𝑘KEM,𝒜 = |Pr [𝐺IND-𝑎𝑡𝑘KEM,𝒜 ⇒ 1] −
1
2
| .
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. Secure key-exchange protocols

In the above, we have hinted towards key-exchange protocols, especially
as we discussed DH key exchange, NIKE, and KEMs. Indeed, all of these
primitives immediately define protocols that exchange keys as we have seen
in e.g. figures 2.5 and 2.6. A key-exchange protocol is a sequence of operations
where two parties at the end agree on a shared secret key.

Note that protocols constructed naively from primitives, as shown above for
DH and KEMs, are often not secure against trivial impersonation attacks. To
construct secure protocols, we can use the primitives described in this chapter
as building blocks to define larger protocols. To overcome the impersonation
attacks mentioned, we, for example, could remove the generation of new
keys in the first steps of figures 2.5 and 2.6 and use static keys associated
with the identities of A and B. We would then add the distribution of the
keys to the protocol as an assumption before executing the steps given in the
diagrams. Alternatively, we might layer one or more separate protocols on top
of a given “naive” key-exchange protocol. For example, TLS uses signatures
in the protocol to provide the required authentication properties. To verify
these signatures we of course need to provide the parties in the protocol with
the public keys in some verifiable way; we give more details on TLS’s solution
to this problem in the next chapter.

.. Forward secrecy

A problem of the static-keys solution for secure key exchange described above
is the fact that the shared secret will only remain secure as long as the static
private keys remain secure. We can assume that any attackers to our key-
exchange protocols are patient: they might record key exchanges and any
transmitted information that was encrypted with the resulting shared secret
keys. Thismeans that the value of the static private key in such a protocol keeps
increasing, as it will allow an attacker to recover more and more previously
transmitted information. Meanwhile, the secrecy of static keys is constantly
being eroded: for example, a new software vulnerability that allows an attacker
access to the machine to pull out the keys might be discovered at any time.

Forward secure protocols sever this relationship between previous execu-
tions of the protocol and the static private keys [120]. To achieve forward
secrecy, each execution of the protocol computes brand-new key exchange
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keys. The static keys of the peers are only used to authenticate the exchange.
After the shared secret has been computed in the protocol, the key-exchange
keys are thrown away: they are ephemeral.

Note that there exist many (weaker) variants of forward secrecy. Indeed, in
section 7.1.7, to describe the nuanced authentication and downgrade security
properties of KEMTLS, we will introduce variants where the shared secret
keys only remain forward secure if the adversary was not active during the
execution of the protocol.

Implementations also may choose to weaken the forward secrecy by using
an ephemeral key for a certain number of sessions or a certain amount of time.
This may for example be done for performance reasons if key generation is
(computationally) expensive.1 We should note that this behavior may require
stronger security properties from the ephemeral key exchange algorithm (for
example, it may require IND-CCA rather than IND-CPA security). Additionally,
the more sessions such a reused “ephemeral” secret key is used in, the more
valuable the key becomes to attackers. We refer to [2, 134, 252, 331, 348] for
some further discussion on the caveats of ephemeral (DH) key reuse in TLS.

. Post-quantum cryptography

Though not strictly necessary for understanding the work described in the
next chapters, we will give a brief overview of the quantum threats to what
we refer to as “classical” cryptography. We hope that this will provide a bit of
context and set the background for our work. We will also briefly go into the
main post-quantum asymmetric primitives.

.. Quantum attacks on classic cryptographic

As we touched upon in the introduction, many of the cryptographic schemes
that we rely upon today are vulnerable to attacks by quantum computers. This
is not because quantum computers are vastly superior in general computing
power. A quantum computer does not break those cryptographic systems
through brute force, it cannot simply exhaustively attempt decryption with
all possible keys in minutes. Rather, quantum computers enable quantum

1Indeed, server-side ephemeral (finite-field)DHkey reuse was the default inOpenSSL
(until 2016) and Microsoft SChannel.

33



2 Preliminaries

algorithms, which employ the characteristics of the quantum mechanisms
present in a quantum computer to approach certain computational problems
from a completely different angle.

The currently most used asymmetric cryptographic algorithms are based
on one of two mathematical difficulties: the discrete-logarithm problem (re-
covering 𝑎 given 𝑎𝐺 ∈ 𝔾, relevant to, e.g., DH and elliptic-curve-based
cryptography), or the integer factorization problem (recovering prime num-
bers 𝑝, 𝑞 given 𝑝 ⋅ 𝑞, relied on by, most notably, RSA). Both of these problems
fall prey to algorithms designed by Shor, who proposed what became known
as Shor’s algorithm for integer factorization and for solving discrete loga-
rithms [324]. Shor’s algorithm solves either of these problems in polynomial
time, given a large enough quantum computer—this completely wipes out
the cryptographic security of these schemes.

For symmetric algorithms, the story is a bit more nuanced. The best known
quantum attack on most symmetric schemes, such as AES, is a quantum-
computer-accelerated brute-force search. The relevant quantum algorithm
here is Grover’s algorithm, which reduces a search problem that would, on
a regular computer, take 2𝑛 steps to solve, to √2𝑛 = 2

𝑛
2 steps [165]. As a

result, we can say that Grover halves the bit-security level (definition 2.1) of
an algorithm. Grover is optimal for the black-box search problem [39]. This
means that any other quantum attacks on symmetric algorithms that aim to
do better will have to “open the black box”, i.e., use algorithm particulars.

To counter Grover’s algorithm, we can simply switch to symmetric primi-
tives that have double the classic bit-security level. Fortunately, many schemes
of which we currently use 128-bit (classically) secure instances, also have
variants at 256-bit (classically) security levels. Although these variants take
slightly more computation time, they are already widely deployed and used,
suggesting there are no significant practical objections to this move. Some
have however pointed to the large size of the quantum computer that is re-
quired to run Grover’s algorithm. Following this argument, smaller increases
than doubling pre-quantum security levels have been suggested [145].

None of the currently announced quantum computers can run Shor’s or
Grover’s algorithms, which need large quantities of stable, error-corrected
quantum bits. There is no way to tell when a quantum computer that can run
them will be available, but considering the vast commercial, personal privacy,
and state security risks tied to the algorithms threatened by such a quantum
computer, it is better to be prepared.
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.. Post-quantum cryptography

Post-quantum cryptography describes cryptographic schemes that hold up
to attacks using quantum computers. However, crucially, post-quantum
cryptography does not require quantum computers to run: these schemes
are intended to protect today’s computers and information. As described
above, symmetric algorithms can be easily protected from Grover’s algorithm
within currently specified schemes. Consequently, whenever we refer to post-
quantum cryptography we generally refer to asymmetric schemes meant to
replace RSA, Diffie–Hellman, and elliptic-curve cryptography.

Most of the proposed algorithms can be related to one of a small set of
mathematical constructions: lattices, error-correcting codes, isogenies, or
multivariate equations. There are also schemes whose security is based on
symmetric hash functions. We briefly describe these categories below.

Lattice-based cryptography

In the NIST PQC standardization project, lattice-based schemes represented
the majority of submissions. Three of the four algorithms selected for stan-
dardization are based on lattices, namely KEM Kyber [319], and signature
schemes Dilithium [241] and Falcon [293]. Lattice-based schemes typically
have moderately sized keys, ciphertexts, or signatures; their sizes range from
hundreds of bytes to a few kilobytes. Many lattice-based schemes are also very
computationally efficient: even though the keys, ciphertexts, or signatures are
much larger than their RSA and especially elliptic-curve-based equivalents,
lattice-based schemes often rival them in performance. As these characteristics
are generally favorable, most submissions to the NIST PQC standardization
project were lattice-based, and the schemes mentioned above were three of
the four first selected for standardization in July 2022.

Code-based cryptography

Already in 1978, Robert McEliece proposed a public-key encryption scheme
based on error-correcting codes [248]. Error-correcting codes are used in
communication to correct bit-flips and other transmission errors. However,
decoding a random linear code is NP-hard, so most transmission applications
use specific codes with efficient decoding algorithms. McEliece’s cryptosystem
however disguises the specific code so that the efficient decoding algorithm
is hidden. The Classic McEliece [7] KEM submission in the NIST PQC
standardization project is a direct descendant of the original proposal: as such,
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it is considered a very conservative choice. Encapsulation and decapsulation
are quite fast; however, Classic McEliece’s key generation operation is slow.
The most important disadvantage of code-based cryptography is the large
size of the public keys. A Classic McEliece public key ranges in size from
about 260 kB to over 1.3MB. The HQC [3] and BIKE [17] KEMs are two
other KEM submissions in the NIST PQC standardization projects that are
based on codes, though they use a different design than Classic McEliece.

Isogeny-based cryptography

Isogeny-based cryptography is a very recent development; the first schemes
were proposed in the late nineties and early 2000s [107, 341], and only much
more recently have they gainedmuch attention. They rely onmappings, called
isogenies, between elliptic curves. The two most notable examples of isogeny-
based schemes in recent years are SIKE [197] and CSIDH2 [91]. SIKE was a
round-4 KEM submission in the NIST PQC standardization project before it
fell to a devastating new attack in July 2022 [90, 242, 304]. CSIDH is not part
of the NIST post-quantum standardization project but deserves a mention
as it currently is one of the few known post-quantum NIKEs. The isogeny
schemes have small public keys and ciphertexts; however, the computational
complexity is much larger than the lattice-based schemes. Also, isogeny-based
schemes have only been studied for a few years at the time of writing, so many
have concerns new attacks may be discovered.

Multivariate-based cryptography

Multivariate-based cryptography is based on systems of equations. The most
prominent example is the unbalanced oil and vinegar (UOV) digital signa-
ture scheme. It is also one of the few multivariate-based systems that have
held up against cryptanalysis: the security of the LUOV [54], GeMSS [89],
MQDSS [310], and Rainbow [122] submissions to the NIST PQC standardiza-
tion project was all reduced by cryptanalysis. It was announced that UOV
will be submitted to NIST’s on-ramp for digital signatures [52]. A drawback
of UOV is the very large public key sizes; in the smallest instance, the public
key is 330 kB. However, the signatures are very small.

Hash-based cryptography

Finally, hash-based cryptographic schemes are based on cryptographic hash
functions; The most notable examples are hash-based signature schemes,
2Pronounced sea-side, as the authors came up with it on a beach.

36



2.6 Post-quantum cryptography

dating back to Lamport’s one-time signature scheme [230]. The XMSS [84,
181], LMS [249], and SPHINCS+ [184] signature schemes construct a Merkle
tree [254] of keys, which can each be used in a one- or few-time signature.
XMSS and LMS are stateful, which means the user needs to keep track of
which one-time signature keys have been used; SPHINCS+ , which is stateless,
uses a larger number of few-time signature keys to make sure keys are over-
whelmingly unlikely to be used too many times when picked at random. A
stateless scheme requires much less careful consideration of the state, which
needs to be very carefully kept track of in XMSS and LMS: any rollback
allows signature forgery. Such rollbacks may happen in unexpected ways
due to for example implementation details of virtual machines hypervisors
or filesystems [250]. Although the public keys of these schemes are quite
small, signatures are quite large: the smallest SPHINCS+ signature is 7.8 kB.
Also, as the schemes rely on constructing large trees of hashes, they require
significant amounts of computation. However, as these schemes only rely on
the cryptographic security of the hash function, they are very conservative.
Parameters for XMSS and LMS have been selected by the Internet Research
Task Force (IRTF) in Requests for Comments (RFCs) 8391 and 8554 [181,
249], and standardized by NIST [106], while SPHINCS+ has been selected
for standardization in the NIST PQC standardization project.

.. NIST’s security levels

In the NIST PQC standardization project, NIST requested submitters to cat-
egorize the instances of their submitted schemes into one of five security levels.
These security levels relate to the difficulty of breaking the symmetric schemes
AES and SHA-2. How these security levels are to be exactly interpreted has
been the subject of much discussion (see, e.g., [318]), but we provide the
definitions given by NIST in table 2.1 [270].

NIST asked submitters to focus on categories I–III, leaving levels IV and
V for high-security instances. As the project progressed, most submissions
settled on providing parameter sets for security levels I, III, and V.
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Table 2.1: NIST’s categorization of security levels

Level Security description

I At least as hard to break as AES128 (exhaustive key search)
II At least as hard to break as SHA256 (collision search)
III At least as hard to break as AES192 (exhaustive key search)
IV At least as hard to break as SHA384 (collision search)
V At least as hard to break as AES256 (exhaustive key search)
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 TheTLS protocol

The Transport Layer Security (TLS) protocol is possibly themost-used secure-
channel protocol. It provides not only a secure way to transfer web pages [295],
but it is also used to secure communications to mail servers [177, 275] or to set
up VPN connections [280]. The most recent iteration is TLS 1.3, standardized
in August 2018 [298]. TLS 1.3 introduced many enhancements to the TLS
protocol, notably a 1-round-trip time (RTT) handshake, encryption of the
handshake protocol, the possibility to send data in the firstmessage in resumed
handshakes, and a new key-derivation scheme. During the design of TLS 1.3,
there was an intense collaboration with the academic community [287]. Many
proofs, both handwritten and using computer-assisted methods, of the se-
curity of TLS 1.3 have validated the proposed draft protocols and the final
standard [55, 108, 109, 127, 128, 129, 213, 221]. This has increased confidence in
the protocol.

The main goal of TLS is to transmit application data between two peers: a
client and a server. This data is encrypted using a symmetric authenticated-
encryption algorithm. The particular algorithm and the keys used for encryp-
tion are however not generally agreed upon beforehand. The server and client
may also support different versions of TLS, or support different key exchange
or authentication algorithms. So when setting up a TLS 1.3 connection, the
protocol allows the client and server to negotiate the exact parameters that
they are going to use in that particular session. The output of the handshake
protocol that covers this negotiation is the keys that are then used in the record
layer for application data. This means we do not have to make changes to
the record layer or handling of application data in the later chapters where
we propose alternative handshakes; we only need to ensure that the resulting
keys have the right security properties. Thus, we will focus on the handshake
protocol in this thesis and not further discuss the record layer.

The main TLS 1.3 handshake, in which a client is connecting to a server,
assumes the client has no prior knowledge of the server’s preferences or keys.
It allows the peers to agree on a shared secret and authenticates the server to
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the client, unilaterally, by a certificate. Optionally, the server may require the
client to present a client certificate for mutual authentication.

In practice, clients often connect many times to the same server. For this
reason, TLS 1.3 also allows connection setup via a pre-shared symmetric key.
This symmetric key might be obtained out-of-band, but more commonly it is
obtained from a so-called session ticket. Such a ticket can be issued by a server
to a client after completing a full TLS 1.3 handshake. With the ticket, the client
can resume the TLS session when it needs to set up a new connection, avoiding
the full handshake. Note that TLS 1.3’s pre-shared key (PSK) mode is not fit
for low-entropy keys (i.e., passwords) [298, Sec. 2.2]. Prior versions of TLS
supported password-based authenticated key exchange [173, 340], but this
relied on messages that were removed in TLS 1.3. Some designs for password-
based authenticated key exchange have been proposed, but have so far not
gained much traction [22]. However, a new proposal for password-based
authentication in TLS 1.3, based on the newer OPAQUE scheme [198], had
just been put forward at the time of writing [176].

Contributions

This chapter surveys the existing work on TLS and gives context for the
remainder of this thesis. We will first discuss the details of the different
handshakes of TLS 1.3. Next, we will cover the existing proposals for how the
handshakemay be protected against post-quantum attackers. In chapter 11, we
provide an extensive examination of the performance of post-quantumTLS 1.3.
This examination will be contrasted against our proposals for alternative
TLS handshakes, KEMTLS (chapter 5) and KEMTLS-PDK (chapter 6), in the
benchmark results reported in chapters 13 and 14.

. The TLS . handshake

We first cover the most common way that TLS connections are set up: a full
handshake where only the server is authenticated.

The client and server both have preferences for what kind of kinds of
asymmetric and symmetric cryptography they would like to use. For example,
mobile devices without AES acceleration might prefer to use ChaCha20 for
symmetric encryption. Regulatory requirements, most notably FIPS 140
certification [262], may also affect the options under consideration. The
server is additionally set up with a certificate issued by a certificate authority,

42



3.1 The TLS 1.3 handshake

Client Server
static (sig): pk𝑆, sk𝑆

𝑥←$𝔾 𝑥𝐺

𝑦←$𝔾
ss← 𝑦(𝑥𝐺)

𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss)

𝑦𝐺, AEAD𝐾(cert[pk𝑆]‖Sig(sk𝑆, transcript)‖key confirm.)

ss← 𝑥(𝑦𝐺)
𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss)

AEAD𝐾′ (application data)

AEAD𝐾″ (key confirmation)

AEAD𝐾‴ (application data)

Figure 3.1: High-level overview of the TLS 1.3 handshake.

containing its identity and its long-term authentication public key. Most often,
this is an RSA key, though elliptic-curve digital signatures are also supported.
In figure 3.1 we give a high-level overview of the server-authenticated TLS 1.3
handshake protocol, focusing on the signed-Diffie–Hellman (DH) aspect of
the handshake. Figure 3.2 shows a detailed overview of the messages in the
TLS 1.3 handshake, including all the cryptographic computations.

The first message in a TLS handshake is sent by the client. In TLS 1.3, the
client picks its favorite DH key-exchange algorithm and generates a public
key 𝑥𝐺. It submits this to the server along with its other preferences in the
ClientHello message. Note that the client may not know if the server even
supports the chosen key-exchange algorithm. So the server may send a Hello-
RetryRequest message to the client in response to the first choice, telling
it to pick a new public key using an algorithm from the list of algorithms
supported by the server and send a new ClientHello. If the server can use
the 𝑥𝐺 sent by the client, it generates its own public key 𝑦𝐺. It submits this
public key along with the list of algorithms it supports back to the client in
the ServerHello message.
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Client Server

𝑥←$𝔾
ClientHello: 𝑥𝐺, 𝑟𝑐 ←$ {0, 1}256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Expand(ES, "derived", ∅)

𝑦 ←$𝔾

ServerHello: 𝑦𝐺, 𝑟𝑠 ←$ {0, 1}256, selected algs.

HS←HKDF.Extract(dES, 𝑥𝑦𝐺)

accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)
stage 1

accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)
stage 2

dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}
stage2

{ServerCertificate}
stage2

: cert[pk𝑆], int. CA cert.
{ServerCertificateVerify}

stage2
: Sig(sk𝑆, "s certv",CH…SCRT)

fk𝑠←HKDF.Expand(SHTS, "finished", ∅)
{ServerFinished}

stage2
: HMAC(fk𝑠,CH…SCV)

abort if Sig.Verify(pk𝑆,SCV) ≠ 1
abort if SF ≠ HMAC(fk𝑠,CH…CF)

MS←HKDF.Extract(dHS, 0)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…SF)
stage 3

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

fk𝑐←HKDF.Expand(CHTS, "finished", ∅)
{ClientFinished}

stage1
: HMAC(fk𝑐,CH…SF)

abort if Sig.Verify(pk𝐶,CCV) ≠ 1
abort if CF ≠ HMAC(fk𝑐,CH…CKC)

record layer, AEAD-encrypted with key derived from CATS
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Figure 3.2: Detailed overview of the TLS 1.3 handshake with server-only au-
thentication. Note that we have abbreviated labels in key compu-
tations.
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Meanwhile, the server can immediately continue with the remainder of
the handshake. The server computes 𝑥𝑦𝐺 and feeds it into the key sched-
ule. It derives the Handshake Secret (HS) and derives the handshake traffic
keys necessary to encrypt the remainder of the handshake messages. In the
next message from the server, EncryptedExtensions, it may advertise any
TLS extensions that were not necessary for the cryptographic computations.
Next, the server sends its ServerCertificate message. This is followed by
the ServerCertificateVerify message which contains a signature over all the
messages sent so far. The last handshake message that the server sends is
the ServerFinished message. This last message contains a MAC over the
complete transcript. Now, the server has completed its part of the handshake.

The client, after also computing 𝑥𝑦𝐺 using the 𝑦𝐺 received in the Server-
Hello message, computes HS and the handshake traffic keys. It then receives
the messages ServerCertificate, ServerCertificateVerify, and ServerFin-
ished from the server, and verifies them. If verification fails, the connection is
aborted. Otherwise, the client sendsClientFinished, which contains another
MAC over the transcript.

Both the client and the server then proceed with computing theMain Secret
(MS).1 This key is computed immediately from HS. From MS the application
traffic keys are computed, and the handshake is complete.

Note that the server already has all the information necessary to compute
MS before receiving the ClientFinished message. The server may choose
to already send data to the client before ClientFinished is received. If it
does, the server has to accept that it has not yet authenticated the client or the
preferences indicated in the ClientHello message.

Optionally, it is possible to also authenticate the client in this handshake.
We show how this modifies the handshake in figure 3.3. The server sends a
special CertificateRequest message after sending EncryptedExtensions
to request the client’s certificate. If the client receives this message, it needs
to send back ClientCertificate and ClientCertificateVerify messages to
the server.2 It does this after it received the ServerFinished message, before
sending ClientFinished with a MAC over the transcript.

There are additional handshake modes, such as the PSK based handshakes.
1This key was previously called Master Secret but will be renamed to Main Secret as
RFC 8446 is updated by RFC 8446bis [299]. We will use the new name.

2If the client has no appropriate certificate, it sends back an empty ClientCertificate
message and omits ClientCertificateVerify.
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Client Server

𝑥←$𝔾
ClientHello: 𝑥𝐺, 𝑟𝑐 ←$ {0, 1}256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Expand(ES, "derived", ∅)

𝑦 ←$𝔾

ServerHello: 𝑦𝐺, 𝑟𝑠 ←$ {0, 1}256, selected algs.

HS←HKDF.Extract(dES, 𝑥𝑦𝐺)

accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)
stage 1

accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)
stage 2

dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}
stage2

{CertificateRequest}
stage2

{ServerCertificate}
stage2

: cert[pk𝑆], int. CA cert.
{ServerCertificateVerify}

stage2
: Sig(sk𝑆, "s certv",CH…SCRT)

fk𝑠←HKDF.Expand(SHTS, "finished", ∅)
{ServerFinished}

stage2
: HMAC(fk𝑠,CH…SCV)

abort if Sig.Verify(pk𝑆,SCV) ≠ 1
abort if SF ≠ HMAC(fk𝑠,CH…CF)

MS←HKDF.Extract(dHS, 0)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…SF)
stage 3

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

{ClientCertificate}
stage1

: cert[pk𝐶], int. CA cert.
{ClientCertificateVerify}

stage1
: Sig("c certv",CH…CCRT)

fk𝑐←HKDF.Expand(CHTS, "finished", ∅)
{ClientFinished}

stage1
: HMAC(fk𝑐,CH…CCV)

abort if Sig.Verify(pk𝐶,CCV) ≠ 1
abort if CF ≠ HMAC(fk𝑐,CH…SKC)

record layer, AEAD-encrypted with key derived from CATS
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Figure 3.3: Detailed overview of the TLS 1.3 handshake with mutual authenti-
cation.
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A PSK may for example be obtained from session tickets. In PSK-based
handshakes, no certificates are even exchanged and the ephemeral DH key
exchange is optional. The server and the client use it to derive the early
handshake secret (ES). (In handshake where PSKs are not used, ES is derived
from strings of zero bytes.) The client may use this secret key to send 0-RTT
data along the ClientHello message. As we will not discuss PSK mode in
the remainder of this thesis, we will not elaborate further than this informal
description. We refer to the standard, and security analyses such as the work
by Dowling, Fischlin, Günther, and Stebila [127], for more details.

. The TLS . key schedule

The TLS 1.3 handshake can be described as a layering of two protocols. The
initial messages perform an ephemeral key exchange. The resulting key is
used to set up a secure channel for the remainder of the handshake. This
channel is encrypted using (keys derived from) the stage-1 and stage-2 keys in
figures 3.2 and 3.3. Inside this channel, the authentication protocol is executed,
namely exchanging the certificates and signatures. Finally, the application
traffic keys are derived from the stage-3 and stage-4 keys.

To compute all of these different keys, TLS 1.3 has a carefully designed key
schedule. It starts by HKDF.Extract-ing Early Secret (ES) from a pre-shared
key, or a string of zero bytes if there is none (we denote this by ‘0’). From
ES we derive secrets using HKDF.Expand. The derived secrets are context-
separated by different strings for each secret, for example "tls13 c e traffic"
for the Early Traffic Secret.3 They are also bound to the handshake messages
by including an incremental context hash of the messages sent so far. The
transcript hash of messages𝑀1…𝑀𝑛 is computed by H (𝑀1||⋯ ||𝑀𝑛). TLS
assumes this can be computed by absorbing the message into the hash state
one message at a time, such that the messages do not need to be kept in
memory for the entire duration of the handshake.

We thus derive the early traffic secret, which is used for optional 0-RTT
data in handshakes using pre-shared keys. We also derive dES, the “derived”
early traffic secret, which is used in the next key computation as context. The
next secret key, the Handshake Secret (HS), is computed by HKDF.Extract from

3For presentation reasons, we may abbreviate context labels in our handshake dia-
grams.
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dES… HKDF.Extract

𝑥𝑦𝐺

HS HKDF.Expand

label

handshake
transcript

dHS

label: derived
transcript: ∅

CHTS
label: c hs traffic
transcript: CH…SH

fk𝑠

label: s finished
transcript: ∅

…

…

Figure 3.4: Part of the TLS 1.3 key schedule computations.

the DH key exchange and the dES key. Again, the handshake traffic secrets,
CHTS and SHTS, and the derived secret dHS are computed from HS using
HKDF.Expand and appropriate labels and hashed message transcript. The keys
to compute the HMAC in the Finished messages are also derived from HS.

Finally, the Main Secret (MS) and application traffic secrets CATS and
SATS are computed from dHS using HKDF.Extract. As there is no new secret
key, a string of 0 bytes is used as input key. Some other secrets are computed
from MS; for example secrets for the resumption and exporter extensions.
We leave these secrets out for simplicity.

Much work has been done on the security of TLS 1.3 and its components.
For formal analyses of the TLS 1.3 protocol and its key schedule, one can for
example refer to [55, 81, 108, 113, 118, 127, 182], as well as many other works
cited throughout this thesis.

. Preparations for post-quantumTLS

We can straightforwardly replace each of the pre-quantum public-key crypto-
graphic operations in the TLS 1.3 handshake with post-quantum primitives, at
least in theory. The RSA or elliptic-curve signatures on the handshake and in
the certificate ecosystem can be straightforwardly replaced by post-quantum
signatures, as they provide the same functionality. DH key exchange does
not exactly match the interface that post-quantum KEMs provide, but in TLS
we can simply replace the server’s keygen by the encapsulation operation
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and send the ciphertext instead of the server’s public key. A sketch of how
post-quantum primitives fit in TLS 1.3 is shown in figure 3.5. This was already
demonstrated for TLS 1.2 in the 2015 paper by Bos, Costello, Naehrig, and
Stebila, including a proof of the security of replacing DH by KEM key ex-
change [73]. This paper also suggested the use of so-called hybrid primitives.
These combine the post-quantum algorithm with a traditional, pre-quantum
algorithm like ECDH. As breaking a hybrid scheme requires breaking its com-
ponents, this allows the confidence in the implementation and the security
of the pre-quantum scheme against attacks without quantum computers to
carry over to the hybrid scheme.

Client Server
static (PQ-sig): pk𝑆, sk𝑆

(pk𝑒, sk𝑒) ← KEM.Keygen()
pk𝑒

(ss, ct) ← KEM.Encapsulate(pk𝑒)
𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss)

ct, AEAD𝐾(cert[pk𝑆]‖ PQ- Sig(sk𝑆, transcript)‖key confirm.)

ss← KEM.Decapsulate(ct, sk𝑒)
𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss)

AEAD𝐾′ (application data)

AEAD𝐾″ (key confirmation)

AEAD𝐾‴ (application data)

Figure 3.5: A high-level overview of TLS 1.3 with post-quantum primitives.
The DH ephemeral key exchange is replaced by KEM operations,
and the signature uses a post-quantum signature scheme.

Public experiments by industry parties started in 2016 with the CECPQ1
(“combined elliptic-curve and post-quantum 1”) experiment in the Google
Chrome browser [232]. It combined X25519 ECDH [41] with NewHope lattice-
based KEM key exchange [8] in the TLS 1.2 handshake. A follow-up CECPQ2
experiment by Google together with Cloudflare using TLS 1.3 was announced
in late 2018 [226, 233], using a combination of X25519 and the lattice-based
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scheme NTRU-HRSS [186, 314],4 and X25519 together with the isogeny-based
scheme SIKE [197]. The first results from this experiment are presented
in [227]. In late 2019, Amazon announced support for two elliptic-curve with
post-quantum hybrid modes was added in AWS KMS [179]; one also using
SIKE, the other one using the code-based scheme BIKE [17].5

On the academic side, the Open Quantum Safe (OQS) initiative [333] pro-
vides prototype integrations of post-quantum and hybrid key exchange in
TLS 1.2 and TLS 1.3 to the OpenSSL library [279]. First results in terms of
feasibility of migration and performance using OQS were presented in [110];
more detailed benchmarks are presented in [281]. Meanwhile, draft specifica-
tions for hybrid key exchange have started the discussion on standardization
of post-quantum cryptography for TLS [87, 180, 210, 315, 316, 332, 352].

Previous works have mainly focused on post-quantum confidentiality;
there have been fewer experiments deploying post-quantum authentication.
Sikeridis, Kampanakis, and Devetsikiotis [326] have measured the perfor-
mance of post-quantum signature schemes between servers in two data cen-
ters. They concluded that out of the (round-2) schemes they tested, only two
(Falcon [293] and Dilithium [241]) seem viable for deployment in TLS 1.3.
Experiments by Cloudflare [351] that added dummy data to TLS connections
to measure the impact of the larger sizes of post-quantum signature schemes,
seem to support these results. Still, when using Dilithium as a drop-in replace-
ment for all signatures inTLS (which adds 17 kB to the handshake), Cloudflare
reports an expected 60–80% slowdown for the Linux default congestion win-
dow of 10maximum segment size (MSS). Falcon has more favorable public
key and signature sizes but requires hardware support for 64-bit floating-point
operations. Without this, Sikeridis, Kampanakis, and Devetsikiotis report
that signing handshakes with Falcon is not viable [326].

We will restrict our focus to public-key authenticated TLS, rather than
pre-shared key (which uses symmetric algorithms for authentication and can
readily have its ephemeral key exchange replaced with a post-quantum KEM)
or password-authenticated TLS (for which there has been some exploration
of post-quantum algorithms [155]).

While post-quantum algorithms generally have larger public keys, cipher-
4NTRU-HRSS has since merged into the NTRU [98] submission in the NIST PQC
standardization project, from which it was later eliminated.

5BIKE is a round-4 submission in the NIST standardization project. SIKE was broken
shortly after round 4 started [90, 242, 304].
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texts, and signatures compared to pre-quantum elliptic-curve schemes, the
gap is bigger for post-quantum signatures than post-quantum KEMs. We
will return to this in the following chapters. In part III, we report on the
performance of post-quantum key exchange and authentication in TLS 1.3.
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 Post-quantumOPTLS

When the IETF TLS working group started the work on TLS 1.3, they set
out to build the new handshake on a more solid foundation. TLS 1.2 was
built on the same foundations as its wounded predecessors and contains a
patchwork of implementation caveats and countermeasures. This was a result
of the development process of these earlier versions, which Paterson and
Van der Merwe [287] describe as a “design-release-break-patch” cycle: a new
handshake would be put on paper and deployed in applications, after which
security researchers would find vulnerabilities that would then be patched.
The development of TLS 1.3 involved the academic community in a much
more significant way and resulted in a significant cleanup of the standard.

The OPTLS proposal by Krawczyk and Wee [221], which we summarize in
this chapter, was a significant step in this direction. We provide a sketch of a
variant of OPTLS in figure 4.1. It provides, among other things, a signature-
free TLS handshake with authentication via long-term DH keys. The server
sends a certificate with a DH public key. It then constructs a shared secret
by combining its corresponding long-term secret key with the ephemeral
public key from the client. This key is then used to generate a MAC, which
authenticates the server. OPTLS was the foundation of early drafts of TLS 1.3
but was later dropped in favor of the familiar handshake authentication via
signature. One reason for this was that otherwise different certificates would
be necessary for different versions of TLS. Other elements of OPTLS, such as
the new key schedule we discussed in section 3.2, still live on.

Contributions

This chapter surveys the OPTLS proposal and other proposals for authenti-
cated key exchange without handshake signatures. It provides context for and
leads into the development of KEMTLS in chapter 5. Our main contribution to
the discussion around OPTLS is found in chapter 12, where we examine the
performance of OPTLS in the post-quantum setting.
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4 Post-quantum OPTLS

Client Server

static keys: 𝑠 ∈ 𝔾, 𝑠𝐺
𝑥←$𝔾

𝑥𝐺

𝑦←$𝔾

ss𝑒 ← 𝑦(𝑥𝐺)

ss𝑠 ← 𝑠𝑥𝐺

𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss𝑒)

𝑦𝐺, AEAD𝐾 (cert[𝑠𝐺]‖key confirmation of ss𝑠 and ss𝑒)

ss𝑒 ← 𝑥(𝑦𝐺)

ss𝑠 ← 𝑥(𝑠𝐺)

𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss𝑒)

AEAD𝐾′ (application data)

AEAD𝐾″ (key confirmation)

AEAD𝐾‴ (application data)

Figure 4.1: Sketch of theOPTLS handshake protocol as proposed as an TLS 1.3
extension in draft-ietf-tls-semistatic-dh [302].
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4.1 Revisiting OPTLS

. Revisiting OPTLS

OPTLSwas at the heart of early designs for TLS 1.3 but was dropped in favor of
signed-Diffie–Hellman for the final standard. Starting in 2018, there has been
an attempt to revive OPTLS in TLS 1.3 [302], but so far we do not see that these
drafts have gained much traction. (The only prior implementation of OPTLS
that we are aware of is described in the Master’s thesis by Kuhnen [224].)

If a signature-free approach for the TLS handshake has not been very
successful in the past, why revisit it now? We see two reasons why OPTLS
has not gained much traction; both change with the eventual move to post-
quantum cryptography in TLS.

To tap the full potential of OPTLS, servers need to obtain certificates
containingDHpublic keys instead of signature keys. This alsomeans that they
need to use different certificates to support different TLS versions, as prior
versions of TLS would still use authentication based on signatures. While in
theory, this is not a problem it requires certificate authorities to adapt their
software and needs other changes to the public-key infrastructure, which
would have been an obstacle to TLS 1.3’s goals of widespread deployment and
fast adoption. However, themove to post-quantum authentication will require
rolling out a new generation of certificates regardless of whether signatures or
KEMs are used for authentication.

Moreover, when using pre-quantum primitives based on elliptic curves,
the advantages of OPTLS compared to the traditional TLS 1.3 handshake are
limited. The performance differences between elliptic-curve Diffie–Hellman
operations and elliptic-curve signing and verification algorithms are not very
large, and the sizes of signatures and signature public keys are small. A TLS
implementation with secure and optimized elliptic-curve arithmetic imple-
mented for ECDH already has most of the critical code needed to implement
elliptic-curve signatures. This also means that, in protected applications,
not much extra effort has to be put into hardening measures against, e.g.,
side-channel and fault attacks to support both operations.

For current post-quantum key-exchange algorithms and signature schemes,
this picture changes. It is possible to choose key-exchange algorithms that offer
considerably smaller sizes and much better speed than any of the signature
schemes. Also, post-quantum signatures and key-exchange algorithms no
longer share large parts of the code base; even though lattice assumptions
can be used to construct both key-exchange and signature algorithms, such
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4 Post-quantum OPTLS

schemes need different parameters and thus different optimized routines.
Thus, in the post-quantum setting, the signature-free approach to the TLS
handshake reduces the size of the trusted code base and potentially the amount
of traffic sent.

. Authenticated key exchange without signatures

There is a long history of protocols for authenticated key exchange (AKE)
without signatures. Key transport uses public-key encryption: authentication
is demonstrated by successfully decrypting a challenge value. Examples of
key transport include the SKEME protocol by Krawczyk [217] and RSA key-
transport cipher suites in all versions of SSL and TLS up to TLS version 1.2
(but RSA key transport did not provide forward secrecy). Bellare, Canetti,
and Krawczyk [31] gave a protocol that obtained authentication from DH key
exchange: DH keys are used as long-term credentials for authentication, and
the resulting shared secret is mixed into the session key calculation to derive
a key that is implicitly authenticated, meaning that no one but the intended
parties could compute it. Some of these protocols go on to obtain explicit
authentication via some form of key confirmation. Many DH-based AKE pro-
tocols have been developed in the literature. Other classic examples than the
ones mentioned before are theMenezes–Qu–Vanstone (MQV) protocol [236],
the HMQV variant by Krawczyk [215], NAXOS [229], and more recently the
Noise protocol framework [291]. Protocols using DH-based authentication
are used in products such as Signal [290] and WireGuard [126].

There are a few constructions that use generic KEMs for AKE, rather than
static DH [76, 149]. A slightly modified version of the [149] KEM AKE has
recently been used to upgrade the WireGuard handshake to post-quantum
security [185]. One might think that the same approach can be used for
KEM-based TLS, but there are two major differences between the WireGuard
handshake and a TLS handshake. First, theWireGuard handshake is mutually
authenticated, while the TLS handshake typically features server-only authen-
tication. Second, and more importantly, the WireGuard handshake assumes
that long-term keys are known to the communicating parties in advance,
while the distribution of the server’s long-term certified key is part of the
handshake in TLS, leading to different constraints on the order of messages
and the number of round trips.
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4.3 Post-quantum non-interactive key exchange

. Post-quantum non-interactive key exchange

As pointed out by Kuhnen, OPTLS’ combining of the ephemeral public
key from the client with the server’s long-term key makes use of DH as a
NIKE [224]. The inherently interactive character of a KEM creates issues
for protocol designers relying on the properties of NIKE. When used with
long-term keys (and a suitable PKI), NIKE allows a user Alice to send an au-
thenticated ciphertext to an offline user Bob. Signal’s X3DH handshake [245]
is a notable example using this feature of NIKEs. Indeed, [79] shows that a
naive replacement of the DH operations by KEMs does not work. A straight-
forward adaptation of OPTLS to a post-quantum setting would also require a
post-quantum NIKE.

No post-quantumNIKEs are part of theNIST PQC standardization project.
For a long time, CSIDH was the only known, somewhat efficient construction
for a post-quantum NIKE. In early 2023, a new proposal was put forward,
called Swoosh [153]. There do not yet exist implementations of its passively-
secure variant, however, and it has very large public keys: the actively secure
parameter set for Swoosh has 120 kB public keys. In chapter 12, we will
measure the performance of OPTLS when instantiated with CSIDH, and
further discuss post-quantum non-interactive key exchange.

. The OPTLS handshake protocol

In figure 4.2, we give a detailed overview of the OPTLS handshake protocol
and its key schedule for server-only authentication. We will refer to the
version of the protocol as it was proposed by draft-ietf-tls-semistatic-dh
as an extension to the TLS 1.3 handshake protocol [302]. This extension has
some minor differences from the protocol as proposed by Krawczyk and Wee,
to minimize the number of changes to the handshake protocol. Notably, it
transmits the authentication message through the ServerCertificateVerify
message and does not include the shared secret that was computed from the
server’s static key into the key-derivation scheme of the main handshake.

The TLS 1.3 client that wishes to authenticate through the OPTLS mecha-
nism indicates support for OPTLS certificates in its ClientHello message. It
otherwise does not change anything from the TLS 1.3 ClientHello message
and the server replies to the ephemeral key exchange in the ServerHello
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4 Post-quantum OPTLS

Client Server

𝑥←$𝔾
ClientHello: 𝑥𝐺, 𝑟𝑐 ←$ {0, 1}256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Expand(ES, "derived", ∅)

𝑦 ←$𝔾

ServerHello: 𝑦𝐺, 𝑟𝑠 ←$ {0, 1}256, selected algs.

HS←HKDF.Extract(dES, 𝑥𝑦𝐺)
accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)

stage 1
accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)

stage 2
dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}
stage2

{ServerCertificate}
stage2

: cert[𝑠𝐺], int. CA cert.

𝑥𝑆𝑆←HKDF.Extract (0, 𝑥𝑠𝐺)
fkss←HKDF.Expand (𝑥𝑆𝑆, "finished", ∅)

{ServerCertificateVerify}
stage2

: HMAC(fkss,CH…SCRT)

fk𝑠←HKDF.Expand(SHTS, "finished", ∅)
{ServerFinished}

stage2
: HMAC(fk𝑠,CH…SCV)

abort if SCV ≠ HMAC(fkss,CH…SCRT)
abort if SF ≠ HMAC(fk𝑠,CH…CF)

MS←HKDF.Extract(dHS, 0)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…SF)
stage 3

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

fk𝑐←HKDF.Expand(CHTS, "finished", ∅)
{ClientFinished}

stage1
: HMAC(fk𝑐,CH…SF)

abort if CF ≠ HMAC(fk𝑐,CH…CKC)

record layer, AEAD-encrypted with key derived from CATS
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Figure 4.2: Detailed overview of the OPTLS handshake with server-only au-
thentication, as proposed as an TLS 1.3 extension in draft-ietf-
tls-semistatic-dh [302].
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4.5 Conclusions

message as it would in TLS 1.3. The OPTLS server has a certificate that con-
tains a long-term DH public key 𝑠𝐺. It transmits this key to the client in
the ServerCertificate message. This static key is combined with the client’s
ephemeral key share. The client and the server compute the MAC shared
secret fkss from the resulting static-ephemeral key through an HKDF.Extract
and HKDF.Expand sequence. As part of the effort to maximize code reuse, the
extension proposal reuses the computation for the Finished messages to com-
pute the authentication code. The server then transmits the resulting MAC in
the ServerCertificateVerify message. This completes the authentication of
the server to the client; as mentioned above, the authentication shared secrets
are not included in the rest of the TLS 1.3 key schedule (though the public
keys and MAC are still included as part of the transcript).

. Conclusions

In the original proposal, the security properties of OPTLS were shown by a
brief pen-and-paper multi-stage proof. The parts of the proposal that survived
into TLS 1.3 have been considered by those who studied the security of TLS 1.3,
including [55, 81, 108, 109, 127, 128, 129, 213]. In this thesis, we restrict ourselves
to the question: is OPTLS, instantiated with post-quantum NIKE, a suitable
candidate for securing the post-quantum internet?

Additionally, we briefly investigate what it means for the performance and
practicality of CSIDH if we choose parameters to resist quantum attacks in the
cost models used by [71, 97, 289]. Using highly-optimized implementations
for CSIDH at higher security levels, we can show the (im)practicality of the
scheme in a protocol designed for NIKE, like OPTLS. In turn, if using CSIDH
results in poor performance, OPTLS does not seem a viable candidate for post-
quantum TLS. We will discuss how we implemented OPTLS with CSIDH in
chapter 10. The results of the experiment will be shown in chapter 12.
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Although the TLS 1.3 handshake can bemade post-quantum straightforwardly,
as we discussed in section 3.3, this is not without challenges. The post-
quantum KEMs and signature schemes are very different from pre-quantum
RSA and DH primitives; especially in that the key exchange and signing
operations are not similar in runtime performance or sizes of public keys,
ciphertexts, and signatures. Generally, the post-quantum signature schemes
considered in theNIST PQC standardization project are larger, slower, and/or
harder to implement securely than post-quantum KEMs. The transition to
post-quantum cryptography thus gives us new trade-offs, but it also allows us
to examine the status quo.

Contributions

In this chapter, we examine an alternative post-quantum TLS handshake.
We build on the OPTLS proposal and present a signature-less handshake
protocol. Our goal is to achieve a TLS handshake that provides full post-
quantum security—including confidentiality and authentication—optimizing
for the number of round trips, communication bandwidth, and computational
costs. Our main technique is to rely on KEMs for authentication, rather than
signatures. We call our proposal KEMTLS. In chapter 7, we examine the security
of KEMTLS, and in chapter 13 we show how it is more efficient than TLS 1.3 in
most scenarios, in bandwidth, computation, and handshake time.

. Authenticated key exchange from KEMs

Authenticated key exchange using KEMs for authentication is not new, with
several examples of mutually authenticated [72, 76, 116, 149] and unilaterally
authenticated [72] protocols. The typical pattern among these, restricted
to the case of unilaterally authenticated key exchange, is as follows (c.f. [72,
Fig. 2]). The server has a static KEM public key, which the client is assumed
to (somehow) have a copy of in advance. In the first flight of the protocol, the
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5 Post-quantum KEMTLS

client sends a ciphertext encapsulated to this static key, along with the client’s
own ephemeral KEM public key; the server responds with an encapsulation
against the client’s ephemeral KEM public key. The session key is the hash of
the ephemeral-static and ephemeral-ephemeral shared secrets.

This is a problem for TLS: typically, a client does not know the server’s
static key in advance, but learns it when it is transmitted (inside a certificate)
during the TLS handshake. One obvious solution to address this issue is for
the client to first request the key from the server and then proceed through
the typical protocol flow. However, this increases the number of round trips
and thus comes at a steep performance cost.

The other trivial approach to avoid additional round trips is to simply
assume a change in the internet’s key distribution and caching architecture
that distributes the servers’ static key to the client before the handshake. For
example, in embedded applications of TLS, a client may only ever communi-
cate with very few different servers that are known in advance; in that case,
the client can just deploy with the server’s static keys pre-installed. Another
option would be to distribute certificates through DNS as described in [200].
Neither is a satisfactory general solution, as the former limits the number of
servers a client can contact (since certificates must be preinstalled), and the
latter requires changes to the DNS infrastructure and precludes connections
to servers identified solely by IP address.

. KEMTLS

KEMTLS uses key encapsulation mechanisms as primary asymmetric building
blocks, for both forward-secure ephemeral key exchange and authentication.
(We unavoidably still rely on signatures by certificate authorities to authenti-
cate long-term KEM keys.) We focus on the most common use case for web
browsing, namely key agreement with server-only authentication, but our
techniques can be extended to client authentication as shown in section 5.5.
Note that the scenario we are considering is orthogonal to resumption mech-
anisms such as 0-RTT introduced by TLS 1.3.

With KEMTLS, we can retain the same number of round trips until the client
can start sending encrypted application data as in TLS 1.3 while reducing
the communication bandwidth. We discuss the performance characteristics
of KEMTLS in chapter 13. Compared to TLS 1.3, application data transmitted
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5.2 KEMTLS

Client Server

static (KEMs): pk𝑆, sk𝑆
(pk𝑒, sk𝑒) ← KEMe .Keygen()

pk𝑒

(ss𝑒, ct𝑒) ← KEMe .Encapsulate(pk𝑒)

𝐾1, 𝐾′1 ← KDF(ss𝑒)
ct𝑒, AEAD𝐾1 (cert[pk𝑆])

ss𝑒 ← KEMe .Decapsulate(ct𝑒, sk𝑒)

𝐾1, 𝐾′1 ← KDF(ss𝑒)

(ss𝑆, ct𝑆) ← KEMs .Encapsulate(pk𝑆)

AEAD𝐾′1 (ct𝑆)

ss𝑆 ← KEMs .Decapsulate(ct𝑆, sk𝑆)

𝐾2, 𝐾′2 , 𝐾″2 , 𝐾‴2 ← KDF(ss𝑒‖ss𝑆)

AEAD𝐾2 (key confirmation), AEAD𝐾′2 (application data)

AEAD𝐾″2 (key confirmation)

AEAD𝐾‴2 (application data)

Figure 5.1: A high-level overview of KEMTLS. Instead of using signatures, the
server authenticates via a KEM key exchange.
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during the handshake is implicitly, rather than explicitly authenticated, and
has slightly weaker downgrade resilience and forward secrecy than when
signatures are used; but full downgrade resilience and forward secrecy is
achieved once the KEMTLS handshake completes; see chapter 7 for details.

. The KEMTLS protocol

KEMTLS achieves unilaterally authenticated key exchange using solely KEMs
for both key establishment and authentication, without requiring extra round
trips and without requiring caching or external pre-distribution of server
public keys: the client can send its first encrypted application data after just
as many handshake round trips as in TLS 1.3.

KEMTLS is to a large extent modelled after TLS 1.3. A high-level overview
of the handshake is shown in figure 5.1, and a detailed protocol flow is given
in figure 5.2. Note that figure 5.2 omits various aspects of the TLS 1.3 pro-
tocol that are not relevant to our presentation and cryptographic analysis
but which would still be essential if KEMTLS was used in practice. KEMTLS

is phrased in terms of two KEMs: KEMe for ephemeral key exchange, and
KEMs for implicit authentication; one could instantiate KEMTLS using the same
algorithm for both KEMe and KEMs (as we do in all our instantiations), or dif-
ferent algorithms for different efficiency trade-offs, such as an algorithm with
slow key generation but fast encapsulation for the long-term KEM. Either or
both could also be a “hybrid” KEM combining post-quantum and traditional
assumptions [60].

There are conceptually three phases to KEMTLS, each of which establishes
one or more “stage” keys.

Phase : Ephemeral key exchange using KEMs

After establishing the TCP connection,1 the KEMTLS handshake begins with
the client sending one or more ephemeral KEM public keys pk𝑒 in its Client-
Hello message, as well as the list of public-key authentication, key exchange,
and authenticated-encryption methods it supports. The server responds

1Our exposition and experiments deal with KEMTLS running over TCP, analogously
to TLS 1.3. As with TLS 1.3, the overhead from the TCP handshake may be reduced
by a variety of techniques as discussed in [100], e.g., TCP Fast Open [101] or
QUIC [193].
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5.3 The KEMTLS protocol

Client Server

(pk𝑒, sk𝑒) ←$ KEMe.Keygen()
ClientHello: pk𝑒, 𝑟𝑐 ←$ {0, 1}

256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Expand(ES, "derived", ∅)

(ss𝑒, ct𝑒) ←$ KEMe.Encapsulate(pk𝑒)

ServerHello: ct𝑒, 𝑟𝑠 ←$ {0, 1}256, selected algs.

ss𝑒←KEMe.Decapsulate(ct𝑒, sk𝑒)

HS←HKDF.Extract(dES, ss𝑒)
accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)

stage 1
accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)

stage 2

dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}
stage2

{ServerCertificate}
stage2

: cert[pk𝑆], int. CA cert.

(ss𝑆, ct𝑆) ←$ KEMs.Encapsulate(pk𝑆)
{ClientKemCiphertext}

stage1
: ct𝑆

ss𝑆←KEMs.Decapsulate(ct𝑆, sk𝑆)

AHS←HKDF.Extract(dHS, ss𝑆)
accept CAHTS←HKDF.Expand(AHS, "c ahs traffic",CH…CKC)

stage 3
accept SAHTS←HKDF.Expand(AHS, "s ahs traffic",CH…CKC)

stage 4

dAHS←HKDF.Expand(AHS, "derived", ∅)

MS←HKDF.Extract(dAHS, 0)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ClientFinished}stage3 : CF←HMAC(fk𝑐,CH…CKC)

abort if CF ≠ HMAC(fk𝑐,CH…CKC)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}stage4 : SF←HMAC(fk𝑠,CH…CF)

abort if SF ≠ HMAC(fk𝑠,CH…CF)

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 6

record layer, AEAD-encrypted with key derived from SATS
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Figure 5.2: The unilaterally authenticated KEMTLS handshake
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in the ServerHello message with an encapsulation ct𝑒 against pk𝑒 and the
algorithms it selected from the client’s proposal; note that if the server does
not want to use (any of ) the pk𝑒 the client sent, a special HelloRetryRequest
message is sent, prompting a new ClientHello message. Nonces 𝑟𝑐 and 𝑟𝑠
are also transmitted for freshness. At this point, the client and server have an
unauthenticated shared secret ss𝑒 . KEMTLS follows the TLS 1.3 key schedule,
which applies a sequence of HKDF operations to the shared secret ss𝑒 and the
transcript to derive (a) the client and server handshake traffic secrets CHTS
and SHTS which are used to encrypt subsequent flows in the handshake, and
(b) a “derived handshake secret” (dHS) which is kept as the current secret
state of the key schedule.

The key schedule in figure 5.2 starts with a seemingly unnecessary calcu-
lation of ES and dES. These values play a role in TLS 1.3 handshakes using
pre-shared keys; we retain them to keep the state machine of KEMTLS aligned
with TLS 1.3 as much as possible. They are also used in the key schedule of
KEMTLS-PDK, which we will discuss in chapter 6.

Phase : Implicitly authenticated key exchange using KEMs

In the same server-to-client flight as ServerHello, the server also sends a cer-
tificate containing its long-term KEM public key pk𝑆 . The client encapsulates
against pk𝑆 and sends the resulting ciphertext in its ClientKemCiphertext
message. This yields an implicitly authenticated shared secret ss𝑆 . The key
schedule’s secret state dHS from phase 1 is combined with ss𝑆 using HKDF

to give an “authenticated handshake secret” (AHS) from which are derived
(c) the client and server authenticated handshake traffic secrets CAHTS and
SAHTS which are used to encrypt subsequent flows in the handshake,2 and
(d) an updated secret state dAHS of the key schedule. The Main Secret (MS)
can now be derived from the key schedule’s secret state dAHS. From MS, sev-
eral more keys are derived: (e) “finished keys” fk𝑐 and fk𝑠 which will be used
to authenticate the handshake and (f ) client and server application transport
secrets CATS and SATS from which are derived application encryption keys.3

2CAHTS and SAHTS are implicitly authenticated: subsequent handshake traffic
can only be read by the intended peer server. This is particularly useful in the
client-authenticated version of KEMTLS in section 5.5 when the client sends its
certificate.

3TLS 1.3 also derives exporter and resumption main secrets EMS and RMS from the
main secretMS. We have omitted these from our presentation of KEMTLS in figure 5.2,
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The client now sends a confirmation message ClientFinished to the server
which uses a message-authentication code with key fk𝑐 to authenticate the
handshake transcript. In the same flight of messages, the client is also able to
start sending application data encrypted under keys derived from CATS; this
is implicitly authenticated.

Phase : Confirmation / explicit authentication

The server responds with its confirmation in the ServerFinished message,
authenticating the handshake transcript usingMAC key fk𝑠 . In the same flight,
the server sends application data encrypted under keys derived from SATS.
Once the client receives and verifies ServerFinished, the server is explicitly
authenticated to the client.

. Comparison with TLS .

There are a few subtle differences in the properties offered by KEMTLS com-
pared to TLS 1.3. We will touch on some of them in this section.

.. Who first sends application data

In TLS 1.3, the server can immediately send the first application data after
receiving the initial client messages, i.e., in parallel with its first handshake
message to the client and before having received an application-level request
from the client. This feature is used, for example, in SMTPS to send a server
banner to the client. In KEMTLS, it is the client that is ready to send application
data first. This does incur a small overhead in protocols that require a client
to receive, for example, a server banner.

To our knowledge, most applications do not have much, if any application
data to transmit to the client before they have received the client’s request.
This includes HTTPS, probably the most prominent application of TLS. How-
ever, recent variants of HTTPS, starting with HTTP/2 [34], as well as variant
protocols such as QUIC [193], use the server’s first message to advertise con-
nection parameters. Switching to KEMTLS might thus affect the performance

but extending KEMTLS’s key schedule to include these keys is straightforward, and
security of EMS and RMS follows analogously.
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of those protocols. However, as the information contained in such adver-
tisements of connection parameters is most likely public, we can consider
transmitting such information during the TLS handshake in an extension.
There is precedent for doing so: the Application-Layer Protocol Negotiation
(ALPN) extension allows clients to indicate their preferences for the protocol
used after completing the TLS handshake [148]. There has also been some
discussion on a server-side variant of ALPN, in the context of HTTP/2 and
QUIC settings frames, on the TLS working group mailing list [350].

.. Implicit authentication

KEMTLS provides implicit server-to-client authentication at the time the client
sends its first application data; explicit server-to-client authentication comes
one round trip later when a key confirmationmessage is received in the server’s
response. We still retain confidentiality: no one other than the intended server
will be able to read data sent by the client. One consequence is that the choice
of algorithms used is not authenticated by the time the client sends its first
application data. The client cannot be tricked into using algorithms that it
does not trust and thus did not advertise, but an adversary might be able
to trick the client into using one that the server would have rejected. By
the time the handshake fully completes, however, the client is assured that
the algorithms used are indeed the ones both parties preferred. We discuss
the subtleties of the forward secrecy and downgrade resilience properties of
KEMTLS at different stages further in chapter 7.

.. Presence of the server

Per the previous section, any data the client sends before receiving the server’s
authentication message is securely encrypted. However, in principle, an
attacker could delay or block that authentication message for as long as they
desire. A client might submit as much information as they have in that time.
The attackerwill not be able to generate the implicitly authenticated handshake
keys and any key derived from those, so the confidentiality of that data is
guaranteed. However, a client should not assume that the handshake was
completed, or that the data was received by an honest server until they have
received explicit confirmation.

Imagine, for example, a client submitting logging information to a server.
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The client submits logging data before the full handshake has been completed.
However, the client should be prepared to re-submit the data in case the
handshake fails. Otherwise, an active attacker could suppress logs.

The same behavior is also known from TLS 1.3 0-RTT resumption. Also in
that protocol mode, the client submits data to a server that has not yet been
confirmed to be present. It also closely relates to truncation attacks, where
an attacker simply stops the transmission of messages to the server. For this
reason, the “connection closed” alerts in TLS must be checked by the server
and client, c.f. [298, Sec. 6.1]. This remains still the case in KEMTLS sessions.

.. Anonymity

Neither TLS 1.3 nor KEMTLS offer server anonymity against passive adver-
saries, due to the ServerNameIndicator extension in the ClientHello mes-
sage. The TLS working group is investigating techniques such as Encrypted
ClientHello [301] which rely on out-of-band distribution4 of server keying
material to hide this information. As both certificate messages are sent en-
crypted with ephemeral keys in both TLS 1.3 and KEMTLS, the identity of the
server is otherwise protected against passive adversaries. As the identity of
the client contained in ClientCertificate is encrypted using (explicitly in
TLS 1.3, implicitly in KEMTLS) authenticated keys, the identity of the client
is additionally protected against active adversaries. This meets the require-
ments for the protection of the endpoint identities as specified in the TLS 1.3
standard [298, Sec. E.1].

.. Deniability

Krawczyk pointed out [217, Sec. 2.3.2] that using signatures for explicit authen-
tication in key-agreement protocols adds an unnecessary and undesirable
property: non-repudiation, the signer cannot deny that they were an active
participant in the protocol. Protocols that provide deniability, a notion first
introduced by Dwork, Naor, and Sahai in [135], actively avoid this property.
There are many flavors and variations of deniability; see e.g. [189] for a clas-
sification. A protocol has offline deniability [117] if a judge, when given a
protocol transcript and all keys involved, cannot tell whether the transcript is
genuine or forged. The KEM-authenticated handshake of KEMTLS, unlike the
4Namely, through publishing keys in DNS records.
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signature-authenticated handshake of TLS 1.3, has offline deniability. Specif-
ically, following the terminology of [189], KEMTLS provides offline deniability
in the universal deniability setting (meaning the simulator only has access
to parties’ long-term public keys) against an unbounded judge with full cor-
ruption powers (meaning the judge gets the parties’ long-term secret keys as
well as any per-session coins). Online deniability [124] is harder to achieve.
In the online setting, the judge may coerce a party to send certain malicious
messages to the target. KEMTLS does not achieve online deniability, and we
would likely have to make significant changes to the protocol to achieve it.

.. Comparison with OPTLS

Our proposal for a signature-free handshake protocol in TLS shares a lot
of similarities with the OPTLS protocol [221], discussed in chapter 4. The
same arguments for revisiting key exchange for authentication as discussed in
section 4.1 apply to KEMTLS. However, post-quantum KEMs are much more
mature than CSIDH and much more computationally efficient. Thus, the
KEMTLS signature-free approach to the TLS handshake offersmajor advantages
over TLS 1.3 and OPTLS.

As we will show in chapter 13, KEMTLS simultaneously reduces the amount
of data transmitted during a handshake, reduces the number of CPU cycles
spent on asymmetric crypto, reduces the total handshake time until the client
can send application data, and reduces the trusted code base.

. Client-authentication in KEMTLS

Although perhaps not used much for web browsing, client authentication
is an important optional feature of the TLS handshake. In TLS 1.3, a server
can send the client a CertificateRequest message. The client replies with its
certificate in a ClientCertificate message and a ClientCertificateVerify
message containing a signature. This allows mutual authentication.

In this section, we show how to extend KEMTLS to provide client authenti-
cation. Figure 5.3 adds a client authentication message flow to KEMTLS.

Recall that we assume that the client does not have the server’s certificate
when initiating the handshake, and similarly, the server does not have the
client’s certificate in advance. There may be more efficient message flows
possible if this is the case. We examine one such possibility in chapter 6.
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Client Server

(pk𝑒, sk𝑒) ←$ KEMe.Keygen()
ClientHello: pk𝑒, 𝑟𝑐 ←$ {0, 1}

256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Expand(ES, "derived", ∅)

(ss𝑒, ct𝑒) ←$ KEMe.Encapsulate(pk𝑒)

ServerHello: ct𝑒, 𝑟𝑠 ←$ {0, 1}256, selected algs.

ss𝑒←KEMe.Decapsulate(ct𝑒, sk𝑒)

HS←HKDF.Extract(dES, ss𝑒)
accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)

stage 1
accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)

stage 2

dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}
stage2

{CertificateRequest}
stage2

{ServerCertificate}
stage2

: cert[pk𝑆], int. CA cert.

(ss𝑆, ct𝑆) ←$ KEMs.Encapsulate(pk𝑆)
{ClientKemCiphertext}

stage1
: ct𝑆

ss𝑆←KEMs.Decapsulate(ct𝑆, sk𝑆)

AHS←HKDF.Extract(dHS, ss𝑆)
accept CAHTS←HKDF.Expand(AHS, "c ahs traffic",CH…CKC)

stage 3
accept SAHTS←HKDF.Expand(AHS, "s ahs traffic",CH…CKC)

stage 4

dAHS←HKDF.Expand(AHS, "derived", ∅)

{ClientCertificate}
stage3

: cert[pk𝐶], int. CA cert.

(ss𝐶, ct𝐶) ←$ KEMc.Encapsulate(pk𝐶)
{ServerKemCiphertext}

stage4
: ct𝐶

ss𝐶←KEMc.Decapsulate(ct𝐶, sk𝐶)

MS←HKDF.Extract(dAHS, ss𝐶)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ClientFinished}stage3 : CF←HMAC(fk𝑐,CH…SKC)

abort if CF ≠ HMAC(fk𝑐,CH…SKC)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}stage4 : SF←HMAC(fk𝑠,CH…CF)

abort if SF ≠ HMAC(fk𝑠,CH…CF)

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 6

record layer, AEAD-encrypted with key derived from SATS
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Figure 5.3: The KEMTLS handshake with client authentication
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.. Extending KEMTLS with client authentication

We permit the client and server to use different KEM algorithms (KEMc and
KEMs) as that may be desirable for functionality or efficiency purposes.

In TLS 1.3, a server is only allowed to send a CertificateRequest message
if it has been authenticated with a certificate [298, Sec. 4.3.2]. This restriction
ensures that the certificate containing the identity of the client is only revealed
to the intended server. Transferring this property to KEMTLS requires a careful
modification of the key schedule. In the KEMTLS key schedule, we derive the
CAHTS and SAHTS “authenticated” handshake traffic secrets from the shared
secret ss𝑆 encapsulated against the public key in the server’s certificate. This
allows the client to encrypt its certificate such that it can only be decrypted
by someone holding the server certificate’s private key.

After that, the server encapsulates against the public key contained in the
client certificate to compute another shared secret ss𝐶 . We mix this shared
secret ss𝐶 into the derivation of MS (in a straightforward extension of the
key schedule of KEMTLS). Combining ss𝐶 and ss𝑆 ensures that all application
traffic encrypted under keys derived from MS (stages 5 and 6) will only be
legible to the authenticated server and client; the ephemeral shared secret ss𝑒
further provides forward secrecy. Additionally, by sending the ClientFin-
ished message containing a MAC under a key derived from MS, the client
explicitly authenticates itself to the server at stage 5.

.. Certificate request messages

Note that an attacker can insert the CertificateRequest message into a hand-
shake: it can construct all messages up to and including the ServerCertifi-
cate message with public data. The forged handshake will fail (unless the
attacker has the server’s long-term secret keys), and only the intended server
will be able to read the ClientCertificate message. However, in applica-
tions that prompt the client to select a certificate (such as web browsers), this
prompt will pop up, which may be undesirable. Such applications may need
to consider post-handshake authentication flows and disallow in-handshake
authentication. Post-handshake authentication is supported in TLS 1.3; we
leave specifying it for KEMTLS as future work.

We note that large-scale usage statistics, collected by Birghan and Van der
Merwe in the Firefox browser, suggest that already the majority of mutually
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authenticated connections use post-handshake authentication [61]. Only
three connections, out of hundreds of billions of connections, were found
that used in-handshake client authentication. Post-handshake authentication
was still only used less than 6000 times per day, out of 32–66 billion TLS 1.3
connections. This suggests that client authentication does not see significant
use in browsers.

.. Alternative protocol flows for client authentication

The method for client authentication proposed in this section introduces an
extra RTT. This is a consequence of staying close to the existing key schedule
and state machine for KEMTLS.

Allowing the ServerFinished message to be transmitted immediately after
ServerKemCiphertext and deriving SATS then would allow the server to
initiate transmitting data sooner. This would reduce the overhead to an extra
half RTT but relies on implicit authentication. However, this complicates the
key schedule, as ServerFinished would no longer be sent last.

We might also allow the client to send ClientFinished immediately after
ClientCertificate . The client would then derive CATS without mixing in
ss𝐶 . This would not introduce extra RTTs before the client can send data, but
the data that the client sent can then not be straightforwardly authenticated.

. KEM public keys in certificates

Although KEMTLS removes the signatures from the TLS handshake, the proto-
col still relies on signatures to make the public-key infrastructure work. The
identity and public key in the client or server “leaf ” certificates are still signed
by a certificate authority (CA) and the recipient of a certificate message still
verifies the certificate’s signature using preinstalled CA public keys.

Issuing of certificates is currently typically done by submitting a PKCS#10
certificate-signing request (CSR) to a CA. This submission was often done
manually, typically once a year (which was a common validity period). Nowa-
days, many certificates on the internet are issued by Letsencrypt.org through
an automated, interactive certificate issuance protocol called ACME [23].
Although it is interactive, ACME still relies on exchanging CSRs.

CSRs are specified in RFC 5967 [277] and contain the to-be-signed public
key as well as information about the entity requesting the certificate. This
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information may include hostnames, IP addresses, or even postal addresses.
A CSR is signed by the party requesting the certificate before submission.
This proves to the CA that the requester has possession of the private key
corresponding to the public key. In prior versions of TLS, the algorithms used
in certificates could always be used to sign CSRs. This is no longer the case
for the post-quantum KEMs that are part of the NIST PQC standardization
project and presents a problem for the adoption of KEMTLS.

A naive alternative to signing CSRs is for the CA to take the public key from
the CSR and encapsulate to it. The CA then obtains a shared secret ss and
ciphertext ct. It would then generate a certificate and simply symmetrically
encrypt it using ss; implicitly authenticating the requester. The encrypted cer-
tificate and ct would then be returned to the requester, who proves possession
of the private key by decapsulating ct and decrypting the certificate.

However, this foregoes other parts of the TLS public-key infrastructure
used on the internet. All certificates issued are carefully accounted for on
certificate transparency (CT) logs [235]. By requiring all certificates to be
publicly posted, one can track which CAs issue certificates for particular
websites. This system was developed after CA DigiNotar was breached in
2011, and fraudulent certificates were issued for several websites, including
Google’s gmail.com [12]. With certificate transparency, Google can set up
monitoring for newly issued certificates for gmail.com and the submission of
fraudulent certificates to the public logs would trigger an alert. The Chrome
and Safari browsers require certificates to have been submitted to CT logs
before they consider them valid [15, 103].

Our naive approach requires that the certificate would be signed, and thus
necessarily published to CT logs, before the authenticity of the requester was
made explicit. As invalid alerts would undermine the reliability of certificate
transparency, this presents a problem.

A generic approach to certificate issuance would thus likely have to be inter-
active. Significant numbers of certificates on the internet are now being issued
interactively through ACME every day [192], suggesting this approach may
be fruitful. Alternative certificate issuance protocols, such as the Certificate
Management Protocol (CMP) [257] or Certificate Request Message Format
protocol (CRMF) [313], already define interactive ways of issuing certificates
for key exchange keys. We do note that CMP and CRMF’s “indirect proof of
possession”, which sends the encrypted certificate as the challenge message,
has the same flaw as our naive approach described above, as the certificate has
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to be submitted to the CT logs by the issuer before the issuer received proof
of correct decryption.

On the academic side of this problem, Güneysu, Hodges, Land, Ounsworth,
Stebila, and Zaverucha proposed a non-interactive proof of possession for
the lattice-based KEMs Kyber and FrodoKEM [166]. In their approach, they
rely on the multi-party-computation-in-the-head paradigm to generate the
proof during key generation. This furthermore allows them to bind attribute
data, such as identities, to the proof. This approach could be used to con-
struct a CSR-compatible signature for lattice KEMs. They additionally use
the attribute-binding feature to provide a solution to the not-yet-mentioned
problem of revocation, which currently also heavily relies on signatures.

How certificates will be obtained for KEM public keys in the real world
remains to be seen. The non-interactive proof of possession may be a viable
path forward for issuance through CSRs, but it is not generically compatible
with all KEMs. Thismeans thatwemay seemore interactive issuance protocols
in the future.

. Conclusion

We have now shown how we can avoid handshake signatures and construct a
KEM-authenticated TLS handshake, without suffering the penalty of a full
additional round trip of a naive solution. In chapter 7 we will discuss the
security properties of KEMTLS, as well as provide a proof of its security. We
will also model the protocol in Tamarin in chapter 9. Finally, in part III, we
will discuss how we implemented KEMTLS and compare the performance with
TLS 1.3, OPTLS, and the KEMTLS-PDK proposal that we will discuss in the next
chapter.
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 More efficient KEMTLS with

pre-distributed keys

In the previous chapter, we explained that TLS and KEMTLS are efficient key-
exchange protocols that do not assume that the client already has the server’s
static key before starting a handshake. In particular, KEMTLS very carefully
avoids the extra round trip that would be necessary if the static public key
would be fetched beforehand. However, clients often connect to a particular
TLS server many times: e.g., because they are fetching many web pages from
the same website, or maybe because the client is an Internet-of-Things device
that is only set up to connect to a single service.

Contributions

In this chapter, we propose and examine a variant of KEMTLS that makes use of
the assumption that the client already knows the server’s long-term public key.
This variant is more efficient, as less data needs to be transmitted. The server
is additionally immediately authenticated, just like in TLS 1.3. Finally, using
this variant we can do client authentication without KEMTLS’ additional round-
trip. In chapter 8, we prove the security of this protocol, and in chapter 14 we
examine its performance.

. Introduction

Both TLS 1.3 and KEMTLS assume that the client does not know the server’s
long-term public key when sending the ClientHello message; the certificate
is transmitted as part of the handshake, even if the client already knows the
public key. We refer to the scenario when a client already knows the server’s
public key as the pre-distributed-key or cached-key scenario. This occurs,
for example, when web browsers cache certificates of frequently accessed
servers; when mobile apps store certificates of the limited number of servers
they connect to; when TLS is used by IoT devices that only ever connect
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to one or a handful of servers and have those certificates preinstalled; or
when certificates have been distributed out of band, for example, through
DNS [200]. This scenario has, in fact, already been considered for TLS. The
TLS cached information extension [312] allows the client to inform the server
that it already knows certain certificates so they need not be transmitted.
However, this RFC is not widely implemented (and indeed has not been
updated for TLS 1.3), perhaps because (pre-quantum) certificates are fairly
short and thus bandwidth savings are limited. Another reason for the lack of
adoption is possibly the privacy implications of the client identifying which
server identities it is familiar with. In KEMTLS-PDK, this identification may be
avoided by using trail decryption. Although the upcoming encrypted Client-
Hello TLS extension may be better suited for hiding this information. We
will briefly discuss this, along with KEMTLS-PDK’s other anonymity properties,
in section 8.1.1.

In concurrent work, Kampanakis, Bytheway, Westerbaan, and Thomson
proposed letting the client indicate that it already has the server’s intermediate
CA certificates [202, 203]. This is intended to serve as a “compression” mecha-
nism, rather than an abbreviated handshake. They similarly assume networks
where the clients are set up with some knowledge about the server’s identities,
or web browsers that are set up to fetch all currently valid intermediate CA
certificates out-of-band. Their mechanism is a 1-bit signal from the client,
which the server uses to omit intermediate certificates; server certificates
are still transmitted. KEMTLS-PDK avoids transmitting any server certificate
information and can gracefully recover from expired long-term keys.

.. Using pre-distributed keys

In this chapter, we investigate how we canmake use of out-of-band distributed
keys in TLS in the post-quantum world, both when caching signature-based
certificates in the TLS 1.3 handshake, and, more importantly, when using
KEM-based authentication as used in KEMTLS. More specifically, we introduce
KEMTLS-PDK, a variant of KEMTLS that makes use of pre-distributed keys for
earlier authentication in the protocol flow. We also describe KEMTLS-PDK

with proactive client authentication and show that the benefits of earlier
authentication are even more significant.

We give a sketch of KEMTLS-PDK in figure 6.1. The central property to observe
is that, like in TLS 1.3, but unlike in KEMTLS, the first message from the server
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serves as key confirmation. This means that in this variant of KEMTLS, like in
TLS 1.3, the server is explicitly authenticated after a single round trip. Another
similarity with TLS 1.3 is that the server can send data to the client first.

The version of KEMTLS-PDK with proactive client authentication is shown
in figure 6.2. In this variant, we use the key that is encapsulated to the server’s
long-term public key to encrypt the client certificate and send it along with
the client’s initial message. This allows 1-RTT client authentication, unlike
KEMTLS where client authentication results in a full additional round trip over
the server-only-authenticated handshake. We refer to this handshake as using
proactive client authentication because the client sends its certificate unasked:
we believe that in many applications of mutual TLS authentication, such as in
Internet-of-Things or service-to-service applications, a client can be expected
to know that they need to authenticate themselves.

. KEMTLS with pre-distributed long-term keys

Even though one of the strengths of the TLS protocol is its ability to establish
a secure channel with a previously unknown party, it is very often not the
case that the communicating party is completely unknown. The TLS 1.3
PSK mechanism can be used with session tickets to enable fast resumption
after an initial full handshake [298, Fig. 3]. These mechanisms rely mostly
on symmetric cryptography, although TLS 1.3 allows an optional additional
ephemeral key exchange in resumption for forward secrecy. There is nothing
precluding the use of these mechanisms, including the “0-RTT ” client-to-
server data flow in the resumption message in KEMTLS.

However, because TLS 1.3 resumption relies on symmetric cryptography, it
is not very flexible. The security properties of a resumed session are tied to the
previous session. This includes, e.g., if the session wasmutually authenticated.
For these reasons, session tickets expire quickly, after at most 7 days [298,
Sec. 4.6.1]. There are also privacy issues as the opaque tickets might contain
tracking information. To prevent such tracking, Sy, Burkert, Federrath, and
Fischer [337] even suggested limiting session lifetime to only 10minutes.

Because externally distributed PSKs are symmetric, we quickly run into
concerns there as well. If clients have a common installation profile and
share keys, then any single client compromise results in no remaining security
for any client. A client that also acts as a server additionally needs to use
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Client Server

static (KEMs): pk𝑆, sk𝑆knows pk𝑆

(pk𝑒, sk𝑒) ← KEMe .Keygen()
(ss𝑆, ct𝑆) ← KEMs .Encapsulate(pk𝑆)

pk𝑒, ct𝑆

ss𝑆 ← KEMs .Decapsulate(ct𝑆, sk𝑆)
(ss𝑒, ct𝑒) ← KEMe .Encapsulate(pk𝑒)
ct𝑒

ss𝑒 ← KEMe .Decapsulate(ct𝑒, sk𝑒)

𝐾,𝐾′, 𝐾″, 𝐾‴ ← KDF(ss𝑒‖ss𝑆)

AEAD𝐾(key confirmation)

AEAD𝐾′ (application data)

AEAD𝐾″ (key confirmation)

AEAD𝐾‴ (application data)

Figure 6.1: Sketch of KEMTLS-PDK with server-only authentication.
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Client Server

static (KEMs): pk𝑆, sk𝑆static (KEMc): pk𝐶, sk𝐶
knows pk𝑆

(pk𝑒, sk𝑒) ← KEMe .Keygen()
(ss𝑆, ct𝑆) ← KEMs .Encapsulate(pk𝑆)

𝐾𝑆 ← KDF(ss𝑆)
pk𝑒, ct𝑆, AEAD𝐾𝑆 (cert [pk𝐶])

ss𝑆 ← KEMs .Decapsulate(ct𝑆, sk𝑆)
(ss𝑒, ct𝑒) ← KEMe .Encapsulate(pk𝑒)
(ss𝐶, ct𝐶) ← KEMc .Encapsulate(pk𝐶)
ct𝑒

ss𝑒 ← KEMe .Decapsulate(ct𝑒, sk𝑒)
𝐾1 ← KDF(ss𝑒‖ss𝑆)

AEAD𝐾1 (ct𝐶)

ss𝐶 ← KEMc .Decapsulate(ct𝐶, sk𝐶)
𝐾2, 𝐾′2 , 𝐾″2 , 𝐾‴2 ← KDF(ss𝑒‖ss𝑆‖ss𝐶)

AEAD𝐾2 (key confirmation)

AEAD𝐾′2 (application data)

AEAD𝐾″2 (key confirmation)

AEAD𝐾‴2 (application data)

Figure 6.2: Sketch of KEMTLS-PDK with proactive client authentication.
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different keys in the two roles role to prevent the Selfie attack [131]. This
means we need a key for each client and server pair, quickly turning this into
a key-management nightmare.

In our proposed KEMTLS-PDK, we employ a more flexible approach by
distributing a server’s long-term KEM public key instead of a symmetric key.
A detailed protocol flow diagram of KEMTLS-PDK is given in figure 6.3.

Like in KEMTLS, the client encapsulates to the server’s long-term KEM
public key pk𝑆, obtaining a ciphertext ct𝑆 and a shared secret ss𝑆 . However,
as we assume that the client already has pk𝑆, it can do this at the start of
the connection and send ct𝑆 in a ClientHello extension. We plug ss𝑆 into
the key derivation schedule at the earliest possible stage when deriving the
Early Secret (ES). Deriving ES from ss𝑆 avoids changing the key schedule.
It also intuitively makes sense, as data encrypted under traffic keys derived
from ES has no forward secrecy or replay protection; just as in TLS 1.3 with
PSK and 0-RTT data [298, Sec. 2.3]. The only server that can read a message
encrypted under a key derived from ES is the server that has access to sk𝑆; we
consider such keys implicitly authenticated. For forward secrecy, we also send
an ephemeral public key pk𝑒 in the ClientHello message.

Except for the additional extension transmitting ct𝑆 , the ClientHello mes-
sage is the same as in KEMTLS. This allows to fall back to the regular KEMTLS

handshake protocol, e.g., if the client has an out-of-date server public key.
The server replies with the encapsulation ct𝑒 of ephemeral shared secret

ss𝑒 in the ServerHello message. It also indicates in an extension that it has
accepted ciphertext ct𝑆 and is proceeding with KEMTLS-PDK. Then it proceeds
similarly to the original TLS 1.3 handshake. The server derives HS from ES
and ss𝑒 and sends the EncryptedExtensions message encrypted under a
key derived fromHS. It then immediately finishes its part of the handshake by
sending a MAC over the message transcript in the ServerFinished message.
This confirms the server’s view of the handshake to the client and explicitly
authenticates the server. The server can now start sending application data.
The client follows up by also confirming its view of the handshake in a Client-
Finished message. This indicates the client is ready to communicate as well.

.. Proactive client authentication

In some applications, such as in a VPN, the client may already know that
the server will require mutual authentication. This means that a client can
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Client Server

static (KEMs): pk𝑆, sk𝑆knows pk𝑆

(pk𝑒, sk𝑒) ←$ KEMe .Keygen()

(ss𝑆, ct𝑆) ←$ KEMs .Encapsulate(pk𝑆)

ClientHello: pk𝑒, 𝑟𝑐 ←$ {0, 1}
256, ext_pdk: ct𝑆, H(pk𝑆); supported algs.

ss𝑆←KEMs .Decapsulate(ct𝑆, sk𝑆)

ES←HKDF.Extract(ss𝑆, 0)

accept ETS←HKDF.Expand(ES, "early data",CH)
stage 1

dES←HKDF.Expand(ES, "derived", ∅)

(ss𝑒, ct𝑒) ←$ KEMe .Encapsulate(pk𝑒)

ServerHello: ct𝑒, 𝑟𝑠 ←$ {0, 1}256, ext_pdk_ok, selected algs.

ss𝑒←KEMe .Decapsulate(ct𝑒, sk𝑒)

HS←HKDF.Extract(ss𝑒, dES)

accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)
stage 2

accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)
stage 3

dHS←HKDF.Expand(HS, "derived", ∅)
{EncryptedExtensions}

stage3

MS←HKDF.Extract(0, dHS)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ServerFinished}stage3 : SF←HMAC(fk𝑠,CH…EE)

abort if SF ≠ HMAC(fk𝑠,CH…EE)

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

{ClientFinished}stage2 : CF←HMAC(fk𝑐,CH…SF)

abort if CF ≠ HMAC(fk𝑐,CH…SF)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

Figure 6.3: The KEMTLS-PDK handshake with unilateral (server-only) authen-
tication using pre-distributed server public keys
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proactively authenticate by sending its certificate as early in the handshake as
possible, and in particular before the server requests the certificate. For pri-
vacy reasons, client authentication in TLS requires that we verify the identity
of the server and send the certificate encrypted [298, Sec. E.1.2]. Performing
client authentication in KEMTLS thus requires a full additional round trip:
we can only send the client certificate after authenticating the server and the
server cannot send the ciphertext before it receives pk𝐶 .

In KEMTLS-PDK, the client already possesses the server’s long-term public
key. We can use the shared secret obtained from encapsulating to the corre-
sponding long-term key to send a client certificate along in the ClientHello
message. This gives us mutual authentication within a single round trip. The
server supplies the challenge ciphertext ct𝐶 to the client and derives the Main
Secret MS and, through MS, the confirmation and traffic keys from ss𝑒, ss𝑆,
and ss𝐶 . At this point, the server can start sending application data to the
client. The client is implicitly authenticated, as they have not yet confirmed
that they derived the same keys. As the keys are derived from ss𝐶 only the
client who possesses sk𝐶 can read these messages. To finish the handshake the
client sends its key confirmation message before proceeding to the application
traffic. KEMTLS-PDK with mutual authentication is shown in figure 6.4.

Note that we did not include the Authenticated Handshake Secret (AHS)
key, which we introduced for KEMTLS, in the key schedule of KEMTLS-PDK. In
the KEMTLS-PDK key schedule, we already use the shared secret encapsulated to
the server’s long-term public key in the very first handshake key ES. Leaving
out AHS simplifies our protocol diagrams and avoids some additional analysis
in our proofs. If desirable for ease of implementing KEMTLS(-PDK), it is possible
to include derivation of AHS in the key schedule.

We submit the complete client certificate in the mutually authenticated
KEMTLS-PDK handshake. As there are usually more servers than clients, we
thus avoid requiring that the server stores all client certificates if it wants to
use mutually authenticated KEMTLS-PDK. Although we do not further discuss
this, a variant protocol in which the client certificate is replaced by a small
identifier, so that the public key can be retrieved from storage by the server
and does not need to be transmitted, can be trivially constructed from the
mutually authenticated KEMTLS-PDK handshake.
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Client Server

static (KEMs): pk𝑆, sk𝑆static (KEMc): pk𝐶, sk𝐶
knows pk𝑆

(pk𝑒, sk𝑒) ←$ KEMe .Keygen()

(ss𝑆, ct𝑆) ←$ KEMs .Encapsulate(pk𝑆)

ClientHello: pk𝑒, 𝑟𝑐 ←$ {0, 1}
256, ext_pdk: ct𝑆, H(pk𝑆); supported algs.

ss𝑆←KEMs .Decapsulate(ct𝑆, sk𝑆)

ES←HKDF.Extract(ss𝑆, 0)

accept ETS←HKDF.Expand(ES, "early data",CH)
stage 1

{ClientCertificate}
stage1

: cert[pk𝐶]

dES←HKDF.Expand(ES, "derived", ∅)

(ss𝑒, ct𝑒) ←$ KEMe .Encapsulate(pk𝑒)

ServerHello: ct𝑒, 𝑟𝑠 ←$ {0, 1}256, ext_pdk_ok, selected algs.

ss𝑒←KEMe .Decapsulate(ct𝑒, sk𝑒)

HS←HKDF.Extract(ss𝑒, dES)

accept CHTS←HKDF.Expand(HS, "c hs traffic",CH…SH)
stage 2

accept SHTS←HKDF.Expand(HS, "s hs traffic",CH…SH)
stage 3

dHS←HKDF.Expand(HS, "derived", ∅)
{EncryptedExtensions}

stage3

(ss𝐶, ct𝐶) ←$ KEMc .Encapsulate(pk𝐶)
{ServerKemCiphertext}

stage3
: ct𝐶

ss𝐶←KEMc .Decapsulate(ct𝐶, sk𝐶)

MS←HKDF.Extract(ss𝐶, dHS)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ServerFinished}stage3 : SF←HMAC(fk𝑠,CH…SKC)

abort if SF ≠ HMAC(fk𝑠,CH…SKC)

accept SATS←HKDF.Expand(MS, "s ap traffic",CH…SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

{ClientFinished}stage2 : CF←HMAC(fk𝑐,CH…SF)

abort if CF ≠ HMAC(fk𝑐,CH…SF)

accept CATS←HKDF.Expand(MS, "c ap traffic",CH…CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

Figure 6.4: The KEMTLS-PDK handshake with proactive client authentication
using pre-distributed server public keys
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.. Falling back to KEMTLS

The KEMTLS-PDK handshake may fail if the server no longer has possession of
the private key corresponding to the ciphertext ct𝑆 that the client encapsulated
to the server’s long-term public key. This may for example occur if the long-
term public key expired (and perhaps the client had clock drift so did not
think it was) or if the key was replaced. In implementations that support both
KEMTLS and KEMTLS-PDK, it is possible to add a rejection mechanism for those
cases. This can for example be done by including an “accepted KEMTLS-PDK”
indicator in an ServerHello extension as part of the KEMTLS-PDK handshake,
which could then be omitted on rejection. If rejecting is handled in this way,
the server does not even need to be aware of KEMTLS-PDK as an unaware server
implementation would implicitly omit such an extension. When a KEMTLS-

PDK handshake is thus rejected by the server, the server can proceed as if the
client sent a ClientHello handshake. The client can then simply recompute
the ES key as in the KEMTLS key schedule and resume as if it sent a KEMTLS

ClientHello message: any KEMTLS-PDK handshake extensions that were part
of the initial message can simply be assumed to not have been acted upon.

The only problem in this rejection mechanism is how to handle the en-
crypted ClientCertificate message that a proactively authenticating client
sends to the server along with the KEMTLS-PDK ClientHello message. The
server cannot decrypt this message, as it has been encrypted with the shared
secret encapsulated to the public key it no longer has the private key to. This
prevents it from including this message in the handshake transcripts, which
would result in mismatching transcripts in key computations and Finished
messages. To remedy this, the client drops the proactive ClientCertificate
message from its transcript upon rejection of KEMTLS-PDK. We will discuss
the security implications of this rejection mechanism and the co-existence of
KEMTLS and KEMTLS-PDK in section 8.3.

. Restoring some ephemeral secrecy for client

authentication

When the client wants to proactively authenticate itself in KEMTLS-PDK, it
needs to send its ClientCertificate message along with the ClientHello
message. As the client has not yet completed the ephemeral key exchange
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at this point (after all, they have not yet received ct𝑒 from the server), the
certificate is encrypted using the ETS key, which is immediately derived from
the key encapsulated to the server’s static key. This means that the key is not
forward-secure and the message can be replayed. While the information in
the client certificate is static, the client’s identity is part of the certificate and
is confidential information.

In Günther, Rastikian, Towa, and Wiggers [168], we proposed a partial
remedy to this problem. KEMTLS-EPOCH introduces an additional, semi-static
server key. This key is periodically rotated, which divides the lifetime of
the long-term static key into periods we call “epochs”. This means we have
a different semi-static key in epoch 𝑖 than we have in epoch 𝑖 − 1. If the
static and semi-static keys are compromised in epoch 𝑖, any client certificate
messages sent in epochs before the compromise will remain secure. KEMTLS-

EPOCH additionally provides a synchronization message, falling back on a
full KEMTLS-like handshake when peers are out of sync. We will not further
discuss KEMTLS-EPOCH, and we refer to the published work for more details.

. Conclusions

In this chapter, we presented how we can achieve a more efficient KEMTLS

handshake if we assume that the client already has the server’s public key. In
this abbreviated handshake, the server is explicitly authenticated in its first
response to the client, and we can do proactive client authentication within
a single round-trip. Chapter 8 further discusses and proves the security
properties of KEMTLS-PDK. We will also show how we implemented KEMTLS-

PDK and compare the performance of our proposal with (post-quantum)
TLS 1.3, TLS 1.3 with cached certificates, OPTLS, and KEMTLS in chapter 14.
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 Security of KEMTLS

In this chapter, we will give a formal analysis of the security of KEMTLS in the
reductionist security model. We will first give a somewhat informal descrip-
tion of the structure and key points of our security claims. We will also give
a high-level overview of our proof. Afterward, we will formally define the
model that we will use in the proof. We specify and prove both unilaterally
(server-to-client) authenticated and mutually authenticated KEMTLS.

The proof below is based on the original proof of KEMTLS as it was presented
at ACM CCS 2020, and the updates published in the online version [321]. To
support the proof of KEMTLS-PDK in chapter 8, we adopt the syntax of the
model originally developed for KEMTLS-PDK [320] in this chapter as well. We
also extend the original proofs to cover mutually authenticated KEMTLS.

. Overview of the security analysis

As KEMTLS is an adaptation of TLS 1.3, our security analysis follows pre-
vious techniques for proving the security of TLS 1.3. In particular, we base
our approach on the reductionist security approach of Dowling, Fischlin,
Günther, and Stebila [127, 128]. Briefly, that approach adapts a traditional
Bellare–Rogaway-style [32] authenticated-key-exchange security model to
accommodate multiple stages of session keys established in each session, fol-
lowing the multi-stage AKE security model of Fischlin and Günther [143].
The model used for TLS 1.3 in [127, 128] supports a variety of modes and
functionality, such as mutual versus unilateral authentication, full handshake
and pre-shared key modes, and other options. We simplify the model for
this application, though we also add some other features, such as explicit
authentication and granular forward secrecy.

In this section, we give an informal description of the security model, in-
cluding the adversary interaction (queries) for the model; the specific security
properties desired (Match security, which ensures that session identifiers ef-
fectively match partnered sessions, and Multi-Stage security, which models
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confidentiality and authentication as described below); and a sketch of the
proofs showing that KEMTLS satisfies these properties. The full syntax and
specification of the security properties as well as the detailed proofs of security
for KEMTLS appear in section 7.2.

.. Security goal

Our main security goal is that keys established in every stage of KEMTLS

should be indistinguishable from a random key, in the face of an adversary
who sees and controls all communications, can learn other stages’ keys, can
compromise unrelated secrets (such as long-term keys of parties not involved
in the session in question), and may, after-the-fact, learn long-term keys of
parties involved in the session (“forward secrecy”). This is the same security
goal and threat model for TLS 1.3 [127, 128, 298]. We distinguish between
implicit authentication (where a key could only be known by the intended
peer), which follows from key indistinguishability and forward secrecy, and
explicit authentication (which assures that the intended peer participated).
We consider KEMTLS with unilateral and mutual authentication.

.. Tightness

Theorem 7.7, which states the security of KEMTLS, is non-tight, due to hybrid
and guessing arguments. While it is certainly desirable to have tight results,
only a few authenticated-key-exchange protocols have tight proofs, most
of which with specialized designs. Most previous results on TLS 1.3 [127,
128] are similarly non-tight, except for recent works [113, 118] which reduce
from multi-user security of the symmetric encryption scheme, MAC, KDF,
and signature scheme, and the strong-DH assumption. A tight reduction
of the security of TLS 1.3’s simpler PSK handshake mode was published at
EUROCRYPT 2022 [112]. After our proof was originally published, it was
shown that Kyber does have multi-user security [133].

One can view a non-tight result such as theorem 7.7 as providing heuristic
justification of the soundness of the protocol design, and one can in principle
choose parameters for the cryptographic primitives that yield meaningful
advantage bounds based on the non-tight reductions. Proving the security of
KEMTLS using multi-user security of the primitives remains as future work.
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.. Quantum adversaries

The proof of theorem 7.7 proceeds in the standard model (without random
oracles), and does not rely on techniques such as the forking lemma or rewind-
ing. This means techniques like Song’s “lifting lemma” [330] can be applied to
show that KEMTLS is secure against quantum adversaries, provided that each
of the primitives used is also secure against quantum adversaries.

.. Negotiation and downgrade resilience

We do not explicitly model algorithm negotiation in KEMTLS, but it merits
consideration given the likelihood that any deployment of KEMTLS would
support multiple algorithms within KEMTLS, and might also be running in
parallel with a TLS 1.3 implementation. We consider adversarial downgrades
among each of the following negotiated choices:

• Protocol: KEMTLS versus TLS 1.3.

• Ephemeral key exchange: which KEM within KEMTLS, or which group
if downgraded to Diffie–Hellman in TLS 1.3.

• Authenticated-encryption scheme and hash function.

• Public-key authentication: which KEM within KEMTLS, or which signa-
ture scheme if downgraded to TLS 1.3.

We consider three levels of downgrade resilience:

1. Full downgrade resilience: the adversary cannot cause a party to use any
algorithmother than the one that would be used between the two honest
parties if the adversary was passive. This is called optimal negotiation
by [129] and downgrade security by [56].

2. No downgrade to unsupported algorithms: the adversary can cause
parties to use a different algorithm than the optimal one that would be
used if the adversary was passive, but cannot cause a party to use an
algorithm that it disabled in its configuration. This is called negotiation
correctness by [56].

3. No downgrade resilience: the adversary can cause a party to use any
algorithm permitted in the standard (e.g., [2]).
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We assume that none of the algorithms supported by the client or server are
broken at the time the session is established, and the downgrade adversary’s
goal is to force the use of an algorithm that the adversary hopes to have a
better chance of breaking in the future (e.g., elliptic-curve Diffie–Hellman
instead of a post-quantum KEM; AES-128 instead of AES-256).

In KEMTLS, for client sessions, any algorithms used prior to the acceptance
of the stage-6 key (i.e., ephemeral KEM, authenticated encryption of hand-
shake and first client-to-server application flow) cannot be downgraded to
an unsupported algorithm (barring an implementation flaw), but can still be
downgraded to a different client-supported algorithm.1 The explicit authenti-
cation that the client receives for the stage-6 key includes confirmation in the
ServerFinished message that the client and server have the same transcript
including the same negotiation messages, which implies full downgrade re-
silience once the stage-6 key is accepted, assuming that the hash, MAC, KEM,
and KDF used are not broken by the time of acceptance.2 Since there is no
client-to-server authentication in the unilaterally authenticated KEMTLS proto-
col, servers obtain “no downgrade to unsupported algorithms” for all their
stages. In mutually authenticated KEMTLS, servers obtain explicit authentica-
tion for the stage-5 key, which includes confirmation in the ClientFinished
message that the client and server have the same transcript. As this transcript
includes the negotiation messages, this implies full downgrade resilience once
the stage-5 key is accepted.

.. Strength of the ephemeral KEM

The proof requires that the ephemeral KEM is slightly stronger than pas-
sive IND-CPA security: it needs to be secure against a single decapsulation
query (IND-1CCA). This is subtle and counterintuitive: one might expect that
IND-CPAwould be enough for ephemeral key exchange (indeed, wemissed this
in an early draft of [321]). However, in an AKE security model that replaces
the public key of the client and the ciphertext of the server, but allows the

1While KEMTLS’s implicit authentication in stage 3/4 does not preclude downgrades,
TLS 1.3’s signature-based explicit authentication at stage 3 does provide transcript
authentication. Hence, when KEMTLS and TLS 1.3 are simultaneously supported
by a client, an attacker cannot downgrade 1-RTT application data from KEMTLS to
TLS 1.3.

2Signature-based authentication in TLS 1.3 means that TLS 1.3’s downgrade-resilience
relies only on the signature and hash being unbroken by the time of acceptance.
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adversary to send a different ciphertext back to the client without invalidating
the target session at the server, this is unavoidable [194, 220]. For example,
in IND-1CCA experiment in the proof of KEMTLS we replace the public key
that is sent in the ClientHello message and the ciphertext that is returned
by the server in the ServerHello message by the challenge public key and
ciphertext; but the adversary is allowed to construct and send a different
ciphertext to the client session. This different ciphertext needs to result in
a different shared secret at the client and server sessions for the simulation
to remain sound, so in this case the reduction uses its single decapsulation
query to obtain the expected shared secret in the client session; there is no
other way to continue the simulation otherwise.

As IND-1CCA is strictly weaker than IND-CCA, any IND-CCA KEM certainly
suffices for the ephemeral KEM, but for most known post-quantum schemes
this incurs the cost of re-encryption using the Fujisaki–Okamoto (FO) trans-
form [150]. There are concrete attacks against several non-FO-protected
lattice- and isogeny-based KEMs that use several thousand decapsulation
queries [144, 154], but none with just a single query. Huguenin-Dumittan and
Vaudenay have recently shown that IND-1CCA secure KEMs can be constructed
more efficiently than how KEMs are made IND-CCA secure using the FO trans-
form [182]. No IND-1CCA KEMs are part of the NIST PQC standardization
project, however, so IND-CCA-secure KEMs remain the safe choice.

.. Security model

In the following, we describe informally the security model. The model is
based on the multi-stage AKE model used by Dowling, Fischlin, Günther, and
Stebila [127, 128] to analyze signed-DH in TLS 1.3. We describe the properties
associated with each session, as well as the main security properties: Match

and Multi-Stage security. The precise formulation of the model appears in
section 7.2.

Model syntax

Each participant has a long-term public key and corresponding private key;
we assume a public-key infrastructure for certifying these public keys, and that
the root certificates are pre-distributed, but certificates are not pre-distributed.
Each participant (client or server) can run multiple instances of the protocol,
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each of which is called a session. Note that a session is a participant’s local
instance of a protocol execution; the two parties communicating with each
other each have their own sessions. Each session consists of multiple stages
(for KEMTLS, there are 6 stages as marked in figures 5.2 and 5.3 for unilaterally
and mutually authenticated KEMTLS respectively).

For each session, each participant maintains a collection of session-specific
information, including: the identity of the intended communication partner;
the role of the session owner (either initiator or responder); the state of ex-
ecution (whether it has accepted a key at a certain stage, or is still running,
or has rejected); as well as protocol-specific state. For each stage within a
session, each participant maintains stage-specific information, including: the
key established at the stage (if any); a session identifier for that stage; and a
contributive identifier for that stage. Two stages at different parties are consid-
ered partnered if they have the same session identifier. The session identifiers
for KEMTLS are the label of the key and the transcript up to that point (see
section 7.3). For the first stage, the contributive identifier is the ClientHello
initially, then updated to the ServerHello message; for all other stages, the
contributive identifier is the session identifier.

The model also records security properties for each stage key:

1. The level of forward secrecy obtained for each stage key. The three
levels of forward secrecy we meet are detailed in section 7.1.7 below.
Themodel allows for retroactive revision of forward secrecy: the stage-𝑖
keymay have weak forward secrecy at the time it is established in stage 𝑖,
but may have full forward secrecy once a later stage 𝑗 > 𝑖 has completed
(i.e., after receiving an additional confirmation message). The level
of forward secrecy also implies whether the key should be considered
implicitly authenticated.

2. Whether the stage is explicitly authenticated: if a party accepts a stage,
is it assured that its partner was live and established an analogous stage?
Again our model allows for retroactive explicit authentication: while
a stage-𝑖 key may not have explicit authentication when established in
stage 𝑖, completion of a later stage 𝑗 > 𝑖 may imply that a partner to
stage 𝑖 is now assured to exist.

3. Whether the key is intended for internal or external use. TLS 1.3
and KEMTLS internally use some of the keys established during the
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handshake to encrypt later parts of the handshake to improve privacy,
whereas other keys are “external outputs” of the handshake to be used
for authenticated encryption of application data. Internally used keys
must be treated more carefully in the security experiment.

4. Whether the key is replayable. This will be relevant in chapter 8 which
has replayable stages; in KEMTLS all state keys are not replayable.

Our inclusion of forward secrecy and explicit authentication is an extension
to the multi-stage AKE model used for TLS 1.3 [127, 128].

Adversary interaction

The adversary is a probabilistic algorithm that triggers parties to execute
sessions and controls the communications between all parties, so it can in-
tercept, inject, or drop any message. As a result, the adversary facilitates all
interactions, even between honest parties.

The adversary interacts with honest parties via several queries (which we
define in more detail in section 7.2.2). The first two queries model the typical
protocol functionality, which is now under the control of the adversary:

• NewSession: Creates a new session at a party with a specified intended
partner and role. We also set if mutual authentication is used.

• Send: Delivers a message to a session at a party, which executes the
protocol based on its current state, updates its state, and returns any
outgoing protocol message.

The next two queries model the adversary’s ability to compromise parties’
secret information:

• Reveal: Gives the adversary the stage key established in a particular
stage in a particular session. This key and the key at the partner session
(if it exists) are marked as revealed.

• Corrupt: Gives the adversary a party’s long-term secret key. This party
is marked as corrupted.

The Reveal and Corrupt queries may make a stage unfresh, meaning the ad-
versary has learned sufficiently much information that no security can be
expected of this key.
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The final query models the challenge to the adversary of breaking a key
established in a stage:

• Test: For a session and stage chosen by the adversary, returns either
the real key for that stage or a uniformly random key, depending on a
hidden bit 𝑏 fixed throughout the experiment.

Some additional conditions apply to the handling of queries. For keys
marked as intended for internal use, the execution of the Send query pauses
at the moment the key is accepted, giving the adversary the option to either
Test that key or continue without testing. This is required since internal keys
may be used immediately for, e.g., handshake encryption, and allowing the
adversary to Test the key after it has been used to encrypt data would allow
it to trivially win. For keys that are not considered authenticated at the time
of the Test query, the query is only permitted if the session has an honest
contributive partner, otherwise, the adversary could trivially win.

.. Security of authenticated key-exchange protocols

There are many extensions to the Bellare–Rogaway model to capture different
functionality and security properties of AKE protocols; we refer to [77, Ch. 2]
for a summary. A sequence of works [82, 83, 143] split AKE security into two
distinct properties: the traditional session-key indistinguishability property
dating back to Bellare and Rogaway [32], and a property calledMatch-security,
which models the soundness of the session identifier, ensuring that the session
identifier 𝜋.sid properly matches the partnered 𝜋′.sid and the correctness
property that partnered sessions compute the same session key. For well-
chosen session identifiers, proving the technical properties of Match-security
typically does not depend on any cryptographic assumptions, and instead
follows syntactically. This is indeed the case for both TLS 1.3 and KEMTLS,
although for KEMTLS we account for delta-correctness of the KEMs: some
KEM have a small chance that the recipient of the ciphertext does not recover
the same shared secret (definition 2.14). Details are in section 7.2.3.

The Multi-Stage model captures both key indistinguishability and authen-
tication properties, which we describe below. In the proof for Multi-Stage
security, we incrementally reduce the capabilities of the adversary. We split
the security experiment into many game hops and in each hop, we replace
keys or rule out certain attacks. We specify the amount by which the change
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reduces the advantage of the now-restricted adversary. This continues un-
til the adversary has no more chance of succeeding as all attacks have been
ruled out. We also cover explicit authentication by making sure the adversary
cannot maliciously accept in any explicitly authenticated stage. The security
bound is obtained as the sum of the reductions in advantage in each of the
game hops. The definition of the Multi-Stage experiment and the associated
definitions of freshness and malicious acceptance are given in section 7.2.4.

Key indistinguishability

Secrecy of the key established in each stage is through indistinguishability
from random, following Bellare–Rogaway [32]. This property is defined via
an experiment with the syntax and adversary interaction as specified below.
The model is set up with a hidden, uniformly random bit 𝑏. This 𝑏 will be
used in Test queries to decide if we will give the adversary the key that was
computed in the execution of the protocol, or a truly random, unrelated
key. The adversary’s task is to decide if it was given the original key or the
experiment’s replacement; i.e., determine the value of 𝑏 in the experiment.
Any adversary that can guess 𝑏 better than just flipping a coin can be used to
construct reductions to the individual security properties of the components,
such as collision resistance of hashes and indistinguishability properties of
KEMs, that make up the protocol.

As noted above, the experiment imposes constraints on Reveal queries to
prevent the adversary from revealing and testing the same key of some stage
in a session or its partner. Depending on the intended forward secrecy goals
of the stage key, some Corrupt queries may also be prohibited as described
below to prevent the adversary from actively impersonating a party in an
unauthenticated session and then testing that key. These restrictions rule
out some trivial attacks that would exist if an adversary could call Reveal and
Corrupt arbitrarily.

Forward secrecy and implicit authentication

Our multi-stage security definition incorporates three notions of forward
secrecy [215] for stage keys:

• Weak forward secrecy level 1 (wfs1): The stage key is indistinguishable
against adversaries who were passive in the test stage (even if the adver-

99



7 Security of KEMTLS

sary obtains the peer’s long-term secret key at any point in time—before
or after the stage key was accepted). These keys have no authentication.

• Weak forward secrecy level 2 (wfs2): The stage key is indistinguishable
against adversaries who were passive in the test stage (wfs1) or if the
adversary never corrupted the peer’s long-term key. These keys are
implicitly authenticated if the adversary did not corrupt the peer’s long-
term key before the stage key was accepted.

• Forward secrecy (fs): The stage key is indistinguishable against adver-
saries who were passive in the test stage (wfs1) or if the adversary did
not corrupt the peer’s long-term key before the stage accepted. These
keys are implicitly authenticated.

These correspond to forward-secrecy levels 1, 3, and 5 in the Noise protocol
framework [291].

Explicit authentication

We add an explicit authentication notion to the multi-stage model. When we
reach explicit authentication of a stage key, that session has received explicit
evidence (e.g., a MAC tag) that the intended peer is live. We also include
retroactive authentication, in which an earlier stage is regarded as explicitly
authenticated once a later stage accepts.

.. Security properties of KEMTLS

For KEMTLS, the properties of each stage key in a client instance are the same
for unilaterally and mutually authenticated sessions as in both cases the client
authenticates the server. They are as follows:

• Stages 1 and 2: these stages have wfs1 security from when they are ac-
cepted: they are indistinguishable against passive adversaries. These
keys retroactively obtain fs security once stage 6 has accepted. No
authentication at the time of acceptance, retroactive explicit authenti-
cation once stage 6 has accepted. The keys accepted by stages 1 and 2
are for internal use.
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• Stages 3, 4, and 5: these stages have wfs2 security from when they are
accepted: they are both indistinguishable against passive adversaries,
and secure against adversaries that never corrupt the peer’s long-term
key. These keys obtain retroactive fs security once stage 6 has accepted.
They get implicit authentication at the time of acceptance. Once stage
6 has accepted, they are retroactively explicitly authenticated. The keys
accepted in stages 3 and 4 are for internal use; the stage 5 key is for
external use.

• Stage 6: This stage immediately has fs security and explicit authenti-
cation from the time of acceptance. The key accepted by stage 6 is for
external use.

In server instances of KEMTLS, the properties of each stage key are different
for unilaterally authenticated and mutually authenticated sessions:

• Stages 1–4: These stages have wfs1 security when they are accepted:
they are indistinguishable against passive adversaries. If the server is
mutually authenticating the client, these keys (retroactively) obtain fs

security once stage 5 accepts. The keys accepted by stages 1–4 are for
internal use.

• Stage 5: This stage has fs security and is explicitly authenticated if the
server is using mutual authentication. Otherwise, the stage key has
wfs1 security. The key accepted in stage 5 is for external use.

• Stage 6: This stage has fs security if mutual authentication is used. It
however is never explicitly authenticated as the server never receives a
confirmation from the client during the handshake. If the server did
not authenticate the client, the key has wfs1 security. The key accepted
by stage 6 is for external use.

The following theorem says that KEMTLS is Multi-Stage-secure with respect
to the forward secrecy, explicit authentication, and internal/external key-use
properties as specified above. We bound the security on the assumptions that
the hash function H is collision-resistant, HKDF is a pseudorandom function
in either its “salt” or “input keying material” arguments, HMAC is a secure
message-authentication code, KEMs and, for mutual authentication, KEMc are
IND-CCA-secure KEMs, and KEMe is an IND-1CCA-secure KEM (i.e., KEMe is
secure if a single decapsulation query is allowed).
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Theorem 7.1. Let 𝒜 be an algorithm, and let 𝑛𝑠 be the number of sessions
and 𝑛𝑢 be the number of parties. Then the advantage of 𝒜 in breaking the
multi-stage security of KEMTLS is upper-bounded by

𝑛2𝑠
2|nonce|
+ 𝜖COLLH + 6𝑛𝑠 ⋅

(((

(

𝑛𝑠(
𝜖IND-1CCAKEMe

+ 𝜖PRF-secHKDF.Ext

+ 2 𝜖dual-PRF-secHKDF.Ext + 3 𝜖PRF-secHKDF.Exp
+ 2 𝜖EUF-CMA

HMAC

)

+𝑛𝑢(
𝜖IND-CCAKEMs

+ 𝜖IND-CCAKEMe

+ 𝜖PRF-secHKDF.Ext + 𝜖dual-PRF-secHKDF.Ext

+ 2 𝜖PRF-secHKDF.Exp+ 2 𝜖EUF-CMA
HMAC

)

)))

)

.

Above we use the shorthand notation 𝜖𝑋𝑌 = Adv𝑋𝑌,ℬ𝑖 for reductions ℬ𝑖 that
are described in the proof; we provide the fully detailed bound in theorem 7.7.
The proof of theorem 7.7 appears in section 7.2.4; we provide a sketch below.

.. Sketch of the proof

We start the proof with a sequence of game hops that assume that there are no
reused nonces among the honest sessions and that there are no collisions in
any hash function calls, which will be useful in later parts of the proof. The
Multi-Stage security experiment is formulated to allow the adversary to make
multiple Test queries. In the next game hop, we restrict the adversary to make
a single Test query by guessing a to-be-tested session and the to-be-tested stage
key using a hybrid argument [167]; this incurs a tightness loss 6𝑛𝑠 related to
the number of sessions and stages.

The proof then splits into two cases: case A where the (now single) tested
session has an honest contributive partner in the first stage; and case B where
the tested session does not have an honest contributive partner in the first
stage and the adversary does not corrupt the peer’s long-term key before
the tested stage has been accepted. These two cases effectively correspond
to the forward-secrecy levels wfs1,wfs2. We finally show, by assumption on
EUF-CMA security of HMAC, that both cases do not maliciously accept, giving
us the final forward secrecy level fs.

Case A

In this case we assume that there does exist an honest contributive partner
to at least the first stage of the tested session. Because we ruled out nonce
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collisions, the honest client session and server session are unique, and thus we
can speak of the client and server sessions. When the tested session is a client
session, this means that the adversary did not interfere with the ephemeral key
exchange in the ClientHello and ServerHello messages, so the ephemeral
shared secret is unknown to the adversary assuming a secure KEMe .

However, when the tested session is a server session, we only know that
the adversary faithfully delivered the ClientHello message to the server;
the adversary could have sent its own ServerHello message to the client.
This is valid adversary behavior, and such an adversary would be able to
compute the handshake encryption keys. In this case we need to correctly
respond to the adversary, but in our simulation we do not have the KEMe

secret key, thus we need to make a single query to a decapsulation oracle.
This is why we rely on IND-1CCA security, the single-decapsulation-query
version of IND-CCA, rather than IND-CPA as might be expected for passive
security, as we discussed in section 7.1.5. The use of IND-1CCA security in our
proof of KEMTLS is analogous to the proofs of signed-Diffie–Hellman in TLS
1.2 [194, 220] and TLS 1.3 [127, 128] that use a single query to a PRF-ODH oracle.
Huguenin-Dumittan and Vaudenay have additionally shown that for TLS 1.3,
this PRF-ODH assumption can be replaced by a IND-1CCA-secure KEM, further
highlighting their relation [182]. They construct such a KEM from DH, which
allows them to rely on the computational Diffie–Hellman assumption in place
of the ODH assumption.

All keys derived from the ephemeral key exchange are thus indistinguish-
able from random, and the remainder of case A is a sequence of game hops
which, one-by-one, replace derived secrets and stage keys with random val-
ues, under the PRF-security or dual-PRF-security [29] assumption on HKDF.
Dual-PRF-security arises since the TLS 1.3 and KEMTLS key schedules some-
time use secrets in the “salt” argument of HKDF.Extract, rather than the “input
keying material argument”. At the end of case A, we have shown the required
wfs1 security property for all stage keys, in both unilaterally and mutually
authenticated client and server sessions.

Case B

Lacking an honest contributive partner in the first stage means the adversary
was actively impersonating the peer to the tested session, and there is no part-
ner at any stage of that session. As a result, any stages aiming for wfs1 security
(which only covers passive adversaries) are out of scope. The tested session is
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either a client session or a server session attempting mutual authentication.
In case B we assume the peer’s long-term key is not compromised before the
tested session accepts the tested stage. This allows us to rely on the security of
encapsulations against the peer’s long-term public key.

Case B’s sequence of game hops is as follows. First, we guess the identity of
the peer that the adversary will attempt to impersonate in the tested session.
Then we replace with a random value the shared secret ss𝑆 that a client session
encapsulates against the intended server’s long-term static key pk𝑆 . If KEMs is
IND-CCA-secure, only the intended server should be able to decapsulate and
recover ss𝑆, and thus ss𝑆, and any key derived from it (following a sequence
of game hops involving the security of HKDF), is an implicitly authenticated
key unknown to the adversary. We similarly replace with a random value the
shared secret ss𝐶 that a mutually-authenticating server session encapsulates
against its intended client’s long-term static key pk𝐶 , as well as any key derived
from it. At the end of case B, we have shown the indistinguishability of client
sessions’ stage 3–6 keys, and server sessions’ stage 5 and 6 keys under the
conditions of case B, and hence their required wfs2 security properties.

Malicious acceptance

Case B allows the adversary to corrupt the intended peer’s long-term key after
the tested session accepts in stage 5 (if the session is a mutually-authenticating
server) or stage 6 (if it is a client). This presents a problem for our reduction
from IND-CCA security of KEMs: how can it correctly answer the adversary’s
Corrupt query? Up until this bad query occurs, however, our IND-CCA re-
duction (and indeed, every reduction in case B) is fine, and all keys in the
tested session can be shown as indistinguishable from random. This includes
key fk𝑠 that the server uses for the MAC authenticating the transcript in the
ServerFinished message. If the client accepts ServerFinished in case B—
without a partner to stage 6—then the adversary has forged an HMAC tag.
We rely on the EUF-CMA security of HMAC and show that the reduction will
never have to answer that Corrupt query. In the sessions that are using mutual
authentication, we show the same for fk𝑐 and ClientFinished in stage 5.

Contrapositively, assuming all the cryptographic primitives are secure, no
stage accepts under the conditions of case B. This yields explicit server-to-
client authentication of stage 6, and explicit client-to-server authentication of
stage 5 (if mutual authentication is used). We also get retroactive authentica-
tion of all previous stages once the explicitly authenticated stage accepts since
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their session identifiers are substrings of the stage’s sid. Explicit authentication
yields forward secrecy (fs) of the stage-6 key at the client, and the stage-5 and
6 keys of a mutually-authenticating server, at the time of acceptance. Retroac-
tively, all stages of client sessions and stages 1–5 of mutually-authenticating
server sessions also obtain fs. esh

. Reductionist security model

Our approach adapts the security model and reductionist security analysis
of the TLS 1.3 handshake by Dowling, Fischlin, Günther, and Stebila [127,
128] for KEMTLS. In contrast to the model and proof of KEMTLS as presented
in [321] the proof below has been updated to the syntax used for the proof of
KEMTLS-PDK [320] and been extended to cover mutual authentication.

.. Model syntax

Set 𝒰 denotes the identities of honest participants in the system. Identities
𝑆 ∈ 𝒰 can be associated with a certified long-term KEM public key pk𝑆 and
corresponding private key sk𝑆 . In the server-only authentication version of
KEMTLS, participants that only act as clients do not have a long-term key.

Each participant can run multiple instances of the protocol, each of which
is called a session. Sessions of a protocol are, for the purposes of modelling,
uniquely identified by some administrative label, 𝜋 ∈ 𝒰 × ℕ, which is a pair
(𝑈, 𝑛), such that it identifies the 𝑛th local session of identity𝑈. In a multi-stage
protocol, each session consists of multiple stages, run sequentially with shared
state; each stage aims to establish a key. We denote the total number of stages
in the protocol by M ∈ ℕ.

For each session, each participant maintains the following collection of
session-specific information. Many of the values are vectors of length M, with
values for each stage.

• id ∈ 𝒰: the identity of the participant that owns this session.

• pid ∈ 𝒰∪{∗}: the identity of the intended communication partner. This
partner may be unknown, which we indicate by the wildcard symbol
‘∗’.

• role ∈ {initiator, responder}.
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• status ∈ {⊥, running, accepted, rejected}M: the status of each stage key.
We set status𝑖 ← accepted when stage 𝑖 accepts the 𝑖th stage key. When
rejecting a key, status𝑖 ← rejected and the protocol does not continue.
status is initially set to (running, ⊥×(M−1)).

• stage ∈ {0, 1,… ,M}: the last accepted stage. Initially set to 0, it is
incremented to 𝑖 when status𝑖 reaches accepted.

• sid ∈ ({0, 1}∗ ∪ {⊥})M: the session identifier bitstring in stage 𝑖, used for
session pairing. Initially sid is set to ⊥. It is updated to the specified
value for each stage when reaching acceptance in that stage.

• cid ∈ ({0, 1}∗ ∪ {⊥})M: the contributive session identifier bitstring in
stage 𝑖, used for early session pairing. Initially set to ⊥ and updated as
specified for each stage, until reaching acceptance in that stage.

• key ∈ (𝒦 ∪ {⊥})M: the key established in stage 𝑖, which is set on accep-
tance of stage 𝑖. Initially set to ⊥.

• revealed ∈ {true, false}M: records if the 𝑖th stage key has been revealed
by the adversary. Initially all set to false.

• tested ∈ {true, false}M: records if the 𝑖th stage key has been tested by the
adversary. Initially all set to false.

• mutualauth ∈ {true, false}: Indicates if mutual authentication will be
required in this session.

• auth ∈ {1,… ,𝑀,∞}𝑀: Indicates at which stage a stage key is authen-
ticated. Some keys may be considered authenticated right away (e.g.,
auth𝑖 = 𝑖), whereas other keys may only be considered authenticat-
ed retroactively (e.g. auth𝑖 > 𝑖), after some additional confirmation
message has been received. Some may never be authenticated (e.g.
auth𝑖 = ∞).

• FS ∈ {wfs1,wfs2, fs}M×M: for 𝑗 ≥ 𝑖, FS𝑖,𝑗 indicates the type of forward
secrecy expected of stage key 𝑖, assuming stage 𝑗 has accepted. The
types of forward secrecy are further defined in definition 7.3.
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• use ∈ {internal, external}M: use𝑖 indicates if a stage-𝑖 key is used inter-
nally in the key-exchange protocol. (Internally used keys require a bit
of extra care when testing them, while externally used keys may only
be used outside the handshake protocol.)

• replay ∈ {replayable, nonreplayable}𝑀: Indicates whether a stage is ex-
pected to be unique against replay attacks or not. The adversary should
not be able to distinguish a replayed accepted key and a random one.

For a session identified by 𝜋, we may write 𝜋.𝑋 as shorthand to refer to that
session’s element𝑋.

We define the partner of 𝜋 at stage 𝑖 to be any 𝜋′ such that 𝜋.sid𝑖 = 𝜋′.sid𝑖 ≠
⊥ and 𝜋.role ≠ 𝜋′.role; a contributive partner is defined analogously using
contributive identifiers cid. Correctness requires that, in an honest joint
execution of the protocol, this predicate holds for all stages on acceptance.

.. Adversary interaction

Following DFGS [127, 128] our two claimed security properties, Match secu-
rity andMulti-Stage security, take place within the same adversary interaction
model. The adversary 𝒜 is a probabilistic algorithm that controls the com-
munication between all parties and thus can intercept, inject or drop any
message. In this type of model, even two honest parties require 𝒜 to facilitate
communication to establish a session.

Some combinations of queries will be restricted; for example, allowing the
adversary to both reveal and test a particular session key would allow the
adversary to trivially win the test challenge in Multi-Stage security and thus
does not model security appropriately. Such a session is marked unfresh.

The first two queries model honest protocol functionality:

• NewSession(𝑈, 𝑉, 𝑟𝑜𝑙𝑒, 𝑚𝑢𝑡𝑢𝑎𝑙𝑎𝑢𝑡ℎ): Creates a new session 𝜋 in which
we set owner 𝜋.id ← 𝑈, intended peer 𝜋.pid ← 𝑉, 𝜋.role ← 𝑟𝑜𝑙𝑒 and
𝜋.mutualauth← 𝑚𝑢𝑡𝑢𝑎𝑙𝑎𝑢𝑡ℎ. 𝑉may be left unspecified (𝑉 = ∗).

• Send(𝜋,𝑚): Sends message 𝑚 to session 𝜋. If 𝜋 has not been created
using NewSession, return ⊥. Otherwise, Send runs the protocol on
behalf of 𝜋.id. It will record the updated state, and return both the
response message and 𝜋.status𝜋.stage . To initiate a session (i.e., have 𝜋
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compute ClientHello), the adversary may submit the special symbol
𝑚 = init if 𝜋.role = initiator.

Special handling of acceptance. The adversary may not test any keys
that have already been used. Because internal keys may be used im-
mediately, Send will pause execution whenever any key is accepted,
and immediately return accepted to the adversary. The adversary may
choose to test the session (or do other operations in other sessions).
Whenever the adversary decides to continue this session, they may sub-
mit Send(𝜋, continue). This will continue the protocol as specified. On
this call, we set 𝜋.status𝜋.stage+1 ← running, except if the current stage
is the last one, and return the next protocol message and 𝜋.status𝜋.stage .

Whenever stage 𝑖 accepts, if there exists a partner 𝜋′ of 𝜋 at stage 𝑖 with
𝜋′.tested𝑖 = true, we set 𝜋.tested𝑖 ← true. If the stage is an internal-use
stage (𝜋.use𝑖 = internal), we also set 𝜋.key𝑖 ← 𝜋′.key𝑖 to ensure session
keys are used consistently. This ensures the adversary cannot test keys
twice.

The next two queries model the adversary’s ability to compromise partici-
pants and learn some secret information:

• Reveal(𝜋, 𝑖): Reveals the stage key 𝜋.key𝑖 to the adversary. We record
that the key has been revealed by setting 𝜋.revealed𝑖 ← true. If the
session does not exist or the stage has not accepted, returns ⊥.

• Corrupt(𝑈): Provides the adversary with the long-term secret key sk𝑈
of identity 𝑈. We record the time of 𝑈’s corruption.

The final query models the challenge to the adversary of breaking a key
that was established by honest parties:

• Test(𝜋, 𝑖): Challenges the adversary on the indistinguishability of stage
key 𝜋.key𝑖 as follows. If the stage has not been accepted (𝜋.status𝑖 ≠
accepted), or the key has already been tested (𝜋.tested𝑖 = true), or there
exists a partner 𝜋′ to 𝜋 at stage 𝑖 such that 𝜋′.tested𝑖 = true, return ⊥.

If the stage-𝑖 key use is internal (𝜋.use𝑖 = internal), we require a partner
𝜋′ to 𝜋 to exist. To ensure that any partnered session has also not yet
used the key, we require 𝜋′.status𝑖+1 = ⊥. If there is no partner or this
does not hold, return ⊥.
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We now set 𝜋.tested𝑖 ← true.

The Test oracle has a uniformly random bit 𝑏, which is fixed throughout
the game. If test bit 𝑏 = 0, we sample a uniformly random key𝐾←$𝒦.
If test bit 𝑏 = 1, we set 𝐾 ← 𝜋.key𝑖 . To make sure that the selected 𝐾
is consistent with any later internally used keys, we set 𝜋.key𝑖 ← 𝐾 if
𝜋.use𝑖 = internal.

We then ensure consistency with partnered sessions: for sessions 𝜋′

that are partner to 𝜋 at stage 𝑖 for which 𝜋′.status𝑖 = accepted, set
𝜋′.tested𝑖 ← true, and, if 𝜋.use𝑖 = internal, also set 𝜋′.key𝑖 ← 𝐾.

We finally return 𝐾 to the adversary.

.. Match security

Match security models sound behavior of session matching: it ensures that,
for honest sessions, session identifiers effectively match partnered sessions.
(Separately treating the session matching property of AKE protocols is the
approach of [82, 83, 127, 128, 143].)

Definition 7.2 (Match security). Let KE be an M-stage key-exchange proto-
col. Probabilistic adversary 𝒜 interacts with KE via the queries defined in
section 7.2.2. 𝒜 tries to win the following game 𝐺Match

KE,𝒜 :

Setup The challenger generates long-term keypairs (pk𝑈, sk𝑈) for each par-
ticipant 𝑈 ∈ 𝒰. All keys are provided to 𝒜.

Query The adversary has access to queries NewSession, Send, Reveal, Corrupt
and Test. These queries are defined in section 7.2.2.

Stop At some point, the adversary stops with no output.

Let 𝜋, 𝜋′ be distinct, partnered sessions for which 𝜋.sid𝑖 = 𝜋′.sid𝑖 ≠ ⊥ at
some stage 𝑖 ∈ {1,… ,M} The adversary 𝒜 wins the Match security game,
denoted

𝐺Match
KE,𝒜 = 1,

if it can falsify any of the following conditions:

1. At every stage 𝑗 ≤ 𝑖, 𝜋.key𝑗 = 𝜋′.key𝑗: both sessions agree on the same
key at every stage up to and including stage 𝑖.

109



7 Security of KEMTLS

2. 𝜋.role ≠ 𝜋′.role, except if 𝜋.role = responder and 𝜋.replay𝑖 = replayable:
both sessions must have opposite roles, except if they are both respon-
ders in a replayable stage.

3. 𝜋.cid𝑖 = 𝜋′.cid𝑖: both sessions have the same contributive identifier.

4. At every stage 𝑗, if 𝜋.status𝑗 = accepted and 𝜋.stage ≥ 𝜋.auth𝑗, then
we require 𝜋.mutualauth = 𝜋′.mutualauth: both sessions agree on the
authentication used.

5. At every stage 𝑗, if 𝜋.status𝑗 = accepted and 𝜋.stage ≥ 𝜋.auth𝑗, then
𝜋.pid = 𝜋′.id: sessions are partnered with the intended (explicitly
authenticated) participant.

6. If 𝜋.sid𝑖 = 𝜋′.sid𝑗, then 𝑖 = 𝑗: session labels are different in different
stages.

7. If 𝜋.replay𝑖 = nonreplayable, for any three sessions 𝜋, 𝜋′, 𝜋″ , if 𝜋.sid𝑖 =
𝜋′.sid𝑖 = 𝜋″.sid𝑖 ≠ ⊥, then 𝜋 = 𝜋′ , or 𝜋 = 𝜋″ , or 𝜋′ = 𝜋″: at most two
sessions share the same session label.

We say that protocol KE is Match-secure if for all 𝒜 that run in polynomial
time,

AdvMatch
KE,𝒜 = |Pr [𝐺Match

KE,𝒜 ⇒ 1] −
1
2
|

is negligible in the security parameter.

.. Multi-Stage security

The Multi-Stage experiment was introduced by Fischlin and Günther [143]
and was also used by Dowling, Fischlin, Günther, and Stebila for TLS 1.3 [127,
128]. In this original formulation, secrecy of each stage key is defined as
being indistinguishable from a random key, Bellare–Rogaway-style [32]. Our
formulation of Multi-Stage is extended to also model explicit authentication.

We first define the terms fresh and maliciously accept.

Definition 7.3 (Freshness). Stage 𝑖 of a session𝜋 is said to be fresh if conditions
1, 2, and 3 and at least one of 4, 5, or 6 hold:

1. the stage key was not revealed (𝜋.revealed𝑖 = false);
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2. the stage key of the partner session at stage 𝑖, if the partner exists, has
not been revealed (for all 𝑖, 𝜋′ such that 𝜋.sid𝑖 = 𝜋′.sid𝑖, we have that
𝜋′.revealed𝑖 = false);

3. If the stage 𝑖 is replayable, the partner has never been corrupted (if
𝜋.replay𝑖 = replayable, then Corrupt(𝜋.pid) was never called);

4. (weak forward secrecy 1) there exists 𝑗 ≥ 𝑖 such that 𝜋.FS𝑖,𝑗 = wfs1 and
𝜋.status𝑗 = accepted, and there exists a contributive partner at stage 𝑖;

5. (weak forward secrecy 2) there exists 𝑗 ≥ 𝑖 such that 𝜋.FS𝑖,𝑗 = wfs2 and
𝜋.status𝑗 = accepted, and either (a) there exists a contributive partner
at stage 𝑖 or (b) Corrupt(𝜋.pid) was never called;

6. (forward secrecy) there exists 𝑗 ≥ 𝑖 such that 𝜋.FS𝑖,𝑗 = fs and 𝜋.status𝑗 =
accepted, and either (a) there exists a contributive partner at stage 𝑖 or
(b) Corrupt(𝜋.pid) was not called before stage 𝑗 of session 𝜋 accepted.

Definition 7.4 (Malicious acceptance). Stage 𝑖 of session 𝜋 is said to have
maliciously accepted if all the following conditions hold:

1. 𝜋.status𝜋.auth𝑖 = accepted;

2. if stage 𝑖 is not replayable, there does not exist a unique partner of 𝜋 at
stage 𝑖; and

3. Corrupt(𝜋.pid) was not called before stage 𝜋.auth𝑖 of session 𝜋 accepted.

Now we can define our version of the Multi-Stage security experiment.

Definition 7.5 (Multi-Stage security). Let KE be an M-stage key-exchange
protocol, and let 𝒜 be a probabilistic adversary interacting with KE via the
queries defined in section 7.2.2. The adversary tries to win the game𝐺Multi-Stage

KE,𝒜 :

Setup The challenger generates all long-term keys (pk𝑈, sk𝑈) for all identities
𝑈 ∈ 𝒰 and picks the uniformly random test bit 𝑏 (used in the Test

queries). The public keys pk𝑈 are provided to 𝒜.

Query The adversary has access to queries NewSession, Send, Reveal, Corrupt,
and Test. These are defined in section 7.2.2.

Stop At some point, 𝒜 stops and outputs their guess 𝑏′ of 𝑏.
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Finalize The adversary wins the game if either of the following conditions
holds:

1. all tested stages are fresh (definition 7.3), and 𝑏′ = 𝑏; or

2. there exists a stage that has maliciously accepted;

in which case the experiment 𝐺Multi-Stage
KE,𝒜 outputs 1. Otherwise, the

adversary has lost the game, in which case the experiment 𝐺Multi-Stage
KE,𝒜

outputs a uniform bit.

The Multi-Stage-advantage of 𝒜 is defined as:

Adv
Multi-Stage
KE,𝒜 = |Pr [𝐺Multi-Stage

KE,𝒜 ⇒ 1] − 1
2
| .

. Specifics of KEMTLS in themodel

For the proofs in the subsequent subsections, KEMTLS is as specified in fig-
ures 5.2 and 5.3, withM = 6 stages. The session identifiers sid𝑖 and contributive
identifiers cid𝑖 for each stage are defined as follows. Whenever a stage is ac-
cepted, its session identifier is set to consist of a label and all (unencrypted)
handshake messages up to that point. Note that for mutually authenticated
handshakes, the CertificateRequest, ClientCertificate, and ServerKem-
Ciphertext messages are included in these message ranges:

sid1 = (“CHTS”, ClientHello…ServerHello),
sid2 = (“SHTS”, ClientHello…ServerHello),
sid3 = (“CAHTS”,ClientHello…ClientKemCiphertext),
sid4 = (“SAHTS”, ClientHello…ClientKemCiphertext),
sid5 = (“CATS”, ClientHello…ClientFinished),
sid6 = (“SATS”, ClientHello…ServerFinished).

We use the contributive identifiers cid𝑖 to match up participant sessions
in the proof before both sessions have accepted the first session identifier.
This means we need special care for the contributive identifiers before the
first stage. In stage 𝑖 = 1, the client and server set, upon sending (client) or
receiving (server) the ClientHello message, cid1 = (“CHTS”,ClientHello).
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When they next send (server) or receive (client) the ServerHello response,
they update this to cid1 = sid1 . All other contributive identifiers are set to
cid𝑖 = sid𝑖 whenever sid𝑖 is set. Finally, if any client or server receives an
unexpected message, they terminate.

Every client and server session of unilaterally or mutually authenticated
KEMTLS uses the following properties for the replayability and the usage of the
six stages:

replay = (nonreplayable×6) ,
use = (internal×4, external×2) .

All KEMTLS client sessions authenticate the server. This means both uni-
laterally authenticated and mutually authenticated client sessions of KEMTLS

have the same properties for when sessions reach explicit authentication and
the forward secrecy levels per stage.

The security properties for unilaterally and mutually authenticated KEMTLS

client sessions are:

auth = (6×6) ,

FS =((

(

wfs1 wfs1 wfs1 wfs1 wfs1 fs

wfs1 wfs1 wfs1 wfs1 fs

wfs2 wfs2 wfs2 fs

wfs2 wfs2 fs

wfs2 fs

fs

))

)

.

Every server session of unilaterally authenticated KEMTLS uses:

auth = (∞×6) ,

FS =((

(

wfs1 wfs1 wfs1 wfs1 wfs1 wfs1

wfs1 wfs1 wfs1 wfs1 wfs1

wfs1 wfs1 wfs1 wfs1

wfs1 wfs1 wfs1

wfs1 wfs1

wfs1

))

)

.

As the client is not at all authenticated, we can reach at most wfs1 security:
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we are only secure against passive adversaries. We also never reach explicit
authentication in any stage.

For mutually authenticated server sessions of KEMTLS, the client is authenti-
cated. This gives us the following properties for explicit authentication and
forward secrecy in server sessions:

auth = (5, 5, 5, 5, 5,∞) ,

FS𝑖,𝑗 =
((

(

wfs1 wfs1 wfs1 wfs1 fs fs

wfs1 wfs1 wfs1 fs fs

wfs1 wfs1 fs fs

wfs1 fs fs

fs fs

fs

))

)

.

Inmutually authenticated KEMTLS, the server’s value for auth6 is still∞. Server
sessions never receive another message during the handshake protocol after
accepting the stage-6 key and thus cannot be sure ServerFinished arrived at
the client.

. Proving the security of KEMTLS

We will now show that both unilaterally and mutually authenticated KEMTLS

have the properties that we claimed. We will first show that KEMTLS is Match-
secure, after which we will show that it is Multi-Stage secure.

Theorem 7.6. KEMTLS is Match-secure. In particular, any efficient adversary 𝒜
has advantage

AdvMatch
KEMTLS,𝒜 ≤ 𝑛𝑠(𝛿𝑒 + 𝛿𝑠 + 𝛿𝑐) + 𝑛2𝑠 /2|nonce|,

where 𝑛𝑠 is the number of sessions, |nonce| is the length of the nonces 𝑟𝑐 and 𝑟𝑠
in bits, and the ephemeral and long-term KEM algorithms are assumed to be
𝛿𝑒-, 𝛿𝑠- and 𝛿𝑐-correct, respectively. If 𝜋.mutualauth = false, 𝛿𝑐 = 0.

Proof. We need to show each property ofMatch security (definition 7.2) holds:

1. The session identifiers are defined to contain all handshake messages.
KEM messages and hashes of those messages are only inputs into the
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key schedule. In stages 1 and 2, the input to the agreed keys is the
ephemeral KEMe shared secret and the messages up to ServerHello.
For stages 3 and 4, the input to the agreed keys are the previous keys,
messages up to ClientKemCiphertext, and the static KEMs shared
secret. For the final stages 5 and 6, the input to the keys is the previous
keys and the messages up to ClientFinished and ServerFinished
respectively. It is easy to confirm that this is all included in the session
identifiers. This means that the parties use the same inputs for their
computations. The only way they can arrive at different keys is if any
of their computations are not perfectly correct. The ephemeral and
long-termKEMs have some small probability of failure (definition 2.14),
𝛿𝑒, and 𝛿𝑠 and 𝛿𝑐, respectively, in each of the 𝑛𝑠 sessions. This gives us
a failure probability of 𝑛𝑠 (𝛿𝑒 + 𝛿𝑠 + 𝛿𝑐). If 𝜋.mutualauth = false, there
is no chance of decapsulation failure in client authentication, so 𝛿𝑐 = 0.

2. No KEMTLS session that is either initiator or responder will ever accept a
wrong-role incoming message, so any pair of two sessions must have
both an initiator and a responder. We will later show that at most two
sessions have the same sid, implying that this pairing will be unique
and thus opposite. There are no replayable stages in KEMTLS.

3. By definition, cid𝑖 is final and equal to sid𝑖 whenever stage 𝑖 is accepted.

4. The presence of ClientCertificate in the transcript decides if the value
of either session’s mutualauth = true before either session accepts the
stage-5 key, which is when explicit authentication is first reached in
mutually authenticated KEMTLS.

5. The partnered sessions only have to agree once they reach a retroac-
tively authenticated stage. The identity of the server is learned through
the ServerCertificate sent by the responder. Because Match security
only concerns honest sessions, the ServerCertificate received by the
session that has 𝜋.role = initiator will set the correct pid. The identity
of the client is learned through the ClientCertificate message sent by
the initiator session. Similarly, the ClientCertificate received by the
responder will set the correct pid.

6. Every stage’s session identifier is defined to have a unique label, thus
there can be no confusion across distinct stages.
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7. The session identifiers include the random nonce and KEM public keys
and ciphertexts. For three sessions to have the same identifier, we would
need to have a collision of these values picked by honest servers and
clients. Without making assumptions on the KEM schemes, we can
rely on the distinctness of nonces under the birthday bound on 𝑛𝑠 the
number of sessions: the probability of failing in 𝑛𝑠 sessions is less than
𝑛2𝑠 /2|nonce|, which is negligible in the bit-length of the nonce.

Now we can prove the Multi-Stage security of KEMTLS.

Theorem 7.7. Let 𝒜 be an algorithm, and let 𝑛𝑠 be the number of sessions and
𝑛𝑢 be the number of parties. There exist algorithms ℬ1,… ,ℬ16 , described in
the proof, such that

Adv
Multi-Stage
KEMTLS,𝒜 ≤

𝑛2𝑠
2|nonce|
+ AdvCOLLH,ℬ1

+ 6𝑛𝑠

((((((((((((

(

𝑛𝑠(

AdvIND-1CCAKEMe,ℬ2 +AdvPRF-secHKDF.Extract,ℬ3
+AdvPRF-secHKDF.Expand,ℬ4 +Adv

dual-PRF-sec
HKDF.Extract,ℬ5

+AdvPRF-secHKDF.Expand,ℬ6 +Adv
dual-PRF-sec
HKDF.Extract,ℬ7

+AdvPRF-secHKDF.Expand,ℬ8 + 2Adv
EUF-CMA
HMAC,ℬ9

)

+𝑛𝑢(

AdvIND-CCAKEMs,ℬ10 +AdvPRF-secHKDF.Extract,ℬ11
+AdvPRF-secHKDF.Expand,ℬ12 +Adv

IND-CCA
KEMc,ℬ13

+Advdual-PRF-secHKDF.Extract,ℬ14 +Adv
PRF-sec
HKDF.Expand,ℬ15

+ 2AdvEUF-CMA
HMAC,ℬ16

)

))))))))))))

)

.

Proof. The proof follows the basic structure of the proof of DFGS [127, 128] for
the TLS 1.3 signed-Diffie–Hellman full handshake. It proceeds by a sequence
of games, in each of which we will reduce the advantage of the adversary 𝒜
until it has no chance of winning anymore. The security bound is obtained
by adding up all the reductions in advantage.

We assume that all tested sessions remain fresh throughout the experiment,
as otherwise the adversary loses the indistinguishability game.
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Game : Multi-Stage game

We define 𝐺0 to be the original Multi-Stage game:

Adv
Multi-Stage
KEMTLS,𝒜 = Adv

𝐺0
𝒜 .

Game : nonce collisions

We abort if any honest session uses the same nonce 𝑟𝑐 or 𝑟𝑠 as any other session.
Given that there are 𝑛𝑠 sessions each using uniformly random nonces of size
|nonce| = 256, the chance of a repeat is given by a birthday bound:

Adv
𝐺0
𝒜 ≤ Adv

𝐺1
𝒜 +
𝑛2𝑠
2|nonce|
.

Game : collision resistance

In this game, the challenger will abort if any two honest sessions compute the
same hash for different inputs of hash function H. If this happens, it induces a
reduction ℬ1 that can break the collision resistance of H. If a collision occurs,
ℬ1 outputs the two distinct input values. Thus:

Adv
𝐺1
𝒜1 ≤ Adv

𝐺2
𝒜 + Adv

COLL
H,ℬ1 .

Game : single Test query

We now restrict 𝒜 to only make a single Test query. This reduces its ad-
vantage by at most 1/6𝑛𝑠 for the six stages, based on a hybrid argument by
Günther [167]. Any single-query adversary 𝒜1 can emulate a multi-query
adversary 𝒜 by guessing a to-be-tested session in advance. For any other Test
queries 𝒜 may submit, 𝒜1 can substitute by Reveal queries. 𝒜1 will need
to know how sessions are partnered. Early partnering is decided by public
information (sid1, sid2), but later sids are encrypted. However, 𝒜1 can just
reveal the handshake traffic keys to decrypt the subsequent information.

We get the following advantage by letting transformed adversary 𝒜1 guess
the right session and stage:

Adv
𝐺2
𝒜 ≤ 6𝑛𝑠 ⋅ Adv

𝐺3
𝒜1 .

With this restriction from 𝒜 to 𝒜1, we can now refer to the session 𝜋 tested
at stage 𝑖, and assume that we know the tested session 𝜋 at the outset.
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Case distinction

We now consider two separate cases of game 3. These cases, respectively,
roughly correspond to the specified properties of weak forward secrecy: wfs1
and wfs2. By rejecting malicious acceptance, we finally show fs.

The two cases are:

A. (denoted 𝐺𝐴) The tested session 𝜋 has a contributive partner in stage 1.
Formally, there exists 𝜋′ ≠ 𝜋 where 𝜋′.cid1 = 𝜋.cid1 .

B. (denoted 𝐺𝐵) The tested session 𝜋 does not have a contributive partner
in stage 1, and there was no Corrupt(𝜋.pid) query before stage 𝑖 accepted.

As by rejecting malicious acceptance, no cases exist that call Corrupt(𝜋.pid)
after stage 𝑖 accepted, these cases are exhaustive.

We will consider the advantage of the adversary separately for these two
cases:

Adv
𝐺3
𝒜1 ≤ max {Adv

𝐺𝐴
𝒜1 , Adv

𝐺𝐵
𝒜1}

≤ Adv𝐺𝐴𝒜1 + Adv
𝐺𝐵
𝒜1 .

Case A: stage  contributive partner exists

If the tested session 𝜋 is a client (initiator) session, then 𝜋.cid1 = 𝜋.sid1, and
a partner session at stage 1 also exists. Since sid1 includes both the client
and server nonces 𝑟𝑐 and 𝑟𝑠 via the ClientHello and ServerHello messages,
and by game 1 no honest sessions repeat nonces, the contributive partner is
unique.

If the tested session 𝜋 is a server (responder) session, then it is possible that,
while the contributive partner session at stage 1 exists, the partner session at
stage 1 may not exist. However, since cid1 includes the client nonce (which
by game 1 are unique) and contributive partnering includes roles, there is no
other honest client session that is a contributive partner at stage 1.

So we can talk about the tested session and its unique contributive partner
at stage 1. Let 𝜋′ be the unique honest contributive partner of 𝜋 at stage 1. In
the following, we let 𝜋𝑐 denote the one of {𝜋, 𝜋′} which is a client (initiator)
session, and we let 𝜋𝑠 denote the one which is a server (responder) session.
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Game A: guess contributive partner session

In this game, the challenger tries to guess the 𝜋′ ≠ 𝜋 that is the honest
contributive partner to 𝜋 at stage 1.

This reduces the advantage of 𝒜1 by a factor of the number of sessions 𝑛𝑠:

Adv
𝐺𝐴
𝒜1 ≤ 𝑛𝑠 ⋅ Adv

𝐺𝐴1
𝒜1 .

From this point on, we will make a series of replacements in the tested session
𝜋, and its (unique) contributive partner session 𝜋′ which we know by game A1.

Game A: ephemeral KEM

In this game, in session 𝜋𝑠, we replace the ephemeral secret ss𝑒 with a uni-
formly random s̃s𝑒 . If 𝜋𝑐 received the same ct𝑒 that 𝜋𝑠 sent, then we also
replace its ss𝑒 with the same s̃s𝑒 . All values derived from ss𝑒 in 𝜋𝑠 (and 𝜋𝑐, if
ss𝑒 was replaced in it) use the randomized value s̃s𝑒 .

Any adversary 𝒜1 that can detect this change can be used to construct an
adversary ℬ2 against the IND-1CCA security of KEMe as follows. ℬ2 obtains
the IND-1CCA challenge pk⋆, ct⋆ and challenge shared secret ss⋆ . In 𝜋𝑐, it
uses pk⋆ in the ClientHello. In 𝜋𝑠, it uses ct⋆ in the ServerHello reply, and
ss⋆ as 𝜋𝑠 ’s shared secret ss𝑒 . If 𝒜1 delivers ct⋆ to 𝜋𝑐, then ℬ2 uses ss⋆ as 𝜋𝑐 ’s
shared secret ss𝑒 as well. If 𝒜1 delivers some other ct′ ≠ ct⋆ to 𝜋𝑐, then ℬ2
makes a single query to its IND-1CCA decapsulation oracle with ct′ to obtain
the required shared secret. All other sessions and parties are simulated.

𝒜1 eventually terminates its guess of 𝑏 = 0 or 𝑏 = 1. If ss⋆ was the real
shared secret, then ℬ2 has exactly simulated 𝐺𝐴1 to 𝒜1; if ss⋆ was a random
value, then ℬ2 has exactly simulated 𝐺𝐴2 to 𝒜1 . Thus:

Adv
𝐺𝐴1
𝒜1 ≤ Adv

𝐺𝐴2
𝒜1 + Adv

IND-1CCA
KEMe,ℬ2 .

Game A: replacingHS
In this game, in session 𝜋𝑠, we replace the handshake secret HS with a uni-
formly random H̃S. If 𝜋𝑐 received the same ct𝑒 that 𝜋𝑠 sent, then we also
replace its HS with the same H̃S. All values derived from HS in 𝜋𝑠 (and 𝜋𝑐 , if
HS was replaced in it) use the randomized value H̃S.

Any adversary 𝒜1 that can detect this change can be used to construct a dis-
tinguisher ℬ3 against the PRF security of HKDF.Extract in its second argument
as follows. When ℬ3 needs to compute HS in 𝜋𝑠 (or 𝜋𝑐, if 𝜋𝑐 received the
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𝐺PRF-secHKDF.Extract,ℬ3

1: 𝑏′ ←$ℬ𝒪
3 ()

2: return ⟦𝑏′ = 𝑏⟧

PRF-Oracle 𝒪(𝑙)
1: if 𝑏 = 0 then
2: return HKDF.Extract(𝑙, ss𝑒)
3: else
4: return R(𝑙)
5: end if

ℬ3 ’s HKDF.Extract′(𝑘, 𝑙)
1: if 𝑘 = ss𝑒 then
2: return 𝒪(𝑙)
3: else
4: return

HKDF.Extract(𝑙, 𝑘)
5: end if

Distinguisher ℬ𝒪
3 ()

1: ℬ3 simulates KEMTLS using
HKDF.Extract′ to compute
HS.

2: 𝑏′ ← 𝒜KEMTLS
1 ()

3: return 𝑏′

Figure 7.1: ℬ3 in game 𝐴3 uses 𝒜1 , which interacts with KEMTLS as described
in section 7.2.2, to win the PRF security experiment for HKDF.Extract.
𝑅 is a function which returns uniformly random values.

same ct𝑒 that 𝜋𝑠 sent), it queries its HKDF.Extract challenge oracle (keyed with
ss𝑒) on dES and uses the response as HS. If the response was the real output,
then ℬ3 has exactly simulated 𝐺𝐴2 to 𝒜1; if the response was a random value,
then ℬ3 has exactly simulated 𝐺𝐴3 to 𝒜1 . Thus:

Adv
𝐺𝐴2
𝒜1 ≤ Adv

𝐺𝐴3
𝒜1 + Adv

PRF-sec
HKDF.Extract,ℬ3 .

To further illustrate how we construct this reduction to the PRF advantage,
we give a pseudocode representation of the PRF experiment and how ℬ3 uses
𝒜1 to its advantage in figure 7.1.

Game A: replacingCHTS, SHTS, and dHS
In this game, in session 𝜋𝑠 , we replace the values CHTS, SHTS, and dHS with
uniformly random values. If 𝜋𝑐 received the same ct𝑒 that 𝜋𝑠 sent (i.e., has
the same value for HS), then we replace its dHS with the same replacement
as in 𝜋𝑠 . Furthermore, if 𝜋𝑐 received the same ct𝑒 that 𝜋𝑠 sent and the same
ServerHello (i.e., if 𝜋𝑐 is a partner to 𝜋𝑠 at stage 1 and 2), then we also replace
its CHTS and SHTS with the same replacements as in 𝜋𝑠 . If 𝜋𝑐 received the
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same ct𝑒 that 𝜋𝑠 sent but not the same ServerHello, then we replace its CHTS
and SHTS with independent uniformly random values. All values derived
from dHS in 𝜋𝑠 (and 𝜋𝑐 , if dHS was replaced in it) use the newly randomized
values.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ4 against the PRF security of HKDF.Expand as follows. When
ℬ4 needs to compute CHTS, SHTS, or dHS in 𝜋𝑠 (or 𝜋𝑐, if 𝜋𝑐 received the
same ct𝑒 that 𝜋𝑠 sent), it queries its HKDF.Expand challenge oracle (keyed with
HS) on the corresponding labels and transcripts, and uses the responses. If
the responses were the real output, then ℬ4 has exactly simulated 𝐺𝐴3 to 𝒜1;
if the responses were random values, then ℬ4 has exactly simulated 𝐺𝐴4 to
𝒜1 . Note that if 𝜋𝑐 did receive the same ct𝑒 as was sent by 𝜋𝑠 , but other parts
of the ServerHello message were altered such that 𝜋𝑐 and 𝜋𝑠 are not partners
at stage 1, the adversary may be permitted to query Reveal(𝜋𝑐, 1); but since the
transcript in 𝜋𝑐 and 𝜋𝑠 is now different, the label input to the HKDF.Expand
oracle for CHTS and SHTS is different, so the simulation in ℬ4 remains good.
Thus:

Adv
𝐺𝐴3
𝒜1 ≤ Adv

𝐺𝐴4
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ4 .

The stage-1 and stage-2 keys CHTS and SHTS are now uniformly random
strings independent of everything else in the game. Thus, the stage-1 and
stage-2 keys have been shown to have wfs1 security.

Game A: replacingAHS
In this game, in session𝜋𝑠 , we replace the secret AHSwith a uniformly random
ÃHS. If 𝜋𝑐 shares the values for dHS (i.e., received the same ct𝑒 as was sent by
𝜋𝑠) and ct𝑆 with 𝜋𝑠, we replace its AHS with the same replacement as in 𝜋𝑠 .
Otherwise, if 𝜋𝑐 only shares the same value for ct𝑆 with 𝜋𝑠 , we replace its AHS
with an independent uniformly random value. All values derived from AHS
in 𝜋𝑠 (and 𝜋𝑐, if AHS was replaced in it) use the newly randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ5 against the PRF security of HKDF.Extract in its first argument
(which we view as the “dual-PRF security” of HKDF.Extract) as follows. We rely
on the dual-PRF security of HKDF.Extract in its salt argument instead of using
ss𝑆 as the key in the PRF experiment, as the adversary is allowed to Corrupt

the sessions involved in the games in case A. When ℬ5 needs to compute
AHS in 𝜋𝑠 (or 𝜋𝑐 , if 𝜋𝑐 has the same value for dHS), it queries its HKDF.Extract
challenge oracle (keyed with dHS) on the value of ss𝑆 in the session and uses
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the response as AHS. If the response was the real output, then ℬ5 has exactly
simulated 𝐺𝐴4 to 𝒜1; if the response was a random value, then ℬ5 has exactly
simulated 𝐺𝐴5 to 𝒜1 . Thus:

Adv
𝐺𝐴4
𝒜1 ≤ Adv

𝐺𝐴5
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ5 .

Game A: replacingCAHTS, SAHTS, and dAHS
In this game, in session 𝜋𝑠 , we replace the values CAHTS, SAHTS, and dAHS
with uniformly random values. If 𝜋𝑐 shares the value of AHS with 𝜋𝑠 (i.e., has
the same ct𝑒 and ct𝑆) and is a partner to 𝜋𝑠 at stage 3 and 4, then we replace
its CAHTS, SAHTS, and dAHS with the same replacements as in 𝜋𝑠 . If 𝜋𝑐
shares the value of AHS with 𝜋𝑠 but is not a partner to 𝜋𝑠 at stage 3 and 4,
then we replace its CAHTS, SAHTS with independent uniformly random
values, but we replace dAHS with the same replacement as in 𝜋𝑠 . All values
derived from dAHS in 𝜋𝑠 (and 𝜋𝑐, if dAHS was replaced in it) use the newly
randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ6 against the PRF security of HKDF.Expand as follows. When
ℬ6 needs to compute CAHTS, SAHTS, or dAHS in 𝜋𝑠 (or 𝜋𝑐, if 𝜋𝑐 has the
same AHS), it queries its HKDF.Expand challenge oracle (keyed with AHS)
on the corresponding labels and transcripts, and uses the responses. If the
responses were the real output, then ℬ6 has exactly simulated 𝐺𝐴5 to 𝒜1; if
the responses were random values, then ℬ6 has exactly simulated 𝐺𝐴6 to 𝒜1 .
Note that if 𝜋𝑐 did have the same AHS as 𝜋𝑠, but parts of the transcript were
altered such that 𝜋𝑐 and 𝜋𝑠 are not partners at stage 3 and 4, the adversary may
be permitted to query Reveal(𝜋𝑐, 3) or Reveal(𝜋𝑐, 4); but since the transcript
in 𝜋𝑐 and 𝜋𝑠 is now different, the label input to the HKDF.Expand oracle for
CAHTS and SAHTS is different, so the simulation in ℬ6 remains good. Thus:

Adv
𝐺𝐴5
𝒜1 ≤ Adv

𝐺𝐴6
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ6 .

The stage-3 and stage-4 keys CAHTS and SAHTS are now uniformly ran-
dom strings independent of everything else in the game. Thus, the stage-3
and stage-4 keys have been shown to have wfs1 security.

Game A: replacingMS
In this game, in session 𝜋𝑠, we replace the main secret MS with a uniformly
random M̃S. If 𝜋𝑐 has the same value for dAHS (i.e., has the same values for

122



7.4 Proving the security of KEMTLS

ct𝑒 and ct𝑆), and, if 𝜋𝑐.mutualauth = true, ct𝐶 as 𝜋𝑠, then we replace its MS
with the same replacement as in 𝜋𝑠 . Otherwise, if 𝜋𝑐.mutualauth = true and
𝜋𝑐 only shares the same dAHS with 𝜋𝑠 but ct𝐶 is different, we replace MS in
𝜋𝑐 with an independent uniformly random value. All values derived from MS
in 𝜋𝑠 use these newly randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ7 against the PRF security of HKDF.Extract in its first argument
as follows (which we view as “dual-PRF security” of HKDF.Extract). When ℬ7
needs to compute MS in 𝜋𝑠 (or 𝜋𝑐, if 𝜋𝑐 shares the value for dAHS with 𝜋𝑠),
it queries its HKDF.Extract challenge oracle (keyed with dAHS) on ss𝐶 or 0
if 𝜋.mutualauth = false. It uses the response as MS. If the response was the
real output, then ℬ7 has exactly simulated 𝐺𝐴6 to 𝒜1; if the response was a
random value, then ℬ7 has exactly simulated 𝐺𝐴7 to 𝒜1 . Thus:

Adv
𝐺𝐴6
𝒜1 ≤ Adv

𝐺𝐴7
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ7 .

Game A: replacingCATS, fkc, fks, and SATS
In this game, in session 𝜋𝑠, we replace the values CATS, fk𝑐, fk𝑠, and SATS
with uniformly random values. If 𝜋𝑐 is a partner of 𝜋𝑠 at stage 5, then we
replace its CATS, fk𝑐 , and fk𝑠 with the same replacements as in 𝜋𝑠 . If 𝜋𝑐 is not
a partner of 𝜋𝑠 at stage 5 but shares the same value for MS with 𝜋𝑠 , we replace
𝜋𝑐 ’s CATS with an independent uniformly random value, but still replace fk𝑐
and fk𝑠 with the same replacements as in 𝜋𝑠 . If 𝜋𝑐 is a partner of 𝜋𝑠 at stage
6, then we replace its SATS with the same replacement as in 𝜋𝑠 . If 𝜋𝑐 is not
a partner of 𝜋𝑠 at stage 6 but shares the same value for MS, we replace 𝜋𝑐 ’s
SATS with a uniformly random value.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ8 against the PRF security of HKDF.Expand as follows. When
ℬ8 needs to compute CATS, fk𝑐, fk𝑠, or SATS in 𝜋𝑠 (or 𝜋𝑐, if 𝜋𝑐 shares the
same value forMSwith 𝜋𝑠), it queries its HKDF.Expand challenge oracle (keyed
with MS) on the corresponding labels and transcripts, and uses the responses.
Note that if 𝜋𝑐 does share MS with 𝜋𝑠 , but parts of the transcript were altered
such that 𝜋𝑐 and 𝜋𝑠 are not partners at stage 5 and 6, the adversary may be
permitted to query Reveal(𝜋𝑐, 5) or Reveal(𝜋𝑐, 6); but since the transcript in 𝜋𝑐
and 𝜋𝑠 is now different, the labels input to the HKDF.Expand oracle for CATS
and SATS are different, so the simulation in ℬ8 remains good. If the response
was the real output, then ℬ8 has exactly simulated 𝐺𝐴7 to 𝒜1; if the response
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was a random value, then ℬ8 has exactly simulated 𝐺𝐴8 to 𝒜1 . Thus:

Adv
𝐺𝐴7
𝒜1 ≤ Adv

𝐺𝐴8
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ8 .

The stage-5 and stage-6 keys CATS and SATS are now uniformly random
strings independent of everything else in the game. Thus, the stage-5 and
stage-6 keys have been shown to have wfs1 security.

Malicious acceptance

Let bad denote the event that 𝐺𝐴8 maliciously accepts in the (fresh) tested
session in any of the stages 𝑖, such that 𝜋.auth𝑖 = 𝑗 and 𝜋 does not have a
session partner in stage 𝑗. If 𝜋 is a client session, we can reach bad in stage
𝑗 = 6 for both unilaterally and mutually authenticated KEMTLS. If 𝜋 is a server
session, we can reach bad in stage 𝑗 = 5, if 𝜋.mutualauth = true; otherwise
server sessions are never mutually authenticated.

Game A: identical-until-bad

This game is identical to 𝐺𝐴8, except that we abort the game if the event bad
occurs. Games 𝐺𝐴8 and 𝐺𝐴9 are identical-until-bad [33]. Thus,

|Pr [𝐺𝐴8 ⇒ 1] − Pr [𝐺𝐴9 ⇒ 1]| ≤ Pr [𝐺𝐴9 reaches bad] .

In game A8, all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary cannot distinguish
stage keys anymore. By this game, it can no longer reach bad. Thus

Adv
𝐺𝐴9
𝒜1 = 0.

It remains to bound Pr [𝐺𝐴9 reaches bad].

Game A: HMAC forgery

In this game, if 𝜋 is a client, if it does not have a session partner in stage
6, 𝜋 rejects upon receiving the ServerFinished message. If 𝜋 is a server
session and 𝜋.mutualauth = true, 𝜋 rejects upon receiving the ClientFin-
ished message if it does not have a session partner in stage 5.

Any adversary that behaves differently in 𝐺𝐴10 compared to 𝐺𝐴9 can be
used to construct an HMAC forger ℬ9 . The only way that𝐺𝐴9 and𝐺𝐴10 behave
differently is if 𝐺𝐴10 rejects a MAC that should have been accepted as valid.
When rejecting ServerFinished, if no partner to 𝜋𝑐 at stage 6 exists, no
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honest 𝜋𝑠 exists with the same session identifier and thus transcript. Similarly,
if ClientFinished is rejected, no partner to 𝜋𝑠 at stage 5 exists, then no honest
𝜋𝑐 exists with the same session identifier and transcript. This means no honest
𝜋𝑠 ever created a MAC for the transcript that the client verified, or no honest
𝜋𝑐 created the MAC for the transcript that the server verified, and thus it must
be a forgery. Concluding:

Pr [𝐺𝐴9 reaches bad] ≤ Pr [𝐺𝐴10 reaches bad] + 2AdvEUF-CMA
HMAC,ℬ9 .

By the above, the event bad is never reached.

Analysis of game A

In game A8, all stage keys in the tested session are uniformly random and
independent of all messages in the game, so the hidden bit 𝑏 used in the tested
session is now independent all information sent to the adversary. By A10, all
events bad are rejected. Thus:

Pr [𝐺𝐴10 reaches bad] = 0.

This concludes case A, yielding:

Adv
𝐺𝐴
𝒜1 ≤ 𝑛𝑠(

AdvIND-1CCAKEMe,ℬ2 +AdvPRF-secHKDF.Extract,ℬ3
+AdvPRF-secHKDF.Expand,ℬ4 +Adv

dual-PRF-sec
HKDF.Extract,ℬ5

+AdvPRF-secHKDF.Expand,ℬ6 +Adv
dual-PRF-sec
HKDF.Extract,ℬ7

+AdvPRF-secHKDF.Expand,ℬ8 +2Adv
EUF-CMA
HMAC,ℬ9

).

Case B: no contributive partner, peer not corrupted before stage 𝒊
accepted

Since in this case the tested session 𝜋 does not have a contributive partner in
stage 1 (and hence in any stage), stages aiming for wfs1 are outside the scope
of this case. This means that we can assume that the tested session 𝜋 is a client
session if 𝜋.mutualauth = false. Otherwise, 𝜋may also be a server session that
mutually authenticates a client session.

We also allow the intended peer 𝑉 of the tested session 𝜋 to be corrupted,
but not before the tested session accepts the tested stage fixed in game 3. This
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models forward secrecy: even if the adversary obtains the peer’s long-term
key, the tested keys should still be indistinguishable.

Allowing Corrupt in this case means that any reductions that replace ss𝑆
or ss𝐶 are problematic. However, we show by assumption on the EUF-CMA

security ofHMAC that𝜋 cannot bemade tomaliciously accept at stage 𝑗 = 5 for
server sessions with mutual authentication, or stage 𝑗 = 6 for client sessions.
If 𝜋 does accept, it has a partner at stage 𝑗, and at all prior stages.

This leads to the following conclusions. Once stage 𝑗 accepts, all stages are
retroactively authenticated. By case A, all stage keys are indistinguishable,
even to an adversary that corrupts any long-term key. This yields retroactive
fs for all stage keys.

Game B: guess peer

In this game, we guess the identity 𝑉 of the intended peer of the test ses-
sion, and abort if the guess is incorrect (i.e., if 𝑉 ≠ 𝜋.pid). This reduces the
advantage of 𝒜1 by a factor of the number of users 𝑛𝑢:

Adv
𝐺𝐵
𝒜1 ≤ 𝑛𝑢 ⋅ Adv

𝐺𝐵1
𝒜1 .

Game B: long-term KEM

In this game, in session 𝜋, a client session, we replace the static shared secret
ss𝑆 with a uniformly random s̃s𝑆 . Additionally, in any (server) sessions 𝜋′

of 𝑉 which received the same ct𝑆 that was sent in 𝜋, we replace the static
shared secret ss𝑆 with the same s̃s𝑆 . All values derived from ss𝑆 in 𝜋 use the
randomized value s̃s𝑆 .

Any adversary 𝒜1 that can detect this change can be used to construct an
adversary ℬ10 against the IND-CCA security of KEMs as follows. ℬ10 obtains
the IND-CCA challenge pk⋆, ct⋆, and challenge shared secret ss⋆ . It uses pk⋆

as the long-term public key of 𝑉. In the tested session 𝜋, ℬ10 uses ct⋆ as 𝜋’s
encapsulation ct𝑆 in message CKC, and uses ss⋆ as ss𝑆 . In any session of 𝑉, if
the ciphertext ct𝑆 received in the CKC message is not ct⋆, then ℬ10 queries
its IND-CCA decapsulation oracle, and uses the response as ss𝑆; if the received
ciphertext ct𝑆 = ct⋆, ℬ10 uses ss⋆ as ss𝑆 . By the assumptions of case B, there
is never a Corrupt(𝑉) query that needs to be answered. 𝒜1 terminates and
outputs its guess of 𝑏 = 0 or 𝑏 = 1. If ss⋆ was the real shared secret, then
ℬ10 has exactly simulated 𝐺𝐵1 to 𝒜1; if ss⋆ was a random value, then ℬ10 has
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exactly simulated 𝐺𝐵2 to 𝒜1 . Thus:

Adv
𝐺𝐵1
𝒜1 ≤ Adv

𝐺𝐵2
𝒜1 + Adv

IND-CCA
KEMs,ℬ10 .

Game B: replacingAHS
In this game, in session 𝜋, a client session, we replace the secret AHS with a
uniformly random ÃHS. Additionally, in any (server) sessions 𝜋′ of 𝑉 which
received the same ct𝑆 that was sent in 𝜋, we replace AHS with random values,
maintaining consistency among any sessions of 𝑉 that use the same ct𝑆 and
the same dHS. All values derived from AHS in these sessions use the newly
randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct
a distinguisher ℬ11 against the PRF security of HKDF.Extract in its second
argument as follows. When ℬ11 needs to compute AHS in 𝜋 or in any of the
sessions of 𝑉 that received the same ct𝑆, it queries its HKDF.Extract challenge
oracle (keyed with ss𝑆) on that session’s dHS and uses the response AHS. If
the HKDF.Expand challenge oracle was returning real outputs, then ℬ11 has
exactly simulated 𝐺𝐵2 to 𝒜1; if it was returning random values, then ℬ11 has
exactly simulated 𝐺𝐵3 to 𝒜1 . Thus:

Adv
𝐺𝐵2
𝒜1 ≤ Adv

𝐺𝐵3
𝒜1 + Adv

PRF-sec
HKDF.Extract,ℬ11 .

Game B: replacingCATS, SAHTS and dAHS
In this game, in session 𝜋, a client session, we replace the values CAHTS,
SAHTS, and dAHS with uniformly random values. Additionally, in any ses-
sions 𝜋′ of 𝑉 which use the same AHS as in 𝜋, we replace CAHTS, SAHTS
with independent uniformly random values and replace dAHS with the same
replacement as in 𝜋 All values derived from dAHS in these sessions use the
newly randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct a dis-
tinguisher ℬ12 against the PRF security of HKDF.Expand as follows. When ℬ12
needs to compute CAHTS, SAHTS, or dAHS in 𝜋 or in any of the sessions of
𝑉 that received the same ct𝑆 that was sent in 𝜋, it queries its HKDF.Expand chal-
lenge oracle (keyed with AHS) on the corresponding labels and transcripts,
and uses the responses. If the responses were the real output, then ℬ12 has
exactly simulated 𝐺𝐵3 to 𝒜1; if the responses were random values, then ℬ12
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has exactly simulated 𝐺𝐵4 to 𝒜1 . Note in particular that while there may
be Reveal queries to CAHTS or SAHTS values in sessions at 𝑉 that used the
same ct𝑆 as in 𝜋, previous game 1 ensures that other sessions at𝑉 use different
nonces 𝑟𝑠, and thus have different transcripts (and game 2 ensures distinct
transcripts give distinct transcript hashes), so our simulation remains valid
even in the face of Reveal queries to sessions of 𝑉. Thus:

Adv
𝐺𝐵3
𝒜1 ≤ Adv

𝐺𝐵4
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ12 .

The stage 3 and 4 keys CAHTS and SAHTS in 𝜋 are now uniformly random
strings independent of everything else in the game. Thus, the stage 3 and 4
keys have been shown to have wfs2 security in client sessions.

Game B: client authentication long-term KEM

We only play this game if 𝜋.mutualauth = true. Otherwise, this game is equal
to the previous one as there is no reduction in advantage.

We replace the client authentication shared secret in 𝜋, a server session,
by a uniformly random value s̃s𝐶 . If any of 𝑉’s client sessions 𝜋′ received
the same ct𝐶 as was sent in 𝜋𝑠 in ServerKemCiphertext, we make the same
replacement in those 𝜋′ . Any value derived from ss𝐶 in a session where it was
replaced will now use s̃s𝐶 . Sending any ServerKemCiphertext to 𝜋′ with
𝜋′.mutualauth = false will simply terminate those sessions at no advantage to
the adversary.

Any adversary 𝒜1 that can detect this change can be used to construct an
adversary ℬ13 against the IND-CCA security of KEMc as follows. ℬ13 obtains
the IND-CCA challenge pk⋆, ct⋆, and challenge shared secret ss⋆ . It uses pk⋆

as the long-term public key of 𝑉. In the tested session 𝜋, ℬ13 uses ct⋆ as 𝜋’s
encapsulation ct𝐶 in message ServerKemCiphertext, and uses ss⋆ as ss𝐶 .
In any session of 𝑉, if the ciphertext ct𝐶 received in the ServerKemCipher-
text message is not ct⋆, then ℬ13 queries its IND-CCA decapsulation oracle,
and uses the response as ss𝐶; if the received ciphertext ct𝐶 = ct⋆, ℬ13 uses
ss⋆ as ss𝐶 . By the assumptions of case B, there is never a Corrupt(𝑉) query
that needs to be answered. If ss⋆ was the real shared secret, then ℬ13 has
exactly simulated 𝐺𝐵4 to 𝒜1; if ss⋆ was a random value, then ℬ13 has exactly
simulated 𝐺𝐵5 to 𝒜1 Thus:

Adv
𝐺𝐵4
𝒜1 ≤ Adv

𝐺𝐵5
𝒜1 + Adv

IND-CCA
KEMc,ℬ13 .
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Game B: replacingMS
In this game, in session 𝜋, we replace the main secret MS with a uniformly
random M̃S. Additionally, in any sessions 𝜋′ of 𝑉 which have the same value
for ct𝐶 (if any) that was sent or received in 𝜋, we replace MS with random
values, maintaining consistency among sessions of 𝑉 that use the same dAHS
and, if 𝜋.mutualauth = true, ct𝐶 . All values derived from MS in these sessions
use the newly randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ14 against the PRF security of HKDF.Extract in its first argument
as follows (which we view as “dual-PRF security” of HKDF.Extract keyed with
dAHS). When ℬ14 needs to compute MS in 𝜋 or in any of the sessions of 𝑉
which have the same dAHS as 𝜋, it queries its HKDF.Extract challenge oracle
on ct𝐶 (or 0, if 𝜋.mutualauth = false) and uses the response as MS. If the
HKDF.Extract challenge oracle was returning real values, then ℬ14 has exactly
simulated 𝐺𝐵5 to 𝒜1; if it was returning random values, then ℬ14 has exactly
simulated 𝐺𝐵6 to 𝒜1 . Thus:

Adv
𝐺𝐵5
𝒜1 ≤ Adv

𝐺𝐵6
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ14 .

Game B: replacingCATS, fkc, fks and SATS
In this game, in session 𝜋, we replace the value CATS, fk𝑐, fk𝑠, and SATS
with uniformly random values. Additionally, in any sessions 𝜋′ of 𝑉 which
share the value of MS with 𝜋, we replace CATS and SATS with independent
uniformly random values, and replace fk𝑐 and fk𝑠 with the same replacements
as in 𝜋.

Any adversary 𝒜1 that can detect this change can be used to construct a
distinguisher ℬ15 against the PRF security of HKDF.Expand as follows. When
ℬ15 needs to compute CATS, fk𝑐 , fk𝑠 or SATS in 𝜋 or in any of the sessions of
𝑉 that have the same value for MS as 𝜋, it queries its HKDF.Expand challenge
oracle on the corresponding labels and transcripts, and uses the response. If
the responses were the real output, then ℬ15 has exactly simulated 𝐺𝐵6 to 𝒜1;
if the response were random values, then ℬ15 has exactly simulated 𝐺𝐵7 to
𝒜1 . Note in particular that while there may be Reveal queries to CATS values
in sessions at 𝑉 that used value of MS as in 𝜋, previous game 1 ensures that
other sessions at 𝑉 use different nonces 𝑟𝑠 , and thus have different transcripts
(and game 2 ensures distinct transcripts give distinct transcript hashes), so
our simulation remains valid even in the face of Reveal queries to sessions
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of 𝑉. Thus:
Adv
𝐺𝐵6
𝒜1 ≤ Adv

𝐺𝐵7
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ15 .

The stage 5 key CATS and stage 6 key SATS in 𝜋 are now uniformly random
strings independent of everything else in the game. Thus, the stage 5 and stage
6 keys have been shown to have wfs2 security in client sessions and server
sessions that authenticate the client.

Malicious acceptance

Let bad denote the event that 𝐺𝐵7 maliciously accepts in any of the stages
specified for any 𝑖 as 𝜋.auth𝑖 = 𝑗 in the (fresh) tested session 𝜋 without a
session partner in stage 𝑗. If 𝜋 is a client session, we can reach bad in stage
𝑗 = 6 for both unilaterally and mutually authenticated KEMTLS. If 𝜋 is a server
session, we can reach bad in stage 𝑗 = 5, if 𝜋.mutualauth = true; otherwise
server sessions are never mutually authenticated.

Game B: identical-until-bad

This game is identical to 𝐺𝐵7, except that we abort if the event bad occurs.
Games 𝐺𝐵7 and 𝐺𝐵8 are identical-until-bad [33]. Thus,

|Pr [𝐺𝐵7 ⇒ 1] − Pr [𝐺𝐵8 ⇒ 1]| ≤ Pr [𝐺𝐵8 reaches bad] .

By game B7, all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary cannot distinguish
stage keys anymore. By this game, it can no longer reach bad. Thus

Adv
𝐺𝐵8
𝒜1 = 0.

It remains to bound
Pr [𝐺𝐵8 reaches bad] .

Game B: HMAC forgery

In this game, if it is a client session, 𝜋 rejects upon receiving the ServerFin-
ished message. If 𝜋 is a server session, it rejects upon receiving the Client-
Finished message.

Any adversary that behaves differently in 𝐺𝐵9 compared to 𝐺𝐵8 can be used
to construct an HMAC forger ℬ16 . The only way that 𝐺𝐵8 and 𝐺𝐵9 behave
differently is if 𝐺𝐵9 rejects a MAC that should have been accepted as valid.
When rejecting ServerFinished, no honest 𝜋𝑠 exists with the same session
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identifier and thus transcript. When rejecting ClientFinished, no honest
𝜋𝑐 exists with the same session identifier and thus transcript. This means no
honest server 𝜋′ ever created aMAC for the transcript that 𝜋 verified, and thus
it must be a forgery. Concluding:

Pr [𝐺𝐵8 reaches bad] ≤ Pr [𝐺𝐵9 reaches bad] + 2AdvEUF-CMA
HMAC,ℬ16 .

Since this game rejects all ServerFinished messages, the event bad is
never reached in client sessions. If 𝜋.mutualauth = true, this game also rejects
all ClientFinished messages. If 𝜋.mutualauth = false, rejecting ClientFin-
ished is out of scope as we only aim for wfs1.

Analysis of game B

In game B7, all stage keys in the tested session are uniformly random and
independent of all messages in the game, so the hidden bit 𝑏 used in the tested
session is now independent of all information sent to the adversary. By B9, all
events bad are rejected. Thus:

Pr [𝐺𝐵9 reaches bad] = 0.

This concludes case B, yielding:

Adv
𝐺𝐵
𝒜1 ≤ 𝑛𝑢(

AdvIND-CCAKEMs,ℬ10 +AdvPRF-secHKDF.Extract,ℬ11
+AdvPRF-secHKDF.Expand,ℬ12 +Adv

IND-CCA
KEMc,ℬ13

+Advdual-PRF-secHKDF.Extract,ℬ14 +Adv
PRF-sec
HKDF.Expand,ℬ15

+ 2AdvEUF-CMA
HMAC,ℬ16

).

Combining the bounds in cases A and B yields the theorem.
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 Security of KEMTLS-PDK

In the previous chapter, we have defined our security model for the reduction-
ist proofs of security. We defined the Match and Multi-Stage security exper-
iments and gave the security properties for KEMTLS. We finally proved the
security of KEMTLS. In this chapter, we will prove the security of KEMTLS-PDK

in the same model. This will complete the reductionist security analysis of
both protocols and precisely describe their security characteristics.

. Overview of the security analysis

The proof of KEMTLS-PDK proceeds in much the same way as the proof of
KEMTLS in the previous chapter. Following the approach of Dowling, Fischlin,
Günther, and Stebila [127, 128], we model KEMTLS-PDK as a multi-stage key-
agreement protocol [143], where each session has several stages in each of
which a shared secret key is established. This model is adapted from the
Bellare–Rogaway security model for authenticated key exchange [32].

Each party (client or server) has a long-term public-key/secret-key pair, and
we assume there exists a public-key infrastructure for certifying these public
keys. The client is assumed to have access to the public keys for any servers it
connects to. Like in the specifics of KEMTLS, the session identifier for KEMTLS-

PDK sessions consists of all the messages transmitted up until that point; as
KEMTLS-PDK permits pre-distributed public keys, those pre-distributed values
will be included in the session identifier.

.. Security characteristics of KEMTLS-PDK

We briefly summarize some of the security characteristics of KEMTLS-PDK.
Some of these are shown in the proof; properties like deniability we only
discuss informally.
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Key indistinguishability

Like in the previous proof, the Test query captures that keys established should
be indistinguishable from random: the goal of the adversary is to guess the
hidden bit in the Test query, thereby distinguishing real keys from random.
We restrict the adversary from issuing the Test query to stages where the stage
key has been exposed via a Reveal query, including partnered sessions.

Explicit authentication

Client sessions in KEMTLS-PDK receive explicit authentication (and fs forward
secrecy) right before the stage-4 key is accepted, one round trip earlier than
in KEMTLS. Server sessions, in mutually authenticated KEMTLS-PDK, receive
explicit authentication right before the stage-5 key is accepted, again one
round tip earlier than KEMTLS. In particular, this means that KEMTLS-PDK gives
explicit authentication for all client application data (although only implicit
authentication for the client certificate).

Negotiation and downgrade resilience

In section 7.1.4 we observed that implicit authentication characteristics of
early stages of keys in KEMTLS meant that some application data would be
transmitted prior to the client having received explicit authentication from
the server of the algorithms negotiated during the handshake. This meant that
it would be possible for an adversary to cause a downgrade to a suboptimal
(from the server’s perspective) algorithm—although still only to an algorithm
that the client offered to use. In KEMTLS-PDK, explicit server authentication
happens one round trip earlier, in particular prior to client transmission of
application data, so KEMTLS-PDK offers full downgrade resilience.

Replayability

In contrast to KEMTLS, KEMTLS-PDK has replayable stages. In particular, stage-1
keys are not guaranteed to be unique at server instances since the same Client-
Hello message can be replayed multiple times to induce the same stage-1 key.
This is the only replayable stage: all subsequent stages are replay-protected.

Anonymity

Like TLS 1.3 and KEMTLS, KEMTLS-PDK does not offer full anonymity, in par-
ticular, due to the presence of the ServerNameIndicator extension in the
ClientHello message. Our implementation also identifies the server certifi-
cate that was encapsulated to. (This identifier could be omitted by using trial
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decryption at the server, though if the server has many public keys, this could
be prohibitive.) The TLS working group is considering an “Encrypted Client-
Hello” (ECH) mechanism that relies on the client obtaining a server public
key out-of-band to enable identity protection for the server. KEMTLS-PDK’s use
of a pre-distributed key for encryption of part of the initial client message may
be compatible with a variant of ECH, which we leave as future work since
ECH has not yet been finalized even for TLS 1.3.

The discussion in the previous paragraph does assume that the ciphertext
encapsulated to the long-term KEM public key of the server cannot be used to
identify the server’s public key. If the ciphertext somehow identifies the public
key to which it is encapsulated, then KEMTLS-PDK’s unencrypted authentication
key exchange in the ClientHello message identifies the server, even if trail
decryption is used. A KEM for which the ciphertext and the public key cannot
be correlated is said to provide anonymity. Fortunately, recent work byMaram
and Xagawa has shown that Kyber does have this property [243].

Deniability

As KEMTLS-PDK avoids the use of signatures for authentication, like KEMTLS1

and unlike TLS 1.3, KEMTLS-PDK offers offline deniability [117] in the universal
deniability setting [189]. This means that a judge, when given a transcript
of a protocol execution and all the keys involved, cannot tell whether the
transcript is genuine or forged. KEMTLS-PDK does not have the harder-to-
achieve online deniability property [124] when one party tries to frame the
other or collaborates with the judge.

.. Different KEMs

Interestingly, if KEMTLS uses KEMs with different cryptographic assumptions
for the ephemeral and the long-term KEM, we obtain hybrid confidentiality
in the following sense: even if the assumption used for the ephemeral KEM
is cryptographically broken at some point, handshakes retain confidentiality
as long as the long-term KEM keys are not compromised. With KEMTLS-

PDK, some interesting combinations of ephemeral and long-term KEMs—e.g.,
Classic McEliece and Kyber—may become feasible. We leave it to future work
to investigate this further and to formalize the notion of hybrid confidentiality
sketched here.

1For a discussion of KEMTLS’ deniability properties see section 5.4.5.
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.. Security properties of KEMTLS-PDK

We will state the properties in the same model as we specified for KEMTLS in
section 7.2. This includes the definitions for multiple forms of forward secrecy
(definition 7.3) and explicit authentication. KEMTLS-PDK has 5 stage keys. The
properties of each stage key in a client session are as follows:

• Stage 1: this stage is replayable. That means we do not have any forward
secrecy guarantees. The key is implicitly authenticated; it is indistin-
guishable against any adversary that has never corrupted the server.
Once stage 4 accepts, this stage is retroactively explicitly authenticated.
This key is for internal use.

• Stages 2 and 3: these stages are not replayable. These stages have wfs2
security from when they are accepted: they are both indistinguishable
against passive adversaries and secure against adversaries that never
corrupt the server. These keys obtain retroactive fs security once stage
4 has accepted. They are implicitly authenticated at the time of ac-
ceptance; once stage 4 has accepted they are retroactively explicitly
authenticated. The keys accepted in stages 2 and 3 are for internal use.

• Stage 4: this stage is not replayable. The key has fs security and explicit
authentication from acceptance. This stage key is for external use.

• Stage 5: this stage is not replayable. The key has fs security from the time
that the key is accepted. It however is never explicitly authenticated as
the client never receives a confirmation from the server.

In server instances of KEMTLS, the properties of each stage key are:

• Stage 1: this stage is replayable; we do not have any forward secrecy
guarantees. The key is implicitly authenticated; it is indistinguishable
against any adversary that has never corrupted the server. If the server
is mutually authenticating the client, this key obtains retroactive explicit
authentication once stage 5 accepts. This key is for internal use.

• Stages 2 and 3: these stages are not replayable. These stages have wfs1
security fromwhen they are accepted: they are indistinguishable against
passive adversaries. If the server is mutually authenticating the client,
these keys (retroactively) obtain fs security and explicit authentication
once stage 5 accepts. The stage 2 and 3 keys are for internal use.
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• Stage 4: this stage is not replayable. If the server is mutually authenticat-
ing the client, this stage has wfs2 security: the key is indistinguishable
against passive adversaries and adversaries that never corrupt the client’s
long-term key. This stage then also obtains fs security and retroactive
explicit authentication once stage 5 accepts. If the server is not au-
thenticating the client, this key only obtains wfs1 security and is never
explicitly authenticated. This stage key is for external use.

• Stage 5: this stage is not replayable. If the server is mutually authenticat-
ing the client, this stage has fs security and explicit authentication from
the time of acceptance. Otherwise, this key only obtains wfs1 security
and is never explicitly authenticated. The key accepted by this stage is
for external use.

The following theorem says that KEMTLS-PDK is Multi-Stage-secure with
respect to the forward secrecy, explicit authentication, and internal/external
key-use properties as specified above. We bound the security of KEMTLS-PDK

on the assumption that the hash function H is collision-resistant, HKDF is a
pseudorandom function in either its “salt” or “input keying material” argu-
ments, HMAC is a secure message-authentication code, KEMs and, for mutual
authentication, KEMc are IND-CCA secure KEMs, and KEMe is an IND-1CCA-
secure KEM (i.e., KEMe is secure if a single decapsulation query is allowed).

Theorem 8.1. Let 𝒜 be an algorithm, and let 𝑛𝑠 be the number of sessions
and 𝑛𝑢 be the number of parties. Then the advantage of 𝒜 in breaking the
multi-stage security of KEMTLS-PDK is upper-bounded by

𝑛2𝑠
2|nonce|
+ 𝜖COLLH + 5𝑛𝑠 ⋅(

(

𝑛𝑠 ⋅ (
𝜖IND-CCAKEMs

+ 2 𝜖PRF-secHKDF.Extract+ 3 𝜖PRF-secHKDF.Expand

+ 𝜖IND-1CCAKEMe
+ 𝜖dual-PRF-secHKDF.Extract + 𝜖EUF-CMA

HMAC

)

𝑛𝑢 ⋅ (
𝜖IND-CCAKEMs

+ 𝜖PRF-secHKDF.Extract+ 2 𝜖PRF-secHKDF.Expand

+ 2 𝜖dual-PRF-secHKDF.Extract+ 𝜖IND-CCAKEMc
+ 𝜖EUF-CMA

HMAC

)

)

)

.

Above we use the shorthand notation 𝜖𝑋𝑌 = Adv𝑋𝑌,ℬ𝑖 for reductions ℬ𝑖 that
are described in the proof; we provide the fully detailed bound in theorem 8.3.
The proof of theorem 8.3 appears in section 8.2.3; we first provide a sketch.
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.. Sketch of the proof

As in the proof of KEMTLS, we begin the proof with a series of game hops that
allow us to not worry about certain attacks later on. We disallow the reuse of
nonces in the ClientHello and ServerHello messages and also rule out hash
collisions. This ensures that transcripts with different messages are unique
in later games. The Multi-Stage security experiment allows the adversary to
make multiple Test queries. We again restrict the adversary to make a single
Test query by guessing a to-be-tested session and the to-be-tested stage using
a hybrid argument [167]. This gives us a tightness loss of 5𝑛𝑠 related to the
number of sessions and stages.

The proof then splits into two cases: case A where the (now single) tested
session has an honest contributive partner in the second stage; and case B
where the tested session does not have an honest contributive partner in
the second stage and the adversary does not corrupt the peer’s long-term
key before the tested stage has been accepted. These two cases effectively
correspond to the forward-secrecy levels wfs1 and wfs2. We finally show, by
assumption on EUF-CMA security of HMAC, that both cases do not maliciously
accept, giving us the final forward secrecy level fs.

Case A

In this case, the tested session is assumed to have an honest contributive
partner in the second stage. If the tested session is a client session, then we
know that this partner is unique; however, if the tested session is a server
session then the server may be receiving a replayed message. However, since
we rule out nonce repetition, there still exists only one honest client session.
In the first game of case A wemake the adversary guess the honest contributive
partner to the tested session, which results in a tightness loss related to the
number of sessions 𝑛𝑠 .

Next, we rely on the IND-CCA security of the server’s static KEM algorithm
KEMs . After a series of games in which we replace secrets and restrict the
adversary’s advantage based on PRF-security assumptions, we rely on the
IND-1CCA security of the ephemeral KEM KEMe . Like in KEMTLS, if the tested
session is a server session, the adversary may send its own ct𝑒 in a crafted
ServerHello message back to the client. To correctly simulate this valid
adversary behavior, we need to allow a single decapsulation oracle query.

The game proceeds with another sequence of games in which we replace
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keys with random values, relying on the PRF-security and dual-PRF-security
assumptions, until all keys are indistinguishable from random. This yields
the required wfs1 security property for all stage keys in both unilaterally and
mutually authenticated client and server sessions.

Case B

In this case, the tested session is assumed to not have an honest contributive
partner in stage 2. This means that the adversary is actively impersonating the
peer to the tested session. There is no partner at any stage of that session. As a
result, any stages aiming for wfs1 security are out of scope. The tested session
is either a client session or a server session attempting mutual authentication.
In case B we assume the peer’s long-term key is not compromised before the
tested session accepts the tested stage. This allows us to rely on the security of
encapsulations against the peer’s long-term public key.

Case B’s sequence of game hops again proceeds similarly to those of the
multi-stage security proof of KEMTLS. First, we guess the identity of the peer
that the adversary will attempt to impersonate to the tested session. Then
we replace with a random value the shared secret ss𝑆 that a client session
encapsulates against the intended server’s long-term static key pk𝑆 . If KEMs is
IND-CCA-secure, only the intended server should be able to decapsulate and
recover ss𝑆, and thus ss𝑆, and any key derived from it (following a sequence
of game hops involving the security of HKDF), is an implicitly authenticated
key unknown to the adversary. We similarly replace with a random value
the shared secret ss𝐶 that a server session encapsulates against its intended
client’s long-term static key pk𝐶 , as well as any key derived from it. This yields
the indistinguishability of stage keys 2–5 of client sessions, and stages 4 and 5
in server sessions attempting mutual authentication under the conditions of
case B, and hence their required wfs2 security properties.

Malicious acceptance

Case B allows the adversary to corrupt the intended peer’s long-term key
after the tested session accepts in stage 4 (if the session is a client) or stage
5 (if it is a server attempting mutual authentication). Again, reduction from
IND-CCA security of KEMs runs into a problem: how to correctly answer the
adversary’s Corrupt query. Up until this bad query occurs, however, our
IND-CCA reduction (and indeed, every reduction in case B) is fine, and all keys
in the tested session can be shown to be indistinguishable from random. This
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includes key fk𝑠 that the server uses for the MAC authenticating the transcript
in the ServerFinished message. If the client accepts ServerFinished in case
B—without a partner to stage 4—then the adversary has forged an HMAC tag.
We rely on the EUF-CMA security of HMAC and show that the reduction will
never have to answer that Corrupt query. In the sessions that are using mutual
authentication, we show the same for fk𝑐 and ClientFinished in stage 5.

Assuming all the cryptographic primitives are secure, no stage accepts under
the conditions of case B. This yields explicit server-to-client authentication
of stage 4, and explicit client-to-server authentication of stage 5 (if mutual
authentication is used). We get retroactive authentication of all previous stages
once the explicitly authenticated stage accepts, since their session identifiers
are substrings of the stage’s sid. Explicit authentication yields forward secrecy
(fs) of the stage-5 key at the client, and the stage-5 and 6 keys of a mutually
authenticating server, at the time of acceptance. Retroactively, stages 1–4 of
the client, and all stages of a mutually-authenticating server, also obtain fs.

. Security proof

The model we use in this analysis is the same as the model used for KEMTLS in
chapter 7. The definition of the properties of sessions is given in section 7.2.1
on page 105. We also use the same definitions of Match security (definition 7.2
on page 109), Multi-Stage security (definition 7.5 on page 111), freshness (defi-
nition 7.3 on page 110), and malicious acceptance (definition 7.4 on page 111).

.. Specifics of KEMTLS-PDK

In our protocol, the number of states is M = 5. KEMTLS-PDK without client
authentication is shown in figure 6.3 and with client authentication in fig-
ure 6.4 The session identifiers are set up as follows in unilaterally authenticated
sessions:

sid1 = (“ETS”, ServerCertificate,ClientHello),
sid2 = (“CHTS”, SCRT,ClientHello…ServerHello),
sid3 = (“SHTS”, SCRT,ClientHello…ServerHello),
sid4 = (“SATS”, SCRT,ClientHello…ServerFinished),
sid5 = (“CATS”, SCRT,ClientHello…ClientFinished).

140



8.2 Security proof

For mutually authenticated sessions, sid2 and all subsequent session identi-
fiers implicitly contain the ClientCertificate and ServerKemCiphertext
messages in these message ranges. Each identifier is made up of a label, the
server’s certificate (even though is not transmitted), and all the unencrypted
handshake messages up to that point. Finally, if any client or server receives
an unexpected message, they terminate.

For the contributive identifiers cid𝑖 we take some special care. For stage 1,
we want to ensure client sessions can be tested, even if the adversary drops
the client’s message to the server. We set cid1 = (“ETS”,SCRT, ∅) initially.
When the client sends or the server receives the ClientHello message, we
update it to cid1 = (“ETS”,SCRT,CH).

In case A of our Multi-Stage proof we need to identify the unique pair of
honest contributive server and client sessions, even if the adversary drops the
server’s response to the client. This requires us to set the second contribu-
tive identifier cid2 = (“CHTS”,SCRT,CH) when sending or receiving the
ClientHello message. At that time, we also set cid3 = (“SHTS”,SCRT,CH).
If 𝜋.mutualauth = true, we update cid2 and cid3 by updating the transcripts
to CH…CCRT when the ClientCertificate message is sent or received.
When the ServerHello message is received or sent, they update this to cid𝑖 =
sid𝑖 for 𝑖 = 2, 3. All other contributive identifiers (𝑖 = 4, 5) are set when the
corresponding sid𝑖 is set.

Every client and server session of unilaterally or mutually authenticated
KEMTLS-PDK uses the following properties for the replayability and usage of
the five stages:

replay = (replayable, nonreplayable×4) ,
use = (internal×3, external×2) .

All KEMTLS-PDK client sessions authenticate the server. This means that
there is no difference between unilaterally authenticated and mutually authen-
ticated client sessions.
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All client sessions use:

auth = (4, 4, 4, 4,∞) ,

FS =(

0 0 0 0 0
wfs2 wfs2 fs fs

wfs2 fs fs

fs fs

fs

).

The server is explicitly authenticated when the client accepts stage 4. Note
that like in the mutually authenticated server sessions of KEMTLS, the last stage
key is never explicitly authenticated; no later handshake messages show the
client that the server correctly derived this key.

In unilaterally authenticated KEMTLS-PDK, only the server is authenticated.
The server never gets explicit authentication of the client, and cannot get
better forward secrecy than wfs1: stage keys are only secure against passive
adversaries. Unilaterally authenticated server sessions use:

auth = (∞×5) ,

FS =(

0 0 0 0 0
wfs1 wfs1 wfs1 wfs1

wfs1 wfs1 wfs1

wfs1 wfs1

wfs1

).

When using mutual authentication, i.e, 𝜋.mutualauth = true, the client is
explicitly authenticated when stage𝑚 = 5 is accepted. Client authentication
allows us to obtain forward secrecy levels wfs2 in stage 4 and (retroactive) fs
for all stages in stage 5:

auth = (5, 5, 5, 5, 5) ,

FS =(

0 0 0 0 0
wfs1 wfs1 wfs1 fs

wfs1 wfs1 fs

wfs2 fs

fs

).
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.. Match security

As in prior work [82, 83, 127, 128, 143, 321], we need to show that our model has
sound behavior of session matching. Match security ensures that in honest
sessions, 𝜋.sid and 𝜋′.sid correctly match, where 𝜋 and 𝜋′ are partnered.

Theorem 8.2. KEMTLS-PDK is Match-secure (definition 7.2). Any efficient adver-
sary 𝒜 has advantage

AdvMatch
KEMTLS-PDK,𝒜 ≤ 𝑛𝑠(𝛿𝑒 + 𝛿𝑠 + 𝛿𝑐) +

𝑛2𝑠
2|nonce|,

where 𝑛𝑠 is the number of sessions, |nonce| is the length of the nonces 𝑟𝑐, 𝑟𝑠
in bits. 𝛿𝑒 is the correctness of the ephemeral KEM, and 𝛿𝑠 and 𝛿𝑐 are the
correctness of the long-term KEMs of the server and the client, respectively. If
𝜋.mutualauth = false, 𝛿𝑐 = 0.

Proof. We will show the properties of Match-security hold.

1. By definition, the session identifiers contain all handshake messages.
The KEM keys and the hashes of the handshake messages are the only
inputs into the key schedule. At stage 1, the input to the agreed key
is the KEMs shared secret and the ClientHello message. For stages 2
and 3, the input to the agreed keys are the previous key, messages up
to and including ServerHello and the ephemeral KEMe shared secret.
For final stages 4 and 5, the inputs are the previous keys, messages
up to ServerFinished and ClientFinished, respectively, and, when
using mutual authentication, the KEMc shared secret. These inputs are
all included in the session identifiers, which means that both parties
use the same inputs to key computations. The only way they could
arrive at different keys is when any of the KEMs fail. In each of the
𝑛𝑠 sessions, the ephemeral KEM KEMe may fail with probability 𝛿𝑒,
the static KEM KEMs may fail with probability 𝛿𝑠 . When using mutual
authentication, the static KEM KEMc may fail with probability 𝛿𝑐; when
not using mutual authentication 𝛿𝑐 = 0.

2. All messages are exclusively sent or received by either role. This means
no initiator or responder will accept an incoming message intended for
the other role. This implies any pair of two sessions in a non-replay
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stage must have an initiator and responder. As at most two sessions in a
non-replay phase have the same sid𝑖 (shown later), these pairings are
unique and opposite. As the only replayable messages are ClientHello
and ClientCertificate messages, not-opposite-role pairings can only
be between responders.

3. By definition, cid𝑖 is final and equal to sid𝑖 whenever stage 𝑖 accepts.

4. The presence of ServerKemCiphertext in the transcript decides if
the value of either session’s mutualauth = true before either session
accepts the stage-4 key, which is when explicit authentication is first
reached in mutually authenticated KEMTLS-PDK.

5. Partnered sessions have to agree once they reach a retroactively au-
thenticated stage, so at stage 4 for unilateral authentication and stage 5
for mutual authentication. For Match security, we are only concerned
with honest client and server sessions. The client already knows the
identity of the server through the pre-distributed key, which is included
in the session identifiers at stage 1. The server learns the identity of
the client through the ClientCertificate message, which is included
in the session identifiers at stage 5. Any honest client will only send its
own certificate.

6. As each stage’s session identifier has a unique label, this holds trivially.

7. We are only concerned about stages 2 and later. All session identifiers
sid contain nonces 𝑟𝑐 and 𝑟𝑠 embedded in the ClientHello and Server-
Hello messages. To get any collision between sessions of honest parties,
some session would need to pick the same nonce as another session.
If this happens, the parties may then be partnered through a regular
protocol run to another one. The probability for such a collision is
bounded by the birthday bound 𝑛2𝑠 ⋅ 2−|nonce| . Here, 𝑛𝑠 is the maximum
number of sessions and |nonce| = 256 is the nonces’ length in bits.

.. Multi-Stage security

Like in chapter 7 we prove the security of KEMTLS-PDK via Multi-Stage security
games as introduced by [143]. The adversary wins, Bellare–Rogaway-style [32],

144
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if they correctly distinguish the keys derived in the protocol from random.
They also win if they get the protocol to maliciously accept (definition 7.4);
this models the acceptance of an invalid ServerFinished or ClientFinished
message that was forged by the adversary.

Theorem 8.3. Let adversary 𝒜 be a probabilistic polynomial-time algorithm.
𝑛𝑠 is the number of sessions and 𝑛𝑢 is the number of identities. There exist
algorithms ℬ1,… ,ℬ19 , given in the proof, such that

Adv
Multi-Stage
KEMTLS-PDK,𝒜 ≤

𝑛2𝑠
2|nonce|
+ AdvCOLLH,ℬ1

+ 5𝑛𝑠 ⋅

((((((((((((((((((

(

𝑛𝑠 ⋅
(((

(

AdvIND-CCAKEMs,ℬ2 +AdvPRF-secHKDF.Extract,ℬ3
+AdvPRF-secHKDF.Expand,ℬ4 +Adv

IND-1CCA
KEMe,ℬ5

+AdvPRF-secHKDF.Extract,ℬ6 +Adv
PRF-sec
HKDF.Expand,ℬ7

+Advdual-PRF-secHKDF.Extract,ℬ8 +Adv
PRF-sec
HKDF.Expand,ℬ9

+ 2AdvEUF-CMA
HMAC,ℬ10

)))

)

+𝑛𝑢 ⋅
(((

(

AdvIND-CCAKEMs,ℬ11 +AdvPRF-secHKDF.Extract,ℬ12
+AdvPRF-secHKDF.Expand,ℬ13 +Adv

dual-PRF-sec
HKDF.Extract,ℬ14

+AdvIND-CCAKEMc,ℬ16 +AdvPRF-secHKDF.Expand,ℬ15
+Advdual-PRF-secHKDF.Extract,ℬ17 +Adv

PRF-sec
HKDF.Expand,ℬ18

+ 2AdvEUF-CMA
HMAC,ℬ19

)))

)

))))))))))))))))))

)

.

Proof. We follow the basic structure of the proof of the KEMTLS handshake as
given in chapter 7. This in turn is based on the proofs of the TLS 1.3 handshake
by Dowling, Fischlin, Günther, and Stebila [127, 128]. The proof proceeds by a
sequence of games in which we keep reducing the advantage of the adversary.
As the adversary otherwise loses the game, we assume that all tested sessions
remain fresh throughout the experiment.

Game : MultiStage game

We define 𝐺0 to be the original Multi-Stage game:

Adv
Multi-Stage
KEMTLS-PDK,𝒜 = Adv

𝐺0
𝒜 .
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Game : nonce collisions

If any honest session uses the same nonce 𝑟𝑐 or 𝑟𝑠 as any other session, the
challenger aborts. Given that there are 𝑛𝑠 sessions each using uniformly
random nonces of size |nonce| = 256, the chance of a repeat is given by a
birthday bound:

Adv
𝐺0
𝒜 ≤ Adv

𝐺1
𝒜 +
𝑛2𝑠
2|nonce|
.

This means we can now rule out nonce collisions in future games.

Game : hash collisions

If any two honest sessions compute the same hash for different inputs of hash
function H, the challenger aborts. If this event occurs, we obtain a reduction
ℬ1 that can break the collision resistance of H. ℬ1 outputs the two distinct
input values when a collision occurs. This gives us the following:

Adv
𝐺1
𝒜 ≤ Adv

𝐺2
𝒜 + Adv

COLL
H,ℬ1 .

Game : single Test query

By invoking a hybrid argument by Günther [167], we restrict 𝒜 to only make a
single Test-query. This reduces the advantage atmost by 1/5 𝑛𝑠 for the five stages
of KEMTLS-PDK. Any single-query adversary 𝒜1 can emulate the original multi-
query adversary 𝒜 by guessing the to-be-tested session in advance. Any other
Tests that 𝒜 may submit, 𝒜1 simulates by carefully selected Reveal queries.
𝒜1 needs to know how sessions are partnered from the session identifiers sid.
Only the first one is unencrypted, but the later sid can be obtained by 𝒜1 by
revealing handshake traffic secrets.

We get the following advantage by letting 𝒜1 guess the right session and
stage:

Adv
𝐺2
𝒜 ≤ 5𝑛𝑠 ⋅ Adv

𝐺3
𝒜1 .

This restriction of 𝒜 to 𝒜1 means we can now refer to the session 𝜋 at stage
𝑖 that is tested. We can also assume we know this from the outset.

Case distinction

We now need to consider two separate cases of game 3. These cases, respec-
tively, roughly correspond to the specified properties of weak forward secrecy:
wfs1 and wfs2. By rejecting malicious acceptance, we finally show fs.
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A. In these games, denoted 𝐺𝐴 , the tested session 𝜋 has a unique contribu-
tive partner in stage 2. This means there exists a session 𝜋′ ≠ 𝜋 such
that 𝜋.cid2 = 𝜋′.cid2 .

B. In these games, denoted 𝐺𝐵, the tested session 𝜋 does not have a con-
tributive partner in stage 2. In addition, Corrupt(𝜋.pid) was not called
before stage 𝑖 of 𝜋 accepted.

As by rejecting malicious acceptance, no cases exist that call Corrupt(𝜋.pid)
after stage 𝑖 accepted, these cases are exhaustive.

The advantage of the adversary can be considered separately for these cases:

Adv
𝐺3
𝒜1 ≤ max {Adv

𝐺𝐴
𝒜1 , Adv

𝐺𝐵
𝒜1}

≤ Adv𝐺𝐴𝒜1 + Adv
𝐺𝐵
𝒜1 .

Case A: unique stage  contributive partner exists

In this case, we assume that 𝜋 has a 𝜋′ with whom they share 𝜋.cid2 = 𝜋′.cid2 .
If the tested session 𝜋 is a client (initiator) session, then 𝜋.cid2 = 𝜋.sid2 and a
partner session at𝜋′ also exists. sid2 includes the client and server nonces, and
by game 1 no honest sessions repeat nonces. This means that the contributive
partner at stage 2 is unique.

However, if 𝜋 has role = responder, then it may have received a replayed
ClientHello message. This would mean a contributive partner session exists
at stage 2, but there is no partnered session. However, there exists only one
honest client session that is a contributive partner: cid2 includes the client
nonce (unique by game 1) and contributive partnering includes roles.

This means we can speak of a particular tested session, 𝜋. Its unique con-
tributive stage-2 partner we call 𝜋′ . Of these two, we let 𝜋𝑐 be the session that
is the client (role = initiator) session. The other session, with role = responder,
is the server session 𝜋𝑠 .

Game A: guess contributive partner session

In this game, the challenger tries to guess the 𝜋′ ≠ 𝜋 that is the honest
contributive partner to 𝜋 at stage 2. As the challenger guesses correctly with
probability 1/𝑛𝑠, this reduces the advantage of 𝒜1 as:

Adv
𝐺𝐴
𝒜1 ≤ 𝑛𝑠 ⋅ Adv

𝐺𝐴1
𝒜1 .
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In the remainder of case A, we will keep replacing keys in 𝜋 and 𝜋′ .

Game A: static KEM

In this gamewe replace the shared secret ss𝑆 encapsulated to pk𝑆 by a uniformly
random s̃s𝑆 . We make this replacement in 𝜋𝑐 and 𝜋𝑠, and, as this stage is
replayable, in any other sessions 𝜋″ of the server 𝑆 that received ct𝑆 .

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ2 that breaks the IND-CCA security of KEMs . ℬ2 obtains the
IND-CCA challenge pk⋆, ct⋆ and challenge shared secret ss⋆ and uses pk⋆ as
the long-term key pk𝑆 of the server 𝑆. In 𝜋𝑐 , ℬ2 sends ct⋆ in the ClientHello
message. ℬ2 uses ss⋆ for ss𝑆 in both𝜋𝑐 and𝜋𝑠 . If 𝒜1 delivers ct⋆ to some other
session 𝜋″ of 𝑆, ℬ2 uses ss⋆ as value for ss𝑆 in 𝜋″ . If 𝒜1 delivers a different
ct′ ≠ ct⋆ to some other session 𝜋″ of 𝑆, ℬ2 queries its IND-CCA decapsulation
oracle with ct′ to obtain the required shared secret.

Stage 1 cannot maliciously accept since it is replayable. By the definition of
freshness (definition 7.3) we also do not need to answer Corrupt queries.

In the end, 𝒜1 terminates and outputs its guess of the uniform bit 𝑏. If ss⋆

was the real shared secret, ℬ2 has exactly simulated 𝐺𝐴1 to 𝒜1 . If it was a
random value, ℬ2 has exactly simulated 𝐺𝐴2 to 𝒜1 . We obtain:

Adv
𝐺𝐴1
𝒜1 ≤ Adv

𝐺𝐴2
𝒜1 + Adv

IND-CCA
KEMs,ℬ2 .

Game A: replacing ES
In this game we replace the early handshake secret ES by a uniformly random
ẼS in both sessions 𝜋𝑐 and 𝜋𝑠 .

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ3 that breaks the PRF security of HKDF.Extract in its second
argument. When ℬ3 needs to compute ES in𝜋 or𝜋′ it queries itsHKDF.Extract
challenge oracle (keyed with ss𝑆) on 0 and uses the response as ES. If the
response was the real shared secret, ℬ3 has exactly simulated 𝐺𝐴2 to 𝒜1 . If it
was a random value, ℬ3 has exactly simulated 𝐺𝐴3 to 𝒜1 . We obtain:

Adv
𝐺𝐴2
𝒜1 ≤ Adv

𝐺𝐴3
𝒜1 + Adv

PRF-sec
HKDF.Extract,ℬ3 .
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Game A: replacing ETS and dES
In this game, we replace the values ETS and dES by uniformly random values
in both sessions 𝜋𝑐 and 𝜋𝑠 . All values derived from dES in both sessions use
the new value d̃ES.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ4 that breaks the PRF security of HKDF.Expand. When ℬ4 needs
to compute ETS or dES in 𝜋𝑐 or 𝜋𝑠 it queries its HKDF.Expand challenge oracle
(keyed with ES) with the corresponding labels and transcripts, and uses the
responses. If the response was the real output, ℬ4 has exactly simulated 𝐺𝐴3
to 𝒜1 . If it was a random value, ℬ4 has exactly simulated 𝐺𝐴4 to 𝒜1 . We
obtain:

Adv
𝐺𝐴3
𝒜1 ≤ Adv

𝐺𝐴4
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ4 .

The stage-1 key ETS is now a uniformly random string independent of
anything else in the game. It is, however, not forward-secure.

Game A: ephemeral KEM

In this game, in session 𝜋𝑠 we replace the ephemeral shared secret ss𝑒 with a
uniformly random s̃s𝑒 . In 𝜋𝑐 we replace ss𝑒 with the same s̃s𝑒, but only if it
received the same ct𝑒 that 𝜋𝑠 sent. If ss𝑒 was replaced in a session by s̃s𝑒, that
session will now derive anything originally derived from ss𝑒 from s̃s𝑒 instead.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ5 that breaks the IND-1CCA security of KEMe . ℬ5 obtains the
IND-1CCA challenge pk⋆, ct⋆ and the challenge ciphertext ss⋆ . In 𝜋𝑐, it uses
pk⋆ in the ClientHello message. In the server session 𝜋𝑠 ℬ5 sends ct⋆ in the
ServerHello reply. It also sets ss⋆ as the shared secret ss𝑒 in 𝜋𝑠 . If 𝒜1 sends
ct⋆ to 𝜋𝑐, ℬ5 also sets ss𝑒 to ss⋆ in 𝜋𝑐 . But if 𝒜1 sends any other ct′ ≠ ct⋆ to
𝜋𝑐, ℬ5 uses its single query to the IND-1CCA decapsulation oracle to obtain
𝜋𝑐 ’s shared secret.

In the end, 𝒜1 terminates it outputs its guess of the uniform bit 𝑏. If ss⋆

was the real shared secret, ℬ5 has exactly simulated 𝐺𝐴4 to 𝒜1 . If it was a
random value, ℬ5 has exactly simulated 𝐺𝐴5 to 𝒜1 . We obtain:

Adv
𝐺𝐴4
𝒜1 ≤ Adv

𝐺𝐴5
𝒜1 + Adv

IND-1CCA
KEMe,ℬ5 .

Game A: replacingHS
In this game we replace the handshake secret HS by a uniformly random H̃S
in 𝜋𝑠 . If 𝜋𝑐 received the same ct𝑒 that 𝜋𝑠 sent, we also make a replacement
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8 Security of KEMTLS-PDK

there. If HS was replaced in a session by H̃S, that session will now derive
anything originally derived from HS from its newly randomized value instead

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ6 that breaks the PRF security of HKDF.Extract in its second
argument. When ℬ6 needs to compute HS in 𝜋𝑠 (or 𝜋𝑐 if it received the
correct ct𝑒) it queries its HKDF.Extract challenge oracle (keyed with ss𝑒) on
that session’s dES and uses the response as HS. If the response was the real
output, ℬ6 has exactly simulated 𝐺𝐴5 to 𝒜1 . If it was a random value, ℬ6 has
exactly simulated 𝐺𝐴6 to 𝒜1 . We obtain:

Adv
𝐺𝐴5
𝒜1 ≤ Adv

𝐺𝐴6
𝒜1 + Adv

PRF-sec
HKDF.Extract,ℬ6 .

Game A: replacingCHTS, SHTS and dHS
In this game, we replace the handshake traffic secrets CHTS and SHTS and
the value of dHS by uniformly random values in 𝜋𝑠 . If 𝜋𝑐 received the same
ServerHello and ct𝑒 that 𝜋𝑠 sent, and 𝜋𝑠 received the same ct𝑆, we make the
same replacements there. If 𝜋𝑐 shares the values for ct𝑒 and ct𝑆 (and thus the
value of HS) with 𝜋𝑠, but did not receive the same ServerHello as was sent
by 𝜋𝑠, we replace 𝜋𝑐 ’s dHS by the same d̃HS as set in 𝜋𝑠, but 𝜋𝑐 ’s CHTS and
SHTS are set to independent uniformly random values. If dHS was replaced
in a session by a d̃HS, that session will now derive anything originally derived
from dHS from d̃HS instead.

Any adversary 𝒜1 that can detect this change can be used to construct an
adversary ℬ7 that breaks the PRF security of HKDF.Expand. When ℬ7 needs to
computeCHTS, SHTS or dHS in𝜋𝑠 (or𝜋𝑐 , if it shares the values for ct𝑒 and ct𝑆
with 𝜋𝑠) it queries its HKDF.Expand challenge oracle (keyed with HS) with the
corresponding labels and transcripts and uses the responses. If the responses
are real values, ℬ7 has exactly simulated 𝐺𝐴6 to 𝒜1 . If the responses are
random values, ℬ7 has exactly simulated𝐺𝐴7 to 𝒜1 . Note that if 𝜋𝑐 shares the
values of ct𝑒 and ct𝑆 with 𝜋𝑠 , but other parts of the ServerHello were changed
such that 𝜋𝑠 and 𝜋𝑐 are no longer partnered at stage 2 or 3, the adversary may
issue Reveal(𝜋𝑐, 2) or Reveal(𝜋𝑐, 3). But since any changes to ServerHello
make the transcript in 𝜋𝑠 and 𝜋𝑐 different, the label input to HKDF.Expand is
now different for CHTS and SHTS. This means the simulation in ℬ7 remains
good. We obtain:

Adv
𝐺𝐴6
𝒜1 ≤ Adv

𝐺𝐴7
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ7 .
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The stage-2 and stage-3 keys CHTS and SHTS are now uniformly random
strings independent of anything else in the game. This means that these keys
have been shown to have wfs1 security.

Game A: replacingMS
In this game we replace main secret MS by a uniformly random value M̃S in
𝜋𝑠 . If 𝜋𝑐 shares the value for dHS with 𝜋𝑠 and, if 𝜋.mutualauth = true, received
the same ct𝐶 as 𝜋𝑠 sent, we replace its MS with the same value. Otherwise, if
the value for dHS is the same but ct𝐶 is different in the two sessions, we set
MS in 𝜋𝑐 to an independent uniformly random value. All values derived from
MS use these newly randomized values.

Any adversary 𝒜1 that can detect this change can be used to construct an
adversary ℬ8 that breaks the PRF security of HKDF.Extract in its first argument
(which we view as the “dual-PRF security”). When ℬ8 needs to compute MS
in 𝜋𝑠 (or in 𝜋𝑐 , if it shares the value for dHS with 𝜋𝑠) it queries its HKDF.Extract
challenge oracle (keyed with dHS) with ss𝐶 or 0 if 𝜋.mutualauth = false. It
uses the response as MS. If the response is the real value, ℬ8 has exactly
simulated 𝐺𝐴7 to 𝒜1 . If it is a random value, ℬ8 has exactly simulated 𝐺𝐴8 to
𝒜1 . We obtain:

Adv
𝐺𝐴7
𝒜1 ≤ Adv

𝐺𝐴8
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ8 .

Game A: replacing SATS, fk𝑠, fk𝑐, andCATS
In this game we replace the values SATS, fk𝑐, fk𝑠 and CATS with uniformly
random values in 𝜋𝑠 . If 𝜋𝑐 is a partner of 𝜋𝑠 at stage 4, we also make identical
replacements there. If it is not a partner but does share the value for MS
with 𝜋𝑠 , we replace 𝜋𝑐 ’s SATS and CATS with independent uniformly random
values, but replace fk𝑐 and fk𝑠 with the same values we used in 𝜋𝑠 .

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ9 that breaks the PRF security of HKDF.Expand. When ℬ9 needs
to compute SATS, fk𝑐 , fk𝑠 or CATS in 𝜋𝑠 , it queries its HKDF.Expand oracle on
the corresponding labels and transcripts. If ℬ9 needs to compute any of those
values in 𝜋𝑐, and 𝜋𝑐 has the same value for MS, it does the same in 𝜋𝑐 . It
uses the responses in those sessions. If the responses are real values, ℬ9 has
exactly simulated 𝐺𝐴8 to 𝒜1 . If the responses are random values, ℬ9 has
exactly simulated 𝐺𝐴9 to 𝒜1 . Note that if 𝜋𝑐 had the same value for MS as 𝜋𝑠 ,
but parts of the transcript were changed such that 𝜋𝑠 and 𝜋𝑐 are no longer
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partnered at stage 4, the adversary may issue Reveal(𝜋𝑐, 4). But since any
such changes make the transcript in 𝜋𝑠 and 𝜋𝑐 different, the label input to
HKDF.Expand is now different for SATS. Similarly, if 𝜋𝑐 had the same value for
MS as 𝜋𝑠 , but parts of the transcript were changed such that 𝜋𝑠 and 𝜋𝑐 are no
longer partnered at stage 5, the adversary may issue Reveal(𝜋𝑐, 5). But since
any such changes make the transcript in 𝜋𝑠 and 𝜋𝑐 different, the label input
to HKDF.Expand is now different for CATS. This means the simulation in ℬ9
remains good. We obtain:

Adv
𝐺𝐴8
𝒜1 ≤ Adv

𝐺𝐴9
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ9 .

The stage-4 key SATS and stage-5 key CATS are now uniformly random
strings independent of everything else in the game. This means that the
stage-4 and stage-5 keys have been shown to have wfs1 security.

Malicious acceptance

Let bad denote the event that 𝐺𝐴9 maliciously accepts in stage 𝑗 in the (fresh)
tested sessionwithout a session partner in stage 𝑗. If the tested session is a client
session, 𝑗 = 4. Otherwise, if the session is a server and 𝜋.mutualauth = true,
then 𝑗 = 5. In server sessions that do not authenticate the client, we do not
have explicit authentication.

Game A: identical-until-bad

This game is identical to game 𝐺𝐴9 , except that we abort the game if the event
bad occurs. Games 𝐺𝐴9 and 𝐺𝐴10 are identical-until-bad [33]. Thus,

|Pr [𝐺𝐴9 ⇒ 1] − Pr [𝐺𝐴10 ⇒ 1]| ≤ Pr [𝐺𝐴10 reaches bad] .

In game 𝐺𝐴9 , all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary cannot distinguish
stage keys anymore. By this game, it can no longer reach bad. Thus:

Adv
𝐺𝐴10
𝒜1 = 0.

It remains to bound Pr [𝐺𝐴10 reaches bad].
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Game A: HMAC forgery

In this game, 𝜋𝑐, if it does not have a session partner in stage 4, rejects upon
receiving the ServerFinished message. If 𝜋𝑠.mutualauth = true and 𝜋𝑠 does
not have a session partner in stage 5, 𝜋𝑠 rejects upon receiving the ClientFin-
ished message.

Any adversary that behaves differently in 𝐺𝐴11 compared to 𝐺𝐴10 can be
used to construct an HMAC forger ℬ10 . The only way that 𝐺𝐴10 and 𝐺𝐴11
behave differently is if 𝐺𝐴11 rejects a MAC that should have been accepted as
valid. When rejecting ServerFinished, if no partner to 𝜋𝑐 at stage 4 exists,
no honest 𝜋𝑠 exists with the same session identifier and thus transcript. This
means no honest 𝜋𝑠 ever created a MAC tag for the transcript that the client
verified, and thus it must be a forgery. When rejecting ClientFinished, if
no partner to 𝜋 at stage 5 exists, no honest 𝜋𝑐 exists with the same session
identifier and thus transcript. This means no honest 𝜋𝑐 ever created a MAC
tag for the transcript that the server verified, and thus it must be a forgery.
Concluding:

Pr [𝐺𝐴10 reaches bad] ≤ Pr [𝐺𝐴11 reaches bad] + 2AdvEUF-CMA
HMAC,ℬ10 .

By the above, the event bad is never reached.

Analysis of game A

By game A9, all stage keys are uniformly random and independent of all
messages in the game. By game A11, all events bad are rejected. Thus:

Pr [𝐺𝐴11 reaches bad] = 0.

This concludes case A, yielding:

Adv
𝐺𝐴
𝒜1 ≤ 𝑛𝑠

(((

(

AdvIND-CCAKEMs,ℬ2 +AdvPRF-secHKDF.Extract,ℬ3
+AdvPRF-secHKDF.Expand,ℬ4+Adv

IND-1CCA
KEMe,ℬ5

+AdvPRF-secHKDF.Extract,ℬ6 +Adv
PRF-sec
HKDF.Expand,ℬ7

+Advdual-PRF-secHKDF.Extract,ℬ8 +Adv
PRF-sec
HKDF.Expand,ℬ9

+ 2AdvEUF-CMA
HMAC,ℬ10

)))

)

.
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Case B: no contributive partner in stage  exists, and peer is not

corrupted before stage 𝒊 accepted

In this case, the tested session 𝜋 does not have a contributive partner in stage
2. This means that stages aiming for wfs1 security are out of scope of this
case. If 𝜋.mutualauth = false, the tested 𝜋 can be assumed to a client session.
Otherwise, it can both be a server or a client session.

We also allow the intended peer 𝑉 of the tested session 𝜋 to be corrupted,
but not before the tested session accepted the tested stage selected by game 3.
This models forward secrecy: even if the adversary obtains the peer’s long-
term key, the tested keys should still be indistinguishable.

Allowing Corrupt in this case means that any reduction that replaces ss𝐶 or
ss𝑆 is problematic. However, we show by assumption on the EUF-CMA security
of HMAC that no client can be made to maliciously accept at stage 4 and no
server session at stage 5. This means that if a client accepts in stage 4, then it
has a partner at stage 4 and all prior stages. Similarly, if a server accepts in
stage 5, then it has a partner at stage 5 and all prior stages.

This allows us to make the following conclusions. Once stage 4 accepts,
all client stages are retroactively authenticated. Once stage 5 accepts, all
server stages are retroactively authenticated. By case A, all stage keys are
indistinguishable, even to an adversary that corrupts any long-term key. This
yields retroactive fs security for all stage keys.

Game B: guessing the intended peer

In this game, we attempt to guess the identity of the peer with which the tested
session attempts to connect. If we do not guess this identity 𝑉 correctly, i.e.,
this identity𝑉 ≠ 𝜋.pid, we abort. This reduces the advantage of 𝒜1 by a factor
of the number of users 𝑛𝑢:

Adv
𝐺𝐵
𝒜1 ≤ 𝑛𝑢 ⋅ Adv

𝐺𝐵1
𝒜1 .

Game B: static KEM

In this game we replace the shared secret ss𝑆 in 𝜋, a client session, with a
uniformly random s̃s𝑆 . In any (server) sessions 𝜋′ of𝑉 that received the same
ct𝑆 as was sent by 𝜋 in the ClientHello message, we replace the value of ss𝑆
with the same s̃s𝑆 . All values derived from ss𝑆 in 𝜋 or the sessions of 𝑉 that
received the same ct𝑆 use the new value s̃s𝑆 .

Any adversary 𝒜1 that can detect this replacement can be used to construct
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an adversary ℬ11 that breaks the IND-CCA security of KEMs . ℬ11 obtains the
IND-CCA challenge pk⋆, ct⋆ and challenge shared secret ss⋆ and gives pk⋆ to
𝒜1 . In𝜋, ℬ11 sends ct⋆ in the ClientHello message and uses ss⋆ for ss𝑆 . If 𝒜1
delivers ct⋆ to any 𝜋′ of 𝑉, ℬ11 uses ss⋆ as value for ss𝑆 in 𝜋′ . If 𝒜1 delivers
some other ct′ ≠ ct⋆, ℬ11 queries its IND-CCA decapsulation oracle with ct′

to obtain the required shared secret. By the definition of case B, we will never
need to answer any Corrupt(𝑉) queries.

In the end, 𝒜1 terminates it outputs its guess of the uniform bit 𝑏. If ss⋆

was the real shared secret, ℬ11 has exactly simulated 𝐺𝐵1 to 𝒜1 . If it was a
random value, ℬ11 has exactly simulated 𝐺𝐵2 to 𝒜1 . We obtain:

Adv
𝐺𝐵1
𝒜1 ≤ Adv

𝐺𝐵2
𝒜1 + Adv

IND-CCA
KEMs,ℬ11 .

Game B: replacing ES
In this game, we replace the early handshake secret ES by a uniformly random
value ẼS. Additionally, in any sessions 𝜋′ of 𝑉 which either sent or received
the same ct𝑆 that was sent or received in 𝜋, we make the same replacement.

Any 𝒜1 that can detect this change can be used to construct an adversary
ℬ12 that breaks the PRF security of HKDF.Extract in its second argument as
follows. When ℬ12 needs to compute ES in 𝜋 or any of the sessions of 𝑉
that received or sent the same ct𝑆 that was sent or received by 𝜋, ℬ12 uses its
HKDF.Extract challenge oracle (keyed with ct𝑆) on 0. It uses the response as
ES. If the responses the real values, ℬ12 has exactly simulated 𝐺𝐵2 to 𝒜1 . If it
was a random value, ℬ12 has exactly simulated 𝐺𝐵3 to 𝒜1 . We obtain:

Adv
𝐺𝐵2
𝒜1 ≤ Adv

𝐺𝐵3
𝒜1 + Adv

PRF-sec
HKDF.Extract,ℬ12 .

Game B: replacing ETS and dES
In this gamewe replace the values ETS and dES by uniformly randomvalues in
𝜋. Additionally, in any sessions 𝜋′ of𝑉 which either sent or received the same
ct𝑆 that was sent or received in 𝜋, we make the same replacements. All values
derived from dES in 𝜋 and the 𝜋′ sessions of 𝑉 that made the replacements
use the new value d̃ES.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ13 that breaks the PRF security of HKDF.Expand. When ℬ13
needs to compute ETS or dES in 𝜋 or any of the sessions of 𝑉 that received
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or sent the same ct𝑆 that was sent or received by 𝜋, it queries its HKDF.Expand
challenge oracle (keyed with ES) with the corresponding labels and tran-
scripts and uses the responses. If the response was the real shared secret, ℬ13
has exactly simulated 𝐺𝐵3 to 𝒜1 . If it was a random value, ℬ13 has exactly
simulated 𝐺𝐵4 to 𝒜1 . We obtain:

Adv
𝐺𝐵3
𝒜1 ≤ Adv

𝐺𝐵4
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ13 .

The stage-1 key ETS is now a uniformly random string independent of
anything else in the game. It is, however, not forward-secure.

Game B: replacingHS
In this game we replace the value of HS by a uniformly random value H̃S
in 𝜋. Additionally, in any sessions 𝜋′ of 𝑉 which either sent or received the
same ct𝑆 that was sent or received in 𝜋, we make a similar replacement. All
values derived from HS in 𝜋 and the 𝜋′ of 𝑉 that made the replacement use
the newly randomized values.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ14 that breaks the PRF security of HKDF.Extract in its first ar-
gument (which we view as the “dual-PRF security”). When ℬ14 needs to
compute HS in 𝜋 or any of the sessions of 𝑉 that received or sent the same
ct𝑆 that was sent or received by 𝜋, it queries its HKDF.Extract challenge oracle
(keyed with dES) with that session’s ss𝑒 and uses the response. If the response
was the real shared secret, ℬ14 has exactly simulated 𝐺𝐵4 to 𝒜1 . If it was a
random value, ℬ14 has exactly simulated 𝐺𝐵5 to 𝒜1 . We obtain:

Adv
𝐺𝐵4
𝒜1 ≤ Adv

𝐺𝐵5
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ14 .

Game B: replacingCHTS, SHTS and dHS
In this game we replace the values CHTS and SHTS and dHS by uniformly
random values in 𝜋. Additionally, in any sessions 𝜋′ of 𝑉 which share the
value of HS (and thus ct𝑆 and ct𝑒) with 𝜋, we make the same replacements.
All values derived from dHS in 𝜋 and the 𝜋′ sessions of 𝑉 that made the
replacements use the new value d̃HS.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ15 that breaks the PRF security of HKDF.Expand. When ℬ15
needs to compute any of CHTS, SHTS or dHS in 𝜋 or any of the sessions of
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𝑉 shares the value of HS with 𝜋, it queries its HKDF.Expand challenge oracle
(keyed with HS) on the corresponding labels and transcripts and uses the
responses. If the response was the real shared secret, ℬ15 has exactly simulated
𝐺𝐵5 to 𝒜1 . If it was a random value, ℬ15 has exactly simulated 𝐺𝐵6 to 𝒜1 . We
obtain:

Adv
𝐺𝐵5
𝒜1 ≤ Adv

𝐺𝐵6
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ15 .

The stage-2 and stage-3 keys CHTS and SHTS in 𝜋 are now uniformly
random independent of anything else in the game. Thus, they have been
shown to have wfs2 security in client sessions. Recall that server sessions aim
for wfs1 security in this stage, which is out of scope.

Game B: client authentication static KEM

We only play this game if 𝜋.mutualauth = true. Otherwise, this game is equal
to the previous one as there is no reduction in advantage.

We replace the client authentication shared secret ss𝐶 in 𝜋, a server, by a
uniformly random value s̃s𝐶 . If any of 𝑉’s client sessions 𝜋′ received the same
ct𝐶 as 𝜋 sent in ServerKemCiphertext, we make the same replacement
in those 𝜋′ if they have 𝜋′.mutualauth = true. Any value derived from ss𝐶
in a session where it was replaced will now use the replacement value s̃s𝐶 .
Sending any ServerKemCiphertext to 𝜋′ with 𝜋′.mutualauth = false will
simply terminate those sessions at no advantage to the adversary.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ16 that breaks the IND-CCA security of KEMc . ℬ16 obtains the
IND-CCA challenge pk⋆, ct⋆ and the challenge ciphertext ss⋆ . ℬ16 uses pk⋆ in
the ClientCertificate message sent in 𝑉’s client sessions. In 𝜋, ℬ16 uses ct⋆
in the ServerKemCiphertext message and sets ss⋆ as the shared secret ss𝐶 .
If 𝒜1 sends ct⋆ to any of 𝑉’s 𝜋′ , ℬ16 also sets ss𝐶 to ss⋆ in those 𝜋′ . But if 𝒜1
sends any other ct′ ≠ ct⋆ to any of𝑉’s 𝜋′ , ℬ16 uses the IND-CCA decapsulation
oracle to obtain the appropriate shared secret.

In the end, 𝒜1 terminates it outputs its guess of the uniform bit 𝑏. If ss⋆

was the real shared secret, ℬ16 has exactly simulated 𝐺𝐵6 to 𝒜1 . If it was a
random value, ℬ16 has exactly simulated 𝐺𝐵7 to 𝒜1 . We obtain:

Adv
𝐺𝐵6
𝒜1 ≤ Adv

𝐺𝐵7
𝒜1 + Adv

IND-CCA
KEMc,ℬ16 .
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Game B: replacingMS
In this game, we replace the value of main secret MS by a uniformly random
value M̃S in 𝜋. Additionally, in any sessions 𝜋′ of 𝑉 which share the value for
dHS with 𝜋, we make the same replacement. All values derived from MS in 𝜋
and the 𝜋′ of 𝑉 that made the replacement use the newly randomized values.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ17 that breaks the PRF security of HKDF.Extract in its first argu-
ment. When ℬ17 needs to compute MS in 𝜋 or any of the sessions of 𝑉 that
have the same value for dHS as 𝜋, it queries its HKDF.Extract challenge oracle
(keyed with dHS) and uses the response asMS. In each of these sessions 𝜋″ , if
𝜋″.mutualauth = false, ℬ17 calls HKDF.Extract with 0. If 𝜋″.mutualauth = true,
ℬ17 calls HKDF.Extractwith ss𝐶 . If the response was the real shared secret, ℬ17
has exactly simulated 𝐺𝐵7 to 𝒜1 . If it was a random value, ℬ17 has exactly
simulated 𝐺𝐵8 to 𝒜1 . We obtain:

Adv
𝐺𝐵7
𝒜1 ≤ Adv

𝐺𝐵8
𝒜1 + Adv

dual-PRF-sec
HKDF.Extract,ℬ17 .

Game B: replacing SATS, fk𝑠, fk𝑐 andCATS
In this game we replace the application traffic secrets SATS and CATS, and
finished keys fk𝑠 and fk𝑐 by uniformly random values in 𝜋. Additionally, in
any sessions 𝜋′ of 𝑉 which share the value of MS with 𝜋 we make the same
replacements.

Any adversary 𝒜1 that can detect this replacement can be used to construct
an adversary ℬ18 that breaks the PRF security of HKDF.Expand. When ℬ18
needs to compute SATS, CATS, fk𝑠 or fk𝑐 in 𝜋 or any of the sessions of 𝑉 that
share the value for MS with 𝜋, it queries its HKDF.Expand challenge oracle
(keyed with MS) with the corresponding labels and transcripts and uses the
responses. If the response was the real shared secret, ℬ18 has exactly simulated
𝐺𝐵8 to 𝒜1 . If it was a random value, ℬ18 has exactly simulated 𝐺𝐵9 to 𝒜1 . We
obtain:

Adv
𝐺𝐵8
𝒜1 ≤ Adv

𝐺𝐵9
𝒜1 + Adv

PRF-sec
HKDF.Expand,ℬ18 .

The stage-4 key SATS and stage-5 key CATS in the tested session 𝜋 are
now uniformly random independent of anything else in the game. Thus,
they have been shown to have wfs2 security. If 𝜋 is a server session, and
𝜋.mutualauth = false, wfs2 security of SATS is out of scope.
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Malicious acceptance

Let bad denote the event that 𝐺𝐵9 maliciously accepts in stage 𝑗 in the (fresh)
tested session without a session partner in stage 𝑗. If the session is a client,
then 𝑗 = 4. If the tested session is a server and 𝜋.mutualauth = true we have
𝑗 = 5. In server sessions that do not authenticate the client, we do not have
explicit authentication.

Game B: identical-until-bad

This game is identical to game 𝐺𝐵9 , except that we abort the game if the event
bad occurs. Games 𝐺𝐵9 and 𝐺𝐵10 are identical-until-bad [33]. Thus,

|Pr [𝐺𝐵9 ⇒ 1] − Pr [𝐺𝐵10 ⇒ 1]| ≤ Pr [𝐺𝐵10 reaches bad] .

In game 𝐺𝐵9 , all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary cannot distinguish
stage keys anymore. By this game, it can no longer reach bad. Thus:

Adv
𝐺𝐵10
𝒜1 = 0.

It remains to bound Pr [𝐺𝐵10 reaches bad].

Game B: HMAC forgery

In this game, 𝜋, if it is a client, rejects upon receiving the ServerFinished
message. If 𝜋 is a server and 𝜋.mutualauth = true, 𝜋 rejects upon receiving
the ClientFinished message.

Any adversary that behaves differently in 𝐺𝐵11 compared to 𝐺𝐵10 can be
used to construct an HMAC forger ℬ19 . The only way that 𝐺𝐵10 and 𝐺𝐵11
behave differently is if 𝐺𝐵11 rejects a MAC that should have been accepted as
valid. When rejecting ServerFinished, no partner to 𝜋 at stage 4 exists, so
no honest server session 𝜋′ exists with the same session identifier and thus
transcript. No honest 𝜋′ ever created a MAC tag for the transcript that the
client verified, and thus it must be a forgery. When rejecting ClientFinished,
no partner to 𝜋 at stage 5 exists, so no honest client session 𝜋′ exists with the
same session identifier and thus transcript. Concluding:

Pr [𝐺𝐵10 reaches bad] ≤ Pr [𝐺𝐵11 reaches bad] + 2AdvEUF-CMA
HMAC,ℬ19 .

159
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Since this game rejects all ServerFinished messages, the event bad is
never reached in client sessions. If 𝜋.mutualauth = true, this game also rejects
all ClientFinished messages. If 𝜋.mutualauth = false, rejecting ClientFin-
ished is out of scope as we only aim for wfs1 security.

Analysis of game B

By game B9, all stage keys are uniformly random and independent of all
messages in the game. By game B11, all events bad are rejected. Thus:

Pr [𝐺𝐵11 reaches bad] = 0.

This concludes case B, yielding:

Adv
𝐺𝐵
𝒜1 ≤ 𝑛𝑢

(((

(

AdvIND-CCAKEMs,ℬ11 +AdvPRF-secHKDF.Extract,ℬ12
+AdvPRF-secHKDF.Expand,ℬ13 +Adv

dual-PRF-sec
HKDF.Extract,ℬ14

+AdvPRF-secHKDF.Expand,ℬ15 +Adv
IND-CCA
KEMc,ℬ16

+Advdual-PRF-secHKDF.Extract,ℬ17 +Adv
PRF-sec
HKDF.Expand,ℬ18

+ 2AdvEUF-CMA
HMAC,ℬ19

)))

)

.

Combining the bounds in cases A and B yields the theorem.

. Security of the two protocols

We have now proven the security of KEMTLS and KEMTLS-PDK under the same
definitions of Match and Multi-Stage security. In chapter 9, we encode the
security properties described in chapter 7 and this chapter in Tamarin, a
symbolic protocol analysis tool. The Tamarin model analyses our security
claims for both protocols in each other’s presence. We will also informally
argue that both protocols remain secure in each other’s presence.

The arguments of ourMatch security proofs are compatible: the definitions
of (contributive) session identifiers are distinct for KEMTLS and KEMTLS-PDK,
as all session identifiers of the latter contain the ServerCertificate message
before the transcript. In ourMulti-Stage proofs, transcripts of sessions remain
unique by the same assumptions that rule out nonce and hash collisions. Both
protocols use the same primitives. Any adversary that delivers a (part of a)
message from a KEMTLS session to a KEMTLS-PDK session, or vice-versa, can be
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8.3 Security of the two protocols

handled in the same way as when such (parts of ) messages are delivered to a
different session of the same protocol. As a result, we can amend our game
steps to consider the presence of concurrent KEMTLS(-PDK) sessions.

The fallback mechanism we described in section 6.2.2 has some more
subtleties we need to address, and we will only sketch how to approach them.
Further analysis of the co-existence of the two protocols remains future work.

We note that the KEMTLS-PDK negotiation mechanisms in ClientHello ex-
tensions are part of the transcript. As a result, KEMTLS-PDK sessions cannot
be downgraded to KEMTLS, as the transcript computations would fail: the
original ClientHello, including its extensions, remains part of the transcript.
A rejection of proactive client authentication is more nuanced. Dropping
the encrypted handshake message could result in the client and server dis-
agreeing on what was attempted. However, in KEMTLS(-PDK), both parties
always know if client authentication was completed through the presence
of the ServerKemCiphertext message that contains the ciphertext that the
server encapsulated to the client certificate. Additionally, the specification
of the proactive client authentication can include an additional ClientHello
extension that indicates if a proactive ClientCertificate message will be sent.
(In fact, our implementations do this, just for ease of handling the additional
message.) Even if the ClientCertificate message is rejected by the server
and dropped from the transcript, this extension would then remain part of
the transcript to indicate it was present.
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 Formally analyzing KEMTLS in

Tamarin

In the previous chapters, we have stated the security properties of KEMTLS

and KEMTLS-PDK, and shown how to prove the security of the protocols in the
reductionist security model. Pen-and-paper methods are however not the
only way to analyze the security of a cryptographic protocol. Computer-aided
tools are increasingly used to verify the security of cryptographic protocols
and implementations. How computers can help ranges from just checking a
human’s work, to completely automated analysis, providing attacks or proofs
of security. Even within this wide range, a major common characteristic of
computer-aided analysis tools is a computer’s rigor: it will never read between
the lines or gloss over a particular modeling detail.

Contributions

In this chapter, we show how we analyzed the security of KEMTLS and KEMTLS-

PDK in Tamarin, a security protocol verification tool that works in the symbolic
model. Wemodel KEMTLS(-PDK) twice, in very different styles: once by extend-
ing an existing, very detailed model of TLS 1.3; and once by translating our
security models and properties from chapters 7 and 8 to Tamarin’s modeling
language. The twomodels have very different performance characteristics and
allow us to examine the security of the protocols from different perspectives as
the models describe different security properties. We can also compare these
models, allowing us to comment on the trade-off in symbolic analysis between
detail in protocol specification and granularity of security properties.

. Introduction

During the development process of TLS 1.3, there was a strong collaboration
between the standardization community with the academic research commu-
nity. Initial TLS 1.3 protocol designs were based on academic designs [221],
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and it was an explicit goal of the TLS 1.3 process to incorporate academic
security analysis of new designs before continuing with standardization. Pater-
son and Van der Merwe described this as a “design-break-fix-release” process
rather than the “design-release-break-patch” cycle that was found on prior
versions of the standardization and usage of TLS [287]. Many of the security
analyses of TLS 1.3 used the reductionist security paradigm [127, 128, 129, 213,
221]. Complementing this manual proof work, computer-aided cryptogra-
phy [20] was also instrumental in checking TLS 1.3. Analyses were done using
the ProVerif [55] and Tamarin [108, 109] symbolic analysis tools, as well as a
verified implementation in F∗ [115].

The proofs of KEMTLS(-PDK) in the initial papers and discussed in the pre-
vious chapters adapt the multi-stage key exchange approach used by Dowling,
Fischlin, Günther, and Stebila [127, 128] for TLS 1.3. Subsequently, Günther,
Rastikian, Towa, andWiggers proposed and proved an alternative abbreviated
handshake,1 with additional short-lived static keys [168], and found a few
minor mistakes in the original security proofs, which were subsequently fixed
in online versions of the original papers [320, 321] and the proofs presented in
chapters 7 and 8. All of these proofs treat protocol modes independently—one
at a time—and do not consider the presence of the other protocol modes.

.. Contributions

In this chapter, we present two security analyses of all four variants of KEMTLS

(the base KEMTLS protocol, with server-only or mutual authentication, and
the pre-distributed public keys variant KEMTLS-PDK, also with server-only or
mutual authentication) using Tamarin [27, 251].

Our first model, presented in section 9.3, is based on the Tamarin analysis of
TLS 1.3 by Cremers, Horvat, Hoyland, Scott, and Van derMerwe [108]. This is
a highly detailedmodel in terms of the protocol specification, closely following
the TLS 1.3 wire format. In this model, we show that all KEMTLS variants have
equivalent security properties to the main handshake of TLS 1.3 without
extensions. We were able to fully automate the proof, unlike the original
(though more fully-featured) model which required significant manual effort.

Our second model, presented in section 9.5, is a novel Tamarin model
developed from scratch that closely follows the multi-stage key exchange

1We briefly discussed this variant of KEMTLS-PDK in section 6.3
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security model used in the pen-and-paper proofs. This model focuses on
the “cryptographic core”, meaning that it is further away from the wire spec-
ification and does not model details like message encryption or the record
layer. However, it captures more details in the security definitions, using the
granular definitions of forward secrecy from [320, 321]. We also analyze the
deniability properties. The second model allows us to symbolically verify the
forward secrecy and authentication properties specified in the pen-and-paper
proofs but goes further by considering all KEMTLS variants simultaneously.
This Tamarin model allowed us to identify some minor flaws in the properties
stated based on pen-and-paper proofs.

In section 9.7, we compare the features of our two Tamarin models. Having
these two models side-by-side illustrates the trade-off between the detail of
protocol specification and the granularity of security properties. Ideally, of
course, one would achieve both levels of detail simultaneously, but such
complexity is challenging both for the humans reading and writing pen-and-
paper proofs or authoring Tamarin models, and for computers checking
such Tamarin models (where runtime typically scales exponentially with the
complexity of the model). Our side-by-side approach with two very different
perspectives still yields significant confidence in the soundness of the KEMTLS

protocol design and each provides insight into flaws in the earlier models that
it was based on.

. Background on symbolic analysis

One approach to proving the security properties of protocols is symbolic
analysis, which uses formal logic to reason about the properties of an al-
gebraic model of a protocol. Computational tools, such as Tamarin [27, 251]
or ProVerif [64], can then be used to check whether certain properties hold in
the symbolic model.

In a reductionist analysis, like our pen-and-paper proofs, adversaries are
polynomially bounded, and we reduce the security of a protocol to assump-
tions on the underlying cryptographic primitives, such as hash collisions.
These allow us to give a fine-grained analysis through the algebraic properties
of the schemes. In symbolic analysis however, generic symbols replace spe-
cific values. Operations like encryption are also modeled symbolically: for
example, the symbol senc(a,b) represents the value a being symmetrically
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encrypted with the key b. This means that in symbolic analysis cryptographic
operations are perfect, meaning the adversary can learn nothing about an
encrypted message without the correct key. The operations that describe a
protocol in a symbolic model take messages and state information and trans-
form them into the next state or emit another protocol message. A tool can
then use all operations and symbols to generate every possible protocol run:
symbolic adversaries have unbounded numbers of sessions and time.

Many symbolic analyses of protocols use the Dolev–Yao [125] attacker
model, in which an attacker can manipulate all messages at will, e.g., by
redirecting them, replaying them, dropping them, or manipulating their con-
tents. It can also construct newmessages from information previously learned.
However, as the cryptographic primitives in symbolic models are assumed
to be perfect, the attacker cannot read or modify encrypted or authenticated
messages if it does not have the right keys.

Symbolic models can also be extended to give the attacker special extra
abilities. For example, one can allow the attacker to reveal private keys or state
information of parties through reveal oracles. We record when the attacker
uses this oracle, so reveal queries become part of the trace of execution.

Security properties are modeled as predicates over execution traces. In
Tamarin, during the execution of the rules of the protocol, we can emit action
facts. We use these action facts to record, for example, the session’s impres-
sion of the authentication status or the current keys. We then write lemmas
representing security properties as predicates over action facts. For example,
a lemma may state that any key recorded in a certain type of action fact must
not be known to the adversary unless the adversary cheated by revealing
keys. A model checker like Tamarin can then be used to check if the protocol
maintains the required security property. Assuming the tool is sound, either
the tool will give a proof that the protocol has the required property, find a
counter-example, or fail to terminate.

. Model #: high-resolution protocol specification

In this section, we discuss the natural approach of taking one of the TLS 1.3
models and adapting it to KEMTLS(-PDK). Our work demonstrates that KEMTLS

provides security guarantees at least equivalent to those proven by Cremers,
Horvat, Hoyland, Scott, andVan derMerwe for themain handshake of TLS 1.3.
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.. The TLS . model

The Tamarin model of TLS 1.3 [108] is very high-resolution in terms of its
modeling of protocol details and adherence to the protocol specification. It
covers the cryptographic computations such as the key exchange and the key
schedule; for example, calls toHKDF are decomposed into hash function calls.
This model also includes the extensions to the basic TLS 1.3 handshake, such
as the HelloRetryRequest mechanism, pre-shared keys, and resumption via
session tickets. Additionally, it models the encryption of handshake messages,
the syntax of the protocol messages, andmechanics such as TLS 1.3 extensions.

In terms of security properties, the TLS 1.3 model extends Tamarin’s basic
Dolev–Yao attacker with the ability to recover secrets from Diffie–Hellman
key shares and to reveal the long-term keys of participants. TLS 1.3 is not
secure against an attacker who can use these attacks freely but aims to provide
confidentiality and integrity against an attacker who is restricted from reveal-
ing secrets of the target session. The TLS 1.3 model encodes lemmas capturing
most of the security properties claimed by the TLS 1.3 specification [298, Ap-
pendix E.1]. They report that proving all lemmas in their model took about
a week. Much of this time was spent on manual interaction with Tamarin’s
prover to guide it to prove some of the more complex lemmas. Verifying the
generated proof requires “about a day” and “a vast amount of RAM” [108].

.. Representing KEMTLS in themodel

Wenowdescribe howwemodified the existing TLS 1.3model to represent both
KEMTLS and its variant with pre-distributed keys, KEMTLS-PDK. The original
model is highly modular, which made it relatively easy to modify.

Modeling KEMs

Tamarin does not have a built-in interface to model KEMs. They can be
described using Tamarin’s asymmetric encryption primitives, as was done
in [185]. We choose to model the KEM interface using Tamarin’s function
API. As the TLS 1.3 model has some support for cryptographic agility in the
ephemeral key exchange, we add a public algorithm identifier symbol to each
operation. We use fresh values to resemble KEM secret keys, and a function
kempk/2 to represent the public key for the specified algorithm. Tamarin’s
functions are just symbols and do not describe functionality. Any function-
ality is handled by writing equations over the symbols. As such, we cannot
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easily return two values or generate fresh values in the encapsulate operation.
We resolve this by providing an input to the encapsulate operation to stand in
for the generated secret. The shared secret is defined through kemss/2 and
also contains the algorithm symbol. We define kemencaps/3 (KEM encapsu-
lation) over the algorithm, the shared secret, and the public key. The resulting
ciphertext can be provided to kemdecaps/3 (KEM decapsulation) with the
algorithm and the secret key. We model the functionality of kemencaps and
kemdecaps by the equation pictured in listing 9.1, where alg represents the
KEM algorithm, and seed and sk are the fresh input values.

Listing 9.1: The equation used to model KEMs in model #1

equations:
kemdecaps(alg,

kemencaps(alg,
kemss(alg, seed),
kempk(alg, sk)),

sk)
= kemss(alg, seed)

Modelling KEMTLS

The model of Cremers, Horvat, Hoyland, Scott, and Van der Merwe rep-
resents TLS 1.3 through rules that manipulate a specific state object, which
keeps track of many protocol variables, such as keys, authentication status,
and the currently active handshake mode. Tamarin rules create transitions
between these states. Where the protocol branches, such as when the server
requests client authentication by sending CertificateRequest, two rules
end up in the same next state; in this example, they set the cert_req vari-
able differently. The server later uses this variable to decide which of the
rules recv_client_auth or recv_client_auth_cert to use; the latter
expects the Certificate, CertificateVerify, and ClientFinished messages,
while the former only expects Finished. We handle the public-key infras-
tructure for KEM public keys in the same way as [108]: we do not model
CA certificates and assume an out-of-band binding between public keys and
identities.

Ephemeral key exchange in the TLS 1.3 model relies on Tamarin’s built-in
DH functionality. It also allows the negotiation of two different DH groups.
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During the handshake, the client and server generate ephemeral DH secrets
for the chosen group. If the server rejects the client’s choice of DH group,
it falls back to another group through the HelloRetryRequest mechanism.
To model the post-quantum ephemeral key exchange in KEMTLS, we replaced
the Diffie–Hellman operations by kemencaps in place of the server’s DH key
generation. The client then computes the shared secret via kemdecaps.

The authentication rules and states required more careful consideration. In
the TLS 1.3 model, the Certificate, CertificateVerify, and Finished mes-
sages were sent and received simultaneously. In KEMTLS, we split the handling
of these messages, as the peer that is authenticating needs to first receive a
ciphertext to decapsulate. Doing this requires more states. Additionally, in
KEMTLS, the client sends Finished before the server, which deviates from
TLS 1.3. For a diagram of the state machine, we refer to the extended version
of the paper is chapter is based on [93, App. B].

To finish our integration of KEMTLS, we made changes to the key schedule
to include the computation of the KEMTLS Authenticated Handshake Secret
(AHS) and use the correct handshake traffic encryption keys. We also modi-
fied the action facts emitted in the various rules to match our KEM operations;
lemmas that made use of these action facts were also updated. We disabled
the PSK and session ticket features of the original model.

Modeling KEMTLS-PDK

In KEMTLS-PDK, the client has the server’s long-term public key beforehand. Ac-
cess to the public key allows the client to send a ciphertext in the initial Client-
Hello message. Additionally, the client may attempt client authentication
proactively and thus transmit its Certificate before receiving ServerHello
from the server. We model this through an additional initial state for the
KEMTLS-PDK client. From this state, there are two rules which set the state
variable that will decide if the client will send its certificate. KEMTLS-PDK is
otherwise implemented as a mostly separate sequence of states and rules, as
the key schedule and order of messages are quite different. The client and
server still transition through a state shared with KEMTLS, so they can fall back
to the “full” handshake.
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.. Security properties

We adapt the lemmas from the Tamarin model for TLS 1.3. Many core lemmas
are constructed around the SessionKey fact: the client and the server record
this fact when the handshake concludes. SessionKey contains the actor’s
final understanding of its and its peer’s identities, authentication statuses, and
the application traffic keys. We prove all security properties discussed in [108]
and briefly explain the most important of these below.

Adversary compromise of secrets

First, we note the extent to which the adversary can compromise ephemeral or
long-term secrets. KEMTLS uses ephemeral KEM keys for ephemeral secrecy
and long-term KEM keys for authentication. The adversary can reveal actors’
long-term secret keys; this records the RevLtk($actor) fact. We also al-
low revealing the ephemeral secret key in individual sessions, recording the
RevEKemSk(tid, $actor, esk) fact. Variables tid (“thread identifier”)
and esk (“ephemeral secret key”) track the specific session and secret key.

KEMs are not “symmetric” in the same way that DH key exchange is. Only
one party in each KEM key exchange has a secret key that can be targeted by a
reveal query. We do not model revealing the shared secret from the ciphertext.

Intermediate session keys, like the Main Secret (MS), cannot be revealed
directly. This follows from the design of the original model: in TLS 1.3,
these secrets only depend on the ephemeral key exchange, so revealing the
ephemeral key exchange in sessions not targeted by a lemma still allows the
adversary to obtain those sessions’ intermediate session keys. In KEMTLS, this
is no longer the case: we mix the shared secrets encapsulated against long-
term keys into the key schedule; as a result, our attacker is slightly weaker.
The model discussed in section 9.5 does directly allow session key reveal.

(Forward) secrecy of session keys

The outputs of the handshake, as recorded in the SessionKey fact, are the
application traffic read and write keys kr and kw. We require these keys to
remain secret against various forms of attacks. Forward secrecy requires that
if the long-term keys (but not the ephemeral keys) were compromised after
the session completes, the session keys remain secure.

We model this in the secret_session_keys lemma as shown in list-
ing 9.2. This lemma considers a client or server that believes it has authenti-
cated its peer, where the attacker has not revealed the ephemeral KEM secret
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Listing 9.2: The secret_session_keys lemma proves application traffic
keys are secret.

lemma secret_session_keys:
"All tid actor peer kw kr pas #i.

SessionKey(tid, actor, peer,
<pas, 'auth'>, <kw, kr>)@#i &

not (Ex #r. RevLtk(peer)@#r & #r < #i) &
not (Ex tid3 esk #r.

RevEKemSk(tid3, peer, esk)@#r & #r < #i) &
not (Ex tid4 esk #r.

RevEKemSk(tid4, actor, esk)@#r & #r < #i)
==> not Ex #j. K(kr)@#j"

keys. We allow the attacker to reveal the peer’s long-term secret key, but
only after the SessionKey fact was emitted; this is the “forward” secrecy
aspect. The attacker should not be able to learn (not Ex #j. K(kr)@#j)
the target’s read key kr under these constraints. We similarly prove forward
secrecy for each of the intermediate keys in the key schedule: the Handshake
Secret (HS), AHS, and MS.

Note that in KEMTLS, the session keys are derived from not just the ephem-
eral key exchange as in TLS 1.3, but also include the secret encapsulated
during the authentication phase of the handshake. This implies that both the
ephemeral key and the server’s long-term key need to be compromised in
client sessions, and the ephemeral key and the server’s long-term key in server
sessions with mutual authentication. We prove this in our model through
a variant of the secret_session_keys lemma that allows ephemeral key
compromise, as long as the peer’s long-term key is never revealed. This lemma
is shown in listing 9.3.

Authentication

We model the authentication properties of KEMTLS in the same way as they
were modeled for TLS 1.3. The client and server are partnered via the nonces
exchanged in the initial messages. The entity_authentication lemma
captures that if the client, at the end of the handshake protocol, has authenti-
cated their peer, and the peer’s long-term keys have not been revealed, then
there must be a peer session that started with the same nonces. This lemma
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Listing 9.3: The secret_session_keys_ephem_reveal lemma proves
application traffic keys are secret even if ephemeral keys are re-
vealed.

lemma secret_session_keys_ephem_reveal:
"All tid actor peer kw kr pas #i.
SessionKey(tid, actor, peer,

<pas, 'auth'>, <kw, kr>)@#i &
not (Ex #r. RevLtk(peer)@#r) &
==> not Ex #j. K(kr)@#j"

Listing 9.4: The entity_authentication lemma proves that if a client
commits to a set of nonces, there is a server that’s running with
the same nonces.

lemma entity_authentication [use_induction]:
"All tid actor peer nonces cas #i.
commit(Nonces, actor, 'client', nonces)@#i &
commit(Identity, actor, 'client',

peer, <cas, 'auth'>)@#i &
not (Ex #r. RevLtk(peer)@#r & #r < #i)
==> Ex tid2 #j_ea. #j_ea < #i &

running2(Nonces, peer, 'server', nonces)@#j_ea"

is shown in listing 9.4. The lemma mutual_entity_authentication
states the same, but with the roles of client and server reversed. As these
lemmas allow revealing the targeted actor’s long-term keys, these proper-
ties also cover key-compromise impersonation attacks. Similarly, in the
lemma transcript_agreement, we prove that when the client, after re-
ceiving the server’s Finished message, commits to a transcript, there ex-
ists a server that is running with the same transcript (or their long-term
keys have been revealed). The mutual authentication case is stated by the
mutual_transcript_agreement lemma, which has the roles reversed.

In TLS 1.3, the verification of the handshake signature immediately ensures
authentication. In KEMTLS authentication is only made explicit when the
Finished messages are verified. However, the lemmas in the original model
already only captured authentication through the Finished messages.
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.. Results

After adding relevant helper lemmas, Tamarin was able to auto-prove all the
correctness and security lemmas for Model #1, with all four KEMTLS variants
supported simultaneously. Run-times are shown in section 9.4.

Auto-proving and helper lemmas

Many of the lemmas in the model of TLS 1.3 were not able to be auto-proved
by Tamarin; instead, the authors had to manually guide Tamarin through
parts of the proof. Our goal was to improve the model so that it could be
proved automatically, with no manual intervention required.

To help the automated prover, Cremers, Horvat, Hoyland, Scott, and Van
der Merwe introduced many intermediate lemmas, many of which state prop-
erties of earlier keys or more limited message exchanges. Inheriting these
lemmas proved to be both helpful and distracting. Incrementally proving and
adjusting the intermediate lemmas to apply to KEMTLS(-PDK) helped us spot
bugs and make progress. But starting from their helper lemmas often left us
unclear as to why particular intermediate lemmas were necessary to prove the
final security properties.

In our experience, Tamarin does not find counterexamples very easily in
big models. As a result, we wrote increasingly “smaller” lemmas whenever we
ran into a lemma that was hard to prove. This greatly expanded the number
of helper lemmas available. While we believe that this helped auto-prove the
model, it also resulted in cases where the helper lemmas interacted in bad ways
and had to be ignored. (Replacing DH by KEM operations, thus avoiding
Tamarin’s algebraic analysis of DH group operations, may also have eased
analysis.) Additionally, the model of [108] is carefully split over different files
to avoid certain helper lemmas from interacting. With much less experience,
we joined together most of those files, which in many cases led to Tamarin
getting distracted by helper lemmas. Many hours in the manual prover helped
us determine which lemmas needed to be marked by ignore_lemma anno-
tations. While doing this, it was often helpful to rename lemma variables
to be distinguishable, as Tamarin does not indicate what lemmas it tries to
apply. For example, to identify the lemma entity_authentication, we
renamed a time variable #j to #j_ea.
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A bug in the Cremers et al. TLS . lemmas

While working on the proof, we found that one of the core lemmas in [108]’s
TLS 1.3 model seems to have changed after creating the proof. The lemma
session_key_agreement tried to prove that the client’s and servers values
of keys in the SessionKey fact matched. However, variable keys is a tuple
<kr, kw> of the reading and writing keys of each peer. As the server’s writing
key should match the client’s reading key and not the client’s writing key, this
lemma did not hold. The rendered proofs included in the repository alongside
the model and lemmas revealed that in the executed proof, keys was split
into its elements and equated correctly. We disclosed the bug to one of the
authors, and it has been fixed in the upstream repository.

It is not hard to imagine how such a mistake slips into a model if re-proving
the smallest changes requires days of manual proving effort. We view this as
evidence of the value of auto-proving models: being able to let the computer
“do its thing” allows us to make changes more confidently.

.. Limitations

Although the model is very granular in its description of KEMTLS(-PDK), we
do have some limitations. As discussed in section 9.3.3, we do not model
intermediate session key reveal. We also have notmodeled session resumption
or pre-shared keymodes with KEMTLS. Finally, we have not attempted tomodel
deniability, which we will model in section 9.5.

. Runtime characteristics of themodel

We ran the model on a server with two 20-core Intel Xeon Gold 6230 CPUs,
which after hyperthreading gives us 80 threads. The server has 192GB RAM.

Tamarin runs through all the lemmas in our proof in 28 hours. We note that
communication bottlenecks between cores prevent fully utilizing all resources.
The model requires 121GB of RAM to prove all the lemmas, though most
individual lemmas need much less memory. In table 9.1, we show some of
the lemmas that consumed the most time. Note that it is likely possible to
prove them in less time, by hidingmore “distracting” helper lemmas or writing
smarter oracles, but we did not optimize for this.
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Table 9.1: Wall-clock runtimes (hh:mm:ss) and memory usage of a selection
of lemmas from the model described in section 9.3

Lemma Steps Runtime Memory

session_key_auth_agreement 29 116 6:42:01 16GB
session_key_agreement 57 680 13:56:04 32GB
handshake_secret 29 390 4:40:52 12GB
master_secret_pfs 29 535 2:53:11 76GB

All lemmas — 28 hours 121GB

. Model #: multi-stage key exchangemodel

The security properties shown in the original KEMTLS paper [321] and the
KEMTLS-PDK paper [320] are stated using the reductionist security paradigm,
via the multi-stage key exchange model [143], which was adapted for proofs
of the TLS 1.3 handshake [127, 128]. Our goal in this section is to translate
the reductionist security properties in this model—match security, session
key indistinguishability, and authentication—from a pen-and-paper model
to being encoded in Tamarin, then have the Tamarin prover confirm these
properties hold. Notably, this model discriminates between the several keys
established within a single KEMTLS handshake, associating distinct security
properties with individual stage keys.

.. Pen-and-paper proofs

In chapters 7 and 8 we provide theorems and give proofs that KEMTLS and
KEMTLS-PDK, respectively, satisfy the match-security and multi-stage security
properties; they do not include any proofs for offline deniability. The match-
security properties (definition 7.2) are shown information-theoretically, with
terms depending on the number of sessions, the correctness probability of
the KEMs, and the size of the TLS nonce space. The multi-stage security
properties (definition 7.5) are shown under the following computational as-
sumptions: hash function collision resistance, IND-1CCA security of KEMe,
PRF and dual-PRF security of HKDF.Extract, PRF security of HKDF.Expand,
EUF-CMA security of HMAC, and IND-CCA security of KEMc and KEMs . There is
a tightness loss proportional to the number of sessions squared.
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.. Formalizing the reductionist security model in Tamarin

We formalized all four KEMTLS variants (regular and PDK, server-only and
mutually authenticated) in Tamarin, along with lemmas capturing correct-
ness, match security, multi-stage security, and deniability, analogous to the
definitions from chapters 5 to 8. We now describe the formalization in more
detail. In the online version of the paper on which this chapter is based we
give a state diagram of the Tamarin model [93, App. D].

Protocol description

This Tamarin formulation of the four KEMTLS variants focuses on the “cryp-
tographic core” of the protocol. Roughly speaking, this is the protocol as
formulated in figures 5.2, 5.3, 6.3 and 6.4, which includes cryptographic op-
erations involved in the key exchange, but does not include extra fields and
operations arising from the integration of the cryptographic operations into a
network protocol. We only address the handshake protocol and exclude TLS
message formatting, algorithm negotiation, and data structures such as certifi-
cates. We exclude extensions such as TLS 1.3 session resumption or pre-shared
key handshakes. Long-term public keys are assumed to be reliably distributed
out-of-band. We omit modeling handshake encryption: while the various
handshake traffic secrets are established and recorded as accepted in each stage
of the protocol, subsequent handshake messages are sent in plaintext. The var-
ious primitives based on hash functions (HMAC,HKDF.Extract,HKDF.Expand)
are modeled as independent opaque functions, rather than relying on each
other and ultimately on a common hash function. As in the pen-and-paper
proofs, there are three KEMs, KEMe, KEMc, and KEMs, for ephemeral key ex-
change, client authentication, and server authentication, respectively. The
KEMs are modeled as distinct primitives, meaning that a party cannot use its
long-term credential to act as both a client and a server.

Adversary interaction

Among the queries that are given in section 7.2.2, the NewSession and Send

queries are not explicitly needed, since the Tamarin model includes rules
for each protocol step. The Tamarin model does include Corrupt and Reveal

oracles. As Tamarin lemmas using the for-all quantifier already cover all
possible sessions, we do not need to specify a session or key under test; thus
there is no need for the Test query in the Tamarin model.
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Definition of cryptography

For each KEM KEM𝑥 , we define four functions in Tamarin: KEM_x_PK/1 (to
generate a public key from a secret key), KEM_x_Encaps_ct/2 (to generate
a ciphertext from a public key and random coins), KEM_x_Encaps_ss/2 (to
generate, during encapsulation, a shared secret from a public key and random
coins), and KEM_x_Decaps/2 (to decapsulate a ciphertext using a secret key
to recover a shared secret). (Two Encaps functions are provided because
functions in Tamarin only output a single value, so we use two functions to
represent the two outputs from encapsulation.) Rewriting rules are provided
to model that decapsulation with the appropriate values arrives at the same
shared secret as encapsulation.

There are distinct functions for HKDF (modeled by HKDFExtract/2 and
HKDFExpand/3), HMAC (HMAC/2), and the hash function (H/1). We do not
attempt to model the fact that HKDF is built from HMAC and that HMAC
uses the same hash function H; they are all assumed to be independent. The
HKDF API is simplified to not include a length parameter as input.

Correctness lemmas

We include a collection of “reachability” lemmas that check that, for every
stage in all 4 protocol variants, it is possible to arrive at that stage, with hon-
est client and server sessions having correct owner and peer information,
matching contributive and session identifiers, and correct expectations on
authentication, forward secrecy, and replayability; the reachability lemmas
include checking retroactive upgrading of properties. These lemmas are im-
plemented using Tamarin’s exists-trace feature. There are 47 reachability
lemmas in total, generated from a template using the M4 macro language.

We also include lemmas that check that the attacker works, in the sense
that the attacker can successfully compute session keys of all stages by using
the corruption oracles.

Match security lemmas

The match security lemmas from Definition B.1 of [321], plus the adjustments
for replayability in [320], are directly translated into Tamarin. The lemmas
are, put simply, predicates over the session-specific variables defined in the
model syntax and can be stated analogously since the Tamarin model includes
action facts for each session-specific variable.

Match security property 1 (𝜋 and 𝜋′ agree on the same key at every stage
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𝑗 ≤ 𝑖) is slightly non-trivial to encode in Tamarin, since Tamarin action facts
do not let us record stage numbers as integers that can be compared using ≤,
forcing us to use strings to record stage numbers; thus we use M4 macros to
generate a different version of this lemma for each 1 ≤ 𝑗 ≤ 𝑖 ≤ 6.

Since our Tamarin model considers the execution of all 4 KEMTLS variants
simultaneously, we add one more match security property: if distinct sessions
𝜋 and 𝜋′ are partnered in some stage 𝑖, 𝜋 and 𝜋′ agree on the protocol variant
in use in stage 𝑖, and early stages 𝑗 ≤ 𝑖 that have been retroactively refined.
Note that the client and server do not distinguish between KEMTLS-sauth

and KEMTLS-mutual in stages 1–4 until stage 6 has accepted (and similarly
for KEMTLS-PDK-sauth and KEMTLS-PDK-mutual in stage 1 until stage 2 has
accepted).

Session key security and authentication lemmas

Session key security in Tamarin is modeled based on the infeasibility of
session key recovery, rather than the indistinguishability of a session key from
random. In Tamarin, we write a lemma for each type of forward secrecy a
stage key can have. These lemmas directly translate the freshness conditions
as given by definition 7.3.

In the pen-and-paper model, some of the forward secrecy predicates in-
clude conditions like “there exists a stage 𝑗 ≥ 𝑖 such that…” to model retroac-
tive upgrading of forward secrecy properties once a later stage accepts. As
noted above, we cannot record stage numbers as comparable integers; in-
stead, in the protocol specification we record an action fact of the form
FS(~tid, i, j, 'wfs2') and check if stage 𝑗 has accepted before re-
quiring the corresponding forward secrecy property (e.g., 'wfs2') to hold.

We also have a lemma for explicit authentication which corresponds to
definition 7.4, including the exclusion for uniqueness of replayable sessions
for KEMTLS-PDK stage 1.

Deniability lemmas

Whereas the lemmas for the above properties all share the same Tamarin
protocol description as explained above, the deniability lemmas use a re-
statement of the protocol description. To formulate a deniability lemma, we
need two versions of the protocol description: honest execution of the pro-
tocol using long-term secrets, and simulation using only public keys. The
judge in the offline deniability game is passive and receives only transcripts,
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so we can collapse the multiple rules for each client and server action into
a single rule that generates a full transcript including both client and server
operations. The deniability lemmas use Tamarin’s observational equivalence
feature [28] to check that the real and simulated transcripts are indistinguish-
able. Deniability for each of the 4 KEMTLS protocol variants is dealt with
separately. For each variant (e.g., KEMTLSwith server-only authentication), we
have one rule that generates real transcripts using long-term secret keys (e.g.,
KEMTLS_SAUTH_real) and one rule that generates simulated transcripts
without long-term secret keys (e.g., KEMTLS_SAUTH_simulated). Finally,
the adversary has access to a rule real_vs_simulated which takes as input
one real transcript and one simulated transcript. It returns one of these to the
adversary using Tamarin’s diff operator for observational equivalence. By the
running Tamarin prover with the --diff option to activate observational
equivalence mode, Tamarin will check that it is not possible to distinguish
which was given to the adversary.

Our definition of deniability is offline deniability in the universal deniabil-
ity setting against an unbounded judge with full corruption powers. Con-
sequently, the transcripts output includes the parties’ long-term secret keys,
the session keys computed in the real or simulated transcript, and the random
coins allegedly used in the real or simulated transcript.

Using Taramin’s observation equivalence feature causes a substantial in-
crease in state space, so for efficiency reasons, we provide an option (usingM4
macros) to omit portions of the transcript that are deterministically generated
from earlier parts of the transcript and thus (from amathematical perspective)
could not help a distinguisher.

.. Comparison of pen-and-paper andTamarin models

In principle, if the same security properties have been encoded in both a
pen-and-paper reductionist security model and in a Tamarin model, a full
and correct proof in the reductionist security model yields everything that
a Tamarin proof could, and potentially more. In particular, reductionist
security proofs do not idealize cryptographic primitives as much as Tamarin
does. Moreover, a reductionist security proof can be done in the “concrete
setting” [30], yielding a precise (non-asymptotic) relationship between the
runtime and success probability of an adversary against the protocol versus
the runtime and success probability of breaking the underlying cryptographic
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assumption. While it would be possible to encode the pen-and-paper proofs
of KEMTLS from the original papers into a computer verification tool such as
EasyCrypt [26], that would also require the cryptographer to manually write
all game hops and reductions, a massive undertaking. To date, there are no
proofs of KEMTLS or KEMTLS-PDK using a computer-aided verification tool for
reductionist proofs.

Tamarin does not lend itself to writing security properties in precisely the
same way as would be used in reductionist models. Although there is no way
to objectively justify how close the pen-and-paper and Tamarin models of
this section are to each other, subjectively we think they are quite close:

• The protocol specification in Tamarin maps nearly line-for-line onto
the protocol figures in the original papers, using the same function
interfaces, same key schedule, and same session identifiers.

• The session-specific variables in the pen-and-paper model correspond
nearly one-for-one to action facts in the Tamarin model.

• There are Tamarin lemmas for each security property in the pen-and-
paper model, and there is a clear mapping between the clauses in the
predicates in the pen-and-paper model and the Tamarin model.

The main gap in modeling, as mentioned earlier, is that session key security
is modeled via indistinguishability in the pen-and-paper models but via infea-
sibility of key recovery in the Tamarin model. Though it is possible to verify
indistinguishability through Tamarin’s observational equivalence features, the
effect on the state space as discussed in section 9.5.2 makes this impractical.

A nice feature of our Tamarinmodels is that there is a fairly clean separation
between protocol definition and security properties: files containing lemmas
for Match security, Multi-Stage security, and authentication are phrased solely
in terms of the action facts of the generic security model (similar to how a
good pen-and-paper security model refers abstractly to the protocol API and
model variables, rather than mixing in details of protocol instantiation), so
these lemmas could be applied to any protocol in the same security model.

.. Results

Tamarin was able to auto-prove all the lemmas for correctness, reachability,
match security, multi-stage session key security, authentication, and deniabil-
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ity in Model #2, with all four KEMTLS variants supported simultaneously. We
did not need to create any helper lemmas for Tamarin. Run-times are shown
in section 9.6.

Bugs in the original papers’ security properties

When translating the models into Tamarin, we identified minor mistakes
in some of the forward secrecy and authentication properties listed in the
original KEMTLS [321] and KEMTLS-PDK [320] papers, highlighting the value
of formal verification. In this thesis, we used the corrected properties. The
online versions of the source papers, as well as the chapters in this thesis, have
also been updated with our corrections.

Summarizing, the errors found were:

• In KEMTLS-mutual: auth𝑆3 = 3 and auth𝑆4 = 4 both should have been
set to 5; FS𝑆3,3 = FS𝑆3,4 = FS𝑆4,4 = wfs2 should all have been wfs1; and
auth𝑆6 = 6 should have been auth𝑆6 = ∞.

• In KEMTLS-PDK-sauth: FS𝐶1,𝑗 and FS𝑆1,𝑗 should have been 0 for all 𝑗;
auth𝐶5 = 5 should have been auth𝐶5 = ∞; and FS𝑆𝑖,4 should have been
wfs1 for 𝑖 = 2, 3, 4.

• In KEMTLS-PDK-mutual: the message SKC should have been included
in the SF MAC computation and SF should have been included in
the CF MAC computation; FS𝐶1,𝑗 and FS𝑆1,𝑗 should have been 0 for all 𝑗;
auth𝐶5 = 5 should have been auth𝐶5 = ∞; and FS𝑆4,4 = wfs1 should have
been wfs2.

.. Limitations

As noted above, the design of the model in this section imposes some limita-
tions. Unlike in section 9.3, we generally did not model non-cryptographic
details of the handshake, such as TLS handshake messages, extensions, or
the record layer. We also did not model handshake encryption or algorithm
negotiation.

We also had, unlike in section 9.3, three distinct KEMs for ephemeral key
exchange, server authentication, and client authentication. This implicitly
assumes the same certificate is not used for both purposes. We note that a
similar assumption on pre-shared keys was the basis of the Selfie attack [131].
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Without this limitation, however, we observe a state-space explosion with a
major impact on performance. For example, if KEM𝑐 = KEM𝑠, the first 10 out
of 11 reachable_* lemmas take over 8 hours, and the last reachable_*
did not terminate after 45 hours, compared to all 11 reachable_* lemmas
taking just over 1minute with distinct KEM𝑐 and KEM𝑠 .

Our deniability lemmas are for abbreviated transcripts (without messages
generated deterministically from earlier parts of the transcript) and omit
ephemeral coins. Again, without this limitation, there is a major impact
on performance. For example, including full transcripts for KEMTLS-sauth

increases runtime from 1minute to 16 hours, whereas including ephemeral
coins increases runtime from 1minute to 110minutes.

. Runtime characteristics of themodel

Table 9.2 shows the runtime for the various lemmas, for each KEMTLS variant
on its own, andwhen all four KEMTLS variants are run simultaneously. Tamarin
was restricted to using 16 cores, and the times shown are wall-clock times.
Total CPU time will be greater than the wall-clock time, but typically less
than 16× wall-clock time since Tamarin hits communication bottlenecks
preventing it from loading all cores to 100%. Results are measured on the
same system as in section 9.4, with tamarin-prover version 1.16.1.

Table 9.2 clearly shows that themutual versions of the protocols require a bit
more work for Tamarin than the server-authenticated protocols. Interestingly,
this difference is more pronounced for KEMTLS than it is for KEMTLS-PDK. This
might be because, in KEMTLS, mutual authentication requires the exchange of
significantly more messages. We also see how deniability for mutual authenti-
cation is much harder to prove than deniability of unilaterally authenticated
KEMTLS(-PDK). Finally, proving the security properties for more than a single
protocol has a large effect on the runtime, as we expect given the opportunities
for cross-protocol interaction.

. Comparison of models

We discussed two very different models of KEMTLS(-PDK) in the previous
sections. These models are examples of how we can view modeling as the art
of replacing specifics with generalities. Model #1 stays very close to the wire
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Table 9.2: Wall-clock runtime ((hh:)mm:ss) for Tamarin proofs of lemmas
from Section 9.5.

Lemma KEMTLS KEMTLS-PDK All 4
variantssauth mutual both sauth mutual both

reachable_* 01:17 01:20 04:32 01:46 01:36 04:40 0:13:25
attacker_works_* 00:17 00:46 01:16 00:17 00:23 00:53 0:12:04
match_* 01:02 01:22 02:55 00:55 01:14 02:46 0:09:53
sk_sec_nofs_client 00:05 00:07 00:16 00:05 00:05 00:14 0:00:41
sk_sec_nofs_server 00:05 00:06 00:12 00:05 00:06 00:14 0:00:40
sk_sec_wfs1 00:21 00:10 01:05 00:17 00:18 00:41 0:03:00
sk_sec_wfs2 00:36 00:28 01:30 00:28 00:22 01:23 0:24:28
sk_sec_fs 01:20 03:05 06:38 01:21 01:33 05:07 1:39:58
malicious_accept. 00:13 01:40 04:13 00:17 00:22 01:39 27:29:37
deniability (abbr.) 01:02 12:15 — 00:24 29:10 — —

Total (excl. den.) 05:16 09:05 22:38 05:30 06:00 17:38 30:13:46

format of TLS 1.3 and phrases the security properties in terms of attacks on the
ephemeral and long-term keys. It contains more implementation details such
as algorithmnegotiation,message framing, encryption of handshakemessages,
and even application data. Model #2 is more abstract in its representation of
protocol messages. However, it models the cryptographic properties in amore
granular fashion. This more abstract description closely follows the multi-
stage pen-and-paper proofs of KEMTLS and KEMTLS-PDK and allowed verifying
the properties claimed in the pen-and-paper proofs. Table 9.3 summarizes
differences between the two models, a few aspects of which we discuss further
below.

.. Modelling KEMs

The two models differ in the way that they model the KEMs in the proto-
col. Model #1 uses the same functions for all KEM modes in the protocol
(ephemeral key exchange, server authentication, and client authentication).
Model #2 has three separate sets of functions for the three different KEM
modes; this means the attacker cannot copy ciphertexts or public keys from
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Table 9.3: Comparison of features in our two Tamarin models of KEMTLS.

Feature Model #1 Model #2

Protocol modelling

Encrypted handshake messages ✓ ✘

HKDF and HMAC decomposed into hash calls ✓ ✘

Key exchange and auth. KEMs are the same algorithm ✓ ✘

TLS message structure ✓ ✘

Algorithm negotiation ✓ ✘

Security properties

Adversary can reveal long-term keys ✓ ✓

Adversary can reveal ephemeral keys ✓ ✘

Adversary can reveal intermediate session keys ✘ ✓

Secrecy of handshake and application traffic keys ✓ ✓

Forward secrecy ✓ ✓

Multiple flavours of forward secrecy ✘ ✓

Explicit authentication ✓ ✓

Deniability ✘ ✓

one of the modes to another, which should make proving the protocol easier.
Interestingly, we saw significantly different performance between these two
approaches. The second model proves in a very short time with the three sep-
arate KEMs, but runtime blows up if we define all three KEM modes with the
same functions; we did not attempt to generate the full proof because it took
so long, as we discussed in section 9.5.5. This suggests that splitting the three
KEM modes in the first model could result in a speed-up. However, splitting
the KEMs inModel #1 did not improve the time to auto-prove lemmas; in fact,
a few lemmas even stopped being auto-provable. Ideally, this puzzle would
be resolved with a justification that there is a way of safely separating uses of
KEMs, allowing us to use whichever form happens to be easier for Tamarin
to prove.
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.. Threat model

Both models use Dolev–Yao attackers, but give the attackers slightly different
extra abilities as noted in the bottom half of table 9.3. Consequently, the
results hold in slightly different circumstances. The attacker in Model #1
can compromise ephemeral keys and long-term keys, but not session keys,
whereas the attacker in Model #2 can compromise intermediate session keys
and long-term keys, but not ephemeral keys. Revealing the HS intermediate
session key allows the second attacker to simulate the abilities of the first, but
the reverse does not hold; the attacker in Model #2 is thus slightly stronger.

.. Ease of use

Work on each of our two models was done by separately by myself and a
co-author, while neither of us had modeled a protocol using Tamarin before
and who had only had a basic introduction to Tamarin prior to this work. We
were surprised that the creation of Model #2 from scratch was simpler and
proceeded faster than the work in Model #1 adapting the Cremers, Horvat,
Hoyland, Scott, and Van der Merwe TLS 1.3 model to KEMTLS. We attribute
this to the higher fidelity of the TLS 1.3 model, requiring more code to model
our changes, and to the higher difficulty in proving.

. Conclusion

We presented two Tamarin models checking the security properties of KEMTLS

and its variant protocol KEMTLS-PDK. Model #1 is highly detailed in imple-
mentation characteristics, close to the wire format of the protocol. Model
#2 presents the protocol at a higher level but provides a more precise char-
acterization of security properties. We prove that KEMTLS(-PDK) is secure in
both models; importantly these analyses include all four KEMTLS variants sup-
ported simultaneously. Additionally, we proved offline deniability properties
of KEMTLS(-PDK) in Model #2.

Overall, comparing these two analyses is something of an apples-to-oranges
comparison. The two very different approaches allow us to model and test
different properties of the protocol. Model #1 is closer to what an implemen-
tation would be like, and verifies the security properties in such a scenario.
Adopting the Cremers, Horvat, Hoyland, Scott, and Van der Merwe TLS 1.3
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9 Formally analyzing KEMTLS in Tamarin

model [108] also allowed us to quickly adapt the security claims of TLS 1.3 to
our protocols. Model #2, on the other hand, is an adaptation of themulti-stage
authenticated key exchange model from the pen-and-paper proofs in [320,
321]. As such, Model #2 in a sense checks the claims in the pen-and-paper
proofs, and in fact, uncovered some minor mistakes in those proofs.

Our two models illustrate a common trade-off in formal analysis between
the detail of the protocol specification and the granularity of the security
properties we can prove. A similar observation was also made in [108], who
commented computational analyses could only look at parts of TLS 1.3, rather
than considering all the modes at once.

While we proved certain privacy properties, such as deniability, our mod-
els can be further expanded to include other privacy properties, such as the
proposed Encrypted ClientHello extension (previously called ESNI) [301].
These properties have only been proven by using the symbolic protocol ana-
lyzer ProVerif [57].
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 Implementing andmeasuring

post-quantumTLS in Rust

To support our work, we implemented post-quantum TLS, OPTLS, KEMTLS,
and KEMTLS-PDK on top of Rustls [62], a modern TLS library written in Rust.
In chapters 13 and 14, we report measurements from KEMTLS and KEMTLS-PDK

obtained from a virtualized network environment. This chapter describes
how we implemented the protocols and set up the measurement framework.

. Rustls

Rustls provides a clean implementation of TLS 1.3 that was easier to mod-
ify than OpenSSL and provides comparable performance [63]. It uses the
Ring [327] library for cryptography and the WebPKI [328] library for certifi-
cate validation. Both of these are also written in Rust, although Ring links to
C implementations of cryptographic primitives from BoringSSL [163]. Specif-
ically, our implementations are based on Rustls version 0.18.1, and we will
describe how we modified that specific version.

In Rustls, we find the source code neatly organized by its role. The key
schedule computations, for example, can be found in the file key_sched-
ule.rs, while the ciphersuites are found in cipher.rs. The more specific logic
for TLS clients and servers can be found in client and server subfolders
(i.e., Rust modules), and in turn the TLS 1.2 and TLS 1.3 state machines can
be found in the tls12.rs and tls13.rs files,1 while shared logic, such as the
initiation of a handshake where the protocol version is not yet decided, can
be found in hs.rs.

The handshake state machines are organized through Rust structs, which
contain state and have associated functions. One such struct is for example
client::tls13::ExpectCertificate. Part of the implementation of

1Rustls does not support TLS versions prior to 1.2.
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10 Implementing and measuring post-quantum TLS in Rust

hs::State is the handle()method. This function takes an incoming mes-
sage and processes it. In the example of ExpectCertificate, it will expect
a ServerCertificate message. If a correct message is received, the function
updates the message transcript, validates the certificate, and converts it into
a WebPKI object. If anything is awry, it will return an error. The method
will then return the next state, in this case the ExpectCertificateVerify
struct, in which the certificate received in the previous state is stored so the
handshake signature can be verified. Often, a state will emit a protocolmessage
as part of this transition.

The record layer, which takes care of transporting the messages and, where
relevant, encrypting or decrypting them, is defined on a different logic layer,
which makes it much easier to reason about the TLS state machine.

. Implementating post-quantumTLS

As stated above, Rustls already supports TLS 1.3. So in our implementation of
post-quantum TLS 1.3, as described in chapter 3, we only need to add support
for post-quantum key-exchange and signature algorithms.

.. Implementing post-quantum key exchange

Rustls only supports ephemeral ECDH key exchange in TLS. ECDH does
not exactly have the same API as the post-quantum KEMs we want to re-
place it with, but fortunately, this is not a problem for how we add KEM-
based ephemeral key exchange in TLS 1.3. In Rustls, the key-exchange al-
gorithms are defined along with the ciphersuites in suites.rs. The struct
KeyExchange defines the associated operations, which use a ECDH-style
API and directly wraps Ring’s ring::agreement API. The key exchange is
initiated through the start_ecdhe() factory method. This method takes a
NamedGroup, which defines the key exchange group, as input, and returns
a new KeyExchange struct if successful. The TLS client calls this function
when it is constructing its ClientHello message, and takes the public key
from the KeyExchange result. The server, when it is processing the Client-
Hello message, also calls start_ecdhe(), but it passes the parameters from
the ClientHello message to the server_complete()method. This func-
tion returns, if successful, the KeyExchangeResult struct, containing the
server’s public key and shared secret. The public key is then used in the
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ServerHello message, which the client processes in the same way, using
the client_ecdhe()method, again obtaining the shared secret through a
KeyExchangeResult struct.

We first change the API used into one that is based on the KEM API. We
demote start_ecdhe() to a private method and write a new method called
start_kex(). This method is to be exclusively used by the client, which
still takes the public key from the returned KeyExchange struct. The server
no longer calls start_ecdhe(), but instead calls a new encapsulate()
method. This method transparently wraps the old methods for Ring-based
key-exchange algorithms but we have renamed the public_key field to
ciphertext in the returned KeyExchangeResult object. The client uses
the decapsulate()method, renamed from client_ecdhe.

The public keys and private keys referenced in the KeyExchange struct
directly own instances of Ring’s PublicKey and EphemeralPrivateKey
structs. Additionally, the identifiers for algorithms are direct references to
ring::agreement::Algorithm instances. Aswe nowwant to add support
for new post-quantum algorithms to the newly-created KEM-style API, we
have to be able to support non-Ring algorithms. We add a layer of indirection
to the API, which will allow us to use the original Ring-backed primitives, but
also allow us to add algorithms backed by OQS’s liboqs [345], for which we
wrote and contributed a Rust wrapper. We do this by introducing enums for
algorithms and keys. These enums contain a RingAlg variant, which we use
for the original Ring-API-based things, as well as a KEM variant that is used for
the liboqs-backed algorithms. Whenever we encounter an algorithm or key,
we use Rust’s enum match syntax to detect which variant it is and switch the
backing implementation logic accordingly. I.e., we call out to Ringwhenwe en-
counter the RingAlg enum variant, and use liboqs’s KEM operations when
we encounter the KEM enum variant. For example, in the new start_kex()
method shown in listing 10.1, we call liboqs::kem::keygen when we en-
counter the KEM enum variant, while we call out to the old start_ecdhe
method for the RingAlg enum variant.

.. Caching ephemeral key shares

In the experiments with OPTLS, we use algorithms that have heavy compu-
tational requirements. It is possible to amortize the cost of ephemeral key
generation by either reusing ephemeral keys or by generating them out-of-

191



10 Implementing and measuring post-quantum TLS in Rust

Listing 10.1: Example of howRust enums are used to switch betweenRing- and
liboqs-provided implementations of key-exchange algorithms.

// Generates the public key keyshare
pub fn start_kex(group: NamedGroup)
-> Option<KeyExchange>

{
let alg = KeyExchange::named_group_to_ecdh_alg(group)?;
match alg {
KexAlgorithm::RingAlg(alg) =>

Self::start_ecdhe(group, alg),
KexAlgorithm::KEM(kem) => {
let (pk, sk) = kem.keypair().unwrap();
Some(KeyExchange {
group,
alg: KexAlgorithm::KEM(kem),
privkey: KexPrivateKey::KEM(sk),
pubkey: KexPublicKey::KEM(pk),

})
},

}
}
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band, in chapter 12 we show results both for handshakes both when ephemeral
keys are generated in every handshake, and when they are cached. In our
implementation, if key caching is enabled, we store the ephemeral key after
generation in a global cache. This code is included in the implementation by
a Rust feature flag and is not present in builds where it is disabled.

.. Post-quantum signature-based authentication

To provide the post-quantum authentication in our TLS experiment, we make
use of fully post-quantum certificate chains using post-quantum signature
algorithms. This means that we need to use post-quantum CA certificates,
intermediate CA certificates, and client and server certificates. The Rustls
TLS implementation delegates the verification of signatures on certificates, as
well as the verification of handshake signatures, to the WebPKI library. We
modified WebPKI version 0.21.0 to add support for liboqs-provided imple-
mentations of post-quantum signature algorithms. We proceed similarly to
ourmodifications for the key exchange in Rustls: we add a newRust enum type
that wraps the algorithm identifiers to indicate if they are Ring or Oqs identi-
fiers. The signature verification code againmakes use of these enum variants to
identify what logic to use. Then, we add supported SignatureAlgorithms
to WebPKI for each of the post-quantum signature algorithms we need to
support, where the verification_alg scheme identifier now points to the
liboqs algorithm identifier.

.. Caching certificates

For the comparison with KEMTLS-PDK in chapter 14, we implemented new ex-
tensions in the ClientHello and ServerHello messages. The client transmits
hashes of the certificates that it knows of in this extension, and the server uses
the extension to indicate if it will be making use of this functionality. Note
that RFC 7924 [312], which was only specified for TLS 1.2, defines that the
extension should transmit the hash of the entire Certificate message, and if
the server wants to omit the certificates, to replace the entire message by the
hash value. In our implementation, we cache individual certificates and the
server replaces each certificate in its certificate chain individually by a hash
value. This was much easier to implement, and more compatible with the
extensions to the Certificate message defined by TLS 1.3.
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. Implementing post-quantumOPTLS

For experimentation with OPTLS, we first added support for post-quantum
NIKEs to the key exchange methods. We added a CSIDH variant to the
relevant enums and updated the relevantmethods of the KeyExchange struct.
The code that adds support for CSIDH much resembles the original ECDH
code, as both are NIKEs algorithms.

To add support for NIKE algorithms in the client and server certificates,
we extended the WebPKI API for end-entity certificates with the method
is_nike_cert(), that identifies the certificate as containing a NIKE pub-
lic key. Next, we add a method that allows extracting the NIKE algorithm
identifier and certificate public key. In Rustls, we update the states of the
state machine up to the processing of the CertificateVerify message to keep
track of the client’s ephemeral key share. In the server’s method that emits
the CertificateVerify message, we compute the OPTLS shared secret by
taking the client’s ephemeral key share and combining it with the server’s
certificate private key. In the client implementation of the verification of Cer-
tificateVerify, we decide based on whether the supplied certificate is a NIKE
certificate to either verify a signature or compute the OPTLS shared secret
using the client’s ephemeral private key and the certificate’s public key. The
MAC in the CertificateVerify message is computed from the OPTLS shared
secret in the same way.

. Implementing KEMTLS

To implement KEMTLS, we need to make large changes to the state machine
of TLS 1.3. We introduce many new states to handle e.g. the ciphertext and
the changed order for the Finished messages. The key schedule is greatly
extended as well, to incorporate the new handshake secrets and accommodate
the change in how the Finished keys are computed in KEMTLS.

KEMTLS is negotiated by adding new types of SignatureAlgorithm to the
TLS handshake. We add a new algorithm called KEMTLS which the client uses
to indicate support. The server receives the list of client-supported signature
algorithms2 and sees the KEMTLS algorithm advertised, it knows it can select

2If this way of negotiating KEMTLS is ever standardized, this field should perhaps be
renamed to authentication algorithms.
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a KEM certificate. (In a production-level implementation of KEMTLS, the
SignatureAlgorithm identifier should perhaps indicate which KEMs are
supported.) Our Rustls state machine also makes use of the type of certificate
received by the client: if the client receives a certificate with a KEM public
key, it knows that it needs to proceed with the KEMTLS handshake. Otherwise,
it can transparently fall back to negotiating TLS 1.3.

To add support for KEM public keys in certificates, we made similar modifi-
cations to WebPKI as we have described for the NIKE support in the previous
section. We add an is_kem_cert()method that identifies the endpoint cer-
tificate as one containing a KEM public key. We also add encapsulate(),
which simply encapsulates to the contained public key. Finally, we define
a decapsulate() method that takes the certificate’s private key and the
encapsulated ciphertext and returns a shared secret.

. Implementing KEMTLS-PDK

As we extended our TLS 1.3 implementation with not only KEMTLS, but es-
pecially KEMTLS-PDK, it admittedly got a lot more convoluted. The client
initiates a KEMTLS-PDK handshake by encapsulating to the server’s long-term
public key. We extend the TLS client configuration structs to allow specifying
this certificate as a connection parameter. The encapsulation is sent to the
server as a new ClientHello extension, which we called ProactiveCipher-
text.3 The extension contains the hash of the certificate that we encapsulate
to and the ciphertext. We use a similar extension to indicate in the Server-
Hello to the client if the server accepted the ciphertext, and that the client
should proceed with the KEMTLS-PDK handshake. Otherwise, we allow the
client to fall back to the plain KEMTLS handshake.

If we are using client authentication, the client additionally includes an
extension that indicates that it will send a client certificate. This allows the
server to handle the incoming certificate more easily. We have not imple-
mented any negotiation of algorithms for KEMTLS-PDK client authentication,
instead always using a “default” ciphersuite. Note that supporting 128-bit AES-
GCM is mandatory for any TLS 1.3-compliant application [298, Sec. 9.1].4

3The extension was named before we settled on pre-distributed.
4Naturally, to protect against very large quantum computers using Grover’s algorithm,
we would require at least 256-bit keys. We refer to the discussion in section 2.6.

195



10 Implementing and measuring post-quantum TLS in Rust

Another option would be to store information about, e.g., the ciphersuite to
use alongside the certificate—one could even consider integrating ciphersuite
information inside certificates. This would constitute a bigger change to the
TLS and public-key infrastructure (PKI) infrastructure but is not unprece-
dented (c.f. HPKE [21]). Finally, the server currently must process the client
certificate and proceed with KEMTLS-PDK if client authentication is used: we
do not implement any fallback mechanisms.

. Fast post-quantum cryptography

As mentioned in the previous sections, we relied on Open Quantum Safe’s
liboqs for most of the implementations of the post-quantum primitives in
our experiments. However, to provide a level playing field and examine
the best-case scenario for all algorithms, we must use (similarly) optimized
implementations for all the primitives involved.5 All of our experiments have
been done with optimized implementations of the post-quantum primitives.
Specifically, we used implementations that target the 256-bit AVX2 vector
extensions, available on many recent x86-64 CPUs.

Unfortunately, liboqs did not (initially) contain optimized implementa-
tions for all schemes that we include in our experiments. For some schemes,
we integrated optimized implementations into PQClean (chapter 17), which
allowed them to be integrated into liboqs through the project’s automated
integration scripts. The forks with the optimized implementations are part of
the KEMTLS experimental software package.

For reference, we give an overview of all the schemes we used in the experi-
ments in chapters 11, 13 and 14, including the performance of the cryptographic
operations on our measurement platform. For KEMs, this overview is given
in table 10.1, while for signature schemes it is given in table 10.2. Note that
for signature schemes, keygen times are only given for completeness: in our
experiments, keys for signature schemes are generated offline.

For all the schemes listed in tables 10.1 and 10.2, we use the as-of-writing
most recent versions of the schemes. The only exception is HQC, for which we
use a round-3 implementation. This implementation does not differmaterially
from the current version. For the SPHINCS+ instantiations, we use the
5Indeed, we will comment more on the hazards of making comparisons between
reference implementations in section 17.3.
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“simple” variants, the variant that NIST has indicated they will standardize.
We instantiate the hash function with Haraka, accelerated with the Intel aesni
instructions. This is the best-performing variant of SPHINCS+ and should
be indicative of the performance of the other hash functions if those are
accelerated in hardware. It should be noted that the security of SPHINCS+

instantiations with Haraka is limited to NIST level II and that NIST has
indicated that they will likely not standardize it.

Table 10.1: Public key and ciphertext sizes, and computation time for KEMs
used in chapters 11, 13 and 14.

NIST
level

Sizes in bytes Computation in ms.

Scheme pk ct Keygen Encaps. Decaps.

Pre-quantum

X25519 32 32 0.027 0.103 0.075

Selected for standardization

Kyber-512 I 800 768 0.020 0.026 0.018
Kyber-768 III 1184 1088 0.022 0.027 0.019
Kyber-1024 V 1568 1568 0.040 0.044 0.036

NIST round-4 candidates

HQC-128 I 2249 4481 0.066 0.139 0.267
HQC-192 III 4522 9026 0.231 0.460 0.797
HQC-256 V 7245 14 469 0.329 0.628 1.102
McEliece348864 I 261 120 96 55.239 0.026 0.049
McEliece460896 III 524 160 156 148.865 0.037 0.095
McEliece6688128 V 1 044 992 208 184.107 0.062 0.116

. Post-quantum certificates

Rustls and WebPKI do not support creating certificates. To set up our post-
quantum rootCA certificates, intermediateCA certificates, and leaf certificates,
we implemented a certificate generator. We have two small Rust programs to
generate KEM and signature keys, as well as a program to sign binary blobs.
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Table 10.2: Public key and ciphertext sizes, and computation time for signature
schemes used in chapters 11 and 13.

NIST
level

Sizes in bytes Computation in ms.

Scheme pk sig Keygen Sign Verify

Pre-quantum

RSA-2048 272 256 0.526 0.016

Selected for standardization

Dilithium2 II 1312 2420 0.067 0.178 0.064
Dilithium3 III 1952 3293 0.083 0.803 0.081
Dilithium5 V 2592 4595 0.168 0.589 0.161
Falcon-512 I 897 666 16.799 0.642 0.141
Falcon-1024 V 1793 1280 30.422 0.786 0.172
SPHINCS+-128f I 32 17 088 0.233 5.518 0.443
SPHINCS+-192f III 48 35 664 0.225 6.234 0.400
SPHINCS+-256f V 64 49 856 0.491 11.362 0.397
SPHINCS+-128s I 32 7856 7.590 60.516 0.090
SPHINCS+-192s III 48 16 224 11.757 118.858 0.135
SPHINCS+-256s V 64 29 792 6.710 104.567 0.184

Other schemes

XMSSMTs -I I 32 979 66 559.800 19.380 8.232
XMSSMTs -III III 48 1851 96 265.982 28.460 11.899
XMSSMTs -V V 64 2979 96 319.433 29.482 11.035

Note: SPHINCS+ is short for SPHINCS+-Haraka
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These two programs are called by a Python script that generates the relevant
ASN.1 encoding, signs it, and outputs X.509 certificates based on environment
variables in the build environment. We generate new certificates every time
we set up the experiment.

For the pre-quantum RSA and elliptic-curve certificates, we have separately
prepared client and root certificates using theOpenVPNEasy-RSA utility [136].
Elliptic-curve based leaf certificates are generated using a shell script that
interacts with the OpenSSL command line tools. A shell script is included
that sets up the classically-secure PKI fully automatically.

. Code generation

As we need to support many different algorithms, we make use of code gen-
eration throughout our integration of the cryptographic primitives into the
Rustls and WebPKI libraries. This saved us much effort, especially whenever
the list of supported algorithms in liboqs changed. We have a python script
that identifies the KEMs and signature algorithms in use. For example, for
every KEM, it generates an if statement for the lookup function that maps TLS
NamedGroup algorithm identifiers to the suites::KexAlgorithm struct.
We output the generated code to function-specific files, which we load directly
into the appropriate parts of the codebase using the include!()macro. An
example is given in listing 10.2.

. Other patches

A minor but not insignificant bump in the road towards experimenting with
post-quantum signature algorithms was a very minor mismatch in assump-
tions between Ring and the TLS standards. Certificates are transmitted in
TLS in a particular binary encoding, called DER. In Ring’s DER-decoder,
they assumed that at most, three-byte encodings (DER length identifier 0x82)
would be used for the length of a certificate object. However, as part of our
experiments, we encounter some very large certificates that required four-byte
length encodings (DER length identifier 0x84). This meant that we had to
patch the DER decoder to allow these length encodings.

Another example was the decoder for Certificate messages in Rustls. The
TLS standard allows the certificate message to be up to 16MiB in size [298,
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Listing 10.2: An example of how we use indirection to preserve the existing
key exchange functionality, and how generated code is included
to support our newly supported algorithms.

pub fn named_group_to_ecdh_alg(group: NamedGroup)
-> Option<KexAlgorithm>

{
match group {
NamedGroup::X25519 =>
Some(KexAlgorithm::RingAlg(

&ring::agreement::X25519)),
NamedGroup::secp256r1 =>
Some(KexAlgorithm::RingAlg(

&ring::agreement::ECDH_P256)),
NamedGroup::secp384r1 =>
Some(KexAlgorithm::RingAlg(

&ring::agreement::ECDH_P384)),
group => include!(
"generated/named_group_to_kex.rs"),

}
}
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App. B.3.3]. However, the parser for the certificate message used in Rustls
contained the snippet of code shown in listing 10.3. The implementers of
Rustls, perhaps in an attempt to avoid memory exhaustion or denial of service
attacks, had restricted the size of a certificate significantly compared to the
size allowed in the standard, allowing at most 64KiB of certificates.

Listing 10.3: An example of how implementations can be stricter than what a
standard allows.

fn read(r: &mut Reader) -> Option<CertificatePayload> {
// 64KB of certificates is plenty,
// 16MB is obviously silly
codec::read_vec_u24_limited(r, 0x10000)

}

These two examples in particular are informative of the types of problems
that we may run into as we transition to post-quantum cryptography on the
internet. In particular, we may see a resurgence of the types of issues seen with
so-called “middleboxes” on the internet, such as intelligent firewalls or TLS
interception appliances, that intercept and try to validate TLS connections.
These middleboxes were a huge hindrance in the development of TLS 1.3,
as they did not handle the transition to encrypted handshakes well, often
preventing connection establishment [36, 38, 296, 297]. Even the new version
number led tomany broken connections, while the specification required such
TLS parsers to ignore unsupported versions. This is the reason that TLS 1.3 still
contains workarounds that make it look more like TLS 1.2 resumption [298,
Sec. D.4]. TLS 1.3 clients and servers use the TLS 1.2 version number in their
protocol version fields and instead use a TLS extension to indicate support for
TLS 1.3. Similarly, before encrypting the handshake messages, most TLS 1.3
implementations still emit the no-longer-necessary ChangeCipherSuite
message before switching to encrypted traffic.
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10 Implementing and measuring post-quantum TLS in Rust

. Measuring post-quantumTLS on an emulated

network

In our experiments we use the example TLS client and server implementations
provided by Rustls. We modified the client to connect specified number of
times instead of just once. We have also modified the client and server imple-
mentations to, e.g., allow specifying cached certificates. We instrumented the
handshake implementations to print the number of nanoseconds that have
elapsed, starting from either sending or receiving the initial message until
operations of interest for both the client and the server.

Part of the measurement setup is a script6 that prepares all the experiments
we are interested in. As the version of Rustls that our implementations are
based on hard-codes the client’s default ephemeral key-exchange algorithm,
we replace the default based on our settings.7 We then simply compile the
example TLS server and client applications for every different key exchange
method. We also generate the certificates necessary for the experiment. To
make sure all of this is reproducible, we execute all these steps in an isolated
Docker container.8 This fixes the Rust compiler version and isolates the
compilation from the host operating system. As Rust statically links binaries,
we can use the binaries generated in the container without having to be too
careful about keeping in sync with a dynamically linked TLS library.

We follow the same methodology as [281] for setting up emulated net-
works.9 The measurements are done using the Linux kernel’s network names-
pacing [59] and network emulation (NetEm) features [174]. We create net-
work namespaces for the clients and the servers and create virtual network
interfaces in those namespaces. We vary the latency and bandwidth of the
emulated network. NetEm adds a latency to the outgoing packets, so to add
a latency of 𝑥ms, we add 𝑥/2ms of latency to the client and server interfaces;
following [281], we consider RTTs of 30.9ms (representing an transconti-
nental connection) and 195.5ms (representing a transpacific connection).
We also throttle the bandwidth of the virtual interfaces, considering both
1000Mbps and 10Mbps connections. We do not vary the packet loss rate,
fixing it at 0%.
6Please refer to measuring/scripts/experiment.py in our experiment codebase.
7Refer to measuring/scripts/create-experimental-setup.sh.
8Refer to Dockerfile in the repository root.
9Refer to measuring/scripts/setup_ns.sh.

202



10.10 Measuring post-quantum TLS on an emulated network

We ran measurements on a server with two Intel Xeon Gold 6230 (Cascade
Lake)CPUs, each featuring 20 physical cores, which gives us 80hyperthreaded
cores in total. For the measurements, we run 40 clients and servers in parallel,
such that each process has its own (hyperthreaded) core. Wemeasured 20 000
handshakes for each scheme and set of network parameters.

We also report the sizes of the experimental handshakes. To obtain these
numbers, we run the generated TLS client and server with the certificates
relevant to the handshake over localhost.10 We record and process the trans-
mitted TCP packets using tshark [356], and use a small Python script to
extract the handshake metrics.

.. Measured network scenarios

In our experiments on the emulated network, we simulate two network envi-
ronments, following the choices made in [281]. The first environment, which
represents a high-bandwidth transcontinental connection, uses a network
round-trip latency of 30.9ms and a network bandwidth of 1000Mbps. The
second environment resembles a transpacific, low-bandwidth connection
and uses a network round-trip latency of 195.5ms and has a bandwidth of
10Mbps. We do not vary the packet loss rates, as this would mostly affect the
results at higher percentiles which we do not report.

10Refer to measuring/scripts/measure-handshake-size.sh.
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 Performance of post-quantumTLS

In this chapter, we investigate the performance of TLS 1.3 when instantiated
with post-quantum primitives. In the chapters that follow, we will compare
it with the performance of OPTLS, KEMTLS, and KEMTLS-PDK. We will also
compare the instantiations at different security levels, for both unilaterally as
well as mutually authenticated handshakes.

Note that we are only comparing the sizes and performance characteristics
of the schemes in this and other chapters. It can be argued if this is fair: for
example, hash-based schemes, which are generally slow and large, are based
on assumptions that are considered to be much more conservative than those
assumptions on which much-faster lattice-based schemes are based. However,
although one might say a particular scheme performs “best”, these compar-
isons are still useful to estimate the cost of more conservative approaches.

For a description of how we implemented post-quantum TLS, please refer
back to section 10.2. The design of the emulated network environment and
our choice of parameters are motivated in section 10.10.

. Selecting algorithms for experiments

There are many post-quantum KEM and signature schemes that we could
use for our experiments. We select some instantiations that we think are
interesting, which we will introduce in this section. As a baseline, we use
an instantiation based on ECDH and RSA. We mainly use the algorithms
selected for standardization in the NIST PQC standardization project, as well
as the remaining round-4 finalists for KEMs [6]. Separately from the NIST
PQC standardization project, NIST and the IETF have already standardized
stateful hash-based signature schemes XMSS [106, 181] and LMS [106, 249].
These stateful hash-based signature schemes are as conservative as SPHINCS+

but much smaller, so we will present some instantiations that make use of
XMSSMT . However, as their stateful nature makes them very sensitive to
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11 Performance of post-quantum TLS

user error, we restrict their use to CA certificates. As XMSS only has stan-
dardized parameter sets at above NIST PQC security level V, we selected
customized parameters for use in CA certificates at the different security levels
in section 11.6.

.. Instantiations of post-quantum TLS .

In each instantiation, we select:

1. an algorithm for ephemeral key exchange, negotiated by the TLS 1.3
client and server;

2. an algorithm for handshake authentication, used in the server’s certifi-
cate;

3. an algorithm for authentication of the server’s certificate by the (in-
termediate) CA certificate, which we may assume the client to already
have;

4. an algorithm to authenticate the intermediate CA certificate by a root
CA certificate, which is always assumed to be preinstalled.

For TLS handshakes that use mutual authentication, we additionally select:

5. an algorithm for client authentication, used in the client certificate;

6. an algorithm for authentication of the client certificate by a CA certifi-
cate, which is assumed to be preinstalled.

In our experiments, we will try to showcase how algorithms in the NIST
PQC standardization project perform, as well as highlight how some careful
choices for certificate algorithms can make large differences. We will use the
following scenarios:

Pre-quantum The pre-quantum instantiation uses X25519 [41] for key ex-
change and RSA-2048 [303] for all signatures.

Primary For ephemeral key exchange, this instantiation uses Kyber [319], the
only KEMwhich was selected for standardization for post-quantum key
exchange. Dilithium [241], the algorithmwhich, when it was selected for
standardization, was named the primary algorithm for post-quantum
signatures, is used for all signatures.
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11.1 Selecting algorithms for experiments

Falcon This instantiation uses Kyber for ephemeral key exchange, and Fal-
con [293] for all signatures. Falcon was also selected for standardization
by NIST but its use is not recommended unless its implementation
concerns can be properly addressed: Falcon is very sensitive to side
channels and requires constant-time 64-bit floating-point operations
for signing.

Falcon offline This instantiation uses Kyber for ephemeral key exchange and
Dilithium for the (online) handshake signatures of the server and, if
mutually authenticating, the client. The CA signatures in certificates
are instantiated using Falcon. Because these can be produced offline
by the CA, we can assume they can mitigate all implementation con-
cerns: signature verification does not have Falcon’s implementation
considerations.

SPHINCS+-f This instantiation uses Kyber for ephemeral key exchange. For
all signatures SPHINCS+ [184] is used, which is the only NIST selection
for standardization that is not based on lattice assumptions. Specifically,
this instantiation uses the fast variant of SPHINCS+, which has faster
runtime but larger signatures. For the hash function, we use Haraka, as
explained in section 10.6.

SPHINCS+-s This instantiation is like the SPHINCS+-f-variant, but it uses the
small variant of SPHINCS+ . This variant requires more computation
time for signing but has significantly smaller signatures.

Hash-based signatures This conservative instantiation uses Kyber for ephem-
eral key exchange and SPHINCS+ for the handshake authentication
signatures. To minimize the size, we use a custom instantiation of
XMSSMTat the appropriate NIST security level for the CA signatures.
These instances, which we label XMSSMTs , are described in section 11.6.

Hash-based CA This instantiation uses Kyber for key exchange andDilithium
for the handshake authentication signatures. To minimize the size, we
use a custom instantiation of XMSSMTat the appropriate NIST security
level for the CA signatures.

HQC This instantiation uses HQC, a round-4 KEM candidate in the NIST
PQC standardization project, for ephemeral key exchange. HQC relies
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on assumptions based on decoding of quasi-cyclic codes, instead of
on assumptions on lattices. For handshake authentication and CA
signatures, Dilithium is used.

Note that for presentation purposes, we will refer to these scenarios in our
tables and figures by handles, which are composed of the first letters of each
of the selected algorithms (though X25519 is represented by the letter ‘e’ for
ECDH). As an example, we denote by KDDD the instantiation that uses Kyber
for ephemeral key exchange and uses Dilithium for server authentication and
the intermediate and root CA certificates. For an overview of these handles,
refer to the tables that show the communication sizes, e.g. table 11.1.

The remaining candidates for post-quantum key exchange in round 4 of
the NIST PQC standardization project, are unfortunately not suitable for our
experiments. BIKE [17] does not have IND-CCA-secure parameters available,
and the public keys of Classic McEliece [7] are too large to use in TLS 1.3.

Note that the use of intermediate CA certificates is not required. Alter-
natively, there exist proposals in which the intermediate certificate can be
cached: the client can then request intermediate CA certificates to not be
transferred [202]. To represent these scenarios, we will also show results for
experiments that use the intermediate certificate as the root certificate, and
thus do not transmit or verify the root certificate.

. Instantiation and results at NIST level I

Wemeasured and compare the performance of TLS 1.3 at NIST security level I.
This security level offers security comparable to that given by AES-128. As
it is the lowest security level, the parameter sets are the most aggressively
chosen. They generally offer the smallest public key, ciphertext, and signature
sizes and the shortest computation times. First, we will cover unilaterally
authenticated handshakes, in which only the server is authenticated by a
certificate and a signature. This scenario is very important to the web, as this
is the handshake mode that is almost exclusively used by web browsers [61].
Afterward, we will discuss mutually authenticated handshakes, in which the
client also presents a certificate of their identity and signs the handshake.
Although this setting is not very relevant to web browsing, it is for example
used to secure service-to-service communication or in VPNs.
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11.2 Instantiation and results at NIST level I

.. Unilaterally authenticated TLS .

Table 11.1: Instantiations at NIST level I of unilaterally authenticated post-
quantum TLS handshakes and the sizes of the public-key crypto-
graphy elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-512 Dilithium2 Dilithium2 7 720 Dilithium2 Dilithium2 11 452 Dilithium2
KDDD 1568 3732 2420 1312 2420 1312

Falcon Kyber-512 Falcon-512 Falcon-512 3 797 Falcon-512 Falcon-512 5 360 Falcon-512
KFFF 1568 1563 666 897 666 897

Falcon
offline

Kyber-512 Dilithium2 Falcon-512 5 966 Falcon-512 Falcon-512 7 529 Falcon-512

KDFF 1568 3732 666 897 666 897

SPHINCS+-f Kyber-512 SPHINCS+-
128f

SPHINCS+-
128f 35 776

SPHINCS+-
128f

SPHINCS+-
128f 52 896

SPHINCS+-
128f

KSfSfSf 1568 17 120 17 088 32 17 088 32

SPHINCS+-s Kyber-512 SPHINCS+-
128s

SPHINCS+-
128s 17 312

SPHINCS+-
128s

SPHINCS+-
128s 25 200

SPHINCS+-
128s

KSsSsSs 1568 7888 7856 32 7856 32

Hash-based
signatures

Kyber-512 SPHINCS+-
128s

XMSSMTs -I
10 435

XMSSMTs -I XMSSMTs -I
11 446

XMSSMTs -I

KSsXX 1568 7888 979 32 979 32

HBS-CA Kyber-512 Dilithium2 XMSSMTs -I 6 279 XMSSMTs -I XMSSMTs -I 7 290 XMSSMTs -I
KDXX 1568 3732 979 32 979 32

HQC HQC-128 Dilithium2 Dilithium2 12 882 Dilithium2 Dilithium2 16 614 Dilithium2
HDDD 6730 3732 2420 1312 2420 1312

Communication requirements

In table 11.1, we show the communication sizes of our choices of instantiations.
We also give the abbreviated handles bywhichwewill refer to the instantiations
in other tables. We give the sum of the data necessary for the ephemeral key
exchange, the handshake authentication signature, and the leaf certificate,
as this is the minimum amount of data, excluding protocol overhead, that
needs to be transferred if no intermediate CA certificates are required. In
these experiments, the intermediate CA certificate is assumed to be used as
the trusted root certificate. We also give the total amount of public key data
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11 Performance of post-quantum TLS

that is transmitted when an intermediate CA certificate is included.

Post-quantum ephemeral key exchange requires much more data than
ECDH, and post-quantum signatures have much larger public key and sig-
nature sizes than RSA-2048. Falcon is the smallest general-purpose post-
quantum signature scheme, while Dilithium is much larger. Finally, we see
that the schemes that do not rely on lattice assumptions are much larger
than their lattice equivalents. Using HQC-128 instead of Kyber-512 for key
exchange requires 5162 additional bytes. The variants based on hash-based
signatures also require much more data. The only exception is our custom
XMSS parameter set, which appears as an attractive option to reduce the size
of the certificate chain when used for CA certificates: using XMSSMTs -I in
place of SPHINCS+-128s saves 6877 bytes of data (87.5%). Using XMSSMTs -I
in place of Dilithium2 saves 1441 bytes of data (59.5%).

Computational requirements

In table 11.2, we compare the amount of computation that each combination of
algorithms requires. The amount given for client operations is the sum of the
key generation and decapsulation operations for the ephemeral key exchange,
the verification time of the handshake signature, the verification time for the
leaf certificate, and if an intermediate certificate is transmitted, the verification
time of the intermediate certificate. For reference, the time of individual key-
generation, signing, verification, encapsulation, and decapsulation operations
are given in tables 10.1 and 10.2.

Comparing the lattice-based experiments KDDD and KFFF with the pre-
quantumerrr instantiation, it is evident thatwhile post-quantumcryptography
may be bigger, it is not necessarily also slower: KFFF performs comparable
with errr, while KDDD uses much less computation time. However, this does
not hold for all schemes. While HQC requires only slightly more computation
time than the Kyber-based experiment, the experiments that use hash-based
signatures require muchmore time. But also between the hash-based schemes
there exist large differences. The smaller variant of SPHINCS+ requires vastly
more computation: to produce the handshake signature with SPHINCS+-128s
instead of SPHINCS+-128f requires 54.998ms more computation (90.9%).
Our custom XMSSMTs -I parameters have been tuned for as small a signature
as possible, and this is also clearly visible in the computation time: the cost of
verifying XMSS signatures adds significantly to the client’s computation time.
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11.2 Instantiation and results at NIST level I

Table 11.2: Computation time in ms for asymmetric cryptography at NIST
level I for each of the unilaterally authenticated post-quantum TLS
instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.166 0.204 0.370 0.230 0.204 0.434
KFFF 0.320 0.668 0.988 0.461 0.668 1.129
KDFF 0.243 0.204 0.447 0.384 0.204 0.588
KSfSfSf 0.924 5.544 6.468 1.367 5.544 6.911
KSsSsSs 0.218 60.542 60.760 0.308 60.542 60.850
KSsXX 8.360 60.542 68.902 16.592 60.542 77.134
KDXX 8.334 0.204 8.538 16.566 0.204 16.770
HDDD 0.461 0.317 0.778 0.525 0.317 0.842

Handshake performance

In table 11.3, we can see the average times taken in the handshakes instantiated
with our selected algorithms for a high-bandwidth, low-latency connection,
using a latency of 30.9ms and a 1000Mbps link speed. We again give times
for when the intermediate CA certificate algorithm is not transmitted and thus
used as a root CA certificate, and for the scenario in which the intermediate
CA does need to be transmitted and verified. In our experiments, we assume
an HTTP-like scenario in which the client requests some data from the server,
so the server needs to receive the client’s request before it can start transmitting
application traffic. In each of these scenarios, we give the amount of time until
the client is ready to send a request (i.e., in TLS 1.3, the client has received
ServerFinished and sent ClientFinished), the time until the client receives
the response to its request from the server, and the time until the server has
completed the handshake (i.e., in TLS 1.3, received ClientFinished). Note
that the timers of the client and the server are independent, and start counting
as soon as the ClientHello message is constructed (for the client) or received
(for the server).

For the instantiations that use pre-quantum cryptography, or any combina-
tion of the fast algorithms Kyber-512, HQC-128, Dilithium2, and Falcon-512,
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11 Performance of post-quantum TLS

Table 11.3: Average handshake times inms for unilaterally authenticated post-
quantumTLS experiments at NIST level I with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 63.6 94.8 32.7 63.9 95.0 33.0
KFFF 64.6 95.8 33.7 65.0 96.1 34.0
KDFF 63.7 94.8 32.8 64.0 95.2 33.1
KSfSfSf 106.4 137.6 75.5 136.9 168.1 106.0
KSsSsSs 166.7 197.7 135.8 166.9 198.0 136.0
KSsXX 155.5 186.6 124.6 171.1 202.1 140.1
KDXX 97.2 128.3 66.2 113.7 144.8 82.8
HDDD 63.6 94.7 32.7 63.9 95.1 33.0

Table 11.4: Average handshake times inms for unilaterally authenticated post-
quantum TLS experiments at NIST level I with 195.5ms latency
and 10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 405.5 602.8 208.8 410.3 610.0 212.8
KFFF 397.3 593.3 200.8 399.5 595.5 203.0
KDFF 398.7 594.7 202.2 405.6 602.8 208.8
KSfSfSf 1177.3 1544.4 963.5 1751.4 2038.1 1524.6
KSsSsSs 914.0 1116.4 715.3 979.2 1217.9 772.5
KSsXX 530.6 735.6 331.2 564.9 776.6 364.9
KDXX 446.9 648.1 240.6 475.4 679.7 266.1
HDDD 405.5 602.7 208.7 410.5 610.1 212.9
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11.2 Instantiation and results at NIST level I

we see that the handshake times are roughly a multiple of the connection
latency. The client can transmit its request after two times the handshake
latency, which matches the two round-trips necessary: one for the TCP con-
nection establishment, and the single round-trip in which the TLS handshake
is completed. The response is received in the return round-trip after sending
off the request. The server receives ClientFinished and thus completes its
part of the handshake a single round-trip after transmitting the ServerFin-
ished packet. The computational requirements of these algorithms on the
chosen platforms are so small that they do not meaningfully contribute to
the connection establishment times. With the connection parameters in this
experiment, the additional amounts of traffic required for Dilithium2 com-
pared to Falcon-512 or HQC-128 compared to Kyber-512 do not meaningfully
contribute to the handshake time.

In the KDXX parameter set which uses XMSSMTs -I for the CA certificates
to reduce the amount of handshake traffic, the additional computation time
required to verify the XMSS signatures adds significantly to the handshake
time. The additional latency for the experiment in which the root CA is
omitted, compared to the KDDD experiment, is more than the 8.2ms that
are required on average to verify the XMSSMTs -I signature on the server’s leaf
certificate. We suspect this happens because the additional verification time
interacts with the TCP congestion control algorithms. We see a similar delay in
the KSsSsSs parameter set, but this instantiation additionally suffers from the
larger amount of bytes that need to be transmitted. The amount of data for this
selection of algorithms exceeds the initial congestion window (initcwnd) set
in the TCP slow start algorithm [66], which is the initial limit on the amount of
data (measured inMSS) that can be sent on a TCP connection before receiving
an acknowledgment packet. The default initcwnd on Linux is 10MSS, which
means that after transmitting about 14.5 kB, the server needs to wait for the
client to acknowledge the packets that it has received before it will send
more. This induces extra round-trip delays. As the instance using SPHINCS+-
128f has very large certificates due to the large signature size of SPHINCS+-
128f, these extra round-trips slow down the connection establishment despite
the much faster signing time compared to SPHINCS+-128s. Still, for this
high-bandwidth, low-latency connection, the SPHINCS+-128f instance is
much faster than any instance using SPHINCS+-128s: the computational
requirements are just too large compared to the communication overhead.
When including the intermediate CA certificate, KSfSfSf requires 29.9ms

213



11 Performance of post-quantum TLS

(15.1%) less time than KSsSsSs before the client receives the server’s response.
In table 11.4, we compare the same metrics for experiments on a high-

latency, low-bandwidth connection, using a latency of 195.5ms latency and
10Mbps connection bandwidth. With these connection characteristics, we
see that the sizes of the public keys, ciphertexts, and signatures start to matter
more. KFFF, which has the smallest sum of public-key cryptography objects,
has the best performance, coming very close to the performance of the pre-
quantum errr instantiation. Comparatively, KDDD, which suffers from the
much larger Dilithium2 public keys and signatures, has higher connection
establishment times. When including the intermediate CA certificate, KDDD
takes an additional 16.3ms (2.7%) before the client receives the response from
the server, compared to the pre-quantum instance. The performance of the
Kyber-512/SPHINCS+-128f instantiation KSfSfSf again clearly suffers under
the weight of SPHINCS+-128f signatures, now showing the worst performance
of all parameter sets.

The two instantiations that use Kyber-512 and Dilithium2 for the online
components of the TLS 1.3 handshake, but rely on different algorithms for CA
certificates, KDFF and KDXX, appear promising: by reducing the amount
of handshake traffic, they perform fairly reasonably well (though the perfor-
mance of XMSSMTs -I still hurts KDXX). Especially KDFF, a combination of
two to-be-standardized algorithms, seems to combine the best of both worlds:
using Dilithium2 for the online handshake authentication avoids the imple-
mentation concerns associated with Falcon-512 signature generation while
offering performance on par with the all-Falcon KFFF instantiation but even
KDXX is only slightly slower.

.. Mutually authenticated TLS .

Communication requirements

Table 11.5 shows the precise selection of algorithms for our instantiations of
mutually authenticated post-quantumTLS 1.3. Like for the unilaterally authen-
ticated instantiations, we also show the sizes of the public-key cryptographic
elements necessary for ephemeral key exchange, server authentication, and
client authentication, and the total. (For a better presentation, we only show
the sum of the size of the public key and the signature that are part of each
certificate, even if they use different algorithms). Again, we examine two
scenarios for each instantiation, one that omits an intermediate CA certificate
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11.2 Instantiation and results at NIST level I

Table 11.5: Instantiations at NIST level I of mutually authenticated post-
quantum TLS experiments and the sizes of the public-key crypto-
graphy elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-512 hs:Dilithium2
sig:Dilithium2

hs:Dilithium2
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

KDDD-DD 1568 6152 6152
13 872

3732
17 604

Falcon Kyber-512 hs:Falcon-512
sig:Falcon-512

hs:Falcon-512
sig:Falcon-512

pk:Falcon-512
sig:Falcon-512

KFFF-FF 1568 2229 2229
6 026

1563
7 589

Falcon offline Kyber-512 hs:Dilithium2
sig:Falcon-512

hs:Dilithium2
sig:Falcon-512

pk:Falcon-512
sig:Falcon-512

KDFF-DF 1568 4398 4398
10 364

1563
11 927

SPHINCS+-f Kyber-512 hs:SPHINCS+-128f
sig:SPHINCS+-128f

hs:SPHINCS+-128f
sig:SPHINCS+-128f

pk:SPHINCS+-128f
sig:SPHINCS+-128f

KSfSfSf-SfSf 1568 34 208 34 208
69 984

17 120
87 104

SPHINCS+-s Kyber-512 hs:SPHINCS+-128s
sig:SPHINCS+-128s

hs:SPHINCS+-128s
sig:SPHINCS+-128s

pk:SPHINCS+-128s
sig:SPHINCS+-128s

KSsSsSs-SsSs 1568 15 744 15 744
33 056

7888
40 944

Hash-based
signatures

Kyber-512 hs:SPHINCS+-128s
sig:XMSSMTs -I

hs:SPHINCS+-128s
sig:XMSSMTs -I

pk:XMSSMTs -I
sig:XMSSMTs -I

KSsXX-SsX 1568 8867 8867
19 302

1011
20 313

HBS-CA Kyber-512 hs:Dilithium2
sig:XMSSMTs -I

hs:Dilithium2
sig:XMSSMTs -I

pk:XMSSMTs -I
sig:XMSSMTs -I

KDXX-DX 1568 4711 4711
10 990

1011
12 001

HQC HQC-128 hs:Dilithium2
sig:Dilithium2

hs:Dilithium2
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

HDDD-DD 6730 6152 6152
19 034

3732
22 766

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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(and thus uses it as the trusted root certificate) and one that makes use of
intermediate CA certificates, transmitting them during the handshake.

The difference in size between the unilaterally authenticated handshakes in
table 11.1 and the mutually authenticated handshakes is exactly the number of
bytes listed in the client authentication column. As the size of the Kyber-512
key exchange is much smaller than the sum of a public key and signature used
in most of our instantiations, we roughly double the sizes of the handshakes
when omitting intermediate certificates.

Table 11.6: Computation time in ms for asymmetric cryptography at NIST
level I for each of the mutually authenticated post-quantum TLS
instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 0.344 0.332 0.676 0.408 0.332 0.740
KFFF-FF 0.962 0.950 1.912 1.103 0.950 2.053
KDFF-DF 0.421 0.409 0.830 0.562 0.409 0.971
KSfSfSf-SfSf 6.442 6.430 12.872 6.885 6.430 13.315
KSsSsSs-SsSs 60.734 60.722 121.456 60.824 60.722 121.546
KSsXX-SsX 68.876 68.864 137.740 77.108 68.864 145.972
KDXX-DX 8.512 8.500 17.012 16.744 8.500 25.244
HDDD-DD 0.639 0.445 1.084 0.703 0.445 1.148

Computational requirements

Table 11.6 shows the amount of computation required for the cryptographic
operations using the algorithms in our instantiations. As the client and the
server now both need to produce a signature during the handshake and verify
a certificate chain, they need to perform the same amount of work when
an intermediate CA certificate is not used. Otherwise, the client needs to
additionally verify this certificate. As signing is much more expensive than
verifying for most algorithms, we see that the total computational load roughly
doubles compared to the unilaterally authenticated experiments.
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Table 11.7: Average handshake times inms for mutually authenticated post-
quantumTLS experiments at NIST level I with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 64.2 95.8 33.7 64.4 96.0 34.0
KFFF-FF 66.1 97.9 35.8 66.4 98.2 36.1
KDFF-DF 64.2 96.0 33.9 64.6 96.3 34.2
KSfSfSf-SfSf 117.8 182.3 120.2 148.2 212.8 150.7
KSsSsSs-SsSs 247.9 310.1 248.2 248.2 310.5 248.5
KSsXX-SsX 213.1 254.8 192.9 221.4 263.1 201.2
KDXX-DX 98.7 160.2 98.2 113.4 170.5 108.5
HDDD-DD 64.2 95.8 33.8 64.5 96.1 34.1

Table 11.8: Average handshake times inms for mutually authenticated post-
quantum TLS experiments at NIST level I with 195.5ms latency
and 10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 404.5 606.9 212.9 412.0 617.7 217.9
KFFF-FF 399.1 597.8 205.3 402.8 601.6 208.8
KDFF-DF 399.8 599.9 207.3 405.1 606.2 211.7
KSfSfSf-SfSf 1224.6 1997.1 1397.7 1598.9 2339.3 1660.3
KSsSsSs-SsSs 849.3 1292.2 877.1 864.8 1296.9 873.4
KSsXX-SsX 583.5 801.8 398.5 594.9 812.3 406.9
KDXX-DX 440.4 671.2 272.1 463.5 692.3 292.1
HDDD-DD 403.2 605.5 211.8 411.3 616.7 217.2
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Handshake performance

In tables 11.7 and 11.8, we show the performance of our instantiations of the
mutually authenticated TLS 1.3 running on a 30.9ms latency, 1000Mbps net-
work and on a 195.5ms latency, 10Mbps network. Note that even though the
transmission size of some of the instances, when including client authenti-
cation, exceeds 15 kB, we point out that the initial congestion window is not
shared between the client and the server: thus the client is free to send as
much data as it can fit in its congestion window regardless of the size of the
server’s certificate. Furthermore, the client needs to fully receive the server’s
certificate and verify the server’s handshake signature before it may send the
client certificate. This means that TCP congestion control has a chance to
catch up and the client’s certificate size does not contribute as much to the
connection congestion; unlike the server’s certificate which is all sent out
immediately as the connection is established. Additionally, as the client sends
out its request immediately after it transmits its certificate, the server first
needs to process the client certificate before it can process the client request.
This is visible in our measurements as an increased gap between the client
sending its request and receiving the response. We see that large certificates,
such as in the instance based on SPHINCS+-128f, especially contribute to
longer waiting times before the client receives its response from the server.
The KSfSfSf-SfSf experiment is 44.8ms (32.6%) slower than the unilaterally
authenticated KSfSfSf experiment when omitting intermediate CA certifi-
cates on the low-latency network. On the slow network, comparing the same
two SPHINCS+-128f experiments shows a 452.7ms (29.3%) difference. Note
that the relative difference is very similar (while naively we would expect
the larger size to take longer), which is due to the TCP congestion control
algorithm already having had a chance to scale the client’s bandwidth be-
fore the client certificate is transmitted: the large server certificate results in
acknowledgments being sent out that influence congestion control.

. Instantiation and results at NIST level III

In this section, we measure and compare the performance of TLS 1.3 at NIST
PQC security level III. This security level corresponds to, roughly, AES-192 in
terms of security. This category is significant, as, among others, the authors
of Kyber and Dilithium have recommended using the level-III instantiations
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11.3 Instantiation and results at NIST level III

of their schemes [121, 228]. Again, we first examine unilaterally authenticated
handshakes, before we look at mutually authenticated handshakes.

.. Unilaterally authenticated TLS .

Table 11.9: Instantiations at NIST level III of unilaterally authenticated post-
quantum TLS handshakes and the sizes of the public-key crypto-
graphy elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-768 Dilithium3 Dilithium3 10 810 Dilithium3 Dilithium3 16 055 Dilithium3
KDDD 2272 5245 3293 1952 3293 1952

Falcon Kyber-768 Falcon-1024 Falcon-
1024 6 625 Falcon-

1024
Falcon-
1024 9 698 Falcon-

1024
KFFF 2272 3073 1280 1793 1280 1793

Falcon
offline

Kyber-768 Dilithium3 Falcon-
1024 8 797 Falcon-

1024
Falcon-
1024 11 870 Falcon-

1024
KDFF 2272 5245 1280 1793 1280 1793

SPHINCS+-f Kyber-768 SPHINCS+-
192f

SPHINCS+-
192f 73 648

SPHINCS+-
192f

SPHINCS+-
192f 109 360

SPHINCS+-
192f

KSfSfSf 2272 35 712 35 664 48 35 664 48

SPHINCS+-s Kyber-768 SPHINCS+-
192s

SPHINCS+-
192s 34 768

SPHINCS+-
192s

SPHINCS+-
192s 51 040

SPHINCS+-
192s

KSsSsSs 2272 16 272 16 224 48 16 224 48

Hash-based
signatures

Kyber-768 SPHINCS+-
192s

XMSSMTs -
III 20 395

XMSSMTs -
III

XMSSMTs -
III 22 294

XMSSMTs -
III

KSsXX 2272 16 272 1851 48 1851 48

HBS-CA Kyber-768 Dilithium3 XMSSMTs -
III 9 368 XMSSMTs -

III
XMSSMTs -
III 11 267 XMSSMTs -

III
KDXX 2272 5245 1851 48 1851 48

HQC HQC-192 Dilithium3 Dilithium3 22 086 Dilithium3 Dilithium3 27 331 Dilithium3
HDDD 13 548 5245 3293 1952 3293 1952

Communication requirements

In table 11.9, we show the communication sizes of our choices of instantiations.
Comparing the instantiations with those at NIST level I, we see that the
sizes become significantly larger across all schemes used in the instantiations.
For example, Kyber-768 requires 704 bytes (44.9%) more transmission. As
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11 Performance of post-quantum TLS

Dilithium2, which we used in our level-I experiments, already has security
level II, we see a modest increase of 1513 bytes (40.5%) for its public key
and signature combined. For all of the other schemes, we get around 50%
increase in sizes; though it should be noted that Falcon-1024 offers NIST
security level V.

Table 11.10: Computation time inms for asymmetric cryptography at NIST
level III for each of the unilaterally authenticated post-quantum
TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.203 0.830 1.033 0.284 0.830 1.114
KFFF 0.385 0.813 1.198 0.557 0.813 1.370
KDFF 0.294 0.830 1.124 0.466 0.830 1.296
KSfSfSf 0.841 6.261 7.102 1.241 6.261 7.502
KSsSsSs 0.311 118.885 119.196 0.446 118.885 119.331
KSsXX 12.075 118.885 130.960 23.974 118.885 142.859
KDXX 12.021 0.830 12.851 23.920 0.830 24.750
HDDD 1.190 1.263 2.453 1.271 1.263 2.534

Computational requirements

When comparing the computation requirements of these instantiations as
listed in table 11.10, we see that although instances based on the lattice-based
schemes Kyber, Dilithium, and Falcon see significant increases in computation
time (Falcon takes about two times as much time), they still do not require
much more time than the original pre-quantum instantiation using X25519
and RSA-2048. The two SPHINCS+-192 variants also take around twice as
much time, but as the amount of time taken was already quite large, we now
see the server requires over 100ms just for cryptographic computations in
the instances using SPHINCS+-192s for handshake authentication.

Handshake performance

This comes together in the average handshake timings shown in tables 11.11
and 11.12. Comparing the computation times, we see that the KFFF instance
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11.3 Instantiation and results at NIST level III

performs slightly worse than the KDDD instance. Otherwise, we see that the
instances largely follow the pattern established in the level-I experiments.

For the high-bandwidth connection, we see that again the sizes largely do
not matter for all instantiations that stay under the limits of the TCP slow
start algorithm. However, at NIST security level III, more instantiations
now do exceed this limit. In the KDDD and HDDD instances in which an
intermediate CA certificate is transferred, the penalty of an additional round-
trip can be seen in the connection establishment times due to the large size
of the certificates exceeding the approximately 14.5 kB congestion window
transmission limit. When the intermediate CA certificate is used as root CA
certificate, the ServerCertificate stays under the limit and the penalty is
avoided.

In the experiments using the variants of SPHINCS+-192, we see that the
large sizes of the public keys and certificates affect the handshake performance.
The SPHINCS+-192s handshake has large increases in the handshake times
as both the computation time and amount of data increase dramatically. The
SPHINCS+-192f handshake experiment including an intermediate CA certifi-
cate on the 30.9ms latency, 1000Mbps network takes 41.7ms (24.8%) longer
before the client received the response at level III than at level I, much more
than the increase in computation time. Note that the handshake time did not
increase linearly with the 55 760 bytes (108.6%) increase of the SPHINCS+-
192f public keys and signatures. The TCP congestion control algorithm in-
creases the transmission window, and thus available bandwidth, as more
packets get acknowledged. In the same experiment running over the 195.5ms
latency, 10Mbps network, we see that the increase in handshake time in the
same experiment is 87.1%. This is much more in line with the increase in
data that is transmitted, due to the lower connection bandwidth.

As the sizes of the handshakes go up, the benefits increase of choosing the
algorithms for CA certificates such that the sizes are minimized. The KDFF
instance is the best-performing post-quantum instance on the fast network
when an intermediate certificate is transferred, balancing the computational
speed of Dilithium3 with the smaller key sizes of Falcon-1024. On the low-
bandwidth network, the size of Dilithium3 is too large to keep up with the
KFFF instance, and the larger size slows down the handshake time more than
the increase in Falcon’s computational requirements: KDFF takes 17.8ms
(2.8%) longer before the client response is received. Even the KDXX instance,
which uses the slow-to-verify XMSSMTs -III scheme in the CA certificates,
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Table 11.11: Average handshake times inms for unilaterally authenticated post-
quantum TLS experiments at NIST level III with 30.9ms latency
and 1000Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 64.0 95.1 33.1 94.6 125.8 63.7
KFFF 66.5 97.6 35.5 67.0 98.1 36.0
KDFF 64.3 95.4 33.3 65.0 96.1 34.0
KSfSfSf 145.6 176.7 114.6 178.5 209.7 147.6
KSsSsSs 215.3 246.3 184.4 248.1 279.2 217.2
KSsXX 223.3 254.3 192.3 231.9 262.9 201.0
KDXX 103.5 134.6 72.6 117.1 148.1 86.1
HDDD 64.0 95.2 33.1 94.6 125.8 63.7

Table 11.12: Average handshake times inms for unilaterally authenticated post-
quantum TLS experiments at NIST level III with 195.5ms latency
and 10Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 409.1 607.6 211.6 881.0 1077.0 674.2
KFFF 401.3 597.3 204.8 428.2 631.1 229.5
KDFF 403.2 599.9 206.5 413.6 613.3 215.4
KSfSfSf 2028.4 2510.0 1713.2 3427.2 3814.2 3147.7
KSsSsSs 1156.5 1490.4 938.0 1776.4 2044.8 1553.1
KSsXX 869.0 1083.5 666.6 876.9 1098.1 672.4
KDXX 456.1 659.4 249.7 495.2 703.7 282.2
HDDD 408.4 606.8 211.1 881.0 1077.0 674.2
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performs better than KDDD when intermediate CA certificates are used,
showing the impact of the transmission overhead on low-bandwidth networks.

.. Mutually authenticated TLS .

Communication requirements

In table 11.13, we show the communication requirements of our instantiations
when using mutual authentication. As with the server authentication require-
ments in the unilaterally authenticated handshakes, the sizes of the public keys
and signatures required for client authentication grow significantly. Already,
no post-quantum instantiation has a total handshake size under 10 000 B
when excluding intermediate CA certificates, and when including them, only
the Falcon-1024-based KFFF-FF instance is just below 15 kB

Computational requirements

Table 11.14 shows the computational requirements for the server and the
client. We see that using SPHINCS+-192s for client authentication comes with
a very significant computational cost, which now exceeds 100ms for both the
client and the server. We note that although TLS servers are often powerful
computers that have stable power supplies, such computational overhead may
have significant effects on the battery life of devices such as smartphones.

Handshake performance

Lastly, in tables 11.7 and 11.8, we show the handshake performance formutually
authenticated post-quantum TLS 1.3 handshakes at NIST security level III.
For most instantiations, for the same reasons as in the unilaterally authenti-
cated experiments, we do not see large differences between the results at the
level I and level III security levels. Comparing the SPHINCS+-192f-based
instantiation to its level I instantiation when running on the 195.5ms latency,
10Mbps network shows that it takes 1809.6ms (90.6%) longer before the
client receives its response than the level I instance using SPHINCS+-128f
(omitting intermediate CA certificates). The increase in size greatly affects
the handshake performance on the low-bandwidth network.

On the high-bandwidth, low-latency network, the KSsXX-SsX instance
got 170.2ms (66.8%) slower going from security level I to level III, while
the unilaterally authenticated KSsXX instance got 67.7ms (36.3%) slower
between the two security levels. On the high-latency, low-bandwidth network,
this gap grows: the mutually authenticated instance was 552.4ms (68.9%)
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Table 11.13: Instantiations at NIST level III of mutually authenticated post-
quantum TLS experiments and the sizes of the public-key crypto-
graphy elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-768 hs:Dilithium3
sig:Dilithium3

hs:Dilithium3
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

KDDD-DD 2272 8538 8538
19 348

5245
24 593

Falcon Kyber-768 hs:Falcon-1024
sig:Falcon-1024

hs:Falcon-1024
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KFFF-FF 2272 4353 4353
10 978

3073
14 051

Falcon offline Kyber-768 hs:Dilithium3
sig:Falcon-1024

hs:Dilithium3
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KDFF-DF 2272 6525 6525
15 322

3073
18 395

SPHINCS+-f Kyber-768 hs:SPHINCS+-192f
sig:SPHINCS+-192f

hs:SPHINCS+-192f
sig:SPHINCS+-192f

pk:SPHINCS+-192f
sig:SPHINCS+-192f

KSfSfSf-SfSf 2272 71 376 71 376
145 024

35 712
180 736

SPHINCS+-s Kyber-768 hs:SPHINCS+-192s
sig:SPHINCS+-192s

hs:SPHINCS+-192s
sig:SPHINCS+-192s

pk:SPHINCS+-192s
sig:SPHINCS+-192s

KSsSsSs-SsSs 2272 32 496 32 496
67 264

16 272
83 536

Hash-based
signatures

Kyber-768 hs:SPHINCS+-192s
sig:XMSSMTs -III

hs:SPHINCS+-192s
sig:XMSSMTs -III

pk:XMSSMTs -III
sig:XMSSMTs -III

KSsXX-SsX 2272 18 123 18 123
38 518

1899
40 417

HBS-CA Kyber-768 hs:Dilithium3
sig:XMSSMTs -III

hs:Dilithium3
sig:XMSSMTs -III

pk:XMSSMTs -III
sig:XMSSMTs -III

KDXX-DX 2272 7096 7096
16 464

1899
18 363

HQC HQC-192 hs:Dilithium3
sig:Dilithium3

hs:Dilithium3
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

HDDD-DD 13 548 8538 8538
30 624

5245
35 869

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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Table 11.14: Computation time inms for asymmetric cryptography at NIST
level III for each of the mutually authenticated post-quantum TLS
instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 1.006 0.992 1.998 1.087 0.992 2.079
KFFF-FF 1.171 1.157 2.328 1.343 1.157 2.500
KDFF-DF 1.097 1.083 2.180 1.269 1.083 2.352
KSfSfSf-SfSf 7.075 7.061 14.136 7.475 7.061 14.536
KSsSsSs-SsSs 119.169 119.155 238.324 119.304 119.155 238.459
KSsXX-SsX 130.933 130.919 261.852 142.832 130.919 273.751
KDXX-DX 12.824 12.810 25.634 24.723 12.810 37.533
HDDD-DD 1.993 1.425 3.418 2.074 1.425 3.499

slowerwhile the unilaterally authenticated instancewas only 347.9ms (47.3%)
slower. Somehow the combination of the increase in computational overhead
and handshake size adds multiple round-trips worth of latency to the post-
quantum TLS 1.3 handshake.

225



11 Performance of post-quantum TLS

Table 11.15: Average handshake times inms for mutually authenticated post-
quantum TLS experiments at NIST level III with 30.9ms latency
and 1000Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 64.9 96.6 34.6 95.4 127.2 65.1
KFFF-FF 69.1 101.4 39.4 69.8 102.2 40.1
KDFF-DF 65.1 97.2 35.2 65.7 97.8 35.8
KSfSfSf-SfSf 166.1 261.4 199.3 198.1 293.5 231.3
KSsSsSs-SsSs 361.6 424.3 362.4 396.4 459.2 397.2
KSsXX-SsX 362.7 425.0 363.1 364.2 426.6 364.6
KDXX-DX 105.6 176.0 114.0 117.7 181.5 119.5
HDDD-DD 64.9 96.7 34.6 95.4 127.2 65.1

Table 11.16: Average handshake times inms for mutually authenticated post-
quantum TLS experiments at NIST level III with 195.5ms latency
and 10Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 409.2 615.6 219.0 795.3 1067.3 559.5
KFFF-FF 404.1 605.1 212.6 410.1 612.3 217.0
KDFF-DF 404.6 607.5 213.3 411.2 616.5 217.6
KSfSfSf-SfSf 2198.3 3806.7 2982.4 3571.3 5450.1 4575.4
KSsSsSs-SsSs 1130.8 1682.2 1178.4 1466.6 2050.8 1489.1
KSsXX-SsX 918.9 1354.2 934.7 926.3 1359.7 939.4
KDXX-DX 459.4 707.9 301.5 496.0 744.6 325.5
HDDD-DD 408.9 615.4 218.8 788.7 1055.5 547.4
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. Instantiation and results at NIST level V

In this section, we examine the characteristics of post-quantum TLS instances
at NIST PQC security level V. This is the most conservative security level and
should offer comparable security to AES-256. This security level is required
by the United States National Security Agency (NSA)’s Commercial National
Security Algorithm Suite 2.0 [271]. The French national cybersecurity agency
agence nationale de la sécurité des systèmes d’information (ANSSI) also
recommends security level V [14]. As the most conservative parameter sets,
these are generally the largest and slowest-running algorithms to instantiate
post-quantum TLS 1.3 with. As such, it will be challenging to instantiate TLS
with these algorithms without affecting performance significantly.

.. Unilaterally authenticated TLS .

Communication requirements

In table 11.17, we show the communication sizes of our choices of instantiations.
This level has the most conservative security guarantees, and as such the
largest key sizes and computational requirements. If we compare the sums
of the public-key cryptography elements that need to be transmitted, we see
that even when leaving out the intermediate CA certificates, all but the KFFF
instance exceed 10 kB. Whenwe compare the sums including the intermediate
CA certificate, all but KFFF and KDFF exceed 15 kB. SPHINCS+-256f even
exceeds 150 kB.

Computational requirements

When we compare the computation time that is necessary for the public-key
cryptography operations at level V in table 11.18 with the level III requirements,
it seems that the increase is less than going from level I to level III. Although
HQC-256 requires 0.571ms (38.4%) more time than HQC-192, Kyber-1024
only requires 0.052ms (76.5%) more than Kyber-768. Dilithium5’s signing
time is almost identical to Dilithium3’s. Falcon-1024, which we used in our
level III experiments, already has security level V. The hash-based schemes
SPHINCS+ and XMSSMTs use the same hash primitives for level III and level V,
but they truncate the output of the hash function to 192 bytes at level III,
while obtaining 256 bytes at level V. SPHINCS+-256s additionally has a slightly
differently shaped tree, which optimizes differently for signing and verification
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Table 11.17: Instantiations at NIST level V of unilaterally authenticated post-
quantum TLS handshakes and the sizes of the public-key crypto-
graphy elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-1024 Dilithium5 Dilithium5 14 918 Dilithium5 Dilithium5 22 105 Dilithium5
KDDD 3136 7187 4595 2592 4595 2592

Falcon Kyber-1024 Falcon-1024 Falcon-
1024 7 489 Falcon-

1024
Falcon-
1024 10 562 Falcon-

1024
KFFF 3136 3073 1280 1793 1280 1793

Falcon
offline

Kyber-1024 Dilithium5 Falcon-
1024 11 603 Falcon-

1024
Falcon-
1024 14 676 Falcon-

1024
KDFF 3136 7187 1280 1793 1280 1793

SPHINCS+-f Kyber-1024 SPHINCS+-
256f

SPHINCS+-
256f 102 912

SPHINCS+-
256f

SPHINCS+-
256f 152 832

SPHINCS+-
256f

KSfSfSf 3136 49 920 49 856 64 49 856 64

SPHINCS+-s Kyber-1024 SPHINCS+-
256s

SPHINCS+-
256s 62 784

SPHINCS+-
256s

SPHINCS+-
256s 92 640

SPHINCS+-
256s

KSsSsSs 3136 29 856 29 792 64 29 792 64

Hash-based
signatures

Kyber-1024 SPHINCS+-
256s

XMSSMTs -V
35 971

XMSSMTs -V XMSSMTs -V
39 014

XMSSMTs -V

KSsXX 3136 29 856 2979 64 2979 64

HBS-CA Kyber-1024 Dilithium5 XMSSMTs -V 13 302 XMSSMTs -V XMSSMTs -V 16 345 XMSSMTs -V
KDXX 3136 7187 2979 64 2979 64

HQC HQC-256 Dilithium5 Dilithium5 33 496 Dilithium5 Dilithium5 40 683 Dilithium5
HDDD 21 714 7187 4595 2592 4595 2592
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time. The performance of these schemes is thus very similar at level III and V,
with SPHINCS+-256s signing being slightly faster than SPHINCS+-192s.

Table 11.18: Computation time inms for asymmetric cryptography at NIST
level V for each of the unilaterally authenticated post-quantum
TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.398 0.633 1.031 0.559 0.633 1.192
KFFF 0.420 0.830 1.250 0.592 0.830 1.422
KDFF 0.409 0.633 1.042 0.581 0.633 1.214
KSfSfSf 0.870 11.406 12.276 1.267 11.406 12.673
KSsSsSs 0.444 104.611 105.055 0.628 104.611 105.239
KSsXX 11.295 104.611 115.906 22.330 104.611 126.941
KDXX 11.272 0.633 11.905 22.307 0.633 22.940
HDDD 1.753 1.217 2.970 1.914 1.217 3.131

Handshake performance

In tables 11.19 and 11.20, we show the handshake times for the instantiations
at NIST security level V. In the results for the instances run on the 30.9ms
latency, 1000Mbps network, we see that the experiments that are under the
initcwnd size limit still complete in roughly the same amount of time, at
multiples of the round trip latency. However, when including the intermediate
certificate we see that all instances but KFFF and KDFF suffer at least an extra
round-trip worth of handshake time due to exceeding the limit of the initial
congestion window. Compared to the pre-quantum experiment, KDDD now
requires 29.8ms (30.6%) more time if an intermediate certificate needs to be
transmitted. In the low-bandwidth, 195.5ms latency experiment KDDD even
needs 488.1ms (82.2%) more time. Even the KFFF instance sees a 34.6ms
(5.8%) increase in time when an intermediate certificate is included, again
illustrating the impact of the larger certificates on low-bandwidth connections.
If Falcon-1024 is not an option for the online handshake signatures, using it for
CA certificates in theKDFF instantiation canmitigate the performance penalty
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Table 11.19: Average handshake times inms for unilaterally authenticated post-
quantum TLS experiments at NIST level V with 30.9ms latency
and 1000Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 64.5 95.6 33.5 95.9 127.0 65.0
KFFF 66.4 97.5 35.4 67.1 98.2 36.2
KDFF 64.6 95.7 33.6 65.2 96.4 34.3
KSfSfSf 169.8 200.9 138.8 198.2 229.4 167.2
KSsSsSs 238.9 270.0 208.0 247.0 278.1 216.1
KSsXX 215.1 246.2 184.2 230.6 261.7 199.7
KDXX 110.9 142.0 80.0 121.1 152.2 90.2
HDDD 64.5 95.6 33.5 95.9 127.1 65.0

Table 11.20: Average handshake times in ms for unilaterally authenticated
post-quantum TLS experiments at NIST level V with 195.5ms
latency and 10Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 416.4 616.5 216.6 885.8 1081.8 689.3
KFFF 401.3 597.3 204.8 426.8 628.3 227.5
KDFF 407.2 604.8 209.9 418.7 619.5 218.5
KSfSfSf 2748.2 3589.5 2482.5 4321.3 5100.0 3707.2
KSsSsSs 2047.6 2397.9 1819.3 2707.4 3445.2 2421.1
KSsXX 1172.1 1515.5 958.9 1205.3 1584.0 980.5
KDXX 474.2 680.6 265.8 879.9 1076.6 671.7
HDDD 418.4 618.9 218.0 885.7 1081.7 689.2
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11.4 Instantiation and results at NIST level V

compared to KDDD a bit, by improving the performance to a slowdown of
25.8ms (4.3%) compared to the pre-quantum instance errr.

The performance of the instances using SPHINCS+-256 variants is not
too much slower than SPHINCS+-192 on the fast network, even when the
large intermediate CA certificates are transmitted. The instance based on
SPHINCS+-256f (KSfSfSf ) is 19.7ms (9.4%) slower at level V than at level III,
much less than the 42 608 bytes (39.8%) increase in signature size. How-
ever, it is still 102.3ms (80.6%) slower than the KDDD instantiation, and
132.1ms (135.9%) slower than using pre-quantum cryptography. On the
low-bandwidth network, the additional bandwidth requirements very signif-
icantly slow down the TLS handshakes. Here, KSfSfSf is 1285.7ms (33.7%)
slower at level V compared to level III. The size-optimized instance that uses
SPHINCS+-256s, KSsSsSs, is 1654.8ms (32.4%) faster than KSfSfSf, easily
making up for the additional computational requirements, but still 4018.2ms
(371.4%) slower than KDDD. Again, we see that using XMSSMTs -V instead of
SPHINCS+-256s leads to a significant increase in handshake performance: the
KSsXX instance takes 1861.1ms (54.0%) less time before the client receives a
response.

.. Mutually authenticated TLS .

Communication requirements

Table 11.21 shows how we instantiate mutually authenticated post-quantum
TLS 1.3 at level V and the sizes of the public keys and signatures. Now, all
instantiations exceed 10 kB even when omitting intermediate CA certificates.
The Kyber-1024 and Falcon-1024-based KFFF-FF instance is only marginally
larger at level V than at level III, however, as we already used level-V secure
Falcon-1024 in the level III instantiation.

Computational requirements

Table 11.22 shows the computational requirements of the cryptography in these
instantiations at level V. We observe the same things as for the unilaterally
authenticated handshakes, except the client now also needs to produce a
signature while the server has to verify this signature and the signature in the
client certificate.
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Table 11.21: Instantiations at NIST level V of mutually authenticated post-
quantum TLS experiments and the sizes of the public-key crypto-
graphy elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-1024 hs:Dilithium5
sig:Dilithium5

hs:Dilithium5
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

KDDD-DD 3136 11 782 11 782
26 700

7187
33 887

Falcon Kyber-1024 hs:Falcon-1024
sig:Falcon-1024

hs:Falcon-1024
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KFFF-FF 3136 4353 4353
11 842

3073
14 915

Falcon offline Kyber-1024 hs:Dilithium5
sig:Falcon-1024

hs:Dilithium5
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KDFF-DF 3136 8467 8467
20 070

3073
23 143

SPHINCS+-f Kyber-1024 hs:SPHINCS+-256f
sig:SPHINCS+-256f

hs:SPHINCS+-256f
sig:SPHINCS+-256f

pk:SPHINCS+-256f
sig:SPHINCS+-256f

KSfSfSf-SfSf 3136 99 776 99 776
202 688

49 920
252 608

SPHINCS+-s Kyber-1024 hs:SPHINCS+-256s
sig:SPHINCS+-256s

hs:SPHINCS+-256s
sig:SPHINCS+-256s

pk:SPHINCS+-256s
sig:SPHINCS+-256s

KSsSsSs-SsSs 3136 59 648 59 648
122 432

29 856
152 288

Hash-based
signatures

Kyber-1024 hs:SPHINCS+-256s
sig:XMSSMTs -V

hs:SPHINCS+-256s
sig:XMSSMTs -V

pk:XMSSMTs -V
sig:XMSSMTs -V

KSsXX-SsX 3136 32 835 32 835
68 806

3043
71 849

HBS-CA Kyber-1024 hs:Dilithium5
sig:XMSSMTs -V

hs:Dilithium5
sig:XMSSMTs -V

pk:XMSSMTs -V
sig:XMSSMTs -V

KDXX-DX 3136 10 166 10 166
23 468

3043
26 511

HQC HQC-256 hs:Dilithium5
sig:Dilithium5

hs:Dilithium5
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

HDDD-DD 21 714 11 782 11 782
45 278

7187
52 465

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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11.4 Instantiation and results at NIST level V

Handshake performance

In tables 11.23 and 11.24, we show the handshake performance. In both tables,
the results are in line with what we have seen for the unilaterally authenticated
handshakes and the level III experiments.
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Table 11.22: Computation time inms for asymmetric cryptography at NIST
level V for each of the mutually authenticated post-quantum TLS
instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 0.987 0.955 1.942 1.148 0.955 2.103
KFFF-FF 1.206 1.174 2.380 1.378 1.174 2.552
KDFF-DF 0.998 0.966 1.964 1.170 0.966 2.136
KSfSfSf-SfSf 12.232 12.200 24.432 12.629 12.200 24.829
KSsSsSs-SsSs 105.011 104.979 209.990 105.195 104.979 210.174
KSsXX-SsX 115.862 115.830 231.692 126.897 115.830 242.727
KDXX-DX 11.861 11.829 23.690 22.896 11.829 34.725
HDDD-DD 2.342 1.539 3.881 2.503 1.539 4.042
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Table 11.23: Average handshake times inms for mutually authenticated post-
quantum TLS experiments at NIST level V with 30.9ms latency
and 1000Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 65.4 97.5 35.5 96.9 129.0 66.9
KFFF-FF 69.0 101.4 39.3 69.8 102.1 40.1
KDFF-DF 65.5 97.7 35.7 66.2 98.5 36.4
KSfSfSf-SfSf 230.9 333.7 271.5 237.3 340.6 278.4
KSsSsSs-SsSs 387.5 481.2 419.2 387.9 481.6 419.6
KSsXX-SsX 346.2 408.8 346.9 346.5 409.1 347.1
KDXX-DX 107.0 184.3 122.3 122.3 192.1 130.1
HDDD-DD 65.5 97.6 35.5 96.8 128.9 66.8

Table 11.24: Average handshake times inms for mutually authenticated post-
quantum TLS experiments at NIST level V with 195.5ms latency
and 10Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 426.0 641.7 233.3 801.1 1042.0 601.9
KFFF-FF 404.0 605.1 212.6 409.9 612.1 216.9
KDFF-DF 410.2 617.9 220.5 417.9 626.8 223.7
KSfSfSf-SfSf 3117.7 4918.7 3790.7 4577.6 7095.0 5936.6
KSsSsSs-SsSs 1504.9 2422.4 1834.0 2255.4 3630.6 2887.9
KSsXX-SsX 1198.6 1809.2 1282.4 1312.4 1973.6 1442.1
KDXX-DX 483.9 753.1 328.9 628.4 895.1 478.5
HDDD-DD 427.2 642.9 234.2 785.5 1032.3 590.9
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. Discussion

Summarizing the results for our experiments across NIST security level I,
III, and V, we see that Kyber and Dilithium offer reasonable performance.
The size of Dilithium does affect the handshake times significantly at levels
III and V, due to these instances exceeding the initial congestion window
size. Falcon offers comparable or better performance, as the AVX2-accelerated
implementation is highly performant and its public keys and signatures are
the smallest. If using Falcon for online signatures is not an option due to
its requirement of constant-time 64-bit floating-point arithmetic for signing,
using it with Dilithium for online signatures as in our KDFF instances is
very attractive, although this does increase the size of the codebase. Using
SPHINCS+ does not seem very attractive for TLS 1.3: both in computation
time and size of signatures, the scheme very significantly affects the handshake
performance. If any application greatly prefers using a hash-based signature
scheme, it seems using alternatives to SPHINCS+ for CA certificates can offer
very large performance improvements, especially at higher security levels.

Our conclusions are also reflected by figure 11.1: all instantiations are mostly
gathered together around the 3-RTT line. Only the instances that use large
certificates or that use slower algorithms such as XMSSMTs move away from
this line. In the bottom plot, we compare all instantiations using SPHINCS+:
they are so large and comparatively slow that the top graph fits in the lower
left corner of the bottom graph.

Our experiment is not the first to look at the performance of post-quantum
TLS. Comparing our results with [281, 325, 326, 333, 351], we see that we arrive
at similar results. For high-bandwidth connections, the increase in compu-
tation time is very moderate for any scheme that stays under the initcwnd
limit on the number of MSS that can be sent before receiving a TCP acknowl-
edgment from the recipient. As Sikeridis, Kampanakis, and Devetsikiotis first
observed in [326], we see that combining two different algorithms for online
handshake authentication and offline CA certificates can greatly influence
connection establishment times.

More signatures on the web

As Westerbaan [351] highlighted, there are many more signatures in a typical
TLS handshake on the web than we included in our experiments. The Google
Chrome and Safari web browsers require at least two CT [235] proofs to be
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Figure 11.1: Handshake timings of post-quantum TLS experiments
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included for any certificate [15, 103]. This means that in every certificate,
there are two additional signatures from CT logs. The online certificate status
protocol (OCSP) [311], which allows a server to show that its certificate is
not revoked, also consists of a signed statement from the certificate authority.
CT and OCSP thus add another three offline signatures to the typical TLS
handshake traffic. If all the signature algorithms in the TLS handshake are
instantiated with Dilithium2, this adds up to 17 144 bytes of public keys
and signatures that are sent in the ServerCertificate message. This easily
exceeds a 10MSS initial congestion window size. This means using different
algorithms for online and offline signatures and/or standardizing mechanisms
that allow removing or suppressing some signatures [202] may be vital to the
performance of TLS on the web.

Increasing the congestion window

The initial congestion window size default of 10MSS is a fairly recent devel-
opment, first suggested by Google [132]. This suggestion was implemented
by Linux in 2011, before being standardized by the IETF in RFC 6928 in
2013 [104]. Before, the recommendation was a congestion window “between
2 and 4 segments”. It has been argued that the congestion window can be in-
creased to allow for the larger sizes of post-quantum cryptographic algorithms,
e.g. in [40]. Indeed, many content delivery networks already use much larger
congestion windows [306]. Increasing the initial congestion window across
the internet may be a valid strategy for handling the increase in TLS hand-
shake traffic. However, too large values could result in congestion and packet
loss. RFC 6928 [104, Appendix A] additionally highlights that raising the
congestion window may have adverse effects on internet connection speeds in
the developing world. Evaluating what would be the best value for initcwnd
and the impact of changing the value on the congestion control behavior of
TCP across the internet is beyond the scope of this thesis, however, and we
leave this for other work.

Other considerations

Finally, we have not explored the computational load of our instantiations. The
algorithms have very different computational characteristics. If an algorithm
has very high computational requirements, this may result in a limitation on
the number of connections that a server may be able to support. Sikeridis,
Kampanakis, and Devetsikiotis examined this for unilaterally authenticated
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TLS 1.3 using round-2 schemes in [326] and showed that a server running
Dilithium may be able to support more connections than a server running
Falcon. In our experiments, the server was also exactly as computationally
powerful as the client: after all, they ran on the samemachine. Often, however,
this is not the case: clients may, for example, have battery life concerns,
such as smartphones or laptops. Further examining these issues in post-
quantum TLS remains for future work. Another example of asymmetry
between clients and servers is the case of the performance of post-quantum
TLS on microcontrollers, which are much less powerful and may have low-
bandwidth links. We will discuss this issue in chapter 16.

. Appendix: XMSS at different NIST security levels

The security of XMSS parameter sets specified in RFC 8391 [181] reach NIST
security level V (equivalent to AES-256) and above. This high level of security
has only a very minor impact on computational performance, but it does
have a significant impact on signature size. The NIST standard [106] also
considers parameter sets targeting security level III (equivalent to AES-192);
the simple modification is to truncate all hashes to 192 bits. This is possible
because the security of XMSS and its multi-tree variant XMSSMTis guaranteed
by a tight reduction from second-preimage resistance [46, 188]; collisions
in the underlying hash function do not affect the security of XMSS. We
straightforwardly extend XMSS to parameter sets targeting NIST security
levels I and III. For level I, hashes are simply truncated to 128 bits; we obtain
this by using SHAKE-128 [268] with 128 bits of output. For level III, we use
SHAKE-256 truncated to 192 bits of output. SPHINCS+ similarly constructs
its level-I and level-III parameter sets. Aside from minor details, XMSS can
be seen as a “sub-step” of SPHINCS+; see [183]. To complete our set of
parameters, we also specify a variant at NIST security level V, which obtains
256 bits from SHAKE-256.

We define XMSSMTs as an instantiation of XMSSMTusing two trees of height
12 each, i.e., a total tree height of 24, which limits the maximum number of
signatures per public key to 224 ≈ 16.7 million. Increasing this maximum
number of signatures to, for example, 230 ≈ 1 billion increases signature size
by only 96 bytes and has negligible impact on verification speed. It does have
an impact on key-generation speed and signing latency, but as mentioned
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in section 13.6.3, the latency of signing is not very relevant when used by
certificate authorities as in our benchmarks.

Multi-tree XMSS is particularly well-suited for efficient batch signing. The
idea is to compute one whole tree (of height ℎ/𝑑) on the lowest level and use
it on-the-fly to sign 2ℎ/𝑑 messages. The computational effort per signature is
then essentially reduced to one WOTS+ key-pair generation.

We set the Winternitz parameter in XMSSMTs to 𝑤 = 256 to optimize for
signature size. Changing to the more common 𝑤 = 16 would increase the
signature size by about a factor of 2 and speed up verification by about a factor
of 8.
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OPTLS

In this chapter, we investigate the performance of OPTLS when instantiated
with CSIDH [91]. CSIDH is the only post-quantumNIKE that currently offers
IND-CCA security and has readily available implementations; the Swoosh [153]
scheme announced in early 2023 only proposes parameters for an actively-
secure version. We will show the bandwidth characteristics and performance
of OPTLS when we use the aggressive 512- and 1024-bit versions of CSIDH.
The security of CSIDH is hotly debated; we will also discuss the expected
performance using CSIDH at higher security levels.

. Instantiating OPTLS

When instantiating OPTLS, we need to select a NIKE that is used for ephem-
eral key exchange as well as for server authentication. Because the authentica-
tion key exchange in OPTLS combines the client’s ephemeral key share with
the server’s long-term NIKE public key, these need to be the same algorithm.
We additionally require a signature scheme that a CA uses to authenticate the
server’s certificate; in our experiments we use Falcon-512. To simplify our
experiments, we leave out intermediate certificates in this chapter.

No NIKE are currently under consideration in the NIST PQC standardiza-
tion project. As discussed, the only NIKE that currently has passively-secure
parameters is CSIDH. To provide the best possible scenario for OPTLS, we
use the CTIDH instantiations of CSIDH by Banegas, Bernstein, Campos,
Chou, Lange, Meyer, Smith, and Sotáková [19]. This is the most efficient
publicly available implementation of CSIDH as of writing. The security anal-
ysis of the original CSIDH parameter sets (512 and 1024 bits) shows they are
very aggressively chosen; we will return to this subject and the effect of more
conservative parameters on the performance of OPTLS in the discussion
in section 12.3.
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Table 12.1: Communication sizes and computation requirements for the client
and the server for OPTLS instantiated with specific NIKEs.

Transmission size (bytes) Computation time (ms)

NIKE KEX HS. auth
Certificate
signature
(Falcon-512)

Ephem.
keygen

Key
agreements

CTIDH512 128 64 666 47.7 95.3
CTIDH1024 256 128 666 182.3 366.5

In table 12.1, we show the communication and computational require-
ments for OPTLS when instantiated with CTIDH512 and CTIDH1024. In
the OPTLS key exchange, both parties transmit an ephemeral public key. For
server authentication, only the server transmits its long-term public key: this
key is combined with the already-transmitted client key exchange public key.
Finally, for completeness, we show the size of the Falcon-512 signature that we
use for certificate authentication. The size of these OPTLS handshakes is very
small compared to the smallest post-quantum TLS handshakes, but CSIDH
has significant computational requirements. The times shown in table 12.1
are the time required for key generation in ephemeral key exchanges, if this
is done during the handshake, and the time required to compute the two
shared secrets for key exchange and authentication. Both the client and the
server need to perform these computations during the handshake, but the
cost of ephemeral key generation may be amortized if ephemeral key shares
are reused (see also the discussion on forward secrecy in section 2.5.1). In
our handshake measurements, we include results in which the ephemeral
keys have been generated before the measured handshakes. However, the
time required by each peer for key agreement for CTIDH512 already greatly
exceeds the 30.9ms latency in our low-latency network experiments, and
for CTIDH1024 it is even much more than the 195.5ms latency in the high-
latency network experiments. Note that, unlike ephemeral key generation,
both the client and the server need to perform these computations every
handshake, and they cannot be pre-computed, as their inputs are unique to
every handshake.
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. OPTLS handshake performance

In table 12.2 we show the handshake performance of OPTLS when instan-
tiated with CTIDH512 and CTIDH1024 when running over two different
network environments. As discussed in section 12.1, show the handshake
performance when ephemeral keys are generated during each handshake,
and the performance when ephemeral keys are cached or generated out-of-
band. In the latter case, no key generations take place during the measured
handshakes. In both scenarios, a large effect of the CSIDH computational
requirements is seen. Even when the cost of ephemeral key generation is
excluded from the handshake performance, the client’s response is received
more than 200ms later than in the post-quantum TLS experiments at NIST
PQC security level I, discussed in section 11.2. When using CTIDH1024,
the overhead of the OPTLS handshake takes nearly a full second on the
low-latency network, even if ephemeral keys are cached. Generating fresh
ephemeral keys in each handshake increases the delay by another 429.0ms for
CTIDH1024. On the high-latency network, the results are very similar. The
significant computational requirements of CSIDH result in handshakes that
take about two times as long as comparable post-quantum TLS 1.3 handshakes
for CSIDH512; CTIDH1024 is almost twice as slow.

Table 12.2: Handshake latencies inms for OPTLS instantiated with specific
NIKE when run over two different network environments. Laten-
cies are given with and without ephemeral key share reuse.

Handshake latencies (RTT, bandwidth)

𝟑𝟎.𝟗ms, 𝟏𝟎𝟎𝟎Mbps 𝟏𝟗𝟓.𝟓ms, 𝟏𝟎Mbps

NIKE

Cached
ephem.
keys Client

sent req.
Client

recv. resp.
Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

CTIDH512 ✘ 372.7 403.8 315.1 644.8 840.8 448.9
✓ 284.5 315.6 253.6 604.6 800.6 408.6

CTIDH1024 ✘ 1346.4 1377.5 1127.1 1402.2 1598.1 1188.4
✓ 917.4 948.4 886.5 1157.7 1353.6 961.7
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12 Performance of post-quantum OPTLS

. Discussion

Based on our results, post-quantum OPTLS does not offer competitive per-
formance compared to post-quantum TLS 1.3, at least when instantiated with
CTIDH512 or CTIDH1024. The large amount of computation severely affects
handshake times; additionally, the time spent on cryptographic computa-
tions cannot be used for any applications running on top of TLS. Only in
extremely restricted-bandwidth scenarios might the small size of the hand-
shake offer a benefit over using signed TLS, or as we will see in chapters 13
and 14, KEMTLS(-PDK).

We have examined the performance of two small instances of CSIDH, but
the security of CSIDH is the subject of ongoing, significant debate [42, 49,
58, 71, 289]. Specifically, CSIDH is vulnerable to a quantum algorithm by
Kuperberg [225], but different authors come to different conclusions as to the
cost of implementing the attack. Depending on analysis, the quantum security
of CSIDH512 ranges from 29 to 139 bits [91]; in the evaluation of Chávez-Saab,
Chi-Domínguez, Jaques, and Rodríguez-Henríquez, CSIDH512 offers just
63 bits of quantum security and CSIDH1024 just 72 bits [97]. In our results,
we see that even CSIDH512 is likely too slow for most deployments of TLS.
This leaves the question: what if we require higher-security instantiations of
CSIDH?

Higher-security CSIDH

Chávez-Saab, Chi-Domínguez, Jaques, and Rodríguez-Henríquez presented
the first CSIDH implementation at higher security levels going all the way
from primes of size 2000 bits up to 9000 bits [97]. In [88], Campos, Chavez-
Saab, Chi-Domínguez, Meyer, Reijnders, Schwabe, and I discuss new param-
eters for high-security CSIDH and CTIDH, specifically chosen to allow for
highly-optimized implementations that outperform prior results. Following
the conclusions from the quantum circuit estimations in [97], we use primes
of 2048 and 4096 bits targeting NIST PQC security level I, 5120 and 6144 bits
targeting level II, and 8192 and 9216 bits targeting level III. Each pair of in-
stantiations represents a choice between more “aggressive” assumptions (with
attacker circuit depth bounded by 260) or more “conservative” assumptions
(attacker circuit depth bounded by 280). As stressed in [97], this choice of pa-
rameters does not take into account the cost of calls to the CSIDH evaluation
oracle and is likely to underestimate security.
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12.3 Discussion

Table 12.3: Public key cryptography transmission sizes in bytes and time in
seconds until client receives and sends Finished messages for
OPTLS, TLS 1.3, and KEMTLS.

Handshake latencies (RTT, bandwidth)
Transmission 30.9ms, 1000Mbps 195.5ms, 10Mbps
KEX Auth SFIN recv CFIN sent SFIN recv CFIN sent

OPTLS
(pregen)

CSIDH p2048 544 938 24.468 24.468 24.288 24.288
CTIDH p2048 512 922 7.346 7.346 7.203 7.203
CTIDH p4096 1024 1178 36.321 36.321 36.299 36.299
CTIDH p5120 1280 1306 28.701 28.701 28.580 28.580

OPTLS
(ephemeral)

CSIDH p2048 544 938 43.642 43.642 43.486 43.486
CTIDH p2048 512 922 10.042 10.042 9.882 9.882
CTIDH p4096 1024 1178 50.039 50.039 49.951 49.951
CTIDH p5120 1280 1306 42.383 42.383 42.163 42.163

TLS
Kyber-512–Falcon-512 1568 2229 0.064 0.064 0.428 0.428
Kyber-512–Dilithium2 1568 4398 0.063 0.063 0.519 0.519
Kyber-768–Falcon-1024 2272 3739 0.065 0.065 0.497 0.497

KEMTLS
Kyber-512 1568 2234 0.094 0.063 0.593 0.396
Kyber-768 2272 2938 0.094 0.063 0.597 0.400

All instantiations use Falcon-512 for the certificate authority; the CA public key is not
transmitted. Bytes necessary for authentication includes bytes for the Falcon-512 CA signature
on the server’s certificate. These benchmark results have been obtained independently from the

other results in chapters 11 to 14.

Extrapolating the slowdown when using CTIDH1024 instead of CTIDH512
seen in table 12.2 suggests that especially the proposed level II and level III
parameter sets will be extremely impractical for use in OPTLS. In table 12.3
we report advance results from [88]. When using CTIDH above 5000 bits,
handshake times need to be measured in the tens of seconds. This means
that unless the performance of CSIDH can be improved by several orders of
magnitude, CSIDH, especially at these higher security levels, does not seem
practical for use in interactive protocols such as TLS.

Swoosh

Just around the time of writing, a new proposal for a post-quantum NIKE was
put forward, called Swoosh [152]. This NIKE is based on the module-learning
with errors (MLWE) problem, and the authors claim a post-quantum security
level of more than 120 bits. However, the Swoosh public key for the passively
secure version is approximately 220 kB; additional zero-knowledge proofs
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need to be included for an actively-secure version. This public key size not
only exceeds the 64 kB limit on key share entries, but also exceeds the TCP
Slow Start initial congestion window (initcwnd), and thus would require
multiple round-trips to transfer the public key. As a result, right now, Swoosh
is not the missing NIKE scheme that makes OPTLS a viable alternative for a
TLS handshake with signatures.

. Conclusions

It appears that OPTLS cannot be practically used in a post-quantum setting,
as CSIDH is currently too slow. Until new NIKEs are proposed with better
runtime performance than CSIDH but smaller sizes than Swoosh this seems
unlikely to change, as our experimental results are based on highly-optimized
implementations of CSIDH512 and CSIDH1024. If higher security levels than
CSIDH1024 are required, the handshake time of OPTLS when instantiated
with, e.g., CSIDH4096 is around 50 seconds, based on the performance of
highly-optimized implementations of CSIDH and CTIDH at higher security
levels [88]. This suggests that CSIDH is not suitable for interactive network
protocols, like TLS.

246



 Performance of KEMTLS

In this chapter, we investigate the performance of KEMTLS. We first instanti-
ate the protocol with post-quantum cryptographic primitives at NIST PQC
security levels I, III, and V. We then compare how they perform in both uni-
laterally authenticated handshakes and mutually authenticated handshakes.
We will also compare KEMTLS against the results for post-quantum TLS 1.3
from chapter 11.

For a description of how we implemented KEMTLS, please refer back to
section 10.4. The design of the emulated network environment and our choice
of parameters are motivated in section 10.10.

As in previous chapters, we are only comparing the sizes and performance
characteristics of the schemes used to instantiate KEMTLS in this chapter. It
can be argued that this compares apples to oranges: different security as-
sumptions both affect the size and performance, but also have different levels
of confidence associated with them. However, these comparisons are still
useful to estimate the cost of choosing different assumptions based on such
considerations.

. Selecting algorithms for KEMTLS experiments

As we did for the experiments in chapter 11, we base our main selection of
algorithms on theNISTPQC standardization project, althoughwe also choose
some additional algorithms such as the customized XMSS parameters at lower
security levels than NIST level V, which we described in section 11.6.

In each instantiation, we select:

1. an algorithm for ephemeral key exchange, negotiated by the KEMTLS

client and server;

2. an algorithm for handshake authentication, used in the server certifi-
cate;
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13 Performance of KEMTLS

3. an algorithm for authentication of the server’s certificate by the (in-
termediate) CA certificate, which we may assume the client to already
have;

4. an algorithm for authentication of the intermediate CA certificate by a
root CA certificate, which is always assumed to be preinstalled.

For KEMTLS handshakes that use mutual authentication, we additionally select:

5. an algorithm for client authentication, used in the client certificate;

6. an algorithm for authentication of the client’s certificate by a CA certifi-
cate, which is assumed to be preinstalled.

In our experiments, we will try to showcase how the different algorithms
in the NIST PQC standardization project perform. We base our choices on
those made for the post-quantum TLS 1.3 experiments in section 11.1, so that
we may compare the performance of TLS 1.3 and KEMTLS. We will use the
following scenarios:

Primary This instantiation uses Kyber [319], the only KEM which was se-
lected for standardization for post-quantum key exchange. We use
Kyber for both the ephemeral key exchange and handshake authenti-
cation. Dilithium [241], the algorithm which, when it was selected for
standardization, was named the primary algorithm for post-quantum
signatures, is used for the signatures in certificates.

Falcon This instantiation uses Kyber for ephemeral key exchange and hand-
shake authentication, but uses Falcon [293], the other digital signature
algorithm that NIST selected for standardization, for the signatures in
the certificates. Note that, as there is no signing in the KEMTLS hand-
shake, Falcon’s implementation concerns do not affect KEMTLS hand-
shakes.

SPHINCS+-f This instance uses Kyber for ephemeral key exchange and hand-
shake authentication. It uses SPHINCS+ [184] for the CA signatures
in certificates. SPHINCS+ is the only algorithm that was selected for
standardization by NIST in 2022 that is not based on lattice assump-
tions. Specifically, this instantiation uses the fast variant of SPHINCS+ ,
which has faster runtime but larger signatures. For the hash function,
we use Haraka, as explained in section 10.6.
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13.2 Instantiation and results at NIST level I

SPHINCS+-s This instantiation is like the SPHINCS+-f-variant, but it uses the
small variant of SPHINCS+, which has slow signing time but smaller
signatures.

Hash-based CA This conservative instantiation uses Kyber for ephemeral
key exchange and handshake authentication but uses a customized
instantiation of XMSSMTfor the CA signatures in certificates. This gives
us conservative hash-based signatures for the long-lived certificates.

HQC This instantiation uses HQC, a round-4 KEM candidate in the NIST
PQC standardization project, for ephemeral key exchange and hand-
shake authentication. HQC relies on assumptions based on decoding
of quasi-cyclic codes, instead of on assumptions on lattices.

Note that for presentation purposes, we will refer to these scenarios in our
tables and figures by handles, which are composed of the first letters of each of
the selected algorithms. For an overview of these handles, refer to the tables
that show the communication sizes, e.g. table 13.1.

As in the TLS 1.3 experiments, the remaining candidates for post-quantum
key exchange in round 4 of the NIST PQC standardization project, are unfor-
tunately not suitable for our experiments. BIKE [17] does not have IND-CCA
secure parameter sets available, and ClassicMcEliece [7] has a too-large public
key for use in TLS 1.3.

As before, we measure the performance of our instantiations when using
the intermediate certificate in place of a root CA certificate, thus excluding it
from the ServerCertificate message; and the performance when the server
does transmit the intermediate certificate. This represents scenarios in which
no intermediate certificates are used, as well as accounts for proposals that
call for omitting or caching intermediate CA certificates, like [202].

. Instantiation and results at NIST level I

We measured and compare the performance of TLS 1.3 at NIST security
level I, which offers security comparable to that given by AES-128. As it is the
lowest security level, the parameter sets are the most aggressively chosen and
generally offer the smallest public key, ciphertext, and signature sizes and the
shortest computation times. We will first discuss unilaterally authenticated
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handshakes, in which only the server is authenticated by a certificate and a
signature. This scenario is the most important to web browsing, as this is
the handshake mode that is almost exclusively used by web browsers [61].
Afterward, we will discuss mutually authenticated handshakes, in which the
client also presents a certificate of their identity and signs the handshake. This
is for example used to secure service-to-service communication or in VPNs.

.. Unilaterally authenticated KEMTLS

Table 13.1: Instantiations at NIST level I of unilaterally authenticated KEMTLS

handshakes and the sizes of the public-key cryptography elements
in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+ct sig Sum pk sig Sum pk

Primary Kyber-512 Kyber-512 Dilithium2 5 556 Dilithium2 Dilithium2 9 288 Dilithium2
KKDD 1568 1568 2420 1312 2420 1312

Falcon Kyber-512 Kyber-512 Falcon-512 3 802 Falcon-512 Falcon-512 5 365 Falcon-512
KKFF 1568 1568 666 897 666 897

SPHINCS+-f Kyber-512 Kyber-512 SPHINCS+-
128f 20 224

SPHINCS+-
128f

SPHINCS+-
128f 37 344

SPHINCS+-
128f

KKSfSf 1568 1568 17 088 32 17 088 32

SPHINCS+-s Kyber-512 Kyber-512 SPHINCS+-
128s 10 992

SPHINCS+-
128s

SPHINCS+-
128s 18 880

SPHINCS+-
128s

KKSsSs 1568 1568 7856 32 7856 32

Hash-based
CA

Kyber-512 Kyber-512 XMSSMTs -I 4 115 XMSSMTs -I XMSSMTs -I 5 126 XMSSMTs -I

KKXX 1568 1568 979 32 979 32

HQC HQC-128 HQC-128 Dilithium2 15 880 Dilithium2 Dilithium2 19 612 Dilithium2
HHDD 6730 6730 2420 1312 2420 1312

Communication requirements

In table 13.1, we show how we instantiate the KEMTLS experiments at security
level I. Specifically, we show the sizes of the public-key cryptography items:
the public keys, ciphertexts, and signatures that are used in the handshake
for ephemeral key exchange and authentication. We include the total amount
of data required for public-key cryptography items in two scenarios: one
where the intermediate CA certificate is used in place of a root certificate (and
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13.2 Instantiation and results at NIST level I

thus not transferred), and the scenario in which a full certificate chain is used
and the intermediate CA certificate is thus included in the transmission. We
also give the abbreviated handles, by which we will refer to our instantiations.
These handles are generally composed of the first letters of each scheme, in the
order of key exchange, handshake authentication, intermediate CA certificate,
and root CA certificate.

Comparing the sizes of our instantiations, we observe similar things as we
saw for post-quantum TLS 1.3 in section 11.2. Again, the instance that uses
Falcon-512, KKFF, is significantly smaller than the KKDD instance that uses
Dilithium2 for certificate signatures. The KKXX instance that uses XMSSMTs -I
instead of Falcon-512 for handshake signatures is only slightly larger thanKFFF
when using the intermediate CA certificate in place of the root certificate, and
slightly smaller than KFFF when the intermediate CA certificate is included.
Using HQC-128, the NIST PQC round-4 KEM candidate which is not based
on lattice assumptions, leads to a large increase in handshake size. Only the
instance that uses SPHINCS+-128f is larger.

Table 13.2: Computation time in ms for asymmetric cryptography at NIST
level I for each of the unilaterally authenticated KEMTLS instanti-
ations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD 0.128 0.044 0.172 0.192 0.044 0.236
KKFF 0.205 0.044 0.249 0.346 0.044 0.390
KKSfSf 0.507 0.044 0.551 0.950 0.044 0.994
KKSsSs 0.154 0.044 0.198 0.244 0.044 0.288
KKXX 8.296 0.044 8.340 16.528 0.044 16.572
HHDD 0.536 0.406 0.942 0.600 0.406 1.006

Computational requirements

In table 13.2, we see the computational requirements for the KEMTLS exper-
iments at security level I. As we use Kyber-512 for authentication in most
instantiations, the server only needs to perform one encapsulation, in the
ephemeral Kyber-512 key exchange, and one decapsulation on a ciphertext
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for the handshake authentication. The client additionally needs to perform
verification of signatures on the certificates, which differ between the instan-
tiations. Except for the KKXX instantiation, which uses the slow-to-verify
XMSSMTs -I scheme, all computation times are very small.

Handshake performance

In tables 13.3 and 13.4, we show the handshake times for KEMTLS when ran
over a 30.9ms latency, 1000Mbps network and a 195.5ms latency, 10Mbps
network. We show the time it takes from the start of the client’s connection
setup to themoment the client has sent its request (immediately after it sent the
ClientFinished message), the time after which the client receives a response
to this request, and the time it takes for the server, measured from the moment
it receives the ClientFinished message until the server has completed the
handshake and is ready to process the client’s request.

Similarly to what we saw for the post-quantumTLS 1.3 experiments at level I
in section 11.2, most handshakes, except KKSfSf, andKKSsSs if an intermediate
certificate is transmitted, stay well under the 10MSS initial congestionwindow
limit. As the computation times for all algorithms but XMSSMTs -I are very
small, we see that, on the high-bandwidth network, the handshake times are
dominated by the number of round-trips necessary, Only in KKXX do we see
that the handshake suffers a delay for signature verification of the certificates,
especially if the client needs to verify both the server’s certificate and the
intermediate CA certificate.

On the 195.5ms latency, 10Mbps network, the large size of some experi-
ments adds notable delay. Especially the largest SPHINCS+-128f instance has
very long handshake times: it takes 609.5ms (95.4%) longer before receiving
the server’s response than the KKDD instance if an intermediate certificate is
included. Using XMSSMTs -I instead of either SPHINCS+ variant brings the
handshake performance more in line with the performance of the KKDD
instance when intermediate certificates are used. This may be preferable if
hash-based signatures are preferred over Falcon-512 or Dilithium2.

Comparison with post-quantum TLS .

In table 13.5, we compare similar post-quantum TLS 1.3 and KEMTLS instances.
We show the size of the handshake when either excluding or including an
intermediate CA certificate from the transmission, and we show the time until
the client receives the first response from the server in both scenarios. We
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Table 13.3: Average handshake times in ms for unilaterally authenticated
KEMTLS experiments at NIST level I with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 63.0 94.4 32.3 63.4 94.8 32.6
KKFF 63.1 94.5 32.4 63.5 94.9 32.8
KKSfSf 95.2 126.6 64.5 96.9 128.3 66.2
KKSsSs 63.5 94.9 32.8 95.0 126.4 64.3
KKXX 90.1 121.5 59.3 111.3 142.7 80.6
HHDD 63.5 95.6 33.5 63.8 95.9 33.8

Table 13.4: Average handshake times inms for unilaterally authenticated KEM-

TLS experiments at NIST level I with 195.5ms latency and 10Mbps
bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 398.0 595.0 202.3 435.5 638.8 236.2
KKFF 395.6 592.5 199.9 397.3 594.3 201.7
KKSfSf 884.7 1081.7 689.1 937.6 1248.3 652.3
KKSsSs 455.8 667.1 252.8 883.6 1080.5 687.9
KKXX 429.5 628.5 229.2 475.1 677.3 262.8
HHDD 398.6 599.3 206.7 410.2 613.8 215.7
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Table 13.5: Comparison of handshake size and time until the client receives a
response from the server (30.9ms, 1000Mbps), between unilater-
ally authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level I.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD 7720 −28.0% 11 452 −18.9% 94.8 −0.4% 95.0 −0.3%
KEMTLS KKDD 5556 9288 94.4 94.8

TLS KFFF 3797 +0.1% 5360 +0.1% 95.8 −1.3% 96.1 −1.2%
KEMTLS KKFF 3802 5365 94.5 94.9

TLS KDFF 5966 −36.3% 7529 −28.7% 94.8 −0.3% 95.2 −0.3%
KEMTLS KKFF 3802 5365 94.5 94.9

TLS KSfSfSf 35 776 −43.5% 52 896 −29.4% 137.6 −8.0% 168.1 −23.6%
KEMTLS KKSfSf 20 224 37 344 126.6 128.3

TLS KSsSsSs 17 312 −36.5% 25 200 −25.1% 197.7 −52.0% 198.0 −36.2%
KEMTLS KKSsSs 10 992 18 880 94.9 126.4

TLS KSsXX 10 435 −60.6% 11 446 −55.2% 186.6 −34.9% 202.1 −29.4%
KEMTLS KKXX 4115 5126 121.5 142.7

TLS HDDD 12 882 +23.3% 16 614 +18.0% 94.7 +0.9% 95.1 +0.9%
KEMTLS HHDD 15 880 19 612 95.6 95.9

also show the relative differences between the TLS 1.3 and KEMTLS instances.
Replacing the handshake signature by a KEM key exchange for authentication
results, for most of the instantiations, in a significant reduction in handshake
size. This is because a Kyber-512 public key and ciphertext are smaller than
a public key and signature for any of the candidate signature schemes but
Falcon-512: indeed, only the KFFFTLS 1.3 instantiation is slightly smaller than
its KKFF KEMTLS equivalent. However, the HQC-128 KEM is much larger,
and as such the HQC-based KEMTLS instance is much larger than the similar
TLS 1.3 instantiation. But otherwise, we see that even for the KDFF TLS 1.3
instantiation, which tries to optimize the handshake size while avoiding using
the implementation concerns associatedwith Falcon-512, the equivalent KKFF
KEMTLS handshake (which also only needs Falcon signature verification) is
more efficient in both size and handshake latency.
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We also see that Kyber-512 is computationally more efficient than all signa-
ture schemes: this results in a small reduction in time before the client receives
a response from the server for the instances that fit in the initial congestion
window. In the comparison between KSsSsSs and KKSsSs, we see that using
KEMTLS reduces the size of the experiment (when the intermediate CA cer-
tificate is omitted from transmission) such that it fits in the initial congestion
window, and thus we observe a large reduction in handshake latency.

.. Mutually authenticated KEMTLS

Table 13.6: Instantiations at NIST level I of mutually authenticated KEMTLS

experiments and the sizes of the public-key cryptography elements
transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Primary Kyber-512 hs:Kyber-512
sig:Dilithium2

hs:Kyber-512
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

KKDD-KD 1568 3988 3988
9 544

3732
13 276

Falcon Kyber-512 hs:Kyber-512
sig:Falcon-512

hs:Kyber-512
sig:Falcon-512

pk:Falcon-512
sig:Falcon-512

KKFF-KF 1568 2234 2234
6 036

1563
7 599

SPHINCS+-f Kyber-512 hs:Kyber-512
sig:SPHINCS+-128f

hs:Kyber-512
sig:SPHINCS+-128f

pk:SPHINCS+-128f
sig:SPHINCS+-128f

KKSfSf-KSf 1568 18 656 18 656
38 880

17 120
56 000

SPHINCS+-s Kyber-512 hs:Kyber-512
sig:SPHINCS+-128s

hs:Kyber-512
sig:SPHINCS+-128s

pk:SPHINCS+-128s
sig:SPHINCS+-128s

KKSsSs-KSs 1568 9424 9424
20 416

7888
28 304

Hash-based
CA

Kyber-512 hs:Kyber-512
sig:XMSSMTs -I

hs:Kyber-512
sig:XMSSMTs -I

pk:XMSSMTs -I
sig:XMSSMTs -I

KKXX-KX 1568 2547 2547
6 662

1011
7 673

HQC HQC-128 hs:HQC-128
sig:Dilithium2

hs:HQC-128
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

HHDD-HD 6730 9150 9150
25 030

3732
28 762

hs: certificate public key and authentication ciphertext
pk: certificate public key sig: certificate signature
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Communication requirements

Table 13.6 shows the sizes for the public-key cryptography elements required to
instantiatemutually authenticated KEMTLSwith the selected algorithms. Again,
we compare scenarios in which the intermediate CA certificate is used as a
root, for example, because the client has it cached or because no intermediates
are used, and scenarios in which an intermediate certificate is transmitted
as part of the handshake. For a better presentation, we only show the sums
of the size of the public key and the ciphertext for KEMs, and sums of the
size of the public key and the signature in each certificate, even if they use
different algorithms. For the sizes of the individual public keys, ciphertexts,
and signatures, refer to section 10.6.

The difference in size between the unilaterally authenticated handshakes
and the mutually authenticated handshakes is exactly the size listed in the
client authentication column. This pushes up the communication require-
ments, but as we will discuss later in the comparison with TLS 1.3, the use of
Kyber-512 for client authentication keeps the increase modest.

Table 13.7: Computation time in ms for asymmetric cryptography at NIST
level I for each of the mutually authenticated KEMTLS instantiations
at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD-KD 0.146 0.134 0.280 0.210 0.134 0.344
KKFF-KF 0.223 0.211 0.434 0.364 0.211 0.575
KKSfSf-KSf 0.525 0.513 1.038 0.968 0.513 1.481
KKSsSs-KSs 0.172 0.160 0.332 0.262 0.160 0.422
KKXX-KX 8.314 8.302 16.616 16.546 8.302 24.848
HHDD-HD 0.803 0.609 1.412 0.867 0.609 1.476

Computational requirements

For mutual authentication, the server needs to additionally assert the validity
of the client’s certificate by verifying its signature. It also needs to encapsulate
a shared secret to the KEM public key in the certificate. The client only needs
to perform an additional decapsulation. This makes it so that the compu-
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13.2 Instantiation and results at NIST level I

tational requirements for the client and server are now very similar: only
the ephemeral key exchange requires slightly additional work from the client
(keygen and decapsulation operations versus the server’s encapsulation). If an
intermediate certificate is used, the client also needs to verify one additional
signature. This barely increases the total computation time, except when
XMSSMTs -I is used in KKXX-KX.

Handshake performance

We show the time from the start of the client’s connection until the client can
send a request to the server, the time until the client receives the response, and
the server’s time from receiving ClientHello to completing the handshake in
tables 13.8 and 13.9 for both the low-latency, high-bandwidth and the high-
latency, low-bandwidth network environments. When we compare the time
until the client can send or receive a response in unilaterally authenticated
KEMTLS, we see that all handshakes take at least one additional round-trip
to complete. As we discussed in section 5.5, KEMTLS requires an additional
round-trip for authentication. The client cannot transmit its certificate before
it has (implicitly) authenticated the server: otherwise, we cannot protect
the client’s identity from active attackers. We also wait to obtain the client
authentication ciphertext from the server before we allow the client to transmit
its request, which would otherwise be unauthenticated. Otherwise, we see
that most instances perform comparably; only KKSfSf-KSf, KKXX-KX, and
KKSsSs-KSs stand out on the 30.9ms latency, 1000Mbps connection: their
sizes, or in the case of XMSSMTs -I, the computational overhead, result in
unavoidable increases. On the 195.5ms latency, 10Mbps network however,
we see that the computation time of XMSSMTs -I is made up by the smaller size
of the certificates: it performs 108.8ms (11.6%) faster than the KKSsSs-KSs
handshake when the intermediate certificate is not transmitted.

Comparison with post-quantum TLS .

In table 13.10, we compare mutually authenticated KEMTLS instances with
similar post-quantum TLS 1.3 instantiations. Like in the unilaterally authen-
ticated experiments, using Kyber-512 in the place of any signature scheme
but Falcon-512 results in a significant size reduction. HQC-128, however, is
larger than most signature schemes; using it in KEMTLS results in additional
handshake overhead when used in the place of Dilithium2. When comparing
the time until the client receives the response to its request from the server,
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Table 13.8: Average handshake times inms for mutually authenticated KEMTLS

experiments at NIST level I with 30.9ms latency and 1000Mbps
bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 94.8 126.0 63.9 95.1 126.4 64.2
KKFF-KF 94.8 126.0 63.9 95.2 126.4 64.3
KKSfSf-KSf 158.3 189.5 127.4 160.1 191.3 129.2
KKSsSs-KSs 95.4 126.6 64.5 126.9 158.2 96.0
KKXX-KX 130.0 161.2 99.1 151.7 182.8 120.8
HHDD-HD 97.0 128.2 66.1 97.3 128.6 66.4

Table 13.9: Average handshake times inms for mutually authenticated KEMTLS

experiments at NIST level I with 195.5ms latency and 10Mbps
bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 597.3 793.4 400.8 685.1 881.7 486.9
KKFF-KF 594.9 791.0 398.4 596.4 792.5 399.9
KKSfSf-KSf 1578.9 1775.0 1382.5 1333.9 1562.9 1094.2
KKSsSs-KSs 736.7 935.0 538.4 1001.9 1216.1 811.3
KKXX-KX 629.8 826.2 433.2 658.0 854.4 461.2
HHDD-HD 660.2 870.6 471.1 638.4 838.0 437.8
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Table 13.10: Comparison of handshake size and time until the client receives a
response from the server (30.9ms, 1000Mbps), betweenmutually
authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level I.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD-DD 13 872 −31.2% 17 604 −24.6% 95.8 +31.6% 96.0 +31.6%
KEMTLS KKDD-KD 9544 13 276 126.0 126.4

TLS KFFF-FF 6026 +0.2% 7589 +0.1% 97.9 +28.7% 98.2 +28.7%
KEMTLS KKFF-KF 6036 7599 126.0 126.4

TLS KDFF-DF 10 364 −41.8% 11 927 −36.3% 96.0 +31.3% 96.3 +31.2%
KEMTLS KKFF-KF 6036 7599 126.0 126.4

TLS KSfSfSf-SfSf 69 984 −44.4% 87 104 −35.7% 182.3 +3.9% 212.8 −10.1%
KEMTLS KKSfSf-KSf 38 880 56 000 189.5 191.3

TLS KSsSsSs-SsSs 33 056 −38.2% 40 944 −30.9% 310.1 −59.2% 310.5 −49.1%
KEMTLS KKSsSs-KSs 20 416 28 304 126.6 158.2

TLS KSsXX-SsX 19 302 −65.5% 20 313 −62.2% 254.8 −36.7% 263.1 −30.5%
KEMTLS KKXX-KX 6662 7673 161.2 182.8

TLS HDDD-DD 19 034 +31.5% 22 766 +26.3% 95.8 +33.8% 96.1 +33.7%
KEMTLS HHDD-HD 25 030 28 762 128.2 128.6

we see that the additional round-trip leads to a significant delay in most ex-
periments. However, in the experiments that use (large-sized) hash-based
signature schemes, using Kyber-512 in place of a signature scheme leads to
comparable or better performance. Especially using Kyber-512 instead of
SPHINCS+-128s results in a large performance improvement, as the latter
requires a lot of time to produce handshake signatures.

. Instantiation and results at NIST level III

Wemeasure and compare the characteristics and performance of KEMTLSwhen
instantiated with primitives that offer at least NIST PQC security level III.
This security level is comparable to AES-192 in terms of security. It is also the
security level that is recommended by the authors of Kyber and Dilithium for
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general use [121, 228]. We first compare unilaterally authenticated handshakes
and then examine mutually authenticated handshakes.

.. Unilaterally authenticated KEMTLS

Table 13.11: Instantiations at NIST level III of unilaterally authenticated KEM-

TLS handshakes and the sizes of the public-key cryptography ele-
ments in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+ct sig Sum pk sig Sum pk

Primary Kyber-768 Kyber-768 Dilithium3 7 837 Dilithium3 Dilithium3 13 082 Dilithium3
KKDD 2272 2272 3293 1952 3293 1952

Falcon Kyber-768 Kyber-768 Falcon-
1024 5 824 Falcon-

1024
Falcon-
1024 8 897 Falcon-

1024
KKFF 2272 2272 1280 1793 1280 1793

SPHINCS+-f Kyber-768 Kyber-768 SPHINCS+-
192f 40 208

SPHINCS+-
192f

SPHINCS+-
192f 75 920

SPHINCS+-
192f

KKSfSf 2272 2272 35 664 48 35 664 48

SPHINCS+-s Kyber-768 Kyber-768 SPHINCS+-
192s 20 768

SPHINCS+-
192s

SPHINCS+-
192s 37 040

SPHINCS+-
192s

KKSsSs 2272 2272 16 224 48 16 224 48

Hash-based
CA

Kyber-768 Kyber-768 XMSSMTs -
III 6 395 XMSSMTs -

III
XMSSMTs -
III 8 294 XMSSMTs -

III
KKXX 2272 2272 1851 48 1851 48

HQC HQC-192 HQC-192 Dilithium3 30 389 Dilithium3 Dilithium3 35 634 Dilithium3
HHDD 13 548 13 548 3293 1952 3293 1952

Communication requirements

In table 13.11, we show the communication requirements for KEMTLS when
instantiatedwith the selected primitives at security level III. Going from level I
to level III increases the required amount of communication for the KKDD
experiment by 2281 bytes (41.1%) when omitting intermediate CA certificates.
The KKFF instance, which is based on Kyber-768 and Falcon-1024 even
increases by 2022 bytes (53.2%) (omitting intermediate certificates), although
Falcon-1024 offers NIST level V security. All instantiations, except those using
SPHINCS+-192 or HQC-192, stay within the roughly 15 kB limit that the
congestion window imposes on the server’s first transmission, however, even
when intermediate certificates are transmitted.
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Table 13.12: Computation time inms for asymmetric cryptography at NIST
level III for each of the unilaterally authenticated KEMTLS instanti-
ations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD 0.149 0.046 0.195 0.230 0.046 0.276
KKFF 0.240 0.046 0.286 0.412 0.046 0.458
KKSfSf 0.468 0.046 0.514 0.868 0.046 0.914
KKSsSs 0.203 0.046 0.249 0.338 0.046 0.384
KKXX 11.967 0.046 12.013 23.866 0.046 23.912
HHDD 1.569 1.257 2.826 1.650 1.257 2.907

Computational requirements

In table 13.12, we show the computational requirements for KEMTLS when
instantiated with the selected primitives at security level III. Compared to
the level I computational requirements, we see a small increase in the time
required for asymmetric cryptography operations.

Handshake performance

Tables 13.13 and 13.14 show how the instantiations of KEMTLS perform over a
30.9ms latency, 1000Mbps, and a 195.5ms latency, 10Mbps network. As the
experiments that do not use SPHINCS+ do not cross the 10MSS initcwnd
limit, we see that the times taken on the fast, high-bandwidth network are very
similar; the KKSsSs instance does now cross this limit in the scenario where
intermediate CA certificates are not used and thus has a 31.4ms (33.1%)
increase in time before the client receives the application data response from
the server. Interestingly, the HQC-192-based HHDD handshake does not
require an additional round-trip when the intermediate CA certificate is omit-
ted: even though the server needs to transmit 16 841 bytes, which is over the
10MSS initcwnd limit. This may be due to the large size of the HQC-192
public key that the client sends to the server in the ClientHello message:
this large message could already be tuning the congestion window size. The
low-bandwidth connection has minor delays due to the extra data, e.g., the
KKDD instance with intermediate CA certificate is 45.3ms (7.1%) slower.
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Table 13.13: Average handshake times in ms for unilaterally authenticated
KEMTLS experiments at NIST level III with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 63.2 94.6 32.5 63.7 95.1 33.0
KKFF 63.4 94.8 32.7 64.2 95.6 33.5
KKSfSf 96.6 128.1 65.9 130.6 162.0 99.9
KKSsSs 94.9 126.3 64.2 96.2 127.6 65.5
KKXX 103.7 135.1 73.0 116.8 148.1 86.0
HHDD 64.3 97.1 35.0 64.7 97.6 35.5

Table 13.14: Average handshake times in ms for unilaterally authenticated
KEMTLS experiments at NIST level III with 195.5ms latency and
10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 398.5 595.7 203.1 465.7 684.1 259.8
KKFF 396.7 593.9 201.3 404.1 602.0 207.9
KKSfSf 977.2 1299.9 667.4 2010.1 2498.4 1613.3
KKSsSs 884.0 1081.2 688.6 901.7 1201.2 612.4
KKXX 451.5 652.5 248.3 505.5 712.5 286.0
HHDD 418.8 636.0 231.4 416.4 626.2 224.8
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Table 13.15: Comparison of handshake size and time until the client receives a
response from the server (30.9ms, 1000Mbps), between unilater-
ally authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level III.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD 10 810 −27.5% 16 055 −18.5% 95.1 −0.5% 125.8 −24.4%
KEMTLS KKDD 7837 13 082 94.6 95.1

TLS KFFF 6625 −12.1% 9698 −8.3% 97.6 −2.8% 98.1 −2.5%
KEMTLS KKFF 5824 8897 94.8 95.6

TLS KDFF 8797 −33.8% 11 870 −25.0% 95.4 −0.6% 96.1 −0.5%
KEMTLS KKFF 5824 8897 94.8 95.6

TLS KSfSfSf 73 648 −45.4% 109 360 −30.6% 176.7 −27.5% 209.7 −22.7%
KEMTLS KKSfSf 40 208 75 920 128.1 162.0

TLS KSsSsSs 34 768 −40.3% 51 040 −27.4% 246.3 −48.7% 279.2 −54.3%
KEMTLS KKSsSs 20 768 37 040 126.3 127.6

TLS KSsXX 20 395 −68.6% 22 294 −62.8% 254.3 −46.9% 262.9 −43.7%
KEMTLS KKXX 6395 8294 135.1 148.1

TLS HDDD 22 086 +37.6% 27 331 +30.4% 95.2 +2.0% 125.8 −22.4%
KEMTLS HHDD 30 389 35 634 97.1 97.6

Comparison with post-quantum TLS .

In table 13.15, we compare the size and performance of post-quantum TLS 1.3
with similar instantiations of KEMTLS. Similar to the comparison at security
level I, KEMTLS saves significant amounts of handshake traffic compared to
TLS 1.3, except when using HQC-256, which has much larger communication
requirements than Dilithium3. A notable difference with the previous security
level is that the KKFF instance now is smaller than the KFFF instance: Kyber-
768 is a bit smaller than Falcon-1024, although it does have security level V.
Also, we see that while KDDD, when including an intermediate CA certificate,
requires an additional round-trip due to exceeding the TCP slow start limits,
the KKDD KEMTLS instance manages to stay within these limits and is thus a
round-trip faster.
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.. Mutually authenticated KEMTLS

Table 13.16: Instantiations at NIST level III of mutually authenticated KEMTLS

experiments and the sizes of the public-key cryptography ele-
ments transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Primary Kyber-768 hs:Kyber-768
sig:Dilithium3

hs:Kyber-768
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

KKDD-KD 2272 5565 5565
13 402

5245
18 647

Falcon Kyber-768 hs:Kyber-768
sig:Falcon-1024

hs:Kyber-768
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KKFF-KF 2272 3552 3552
9 376

3073
12 449

SPHINCS+-f Kyber-768 hs:Kyber-768
sig:SPHINCS+-192f

hs:Kyber-768
sig:SPHINCS+-192f

pk:SPHINCS+-192f
sig:SPHINCS+-192f

KKSfSf-KSf 2272 37 936 37 936
78 144

35 712
113 856

SPHINCS+-s Kyber-768 hs:Kyber-768
sig:SPHINCS+-192s

hs:Kyber-768
sig:SPHINCS+-192s

pk:SPHINCS+-192s
sig:SPHINCS+-192s

KKSsSs-KSs 2272 18 496 18 496
39 264

16 272
55 536

Hash-based
CA

Kyber-768 hs:Kyber-768
sig:XMSSMTs -III

hs:Kyber-768
sig:XMSSMTs -III

pk:XMSSMTs -III
sig:XMSSMTs -III

KKXX-KX 2272 4123 4123
10 518

1899
12 417

HQC HQC-192 hs:HQC-192
sig:Dilithium3

hs:HQC-192
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

HHDD-HD 13 548 16 841 16 841
47 230

5245
52 475

hs: certificate public key and authentication ciphertext
pk: certificate public key sig: certificate signature

Communication requirements

We show the sizes of our instantiations for mutual authentication in table 13.16.
Adding a client certificate to the handshake traffic pushes up the total hand-
shake size past 10 kB for all instances when an intermediate CA certificate is
included in the communication. The SPHINCS+-192f instance KKSfSf-KSf
even comes in at well over 113 kB of traffic.

Computational requirements

In table 13.17, we show how much time the client and the server need to
perform all of the computations for the public-key cryptography operations.
We see a similar increase in computational requirements as in the unilaterally
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Table 13.17: Computation time inms for asymmetric cryptography at NIST
level III for each of the mutually authenticated KEMTLS instanti-
ations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD-KD 0.168 0.154 0.322 0.249 0.154 0.403
KKFF-KF 0.259 0.245 0.504 0.431 0.245 0.676
KKSfSf-KSf 0.487 0.473 0.960 0.887 0.473 1.360
KKSsSs-KSs 0.222 0.208 0.430 0.357 0.208 0.565
KKXX-KX 11.986 11.972 23.958 23.885 11.972 35.857
HHDD-HD 2.366 1.798 4.164 2.447 1.798 4.245

authenticated case, but the server now needs to perform a bit more work to
authenticate the client’s certificate.

Handshake performance

Tables 13.18 and 13.19 show how the mutually authenticated instantiations
perform on the 30.9ms latency, 1000Mbps and the 195.5ms latency, 10Mbps
networks. On the low-latency network, we see that the KKDD-KD and KKFF-
KF instances are the only experiments that manage to keep the handshake
duration to around a multiple of the number of round-trips. The HQC-
192-based HHDD-DD instance now requires well more than the congestion
window limits and thus needs additional round-trips: it is 32.4ms (25.3%)
slower than the level-I handshake if an intermediate handshake is omitted
from the transmission. If an intermediate certificate is included, this further
increases to 63.3ms (49.2%) more than the level-I HHDD-HD instance.

In the high-latency, low-bandwidth network, the increase in size pushes up
the handshake times even more. When an intermediate certificate is included,
the increase in the sizes of Kyber-768 and Dilithium3 compared to their lower-
security variants leads to a 84.5ms (9.6%) increase in time before the client
receives a response from the server. The SPHINCS+-192s based KKSsSs-KSs
instance requires 839.6ms (89.8%) more if an intermediate certificate is not
included before the client receives its response.

265



13 Performance of KEMTLS

Table 13.18: Average handshake times inms formutually authenticated KEMTLS

experiments atNIST level III with 30.9ms latency and 1000Mbps
bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 95.1 126.4 64.2 95.6 126.8 64.7
KKFF-KF 95.3 126.5 64.4 95.9 127.2 65.1
KKSfSf-KSf 160.8 192.1 130.0 194.9 226.2 164.0
KKSsSs-KSs 158.1 189.3 127.2 159.4 190.7 128.5
KKXX-KX 140.0 171.2 109.1 159.0 190.1 128.1
HHDD-HD 129.4 160.6 98.5 160.6 191.9 129.7

Table 13.19: Average handshake times inms formutually authenticated KEMTLS

experiments at NIST level III with 195.5ms latency and 10Mbps
bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 607.2 803.5 410.7 769.1 966.2 569.2
KKFF-KF 596.9 793.1 400.5 611.7 808.1 414.7
KKSfSf-KSf 1588.8 1885.9 1351.7 2263.3 2623.2 1928.4
KKSsSs-KSs 1578.4 1774.5 1382.0 1661.9 1860.6 1402.3
KKXX-KX 644.7 841.4 447.6 675.7 872.6 478.4
HHDD-HD 944.6 1168.9 747.5 1255.6 1491.2 1054.2
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Table 13.20: Comparison of handshake size and time until the client receives
a response from the server (30.9ms, 1000Mbps), between mutu-
ally authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level III.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD-DD 19 348 −30.7% 24 593 −24.2% 96.6 +30.8% 127.2 −0.3%
KEMTLS KKDD-KD 13 402 18 647 126.4 126.8

TLS KFFF-FF 10 978 −14.6% 14 051 −11.4% 101.4 +24.7% 102.2 +24.5%
KEMTLS KKFF-KF 9376 12 449 126.5 127.2

TLS KDFF-DF 15 322 −38.8% 18 395 −32.3% 97.2 +30.1% 97.8 +30.0%
KEMTLS KKFF-KF 9376 12 449 126.5 127.2

TLS KSfSfSf-SfSf 145 024 −46.1% 180 736 −37.0% 261.4 −26.5% 293.5 −22.9%
KEMTLS KKSfSf-KSf 78 144 113 856 192.1 226.2

TLS KSsSsSs-SsSs 67 264 −41.6% 83 536 −33.5% 424.3 −55.4% 459.2 −58.5%
KEMTLS KKSsSs-KSs 39 264 55 536 189.3 190.7

TLS KSsXX-SsX 38 518 −72.7% 40 417 −69.3% 425.0 −59.7% 426.6 −55.4%
KEMTLS KKXX-KX 10 518 12 417 171.2 190.1

TLS HDDD-DD 30 624 +54.2% 35 869 +46.3% 96.7 +66.2% 127.2 +50.9%
KEMTLS HHDD-HD 47 230 52 475 160.6 191.9

Comparison with post-quantum TLS .

In table 13.20, we compare equivalent instances of post-quantum TLS 1.3
and KEMTLS. Although mutually authenticated KEMTLS requires an additional
round-trip compared to TLS 1.3, we see that in the instance based on Kyber-
768 and Dilithium3, KDDDD-DD and KKDD-KD, KEMTLS performs slightly
faster than TLS 1.3 if an intermediate CA certificate is part of the handshake.
This is due to KEMTLS managing to stay inside the initcwnd limit, while the
TLS 1.3 instance gains this round-trip due to the amount of handshake traffic
and thus ends up with the same amount of round-trips as KEMTLS.

As we saw for level I, HHDD-HD, which is much larger than the HDDD-
DD instance, is much slower than TLS 1.3. This is due to Dilithium3 being
much smaller than HQC-192. Going the other way, we see that when we
replace a SPHINCS+-192 signature with a Kyber-768 key exchange, the hand-
shake sizes and handshake times are drastically reduced.
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. Instantiation and results at NIST level V

In this section, we examine the performance and characteristics of KEMTLS

when instantiated with post-quantum KEMs and signature schemes at NIST
PQC security level V. This highest security level is required by theUnited States
National Security Agency (NSA)’s Commercial National Security Algorithm
Suite 2.0 [271] and recommended by French national cybersecurity agency
agence nationale de la sécurité des systèmes d’information (ANSSI) [14].
These parameter sets are generally the slowest-running and largest, and will
thus affect the performance of KEMTLS the most.

.. Unilaterally authenticated KEMTLS

Table 13.21: Instantiations at NIST level V of unilaterally authenticated KEMTLS

handshakes and the sizes of the public-key cryptography elements
in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+ct sig Sum pk sig Sum pk

Primary Kyber-1024 Kyber-1024 Dilithium5 10 867 Dilithium5 Dilithium5 18 054 Dilithium5
KKDD 3136 3136 4595 2592 4595 2592

Falcon Kyber-1024 Kyber-1024 Falcon-
1024 7 552 Falcon-

1024
Falcon-
1024 10 625 Falcon-

1024
KKFF 3136 3136 1280 1793 1280 1793

SPHINCS+-f Kyber-1024 Kyber-1024 SPHINCS+-
256f 56 128

SPHINCS+-
256f

SPHINCS+-
256f 106 048

SPHINCS+-
256f

KKSfSf 3136 3136 49 856 64 49 856 64

SPHINCS+-s Kyber-1024 Kyber-1024 SPHINCS+-
256s 36 064

SPHINCS+-
256s

SPHINCS+-
256s 65 920

SPHINCS+-
256s

KKSsSs 3136 3136 29 792 64 29 792 64

Hash-based
CA

Kyber-1024 Kyber-1024 XMSSMTs -V 9 251 XMSSMTs -V XMSSMTs -V 12 294 XMSSMTs -V

KKXX 3136 3136 2979 64 2979 64

HQC HQC-256 HQC-256 Dilithium5 48 023 Dilithium5 Dilithium5 55 210 Dilithium5
HHDD 21 714 21 714 4595 2592 4595 2592

Communication requirements

In table 13.21, we show how we instantiate KEMTLS at NIST level V and how
much data is required for ephemeral key exchange and authentication. Mov-
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ing up from level III to level V again results in a large increase in the KKDD
instantiation. When excluding intermediate CA certificates from the hand-
shake data, the increase in size is 3030 bytes (38.7%), when they are included,
we need 4972 bytes (38.0%) more than the level III experiment. As we already
used Falcon-1024 in the level III experiment, the increase in size is muchmore
modest for the KKFF experiment and limited to the switch to Kyber-1024:
it requires only 1728 bytes (19.4%) either with or without intermediate CA
certificates. Only this experiment and the XMSSMTs -V-based KKXX exper-
iment manage to stay well under 15 kB when intermediate CA certificates
are included, all other instantiations well exceed the limit after which extra
round-trips will be required by the TCP Slow Start algorithm.

Table 13.22: Computation time inms for asymmetric cryptography at NIST
level V for each of the unilaterally authenticated KEMTLS instanti-
ations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD 0.281 0.080 0.361 0.442 0.080 0.522
KKFF 0.292 0.080 0.372 0.464 0.080 0.544
KKSfSf 0.517 0.080 0.597 0.914 0.080 0.994
KKSsSs 0.304 0.080 0.384 0.488 0.080 0.568
KKXX 11.155 0.080 11.235 22.190 0.080 22.270
HHDD 2.220 1.730 3.950 2.381 1.730 4.111

Computational requirements

The computation times for asymmetric cryptography operations required by
the level V instantiations of our experiments are listed in table 13.22. Com-
pared to the level III Kyber-768, Kyber-1024 requires 0.017ms (63.0%) more
for encapsulation and 0.017ms (89.5%) more for decapsulation. If we go
back to the level I Kyber-512 parameter set, Kyber-1024 requires 0.018ms
(69.2%) more for a single encapsulation and 0.018ms (100.0%) more for
decapsulation. Although the relative increase is quite large, compared to even
our low-latency experiment, which has a round-trip latency of 30.9ms, these
time increases are insignificant and barely contribute to the handshake la-
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tency. For Dilithium signature verification, it is a similar story: Dilithium5
is 0.080ms (98.8%) slower than Dilithium3 and 0.097ms (151.6%) slower
than Dilithium2 when verifying a signature. Likewise, Falcon-1024 signature
verification is 0.031ms (22.0%) slower than Falcon-512. Even though we
perform multiple of these operations, the total time required for computation
remains well under 1ms for almost all instantiations. The exception is the
XMSSMTs -V parameter set, which takes a very large amount of time to verify a
signature; although for this scheme the increase in verification time starting
from XMSSMTs -I to XMSSMTs -V is only 2.803ms (34.1%).

Handshake performance

When we compare the times shown in table 13.23 for KEMTLS handshakes run
over a 30.9ms latency, 1000Mbps network to those for NIST security level III,
we see the same results for handshakes that do not include intermediate CA
certificates. The only exception in this scenario is the KKSfSf handshake,
which now requires another additional 31.7ms (24.8%) to transfer the large
SPHINCS+-256f signature in the server’s certificate. When intermediate
CA certificates are transferred, the KKDD and HHDD handshakes, which
now exceed 18 kB, need an additional round-trip compared to the level III
instantiation: it takes 31.2ms (32.8%) more time before the client receives
the response from the server.

In table 13.24, we show the performance for KEMTLS handshakes run over
the high-latency 195.5msms, 10Mbps network. Aside from the increase in
round-trips that we also observe in the results for the low-latency network,
we see additional effects of the large sizes of the level V parameters.

Comparison with post-quantum TLS .

In table 13.25, we compare how KEMTLS instantiated at NIST security level V
compares to similar instantiations of post-quantum TLS 1.3. For KKDD,
KEMTLS still offers a smaller handshake size than the TLS 1.3 KDDD instanti-
ation, but both handshakes are now sufficiently large that they need the same
number of round-trips again. The KKFF instantiation with Falcon-1024 is
now slightly larger than the KFFF instance, as Falcon-1024 is close in size
to the Kyber-1024 instance. In the level III experiment, we had to pair this
level V scheme with a level III KEM, but now these are matched again and the
difference in size has disappeared. For HQC-256-based HHDD, we see that
HQC-256 is so much larger than Dilithium5 that we suffer a very large amount
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Table 13.23: Average handshake times in ms for unilaterally authenticated
KEMTLS experiments at NIST level V with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 63.5 94.9 32.8 94.8 126.3 64.2
KKFF 63.5 95.0 32.9 64.2 95.7 33.6
KKSfSf 128.3 159.8 97.7 163.0 194.6 132.4
KKSsSs 95.9 127.4 65.2 128.9 160.5 98.3
KKXX 110.3 141.7 79.6 120.6 151.9 89.8
HHDD 65.5 130.7 68.5 96.9 162.1 100.0

Table 13.24: Average handshake times in ms for unilaterally authenticated
KEMTLS experiments at NIST level V with 195.5ms latency and
10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD 421.8 622.2 225.4 854.5 1078.5 685.9
KKFF 397.2 594.9 202.3 404.5 603.0 208.7
KKSfSf 1626.8 1960.5 1311.2 2936.1 3489.8 2368.2
KKSsSs 841.2 1121.5 573.4 1719.7 2124.0 1290.1
KKXX 465.9 668.5 261.4 512.2 721.2 296.7
HHDD 467.7 966.0 556.0 947.1 1580.3 1180.6
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Table 13.25: Comparison of handshake size and time until the client receives a
response from the server (30.9ms, 1000Mbps), between unilater-
ally authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level V.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD 14 918 −27.2% 22 105 −18.3% 95.6 −0.7% 127.0 −0.6%
KEMTLS KKDD 10 867 18 054 94.9 126.3

TLS KFFF 7489 +0.8% 10 562 +0.6% 97.5 −2.6% 98.2 −2.6%
KEMTLS KKFF 7552 10 625 95.0 95.7

TLS KDFF 11 603 −34.9% 14 676 −27.6% 95.7 −0.7% 96.4 −0.7%
KEMTLS KKFF 7552 10 625 95.0 95.7

TLS KSfSfSf 102 912 −45.5% 152 832 −30.6% 200.9 −20.5% 229.4 −15.2%
KEMTLS KKSfSf 56 128 106 048 159.8 194.6

TLS KSsSsSs 62 784 −42.6% 92 640 −28.8% 270.0 −52.8% 278.1 −42.3%
KEMTLS KKSsSs 36 064 65 920 127.4 160.5

TLS KSsXX 35 971 −74.3% 39 014 −68.5% 246.2 −42.4% 261.7 −42.0%
KEMTLS KKXX 9251 12 294 141.7 151.9

TLS HDDD 33 496 +43.4% 40 683 +35.7% 95.6 +36.7% 127.1 +27.6%
KEMTLS HHDD 48 023 55 210 130.7 162.1

of handshake time overhead as well as more handshake traffic. Finally, in the
hash-based schemes, we see the large effect of replacing a SPHINCS+-256
signature with a Kyber-1024 KEM key exchange, which has only gotten more
significant as the size of the hash-based schemes has increased much more
than the size of Kyber.

.. Mutually authenticated KEMTLS

Communication requirements

In table 13.26, we show how we instantiate mutually authenticated KEMTLS

with the sizes required for the public-key cryptography elements. At level V,
any mutually authenticated handshake transfers more than 10 kB, even when
intermediate CA certificates are omitted. When intermediate CA certificates
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Table 13.26: Instantiations at NIST level V of mutually authenticated KEMTLS

experiments and the sizes of the public-key cryptography ele-
ments transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Primary Kyber-1024 hs:Kyber-1024
sig:Dilithium5

hs:Kyber-1024
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

KKDD-KD 3136 7731 7731
18 598

7187
25 785

Falcon Kyber-1024 hs:Kyber-1024
sig:Falcon-1024

hs:Kyber-1024
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KKFF-KF 3136 4416 4416
11 968

3073
15 041

SPHINCS+-f Kyber-1024 hs:Kyber-1024
sig:SPHINCS+-256f

hs:Kyber-1024
sig:SPHINCS+-256f

pk:SPHINCS+-256f
sig:SPHINCS+-256f

KKSfSf-KSf 3136 52 992 52 992
109 120

49 920
159 040

SPHINCS+-s Kyber-1024 hs:Kyber-1024
sig:SPHINCS+-256s

hs:Kyber-1024
sig:SPHINCS+-256s

pk:SPHINCS+-256s
sig:SPHINCS+-256s

KKSsSs-KSs 3136 32 928 32 928
68 992

29 856
98 848

Hash-based
CA

Kyber-1024 hs:Kyber-1024
sig:XMSSMTs -V

hs:Kyber-1024
sig:XMSSMTs -V

pk:XMSSMTs -V
sig:XMSSMTs -V

KKXX-KX 3136 6115 6115
15 366

3043
18 409

HQC HQC-256 hs:HQC-256
sig:Dilithium5

hs:HQC-256
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

HHDD-HD 21 714 26 309 26 309
74 332

7187
81 519

hs: certificate public key and authentication ciphertext
pk: certificate public key sig: certificate signature

are included, all experiments exceed 15 kB.

Computational requirements

Table 13.27 shows the total time necessary for all the asymmetric cryptographic
operations for the client and the server. We can see that the KKDD-KD
instantiation requires the smallest amount of computation for both the client
and the server, but a millisecond is still a very short amount of time compared
to even the fast network setup with a 30.9ms round-trip latency.

Handshake performance

Table 13.28 show the performance of mutually authenticated KEMTLS instan-
tiated with primitives with NIST security level V on the 30.9ms round-trip
latency, 1000Mbps network. Like in the unilaterally authenticated results, all
level V experiments but the KKFF-KF instantiation require, when intermedi-
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Table 13.27: Computation time inms for asymmetric cryptography at NIST
level V for each of the mutually authenticated KEMTLS instanti-
ations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

KKDD-KD 0.317 0.285 0.602 0.478 0.285 0.763
KKFF-KF 0.328 0.296 0.624 0.500 0.296 0.796
KKSfSf-KSf 0.553 0.521 1.074 0.950 0.521 1.471
KKSsSs-KSs 0.340 0.308 0.648 0.524 0.308 0.832
KKXX-KX 11.191 11.159 22.350 22.226 11.159 33.385
HHDD-HD 3.322 2.519 5.841 3.483 2.519 6.002

ate CA certificates are included, additional round-trips for data as they exceed
the TCP Slow Start algorithm’s initial congestion window size. When the CA
certificate is omitted, however, the KKDD-KD and KKFF-KF instantiations
still have a three-round-trip handshake latency. The difference between these
two experiments, when intermediate certificates are omitted, is negligible on
the high-bandwidth network, even though KKDD-KD is 6630 bytes (55.4%)
larger than KKFF-KF.

Table 13.29 shows the performance of mutually authenticated KEMTLS on
the 195.5ms latency, low-bandwidth 10Mbps network. Here we see that
KKDD-KD is 79.7ms (10.0%) slower than KKFF-KF when intermediate CA
certificates are omitted due to the larger size taking more time to transfer
over the low-bandwidth connection. When they are included, the difference
in handshake time dramatically increases to 465.7ms (55.6%). Going from
security level III to security level V leads to a 337.2ms (34.9%) increase for
KKDD-KD on the low-bandwidth network, an arguably large increase in cost
compared to the gain in security margin.

Comparison with post-quantum TLS .

In table 13.30, we compare the KEMTLS instantiations with similarly instanti-
ated post-quantum TLS 1.3 experiments. We see mostly the same things that
we have seen already in the table for NIST security level I; all KEMTLS instanti-
ations have an extra round-trip compared to what is needed for TLS 1.3. The
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Table 13.28: Average handshake times in ms for mutually authenticated
KEMTLS experiments at NIST level V with 30.9ms latency and
1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 95.5 126.7 64.6 126.8 158.0 95.9
KKFF-KF 95.5 126.7 64.6 96.2 127.4 65.3
KKSfSf-KSf 223.9 255.2 193.0 258.7 290.0 227.8
KKSsSs-KSs 159.9 191.2 129.1 193.2 224.4 162.3
KKXX-KX 147.7 178.9 116.8 163.3 194.4 132.4
HHDD-HD 136.2 167.4 105.3 167.7 199.0 136.8

Table 13.29: Average handshake times inms for mutually authenticated KEM-

TLS experiments at NIST level V with 195.5ms latency and
10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KKDD-KD 671.6 874.4 479.4 1099.5 1303.4 905.9
KKFF-KF 598.6 794.7 402.1 640.8 837.7 443.0
KKSfSf-KSf 2951.0 3300.3 2789.5 4859.3 5208.0 4719.4
KKSsSs-KSs 1489.0 1771.8 1302.5 2082.3 2362.1 1783.1
KKXX-KX 664.9 862.6 468.1 696.2 895.6 496.3
HHDD-HD 1444.3 1640.7 1245.4 1280.5 1517.1 1027.3
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Table 13.30: Comparison of handshake size and time until the client receives
a response from the server (30.9ms, 1000Mbps), between mutu-
ally authenticated post-quantum TLS 1.3 and KEMTLS instances at
NIST level V.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

TLS KDDD-DD 26 700 −30.3% 33 887 −23.9% 97.5 +29.9% 129.0 +22.5%
KEMTLS KKDD-KD 18 598 25 785 126.7 158.0

TLS KFFF-FF 11 842 +1.1% 14 915 +0.8% 101.4 +25.0% 102.1 +24.7%
KEMTLS KKFF-KF 11 968 15 041 126.7 127.4

TLS KDFF-DF 20 070 −40.4% 23 143 −35.0% 97.7 +29.7% 98.5 +29.4%
KEMTLS KKFF-KF 11 968 15 041 126.7 127.4

TLS KSfSfSf-SfSf 202 688 −46.2% 252 608 −37.0% 333.7 −23.5% 340.6 −14.9%
KEMTLS KKSfSf-KSf 109 120 159 040 255.2 290.0

TLS KSsSsSs-SsSs 122 432 −43.6% 152 288 −35.1% 481.2 −60.3% 481.6 −53.4%
KEMTLS KKSsSs-KSs 68 992 98 848 191.2 224.4

TLS KSsXX-SsX 68 806 −77.7% 71 849 −74.4% 408.8 −56.2% 409.1 −52.5%
KEMTLS KKXX-KX 15 366 18 409 178.9 194.4

TLS HDDD-DD 45 278 +64.2% 52 465 +55.4% 97.6 +71.6% 128.9 +54.4%
KEMTLS HHDD-HD 74 332 81 519 167.4 199.0

only difference is the KSfSfSf-SfSf TLS 1.3 experiment, which is now 78.5ms
(23.5%) slower than the KEMTLS experiment when using intermediate CA
certificates as root certificates, while at security level I KEMTLS was 7.2ms
(3.9%) faster in this experiment.

. Summary

Summarizing the results from the experiments across NIST security levels I,
III, and V, we see that KEMTLS generally performs well when instantiated with
Kyber, Dilithium, and Falcon, the algorithms selected by NIST for standard-
ization. We show the handshake sizes and the time until the client receives
a response from the server in figure 13.1. Only at level V does the Kyber-
Dilithium KKDD parameter set no longer fit in the initial congestion window,
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Figure 13.1: Handshake timings of KEMTLS experiments

requiring an additional round-trip. Using Falcon in KEMTLS for the certificate
signature algorithms offers the best performance: this signature scheme is very
small, and the certificate signatures are only computed when the certificates
are generated, avoiding the implementation concerns of Falcon’s signing oper-
ation. TheHQCKEM, a round-4 candidate in the NIST PQC standardization
project, is significantly larger than Kyber, and this results in significantly larger
handshake sizes. The HHDD instance using HQC-256, the level V parameter
set, requires an additional round-trip due to the large sizes of the KEM’s public
key and ciphertext.

Using hash-based schemes in KEMTLS seems not very attractive. The in-
stantiations using SPHINCS+ are very large and have significant overhead
due to the transmission size. Using SPHINCS+-s does seem more viable
than using SPHINCS+-f: as only signature verification is required we do not
suffer the large computational effort of producing SPHINCS+-s signatures.
The XMSSMTs scheme suffers from the overhead of its signature verification,
although this is made up at level V by its smaller size when comparing it to
the level V SPHINCS+-based instantiations.
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. Comparing KEMTLS and post-quantum TLS .

.. Handshake size and performance

In general terms, the difference between KEMTLS and TLS 1.3 for unilaterally
authenticated handshakes is exactly the effect of replacing one post-quantum
signature scheme public key and signature with a KEM public key and ci-
phertext in the handshake. As a result, we see for example that the size of
the handshake is reduced when we replace Dilithium with Kyber, and very
slightly increases when we replace Falcon with Kyber. In figure 13.1, where
we show how the KEMTLS and post-quantum TLS 1.3 instances based on Ky-
ber, Dilithium, and Falcon compare in terms of size and handshake latency,
this effect can be seen. As Kyber is faster than both algorithms, the KEMTLS

instances are always at least slightly faster as well. More significant differences
are visible when comparing the level III TLS 1.3 instantiation KDDD with the
KEMTLS instance KKDD: the additional size of Dilithium pushes the TLS 1.3
instance just over the TCP slow start algorithm’s initial congestion window,
so TLS 1.3 requires an additional round-trip.
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Figure 13.2: Handshake timings of the KDDD and KFFF TLS 1.3 and the
KKDD and KKFF KEMTLS experiments.
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.. Fewer CPU cycles

Most KEMTLS instances are more computationally efficient than the equivalent
TLS 1.3 instances. For example, the level I KKDD KEMTLS instance requires
0.198ms (45.6%) less computation time than the TLS 1.3 KDDD instance
(when intermediate CA certificates are included). While this had only a
minor effect on our experiments, which ran on a powerful server, this may
be more consequential for embedded or battery-operated devices that have
less powerful CPUs. It may also have a measurable impact on the maximum
number of connections that a server can handle, but our experiment was not
set up to measure this. This remains an avenue for future work.

.. No handshake signatures

As we have already mentioned, KEMTLS only requires signature verification for
both unilaterally authenticated and mutually authenticated handshakes. As a
result, KEMTLS servers no longer need efficient and secure implementations of
signing, a routine that has been the target of various side-channel attacks [35,
80, 156, 196, 359]. When client authentication is used, the same goes for clients;
otherwise, the effect is reduced because clients still need code to verify signa-
tures in certificates. However, this code does not deal with any secret data and
thus does not need side-channel protection. Reducing the amount of (trusted)
code is particularly attractive for embedded devices, which typically have tight
constraints on code size and are often exposed to a variety of side-channel
attacks. As embedded devices may be more likely to use mutual authentica-
tion than web browsing, being able to reuse the KEM implementation for
both ephemeral key exchange and client authentication instead of requiring
additional signature generation code can be very beneficial. If raw public keys
are used, as specified in RFC 7250, signature verification code can even be
omitted entirely [358]. We further discuss the performance of KEMTLS and the
size of the trusted code base in chapter 16.

Requirements for post-quantum signatures

The signatures on the certificates are only generated in the more confined
secure environment of certificate authorities. This means that KEMTLS also
enables using signature algorithms thatmay not be suitable for all deployments.
Notably, stateful hash-based signatures are very sensitive to how the state is
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managed, but this may be doable when implemented in hardware security
modules employed by CAs. As mentioned before, in KEMTLS we can also use
Falcon for the certificate signatures while avoiding its signing algorithm in the
server and client, without requiring implementations of three algorithms like
in the TLS 1.3 KDFF instance (an algorithm for key exchange, for signing and
verification in the handshake and for signature verification of certificates).

Going further, many post-quantum signature schemes can tweak param-
eters to make different trade-offs between signature size, signing speed, public-
key size, and verification speed. One common direction to optimize for is
signing speed, or more precisely signing latency reported as the number of
clock cycles for a single signature. The common motivation for this optimiza-
tion is the use of online signatures in handshake protocols like the one used in
TLS 1.3 (and earlier versions) or the SIGMA handshake approach [216] used,
for example, in the Internet key-exchange protocol (IKE) [208].

In KEMTLS, signatures are only needed for certificates and thus computed
offline. This eliminates the requirement for low-latency signing; what remains
important (depending to some extent on certificate-caching strategies) is
signature size, public-key size, verification latency, and—at least for certificate
authorities—signing throughput. However, throughput can easily be achieved
for any signature scheme by signing the root of an XMSS or LMS tree and
using the leaves of that tree to sign a batch of messages. This for example
discussed in [250, Sec. 6]; we also referred to this in section 11.6.

. Conclusion

KEMTLS offers attractive reductions in handshake size while also reducing
computational requirements. In some instantiations, KEMTLS can allow a
handshake to remain below the initcwnd limit, and thus avoid an additional
round-trip due to the TCP Slow Start algorithm. Otherwise, performance was
usually only slightly faster than equivalent TLS 1.3 instantiations using Kyber,
Dilithium, and Falcon in our experiments. KEMTLS also allows reducing the
trusted code base and picking signature algorithms that have implementa-
tion or deployment considerations on TLS servers and clients. This can for
example be used to achieve small-code-size implementations of mutually au-
thenticated KEMTLS that use Kyber and Falcon, which only require protected
implementations for Kyber.
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 Performance of KEMTLS-PDK

In this chapter, we examine the performance of post-quantum KEMTLS-PDK.
Specifically, we first look at how it can be instantiated and the sizes of these
instantiations. Then, we show the performance of the instantiations of KEMTLS-

PDK handshakes when run over a high-bandwidth, low-latency network, and
a low-bandwidth, high-latency network. We do this for NIST PQC secu-
rity levels I, III, and V, and for both unilaterally and mutually authenticated
handshakes.

KEMTLS-PDK avoids transmission of the server’s certificates, so for a fair
comparison we compare to a variant of TLS 1.3 in which we allow the client
to cache the server’s certificate. We denote this variant by cTLS. We will also
compare the performance against the results obtained for KEMTLS, previously
discussed in chapter 13.

For a description of how we implemented KEMTLS-PDK, please refer back
to section 10.5. The implementation of the caching mechanism is discussed
in section 10.2.4. The design of the emulated network environment and our
choice of parameters are motivated in section 10.10.

As in previous chapters, we are only comparing the sizes and performance
characteristics of the schemes used to instantiate KEMTLS-PDK in this chapter.
It can be argued that this compares apples to oranges: different security
assumptions both affect the size and performance, but also have different
levels of confidence associated with them. However, these comparisons are
still useful to estimate the cost of choosing different assumptions based on
such considerations.

. Instantiations

As we did for the experiments in chapters 11 and 13, we base our main selection
of algorithms on the NIST PQC standardization project.

In each instantiation, we select:
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1. an algorithm for ephemeral key exchange, negotiated by the KEMTLS

client and server, and;

2. an algorithm for handshake authentication, used in the server certificate.
This algorithm is a KEM for KEMTLS-PDK and a signature scheme in
cTLS experiments.

For KEMTLS-PDK handshakes that use mutual authentication, we additionally
select:

3. an algorithm for client authentication, used in the client certificate, and;

4. an algorithm for authentication of the client’s certificate by a CA certifi-
cate, which is assumed to be preinstalled.

Note that we do not select algorithms for signatures by CAs on server
certificates: as those are assumed to be already available, we can assume that
the certificate has been verified on installation.

In our experiments, we try to showcase how the different algorithms in the
NIST PQC standardization project perform, like in previous chapters. We
will use the following scenarios:

Primary In this scenario we use Kyber [319], the only KEMwhich was selected
for standardization for post-quantum key exchange. We use Kyber for
both the ephemeral key exchange and in KEMTLS-PDK for handshake
authentication. In cTLS and for authentication of KEMTLS-PDK client
certificates, we use Dilithium [241], the algorithm which was named
the primary algorithm for post-quantum signatures when selected for
standardization, for the signature in the handshake.

HQC This instantiation uses HQC [3], a round-4 KEM candidate in the NIST
PQC standardization project, for ephemeral key exchange and hand-
shake authentication. HQC relies on assumptions based on decoding
of quasi-cyclic codes, instead of on assumptions on lattices. In cTLS and
for authentication of KEMTLS-PDK client certificates, we use Dilithium
signatures.

McEliece In this scenario, we minimize the size of the KEMTLS-PDK handshake
by using the Classic McEliece algorithm [7] for handshake authentica-
tion. Classic McEliece has a very large public key, but the ciphertext,
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14.2 Instantiation and results at NIST level I

the only thing we transmit for handshake authentication in KEMTLS-PDK,
is very small. McEliece’s public key is too large for transmission in the
ClientHello message, so for the ephemeral key exchange we again use
Kyber. To further minimize the size of this handshake and to compare
to minimized cTLS handshakes, we use Falcon [293] as the signature
scheme for the client certificate CA signature and in the signatures in
cTLS.

BIKE [17], the remaining round-4 candidate in the NIST PQC standardiza-
tion project, does not have an IND-CCA secure parameter set. Consequently,
it cannot be securely used in KEMTLS or cTLS.

Note that for presentation purposes, we will refer to these scenarios in our
tables and figures by handles, which are composed of the first letters of each of
the selected algorithms. We separate the algorithms used for client authentica-
tion from the ephemeral key exchange and server authentication algorithms
using a hyphen. For example, the instantiation using Kyber for ephemeral
key exchange and server authentication, Kyber for client authentication, and
Dilithium for the CA signature is denoted KK-KD. For an overview of these
handles, refer to the tables that show the communication sizes, e.g. table 14.1.

Recall that in our design of KEMTLS-PDK, we assume that there are many
more clients than servers. Therefore, for mutually authenticated handshakes,
we submit the client’s certificate to the KEMTLS-PDK server and do not require
the server to store all client public keys.

. Instantiation and results at NIST level I

In this section, we measure and compare the performance of KEMTLS-PDK

with cTLS instantiated with post-quantum primitives at NIST PQC security
level I. The level I parameter sets of KEMs and signature schemes are the
smallest and generally the most performant. We discuss both unilaterally and
mutually authenticated handshakes.

Communication requirements

In table 14.1 we show which algorithms are used for key exchange and server
authentication. We also show which algorithms are used to achieve mutually
authenticated handshakes: specifically the client authentication and client
authentication CA certificate algorithms. We also show how much the client
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and mutually authenticating server need to store for the instantiation.

Table 14.1: Instantiations of unilaterally and mutually authenticated KEMTLS-

PDK and cached-TLS 1.3 (cTLS) at NIST security level I with the
sizes of public-key cryptography elements in bytes.

Unilateral authentication Mutual authentication Cached data

Experiment
handle

Key
exchange

Server
authentication

Sum Client
auth.

Certificate
signature

Sum Server
public key

Client auth.
CA pk

K
E
M
T
L
S
-P
D
K

Primary Kyber-512 Kyber-512 Kyber-512 Dilithium2 Kyber-512 Dilithium2
KK(-KD) 1568 ct 768 2 336 pk+ct 1568 2420 6 324 800 1312

Falcon Kyber-512 Kyber-512 Kyber-512 Falcon-512 Kyber-512 Falcon-512
KK(-KF) 1568 ct 768 2 336 pk+ct 1568 666 4 570 800 897

HQC HQC-128 HQC-128 HQC-128 Dilithium2 HQC-128 Dilithium2
HH(-HD) 6730 ct 4481 11 211 pk+ct 6730 2420 20 361 2249 1312

McEliece Kyber-512 McEliece348864 Kyber-512 Falcon-512 McEl.348864 Falcon-512
KM(-KF) 1568 ct 96 1 664 pk+ct 1568 666 3 898 261 120 897

cT
L
S

Primary Kyber-512 Dilithium2 Dilithium2 Dilithium2 Dilithium2 Dilithium2
KD(-DD) 1568 sig 2420 3 988 pk+sig 3732 2420 10 140 1312 1312

Falcon Kyber-512 Falcon-512 Falcon-512 Falcon-512 Falcon-512 Falcon-512
KF(-FF) 1568 sig 666 2 234 pk+sig 1563 666 4 463 897 897

HQC HQC-128 Dilithium2 Dilithium2 Dilithium2 Dilithium2 Dilithium2
HD(-DD) 6730 sig 2420 9 150 pk+sig 3732 2420 15 302 1312 1312

pk: certificate public key ct: authentication ciphertext sig: handshake signature

In general, this table shows that KEMTLS-PDK is much more efficient than
cTLS when instantiated with Kyber-512 and Dilithium2. The KK instance,
which does not use mutual authentication, is 1652 bytes (70.7%) smaller than
the Kyber-512 and Dilithium2-based KD instantiation. This is exactly the
difference in size between a Kyber-512 ciphertext and a Dilithium2 signature.
Using ClassicMcEliece 348864 for authentication of the server further reduces
the size of the handshake. As a Falcon-512 signature is smaller than a Kyber-
512 ciphertext, that instantiation is smaller than all but the KM(-KF) KEMTLS

instantiation; however, as we will see in the next paragraph, Kyber-512 is more
computationally efficient. Finally, as we have seen in our experiments with
TLS 1.3 and KEMTLS in chapters 11 and 13, HQC-128’s performance is hampered
by the large size of its public key and ciphertext.

Computational requirements

In table 14.2, we show the computational requirements of the instantiations of
KEMTLS-PDK and cTLS. We show the total time needed for asymmetric cryp-
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14.2 Instantiation and results at NIST level I

Table 14.2: Computation time inms for asymmetric cryptography at NIST
level I for each of the unilaterally and mutually authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) instantiations at the client
and server.

Handle
Unilateral auth. Mutual auth.

Client Server Both Client Server Both

P
D
K

KK(-KD) 0.064 0.044 0.108 0.082 0.134 0.216
KK-KF 0.082 0.211 0.293
HH(-HD) 0.472 0.406 0.878 0.739 0.609 1.348
KM(-KF) 0.064 0.075 0.139 0.082 0.242 0.324

cT
L
S KD(-DD) 0.102 0.204 0.306 0.280 0.332 0.612

KF(-FF) 0.179 0.668 0.847 0.821 0.950 1.771
HD(-DD) 0.397 0.317 0.714 0.575 0.445 1.020

tographic operations by the client and the server. In KEMTLS-PDK, the client
generates a KEM public key and decapsulates a ciphertext for the ephemeral
key exchange. It also encapsulates a ciphertext to the server’s long-term KEM
public key. The server performs the encapsulation in the ephemeral key ex-
change and decapsulates the ciphertext encapsulated to its long-term public
key. If using mutual authentication, the client additionally decapsulates the
ciphertext which the server additionally encapsulates to the client’s long-term
public key. Note that there is only one aspect in which KEMTLS-PDK and cTLS

differ from KEMTLS and TLS 1.3: in KEMTLS-PDK and cTLS, the clients do not
need to verify the CA signatures on the certificates. This is because we assume
that they have been verified when they were cached by the client.

Using KEMTLS-PDK thus does not avoid much computation compared to
KEMTLS, but avoiding signatures in the KEMTLS-PDK handshake does save com-
putation time compared to cTLS when using any algorithm but the compara-
tively slow HQC-128: In the KK instantiation, the server requires 0.160ms
(363.6%) more for computation in the Kyber-512 plus Dilithium2 KD experi-
ment. Although Classic McEliece 348864 has a very large public key, its raw
encapsulation and decapsulation operations are very efficient: KD is 0.167ms
(120.1%) slower than KM.
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Table 14.3: Average handshake times in ms for unilaterally authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) experiments at NIST level I.
Server and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK 62.8 93.9 31.9 394.6 590.6 197.4
HH 63.5 94.6 32.5 398.4 594.4 198.1P

D
K

KM 65.9 97.0 35.0 397.1 593.1 200.4

cT
L
S KD 63.6 94.7 32.7 396.5 592.5 200.0

KF 64.6 95.7 33.7 396.5 592.5 199.9
HD 63.6 94.7 32.7 396.4 592.4 199.9

Table 14.4: Average handshake times inms formutually authenticated KEMTLS-

PDK and cached-TLS 1.3 (cTLS) experiments at NIST level I. Server
and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK-KD 63.2 94.4 32.3 398.4 594.4 200.4
KK-KF 63.3 94.5 32.4 397.0 593.0 199.0
HH-HD 65.0 96.1 34.1 417.2 617.4 210.3P

D
K

KM-KF 66.4 97.6 35.5 399.6 595.7 201.7

cT
L
S KD-DD 64.2 95.8 33.7 399.3 615.5 221.1

KF-FF 66.0 97.8 35.8 397.8 596.8 204.3
HD-DD 64.2 95.8 33.7 399.5 616.3 221.8
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Handshake performance

In tables 14.3 and 14.4, we show the average time that elapsed from the initi-
ation of the connection until the moment that the client can send a request
and when the client received a response from the server. For the server, we
additionally show the time from receiving the ClientHello message to the
completion of the handshake (receiving ClientFinished). We again show
these handshake times a 30.9ms low RTT, 1000Mbps high-bandwidth net-
work and a 195.5ms high RTT, 10Mbps low-bandwidth network.

Table 14.3 shows the results for unilaterally authenticated handshakes, while
table 14.14 shows the results formutually authenticated handshakes. The times
for the different experiments are very similar. This is not surprising as even
though relatively there are significant differences in computation time, these
are not very significant compared to the handshake latency. The KEMTLS-PDK

instances complete the handshake in a very similar time to the cTLS equivalents.
Surprisingly, the KM instantiation that uses Classic McEliece 348864 requires
slightly more time than the KK instantiation that uses only Kyber; while based
on the benchmarks of the cryptographic operations, as we’ve discussed for
table 14.2, and based on the smaller handshake size Classic McEliece should
be faster. This may be due to the large public key hurting performance when
it is loaded in and out of caches in our larger benchmark.1

When using mutual authentication, shown in table 14.4, the large size of
the HH-HD experiment slows it down compared to all other experiments.
It requires 23.0ms (3.9%) more than the KK-KD KEMTLS-PDK experiment.
cTLS equivalent HD-DD requires 1.1ms (0.2%) less time. Otherwise, we see
that the small size of, for example, the KK-KD experiment results in a minor
performance improvement: the client receives the response 1.4ms (1.5%)
faster on average compared to KD-DD on the fast network.

Comparison to KEMTLS

Compared to KEMTLS, KEMTLS-PDK avoids the transmission of the server’s
public key and the certificate chain. For example, using the KEMTLS-PDK KK
instantiation saves 3220 bytes (58.0%) compared to the KKDD KEMTLS in-
stantiation that uses Dilithium2 and is 1466 bytes (38.6%) smaller than the

1As an anecdotal example of benchmarks not reporting real-world performance,
Google removed the assembly implementation of NTRU-HRSS [186] from Bor-
ingSSL in favor of the reference code, reporting that the larger AVX2 code negatively
affected cache pressure [234].
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Table 14.5: Comparison of handshake size and time until the client receives
a response from the server (30.9ms, 1000Mbps), between post-
quantum KEMTLS and KEMTLS-PDK instances at NIST level I.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

un
ila

te
ra

la
ut

he
nt

ic
at
io
n KEMTLS KKDD 5 556 −58.0% 9 288 −74.8% 94.4 −0.5% 94.8 −0.9%

KEMTLS-PDK KK 2 336 2 336 93.9 93.9

KEMTLS KKFF 3 802 −38.6% 5 365 −56.5% 94.5 −0.6% 94.9 −1.1%
KEMTLS-PDK KK 2 336 2 336 93.9 93.9

KEMTLS KKFF 3 802 −56.2% 5 365 −69.0% 94.5 +2.7% 94.9 +2.2%
KEMTLS-PDK KM 1 664 1 664 97.0 97.0

KEMTLS HHDD 15 880 −29.4% 19 612 −42.8% 95.6 −1.0% 95.9 −1.3%
KEMTLS-PDK HH 11 211 11 211 94.6 94.6

m
ut

ua
la

ut
he

nt
ic
at
io
n KEMTLS KKDD-KD 9 544 −33.7% 13 276 −52.4% 126.0 −25.1% 126.4 −25.3%

KEMTLS-PDK KK-KD 6 324 6 324 94.4 94.4

KEMTLS KKFF-KF 6 036 −24.3% 7 599 −39.9% 126.0 −25.0% 126.4 −25.3%
KEMTLS-PDK KK-KF 4 570 4 570 94.5 94.5

KEMTLS KKFF-KF 6 036 −35.4% 7 599 −48.7% 126.0 −22.5% 126.4 −22.8%
KEMTLS-PDK KM-KF 3 898 3 898 97.6 97.6

KEMTLS HHDD-HD 25 030 −18.7% 28 762 −29.2% 128.2 −25.0% 128.6 −25.2%
KEMTLS-PDK HH-HD 20 361 20 361 96.1 96.1

smallest instantiation of KEMTLS that uses Falcon-512 when omitting interme-
diate CA certificates in both experiments. If they are included, we save even
more data. The smaller size of the handshake and the small reduction in nec-
essary computations also results in a minor reduction in handshake times for
unilaterally authenticated handshakes. We further compare KEMTLS-PDK with
similar KEMTLS handshakes, the latter both with and without intermediate CA
certificates, in table 14.5.

When compared tomutually authenticated KEMTLS, KEMTLS-PDK has amuch
faster handshake: KEMTLS requires a full additional round-trip to transmit
the client certificate.2 The KEMTLS KK-KD handshake takes 31.6ms (33.5%)

2As discussed in section 5.5, KEMTLS cannot send the client certificate earlier, because
then it cannot be transmitted securely; in KEMTLS-PDK, we can encrypt the client
certificate using the key encapsulated to the server’s long-term key in the Client-
Hello message.
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longer than the KEMTLS KKDD-KD handshake before the client receives a
response from the server.

. Instantiation and results at NIST level III

Next, we show how KEMTLS-PDK can be instantiated using primitives at NIST
PQC security level III and how this affects the size of the handshake and the
performance. We compare KEMTLS to cached-TLS 1.3 (cTLS) instantiations
using similar primitives. Security level III is comparable to AES-192 in terms
of security and the security level that is recommended by the authors of Kyber
and Dilithium for general use [121, 228].

Table 14.6: Instantiations of unilaterally and mutually authenticated KEMTLS-

PDK and cached-TLS 1.3 (cTLS) at NIST security level III with the
sizes of public-key cryptography elements in bytes.

Unilateral authentication Mutual authentication Cached data

Experiment
handle

Key
exchange

Server
authentication

Sum Client
auth.

Certificate
signature

Sum Server
public key

Client auth.
CA pk

K
E
M
T
L
S
-P
D
K

Primary Kyber-768 Kyber-768 Kyber-768 Dilithium3 Kyber-768 Dilithium3
KK(-KD) 2272 ct 1088 3 360 pk+ct 2272 3293 8 925 1184 1952

Falcon Kyber-768 Kyber-768 Kyber-768 Falcon-1024 Kyber-768 Falcon-1024
KK(-KF) 2272 ct 1088 3 360 pk+ct 2272 1280 6 912 1184 1793

HQC HQC-192 HQC-192 HQC-192 Dilithium3 HQC-192 Dilithium3
HH(-HD) 13 548 ct 9026 22 574 pk+ct 13 548 3293 39 415 4522 1952

McEliece Kyber-768 McEliece460896 Kyber-768 Falcon-1024 McEl.460896 Falcon-1024
KM(-KF) 2272 ct 156 2 428 pk+ct 2272 1280 5 980 524 160 1793

cT
L
S

Primary Kyber-768 Dilithium3 Dilithium3 Dilithium3 Dilithium3 Dilithium3
KD(-DD) 2272 sig 3293 5 565 pk+sig 5245 3293 14 103 1952 1952

Falcon Kyber-768 Falcon-1024 Falcon-1024 Falcon-1024 Falcon-1024 Falcon-1024
KF(-FF) 2272 sig 1280 3 552 pk+sig 3073 1280 7 905 1793 1793

HQC HQC-192 Dilithium3 Dilithium3 Dilithium3 Dilithium3 Dilithium3
HD(-DD) 13 548 sig 3293 16 841 pk+sig 5245 3293 25 379 1952 1952

pk: certificate public key ct: authentication ciphertext sig: handshake signature

Communication requirements

Table 14.6 shows how many bytes we need to transmit the public keys, cipher-
texts, and signatures when instantiating KEMTLS-PDK and cTLS handshakes
using the listed NIST security level III algorithms. As we have previously seen
in the experiments with post-quantum TLS 1.3 and KEMTLS in sections 11.3
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and 13.3, the lack of a Falcon parameter set with security level III makes the
KF cTLS instantiations larger than the Kyber-768-based KEMTLS-PDK instan-
tiations. KF is a significant 1124 bytes (46.3%) larger than the instantiation
that uses Classic McEliece 460896; though this comes at the significant cost
of the KM client having to store 524 160 bytes. In mutually authenticated
handshakes, however, KEMTLS-PDK still transmits full client certificates, and
the large size of Dilithium3 pushes the KK-KD instance over the size of the
KF-FF experiment. If Falcon-1024 can be used in the client authentication
CA certificate, the size of the handshake can be reduced further.

Table 14.7: Computation time in ms for asymmetric cryptography at NIST
level III for each of the unilaterally and mutually authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) instantiations at the client
and server.

Handle
Unilateral auth. Mutual auth.

Client Server Both Client Server Both

P
D
K

KK(-KD) 0.068 0.046 0.114 0.087 0.154 0.241
KK-KF 0.087 0.245 0.332
HH(-HD) 1.488 1.257 2.745 2.285 1.798 4.083
KM(-KF) 0.078 0.122 0.200 0.097 0.321 0.418

cT
L
S KD(-DD) 0.122 0.830 0.952 0.925 0.992 1.917

KF(-FF) 0.213 0.813 1.026 0.999 1.157 2.156
HD(-DD) 1.109 1.263 2.372 1.912 1.425 3.337

Computational requirements

The time that is required for the asymmetric cryptography computations in
our experiments is listed in table 14.7. Unlike the level I instantiations, the
KM(-KF) instantiations now require slightly more time for computation than
the KK(-KD) experiments.

Handshake performance

Table 14.8 shows the time until certain events in the handshakes for unilater-
ally authenticated KEMTLS-PDK and cTLS when ran over low-latency, high-
bandwidth connections and when ran over high-latency, low-bandwidth con-
nections. The Kyber-768 KEMTLS-PDK instantiation KK performs the best of
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Table 14.8: Average handshake times in ms for unilaterally authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) experiments at NIST
level III. Server and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK 62.8 93.9 31.9 394.9 591.0 197.4
HH 64.4 95.5 33.4 412.9 614.1 204.0P

D
K

KM 69.2 100.3 38.3 400.6 596.7 203.6

cT
L
S KD 64.0 95.1 33.0 397.7 593.7 201.2

KF 66.1 97.2 35.1 398.4 594.4 201.9
HD 64.0 95.1 33.0 397.7 593.7 201.2

Table 14.9: Average handshake times inms formutually authenticated KEMTLS-

PDK and cached-TLS 1.3 (cTLS) experiments at NIST level III.
Server and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK-KD 63.4 94.6 32.5 403.3 600.1 203.0
KK-KF 63.7 94.9 32.8 398.9 594.9 200.8
HH-HD 96.6 127.8 65.6 808.7 1042.7 455.5P

D
K

KM-KF 70.1 101.2 39.1 409.0 607.1 207.3

cT
L
S KD-DD 64.7 96.5 34.5 419.7 670.7 259.4

KF-FF 68.7 101.1 39.1 400.9 602.5 210.0
HD-DD 64.8 96.6 34.5 420.2 671.9 260.4
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all handshakes, although by a small margin. Surprisingly, the client waits
6.4ms (6.8%) longer before it receives the response from the server in KM
than in KK, which is not explained by either computation time (based on
benchmarks of the primitives) or the transmission size, which is lower in KM
than in KD. This suggests that loading the Classic McEliece 460896 public
key, which is very large, affects this handshake’s real-world performance. On
the low-bandwidth network, the large size of the HQC-192 HH handshake
results in a slowdown: it takes 3.8ms (0.6%) longer than the KK handshake
on this network.

In the mutually authenticated handshakes, as shown in table 14.9, the HH-
HD instantiation is the slowest. It needs an additional round-trip due to
the large size of the HQC-192 public keys and ciphertexts, which exceed the
initcwnd size of the TCP Slow Start algorithm [66]. On the low-bandwidth
connection, this is exacerbated by the slow speed of the connection: HH-HD
requires 442.6ms (73.8%) longer than KK-KD before the client receives the
response from the server.

Comparison to KEMTLS

In table 14.10, we compare the level III instantiations of KEMTLS-PDK against
similar KEMTLS instantiations. As the sizes of the post-quantum signature
schemes’ public keys and signatures are larger in level III, the absolute re-
duction in handshake size is larger than we saw in the comparison for level I
in table 14.5. Relatively, we see that the reductions in size are similar. Finally,
that difference in handshake times between KEMTLS and KEMTLS-PDK is slightly
larger for unilaterally authenticated handshakes than we saw in the level I
experiments.
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Table 14.10: Comparison of handshake size and time until the client receives
a response from the server (30.9ms, 1000Mbps), between post-
quantum KEMTLS and KEMTLS-PDK instances at NIST level III.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

un
ila

te
ra

la
ut

he
nt

ic
at
io
n KEMTLS KKDD 7 837 −57.1% 13 082 −74.3% 94.6 −0.7% 95.1 −1.2%

KEMTLS-PDK KK 3 360 3 360 93.9 93.9

KEMTLS KKFF 5 824 −42.3% 8 897 −62.2% 94.8 −1.0% 95.6 −1.8%
KEMTLS-PDK KK 3 360 3 360 93.9 93.9

KEMTLS KKFF 5 824 −58.3% 8 897 −72.7% 94.8 +5.8% 95.6 +4.9%
KEMTLS-PDK KM 2 428 2 428 100.3 100.3

KEMTLS HHDD 30 389 −25.7% 35 634 −36.7% 97.1 −1.6% 97.6 −2.1%
KEMTLS-PDK HH 22 574 22 574 95.5 95.5

m
ut

ua
la

ut
he

nt
ic
at
io
n KEMTLS KKDD-KD 13 402 −33.4% 18 647 −52.1% 126.4 −25.2% 126.8 −25.4%

KEMTLS-PDK KK-KD 8 925 8 925 94.6 94.6

KEMTLS KKFF-KF 9 376 −26.3% 12 449 −44.5% 126.5 −25.0% 127.2 −25.4%
KEMTLS-PDK KK-KF 6 912 6 912 94.9 94.9

KEMTLS KKFF-KF 9 376 −36.2% 12 449 −52.0% 126.5 −20.0% 127.2 −20.4%
KEMTLS-PDK KM-KF 5 980 5 980 101.2 101.2

KEMTLS HHDD-HD 47 230 −16.5% 52 475 −24.9% 160.6 −20.5% 191.9 −33.4%
KEMTLS-PDK HH-HD 39 415 39 415 127.8 127.8

. Instantiation and results at NIST level V

In this section, we examine the performance and characteristics of KEMTLS-

PDK when instantiated at NIST PQC security level V. The United States Na-
tional Security Agency (NSA)’s Commercial National Security Algorithm
Suite 2.0 [271] requires level V, and it is recommended by French national
cybersecurity agency agence nationale de la sécurité des systèmes d’informa-
tion (ANSSI) [14]. Level V instantiations of the post-quantum primitives are
generally the slowest-running and largest, and will thus affect the performance
of KEMTLS-PDK the most.

Communication requirements

Table 14.11 lists the algorithms which are used to instantiate KEMTLS-PDK

and cTLS at NIST security level V. It also shows the sizes of the public keys,
ciphertexts, and signatures that need to be transmitted. We also show how
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Table 14.11: Instantiations of unilaterally and mutually authenticated KEMTLS-

PDK and cached-TLS 1.3 (cTLS) at NIST security level V with the
sizes of public-key cryptography elements in bytes.

Unilateral authentication Mutual authentication Cached data

Experiment
handle

Key
exchange

Server
authentication

Sum Client
auth.

Certificate
signature

Sum Server
public key

Client auth.
CA pk

K
E
M
T
L
S
-P
D
K

Primary Kyber-1024 Kyber-1024 Kyber-1024 Dilithium5 Kyber-1024 Dilithium5
KK(-KD) 3136 ct 1568 4 704 pk+ct 3136 4595 12 435 1568 2592

Falcon Kyber-1024 Kyber-1024 Kyber-1024 Falcon-1024 Kyber-1024 Falcon-1024
KK(-KF) 3136 ct 1568 4 704 pk+ct 3136 1280 9 120 1568 1793

HQC HQC-256 HQC-256 HQC-256 Dilithium5 HQC-256 Dilithium5
HH(-HD) 21 714 ct 14 469 36 183 pk+ct 21 714 4595 62 492 7245 2592

McEliece Kyber-1024 McEliece6688128 Kyber-1024 Falcon-1024 McEl.6688128 Falcon-1024
KM(-KF) 3136 ct 208 3 344 pk+ct 3136 1280 7 760 1 044 992 1793

cT
L
S

Primary Kyber-1024 Dilithium5 Dilithium5 Dilithium5 Dilithium5 Dilithium5
KD(-DD) 3136 sig 4595 7 731 pk+sig 7187 4595 19 513 2592 2592

Falcon Kyber-1024 Falcon-1024 Falcon-1024 Falcon-1024 Falcon-1024 Falcon-1024
KF(-FF) 3136 sig 1280 4 416 pk+sig 3073 1280 8 769 1793 1793

HQC HQC-256 Dilithium5 Dilithium5 Dilithium5 Dilithium5 Dilithium5
HD(-DD) 21 714 sig 4595 26 309 pk+sig 7187 4595 38 091 2592 2592

pk: certificate public key ct: authentication ciphertext sig: handshake signature

much data needs to be stored by the client and the server for the public keys
that we assume to be pre-distributed or cached. For security level V, thismeans
that using Classic McEliece 6688128 in KM(-KF) requires storing 1 044 992
bytes on the client’s side. While this is a very large amount of data for, for
example, embedded platforms, the KMhandshake is also the smallest in terms
of bytes that need to be transmitted. Thus, if network environments are very
constrained, it may still be an attractive option. Using HQC-256, on the other
hand, requires transmission of so much data that using HH seems impractical
compared to Kyber-1024.

Computational requirements

How much time the KEMTLS-PDK and cTLS instantiations require for the asym-
metric cryptography operations encapsulate, decapsulate, signing, and ver-
ification is shown in table 14.12. All KEMTLS-PDK instantiations but the one
using HQC-256 require much less computation than the cTLS instantiations:
the most efficient KEMTLS-PDK instantiation, KK, the server requires 0.553ms
(691.2%) less computation time than the cTLSKD instantiationwith the lowest
computational requirements.

294



14.4 Instantiation and results at NIST level V

Table 14.12: Computation time inms for asymmetric cryptography at NIST
level V for each of the unilaterally and mutually authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) instantiations at the client
and server.

Handle
Unilateral auth. Mutual auth.

Client Server Both Client Server Both

P
D
K

KK(-KD) 0.120 0.080 0.200 0.156 0.285 0.441
KK-KF 0.156 0.296 0.452
HH(-HD) 2.059 1.730 3.789 3.161 2.519 5.680
KM(-KF) 0.138 0.160 0.298 0.174 0.376 0.550

cT
L
S KD(-DD) 0.237 0.633 0.870 0.826 0.955 1.781

KF(-FF) 0.248 0.830 1.078 1.034 1.174 2.208
HD(-DD) 1.592 1.217 2.809 2.181 1.539 3.720

Table 14.13: Average handshake times in ms for unilaterally authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) experiments at NIST
level V. Server and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK 62.9 94.0 31.9 395.4 591.4 197.4
HH 96.7 127.9 34.8 885.5 1081.6 200.4P

D
K

KM 75.6 106.7 44.6 407.0 603.1 209.9

cT
L
S KD 64.3 95.4 33.3 399.3 595.3 202.7

KF 66.1 97.3 35.2 398.5 594.5 202.0
HD 64.3 95.4 33.3 399.2 595.2 202.7
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Table 14.14: Average handshake times in ms for mutually authenticated
KEMTLS-PDK and cached-TLS 1.3 (cTLS) experiments at NIST
level V. Server and client timers are independent.

30.9ms RTT, 1000Mbps 195.5ms RTT, 10Mbps

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

KK-KD 63.7 94.8 32.7 407.0 605.0 206.6
KK-KF 63.8 95.0 32.9 401.4 597.6 202.1
HH-HD 133.0 164.2 71.1 1102.0 1371.7 521.6P

D
K

KM-KF 76.8 107.9 45.8 419.1 618.5 214.9

cT
L
S KD-DD 65.2 97.3 35.2 455.1 732.6 289.5

KF-FF 68.7 101.1 39.0 401.0 602.7 210.2
HD-DD 65.1 97.2 35.1 455.2 733.0 289.8

Handshake performance

The performance of unilaterally authenticated KEMTLS-PDK and cTLS hand-
shakes is shown in table 14.13. We show the times until the client can send a
request, receives the response, and the time that the server spends in the hand-
shake, both on a low-latency, high-bandwidth network and a high-latency,
low-bandwidth network. The KEMTLS-PDK KK handshake is the most perfor-
mant; the similar KD cTLS instantiation requires 1.4ms (1.5%) more time
before the client receives the response from the server. As in the level III exper-
iments, the large size of the HQC-256 public key and ciphertext results in poor
handshake performance: HH requires an additional round-trip as the server’s
handshake traffic exceeds the initcwnd size. On the 10Mbps low-bandwidth
network, the size leads to further slowdown: HH is 490.2ms (82.9%) slower
than KK. The Classic McEliece6688128-based KM KEMTLS-PDK handshake
is the smallest handshake, but like we have seen in the experiments at the
lower security levels its performance appears to be held back by the very large
public key having to be loaded in and out of memory; even though this is not
reflected by the benchmark results in table 14.12.

The performance of mutually authenticated handshakes is shown in ta-
ble 14.14. The performance on the high-bandwidth, low-latency network is
very close to the unilaterally authenticated handshakes, again except for the
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14.4 Instantiation and results at NIST level V

HQC-256 HH-HD experiment. Transmitting another HQC-256 public key
and ciphertext compared to the unilaterally authenticated HH KEMTLS-PDK

instantiation results in further slowdowns: the HH-HD experiment is 69.3ms
(73.1%) slower than the Kyber-1024 based KK-KD handshake.

Table 14.15: Comparison of handshake size and time until the client receives
a response from the server (30.9ms, 1000Mbps), between post-
quantum KEMTLS and KEMTLS-PDK instances at NIST level V.

Experiment Handshake size (bytes) Time until response (ms)

No
int. 𝛥% With

int. 𝛥% No
int. 𝛥%

With
int. 𝛥%

un
ila

te
ra

la
ut

he
nt

ic
at
io
n KEMTLS KKDD 10 867 −56.7% 18 054 −73.9% 94.9 −1.0% 126.3 −25.6%

KEMTLS-PDK KK 4 704 4 704 94.0 94.0

KEMTLS KKFF 7 552 −37.7% 10 625 −55.7% 95.0 −1.1% 95.7 −1.8%
KEMTLS-PDK KK 4 704 4 704 94.0 94.0

KEMTLS KKFF 7 552 −55.7% 10 625 −68.5% 95.0 +12.3% 95.7 +11.5%
KEMTLS-PDK KM 3 344 3 344 106.7 106.7

KEMTLS HHDD 48 023 −24.7% 55 210 −34.5% 130.7 −2.2% 162.1 −21.1%
KEMTLS-PDK HH 36 183 36 183 127.9 127.9

m
ut

ua
la

ut
he

nt
ic
at
io
n KEMTLS KKDD-KD 18 598 −33.1% 25 785 −51.8% 126.7 −25.2% 158.0 −40.0%

KEMTLS-PDK KK-KD 12 435 12 435 94.8 94.8

KEMTLS KKFF-KF 11 968 −23.8% 15 041 −39.4% 126.7 −25.1% 127.4 −25.5%
KEMTLS-PDK KK-KF 9 120 9 120 95.0 95.0

KEMTLS KKFF-KF 11 968 −35.2% 15 041 −48.4% 126.7 −14.8% 127.4 −15.3%
KEMTLS-PDK KM-KF 7 760 7 760 107.9 107.9

KEMTLS HHDD-HD 74 332 −15.9% 81 519 −23.3% 167.4 −2.0% 199.0 −17.5%
KEMTLS-PDK HH-HD 62 492 62 492 164.2 164.2

Comparison to KEMTLS

Table 14.15 compares similar KEMTLS and KEMTLS-PDK handshakes. In all
unilaterally authenticated handshakes but the HH handshake, KEMTLS-PDK

saves over 50% of handshake traffic compared to KEMTLS handshakes that use
intermediate CA certificates. This size reduction can also reduce the number
of round-trips necessary: the KEMTLS KKDD experiment, when including
intermediate CA certificates in the handshake, exceeded the initial congestion
window size and needed another round-trip. Due to this extra round-trip,
KEMTLS requires 32.3ms (34.4%) more time than KEMTLS-PDK until the client
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receives the server’s response.

. Discussion

If it is possible to store the server’s long-term public key, for instance, because
it is part of firmware or bundled in a software library, KEMTLS-PDK can greatly
reduce the bandwidth cost compared to KEMTLS handshakes. It is more ef-
ficient than similar approaches in TLS, such as our cTLS implementation, as
these still rely on larger digital signatures. KEMTLS-PDK has similar benefits
to KEMTLS compared to TLS 1.3, in that the trusted code base of applications
does not need to contain signature generation code. If the client has the server
public key preinstalled, for example in a firmware image, signature verification
code could also be omitted entirely.

.. Using Classic McEliece

As we have previously discussed in section 8.1.2, KEMTLS-PDK allows choosing
algorithms, specifically Classic McEliece, for the server authentication key
exchange that would otherwise not fit in the KEMTLS or TLS 1.3 key exchange.
Not only does this result in the smallest KEMTLS-PDK instantiations, but Classic
McEliece also has the longest history of analysis of any KEM: the scheme
goes back to 1978 [248]. The very large public keys of Classic McEliece do
appear to have a noticeable effect on the handshake latency, and may also
be prohibitive for embedded applications that do not have large amounts of
flash storage. These public keys are also so large, that using Classic McEliece
is only beneficial if the public key never or only rarely needs to be updated;
distributing Classic McEliece public keys for short-term session resumption
likely does not result in net data savings.

.. TLS .’s pre-shared key resumption

Wedid not compare KEMTLS-PDK to TLS session resumption using a symmetric
pre-shared key (for authentication) and DH (or KEMs) for forward secrecy.
The reason is that in this scenario clients need to keep a sensitive secret key
that is shared with the server; we believe this makes KEMTLS-PDK usable in
more scenarios than TLS 1.3 with pre-shared keys. Refer to section 6.2 for
more discussion of KEM public keys versus symmetric keys. For scenarios
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that currently do use TLS 1.3 with symmetric-key resumption, such as web
browsing, quantifying the difference in performance between KEMTLS-PDK

and (KEM)TLS with symmetric key resumption remains an open question.
In chapter 15 we examine the performance of post-quantum TLS 1.3, KEM-

TLS, and KEMTLS-PDK in a more realistic scenario, measuring the handshake
performance between two data centers.

. Conclusions

When the long-term public key of the server can be stored by the client,
KEMTLS-PDK offers savings both in terms of handshake size and handshake
latency. Additionally, KEMTLS-PDK achieves this without having to manage
sensitive symmetric shared secret keys. At the same time, KEMTLS-PDK achieves
the same benefits as KEMTLS, such as the reduced size of the trusted code base
and allowing to pick signature algorithms for the intermediate CA certificates
that have implementation concerns, such as Falcon, without increasing the
amount of code necessary.
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 Measuring the performance of

KEMTLS over the internet

. Introduction

In the previous chapters, we investigated the impact of post-quantum cryp-
tography on TLS 1.3, OPTLS, KEMTLS, and KEMTLS-PDK using an emulated
network setup and a dummy application. In this chapter, we analyze the im-
pact of transitioning to post-quantum cryptography in TLS in a more realistic
setting. We first show how to experiment in production systems, by delegat-
ing trust from existing, CA-issued certificates to not-yet-standardized post-
quantum schemes. We measure TLS 1.3 and KEMTLS-PDK handshakes using
post-quantum algorithms on a real-world system: a distributed network that
is subject to actual internet traffic conditions and spans two continents. We
record the latency of these handshakes and compare them against a baseline
TLS 1.3 handshake, considering both server-only and mutual authentication.
For this experiment, wemodified the Go programming language’s TLS library,
providing another example of how post-quantum TLS and KEMTLS can be
implemented.

Please note that due to the nature of the work in this chapter, which took
place in 2021, results have not been updated to the latest versions of the
referenced schemes. In this chapter, we are using NIST PQC standardization
project round-2 and round-3 parameter sets.

. Delegating trust from existing certificates

There are no theoretical obstacles for transitioning TLS 1.3 to a post-quantum
world: indeed, we described this in chapter 3. In this chapter, we will refer to
the post-quantum instantiation of TLS 1.3 by PQTLS.

In principle, the main hurdle to experimenting with post-quantum al-
gorithms in TLS seems the matter of implementing them. There are, however,
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15 Measuring the performance of KEMTLS over the internet

practical considerations that go further for real-world experiments. CAs must
adapt their software to include post-quantum signatures, and, historically,
the Web PKI and other X.509 PKIs have limited which algorithms can be
used. It could take a long time until new algorithms are widely deployed.
These changes may occur in the future but, for experimentation and rapid
deployment, these issues become limitations.

In this chapter, we use a practical approach to overcome this problem.
Specifically, we rely on a delegation mechanism for handshake authentication.
A delegated credential (DC) is an authenticated credential valid for a short
period (at most 7 days) that can be used to decouple the handshake authenti-
cation algorithm from the authentication algorithms used in the certificate
chain. The DC contains a public key to be used for authentication in the
handshake and, in turn, it is authenticated by the end-entity certificate. This
mechanism allows separating sensitive long-term certificate keys from the
machines that terminate TLS connections, which instead can be issued short-
lived DCs. This is especially useful for globally distributed content-delivery
networks, where the location in which the TLS server is physically located
may not be fully trusted. The document describing this technique, “Delegated
Credentials for TLS and DTLS” [24], was standardized at the IETF in July
2023.

Using delegated credentials comes with other advantages for our experi-
ments. Unlike a regular certificate, a delegated credential is smaller and has
no other extensions, such as revocation lists and certificate statuses, which
makes it a perfect fit for experiments where the size of parameters is important.
Additionally, DCs are generated and validated only in TLS clients and servers,
which reduces the number of codebases or systemswhere we needed to roll out
new algorithms. This is especially relevant when using client authentication.

While the draft specification for DCs states that the DC authentication
algorithm “is expected to be the same as the sender’s CertificateVerify.algo-
rithm”, the draft allows the use of different authentication algorithms than
the algorithm that was used in the server or client certificate. We use this to
our benefit, to perform the first PQTLS and KEMTLS handshakes that have a
CA-issued authentication root. We simply delegate a post-quantum signature
scheme or KEM public key as DC from the “classical” CA-issued certificate.
This allows us to circumvent restrictions posted by CA infrastructure.

We note that if full post-quantum security is required, every link in the
certificate chain needs to use post-quantum secure algorithms. Authentication
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is only as strong as its weakest link, so until every link has post-quantum
security we do not have a fully post-quantum authenticated protocol. This
includes the root CA certificate, as well as any intermediate CA certificates.
We emphasize that the use of DCs in our experiment thus does not grant
post-quantum authentication, but only serves to enable the experiments.

To authenticate a TLS server, a client relies on a chain of certificates: a
root CA certificate, typically followed by at least one intermediate CA cer-
tificate, and then the leaf certificate of the server. Intermediate and server
certificates may be cached, preinstalled, or suppressed, which means that less
data needs to be transmitted during the handshake; but these mechanisms
are not widely deployed. This means that for a full post-quantum TLS 1.3
handshake, peers typically transmit the whole certificate chain (except for the
root CA certificate) and verify all signatures (at least three signatures or other
proofs of authentication). Note that the use of DCs increases the amount of
data transmitted and the number of signature verification operations, as it
adds another step in the authentication chain to the root CA certificate.

. Implementing post-quantumTLS in Go

Go is an open-source, high-level programming language, whose standard
library includes support for the TLS protocol (including TLS 1.3). The way
Go’s standard library is organized allows us to make modifications to its in-
ternals without requiring third-party libraries. Go also has mechanisms to
interact with low-level features of the computer architecture. This is partic-
ularly useful for accessing architecture-specific capabilities, which are only
available through assembly code.

The submissions to the NIST PQC standardization project include (opti-
mized) implementations in C and platform-specific assembly code. We relied
on those implementations for the Rustls-based experiments in chapters 13
and 14 through a wrapper around the liboqs library. The OQS project also
has a wrapper for Go through the cgo programming interface. However, we
can observe performance degradation compared to the native version, due
to the way cgo interacts with native Go code. The CIRCL [141] library pro-
vides AVX2-optimized implementations for several post-quantum algorithms
natively in Go, including SIDH and SIKE [197].1 As part of the work in this

1Although SIDH and SIKE been broken since this experiment was completed [50],
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chapter, we contributed AVX2-optimized implementations of the Dilithium
signature scheme (round-2 parameters) and the Kyber key encapsulation
mechanism to CIRCL. Table 15.1 shows performance timings of cryptograph-
ic operations measured on a 4.2GHz Core i7-8650U processor.

Table 15.1: Average time in ms for performing KEM and signature scheme
operations.

KEM Encapsulate Decapsulate

X25519 0.062 0.032
X448 0.249 0.150
Kyber512 0.016 0.016
SIKEp434 4.020 6.720

Signature Sign Verify

Ed25519 0.028 0.059
Ed448 0.104 0.192
Dilithium3 0.191 0.077
Dilithium4 0.144 0.218

Go provides a clean implementation of TLS 1.3. However, the implemen-
tation is conservative regarding the type of extensions and algorithms that
it supports. Changing the TLS 1.3 implementation to include delegated cre-
dentials and PQTLS required including some extensions and adding certain
algorithm identifiers. It also meant adding a mechanism for generating and
validating delegated credentials, as well as adding the support for the delegated
credentials X.509 extension in generated certificates. We also added support
for the cached information extension [312], which indicates that the client
already has the server’s certificate, and modified it to work with TLS 1.3 for
KEMTLS-PDK.

Integrating KEMTLS and KEMTLS-PDK was more challenging. Doing so re-
quired the interruption of the original TLS 1.3 handshake flow, the order
in which client and server exchange messages, depending on whether the
client is using server-only authentication, or is mutually authenticating. If
the client is using prior knowledge of the server’s certificate and thus using
KEMTLS-PDK, there is yet another sequence of messages. This differs from the
standard TLS 1.3 handshake that follows the same flow of messages regardless
if server-only or mutual authentication is performed. These differences were
an important lesson learned during our implementation as it was often a
source of errors. We did not integrate the KEMTLS-PDK mutual authentica-

the results are indicative of algorithms that sacrifice computation time for reduced
size.
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tion mechanism, as it was not clear when the original work was done how to
securely transmit the client certificate.

. Experimenting over the public internet

We analyze the effects on TLS handshakes connecting over the public internet
when using post-quantum algorithms. We measure the time it takes for a
TLS 1.3 handshake using certificate-based authentication to complete. We
then compare all experiments to this baseline measurement.

.. The network environment

To test and measure TLS connections, we chose a service that operates un-
der common internet conditions and spans different geographical locations.
Drand [338], the target application for our experimentation, is a distributed
randomness beacon written in Go. Linked servers produce publicly-verifiable
random numbers at fixed time intervals. A threshold signature scheme pre-
vents collusion or biasing the generation of numbers. Network nodes com-
municate with one another using the gRPC protocol [244] with TLS authen-
tication. Additionally, public randomness is exposed through an HTTPS
endpoint. Note that we only experiment with the transport encryption; we
do not change the distributed random number generation protocol.

Changes to the Drand code base are minimal, being mostly limited to the
configuration. We needed to provide and configure a certificate with the DC
extension enabled for servers and clients. We also set which protocol will be
initiated (KEMTLS or PQTLS) in the TLS configuration. If KEMTLS-PDK was to
be used, a “regular” KEMTLS handshake is run first, from which information is
cached (the ServerCertificate message), and then the obtained certificate is
used in a fresh KEMTLS-PDK handshake by passing it at the TLS configuration
level. We added configuration options for ease of experimentation: in a more
realistic scenario stating which key exchange and authentication algorithms
are supported should be enough to trigger the appropriate protocol execution.

At runtime, fresh DCs are generated each time that a request arrives. How-
ever, these credentials can be further cached and stored, so they can be reused
between connections. A mechanism that routinely checks the validity of these
credentials can also be implemented. This shows that DCs can be easily im-
plemented and used without needing to constantly modify certificate storage
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or retrieval. It is worth noting that adding DCs increases the number of
signature validations: the certificate chain has to be validated, the DC has to
be validated, and the handshake has to be validated.

.. Experiment setup

We build a Drand cluster with one leader node and three worker peers. These
ran independently in a data center located in Portland, USA. The connections
of each internal node and the external HTTPS interface are configured to
support post-quantum handshake protocols.

ADrand client retrieves randomness from theDrand network. We opted for
locating the client far from the Drand network itself, so it is located in Lisbon,
Portugal. With this setup, our experiment faces the same traffic conditions
found in transatlantic connections.

We choose a combination of cryptographic algorithms for setting up the
following handshake configurations:

TLS . handshake using Ed25519 certificates for authentication (baseline).

TLS .+DC handshake with Ed25519 certificate and delegated credentials
either using Ed25519 or Ed448 algorithms for authentication.

PQTLS handshake with SIKEp434 or Kyber-512 for key exchange, and hybrid
signatures using round-two Dilithium level 3 or level 4, respectively,
paired with Ed25519 and Ed448 for authentication (the authentication
keys are transmitted via DCs).

KEMTLS handshake with SIKEp434 or Kyber-512 for both key exchange and
authentication (the authentication keys are transmitted via DCs).

KEMTLS-PDK handshake using the same configuration as KEMTLS (server
authentication only).

.. Measurements

For each client-to-server connection, we measure the time elapsed until com-
pletion of the TLS handshake, that is until the client can send encrypted
application data, for each different handshake configuration. We also measure
the elapsed time for each flight of the handshake, i.e., the time elapsed that a
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peer (server or client) waits for receiving messages from their counterpart.
We initiate two timers: one for the client (which starts when the ClientHello
message was constructed and sent) and one for the server (which starts when
the ClientHello message is received). Therefore, the first and second flights,
as seen in the tables, do not include network latency, as the timer is started
prior to the message being sent or just when it is received, respectively. Note
that the RTTs from the third flight onward are affected by the conditions of the
state of the network. We tested the scenarios over an average-latency network.

To reduce the effects caused by the state of the network, the Drand client
was instructed to fetch randomness from the Drand server consecutively over
one hour. The total number of connections during this period amounts to
approximately 5000 connections. We report the average timings in tables 15.2
and 15.3. We also measure the total time until the session is completed (note
that these times include the sending and receiving of encrypted application
data). The average times to session completion are listed in tables 15.4 and 15.5.

In server-only authentication, the handshake consists of the following
flights:

1. (𝐶 ⇒ 𝑆) Sending ClientHello for (PQ)TLS, KEMTLS and KEMTLS-PDK.
KEMTLS-PDK: As part of ClientHello we include ClientKemCipher-
text and a hash of the cached server’s ServerCertificate message.

2. (𝐶 ⇐ 𝑆) Processing of ClientHello.
TLS 1.3 and PQTLS: reply with the ServerHello, Certificate, Certifi-
cateVerify and Finished messages.
KEMTLS: reply with the ServerHello and Certificate messages.
KEMTLS-PDK: reply with the ServerHello and ServerFinished mes-
sages.

3. (𝐶 ⇒ 𝑆) Processing of received messages based on the protocol.
TLS 1.3 and PQTLS: processing of ServerHello, Certificate, Certifi-
cateVerify and Finished messages. Reply with ClientFinished and
immediate transmission of encrypted application data.
KEMTLS: processing of ServerHello and Certificate. Reply with the
ClientKemCiphertext and ClientFinished messages and immedi-
ate transmission of encrypted application data.
KEMTLS-PDK: processing of ServerHello and Finished messages. Re-
ply with the ClientFinished message and immediate transmission of
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encrypted application data.

4. (𝐶 ⇐ 𝑆) Processing of received messages based on the protocol.
TLS 1.3 and PQTLS: processing of ClientFinished message and of en-
crypted application data.
KEMTLS: processing of ClientKemCiphertext and Finished mes-
sages. Reply with the ServerFinished message.
KEMTLS-PDK: processing of ClientFinished message and encrypted
application data.

In mutual authentication, the handshake consists of the following flights:

1. (𝐶 ⇒ 𝑆) Sending ClientHello for (PQ)TLS and KEMTLS.

2. (𝐶 ⇐ 𝑆) Processing of ClientHello.
TLS 1.3 and PQTLS: reply with the ServerHello, Certificate, Cer-
tificateVerify, and CertificateRequest messages, followed by the
Finished message.
KEMTLS: reply with the ServerHello, the Certificate, and the Cer-
tificateRequest messages.

3. (𝐶 ⇒ 𝑆) Processing of received messages based on the protocol.
TLS 1.3 and PQTLS: processing of the ServerHello, Certificate, Cer-
tificateVerify, and CertificateRequest messages, followed by the
Finished message. Reply with the ClientCertificate, the Certifi-
cateVerify, and the Finished messages, and immediate transmission
of encrypted application data.
KEMTLS: processing of the ServerHello, the Certificate, and the
CertificateRequest messages. Reply with the ClientKemCipher-
text and Certificate messages.

4. (𝐶 ⇐ 𝑆) Processing of received messages based on the protocol.
TLS 1.3 and PQTLS: processing of the received ClientCertificate,
CertificateVerify, and Finished messages, and received encrypted
application data.
KEMTLS: processing of ClientKemCiphertext and Certificate
messages. Reply with ServerKemCiphertext message.
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5. (𝐶 ⇒ 𝑆) KEMTLS only: Includes processing of the ServerKem-
Ciphertext message and sending of the ClientFinished message.
Immediate sending of encrypted application data.

6. (𝐶 ⇐ 𝑆) KEMTLS only: Includes processing of the ClientFinished
message and any application data. Sending of the ServerFinished
message.

Table 15.2: Average time inms of messages for server-only authenticated con-
nections. Note that timings are measured per client and server:
each has an independent timer. All experiments use the same in-
termediate and root CA certificates.

Handshake KEX Auth Handshake flight

1 2 3 4

TLS 1.3 X25519 Ed25519 0.227 0.436 123.838 180.202

TLS 1.3+DC X25519 Ed25519 0.243 0.489 156.954 186.868
TLS 1.3+DC X25519 Ed448 0.242 0.907 165.395 183.124

PQTLS Kyber-512 Dilithium3 0.350 0.701 173.814 198.256
PQTLS SIKEp434 Dilithium4 2.533 4.856 441.732 212.924

KEMTLS Kyber-512 Kyber-512 0.412 0.217 157.123 187.147
KEMTLS SIKEp434 SIKEp434 3.058 7.215 352.840 291.592

KEMTLS-PDK Kyber-512 Kyber-512 0.623 0.327 181.132 189.442
KEMTLS-PDK SIKEp434 SIKEp434 9.573 12.507 396.818 287.550

. Discussion

As noted above, we initiate two timers in each of our measurements: one for
the client (which starts when the ClientHello message is constructed and
sent) and one for the server (which starts when the ClientHello message
is received). This is why the first and second flights in tables 15.2 and 15.3
have small timings: they do not take into account network latency. Starting
from the time of the third flight, which occurs after the client received the
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Table 15.3: Average time in ms of messages for mutually authenticated con-
nections. Note that timings are measured per client and server:
each has an independent timer. For presentation reasons, we have
abbreviated Dilithium, Kyber-512, and SIKEp434. All experiments
use the same intermediate and root CA certificates.

Handshake Kex Auth Handshake flight

1 2 3 4 5 6

TLS 1.3 X25519 Ed25519 0.113 0.420 111.358 121.349

TLS 1.3+DC X25519 Ed25519 0.148 0.546 129.638 178.90
TLS 1.3+DC X25519 Ed448 0.154 0.221 137.131 192.283

PQTLS Kyber Dilith. 3 0.125 1.326 231.232 191.187
PQTLS SIKE Dilith. 4 3.324 7.294 459.888 216.077

KEMTLS Kyber Kyber 0.244 0.303 231.752 175.490 375.202 346.308
KEMTLS SIKE SIKE 2.450 6.206 431.445 228.414 510.591 436.301

server’s response, the impact of network latency can be seen. We also note that
encrypted application data is sent already on the 3rd flight of all experiments,
except for KEMTLS with mutual authentication (as the client has to wait two
flights before it can send application data), which increases the measured
times with the application overhead.

When adding delegated credentials to the TLS 1.3 handshake, a peer receiv-
ing a delegated credential must validate that it was signed by the appropriate
end-entity certificate (which is sent as part of the handshake) and must vali-
date the certificate chain, as well. In our measurements, we observed a short
increase in the latency of the flights when DCs are added; but the impact is
almost negligible (especially, in the second flight when the DCs are received).

This is not the case when adding either post-quantum signatures or post-
quantumKEMs for certain algorithms. The first observable difference appears
in the ClientHello in both server-only authentication and mutual authenti-
cation: this message advertises both classic and post-quantum key-exchange
algorithms because this could be the realistic scenario for systems when tran-
sitioning to post-quantum cryptography. The timings increase especially
when using SIKEp434 as a KEM in both KEMTLS and PQTLS because its decap-
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15.5 Discussion

sulation takes on average 6.7ms (when using the implementation from the
CIRCL library). The predominant factor that slows down PQTLS compared
to TLS 1.3 is the number of signature validations, but this is similar (when
using Kyber-512 and Dilithium3) to using Ed448.

The biggest drawback of using KEMTLS is the number of round-trips that it
has to perform, especially for mutual authentication. The KEM cryptographic
operations do not seem to heavily impact the connection if the underlying al-
gorithm operations are fast. An ideal scenario for post-quantum cryptography
is the use of KEMs for both confidentiality and authentication provided that
the number of round trips does not increase, which is the case of KEMTLS-PDK

for server authentication. This prediction matches with the results: KEMTLS-

PDK with Kyber-512 performs best for server-only authentication.
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Figure 15.1: Comparison of: on the left, server-authenticated handshakes for
the 3rd , and 4th flights; on the right, mutually authenticated hand-
shakes with the additional 5th and 6th flights. Both measurements
are of the Kyber-512 instantiations. Note that the timers of client-
and server-initiated flights are independent.

We see more differences if we compare completion times for server-only
and mutually authenticated handshakes in tables 15.4 and 15.5. In the first case,
KEMTLS performs faster than PQTLS and, in both cases, a client can immediately
send application data on the third flight (when the client sends its ClientFin-
ished). Nevertheless, for KEMTLS, the server still has to wait for the Client-
Finished to arrive and to send their ServerFinished in turn, before it can
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Table 15.4: Average total handshake completion time (inms) for server-only
authentication.

Handshake Key
exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 187.296 552.518

TLS 1.3+DC X25519 Ed25519 197.568 578.097
TLS 1.3+DC X25519 Ed448 220.576 614.366

PQTLS Kyber-512 Dilithium3 199.025 556.203
PQTLS SIKEp434 Dilithium4 219.401 634.546

KEMTLS Kyber-512 Kyber-512 200.237 792.168
KEMTLS SIKEp434 SIKEp434 277.304 901.292

KEMTLS-PDK Kyber-512 Kyber-512 209.872 583.582
KEMTLS-PDK SIKEp434 SIKEp434 200.126 561.068

Table 15.5: Average total handshake completion time (inms) for mutual au-
thentication.

Handshake Key
exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 190.587 592.801

TLS 1.3+DC X25519 Ed25519 179.653 549.760
TLS 1.3+DC X25519 Ed448 222.902 541.695

PQTLS Kyber-512 Dilithium3 191.939 542.599
PQTLS SIKEp434 Dilithium4 223.470 609.646

KEMTLS Kyber-512 Kyber-512 352.448 881.928
KEMTLS SIKEp434 SIKEp434 571.057 1096.708
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send application data. As we discussed in section 7.1.4, the ServerFinished
message completes the handshake and provides full downgrade resilience and
forward secrecy for the whole connection. However, this extra half-round
trip forces the server to wait before sending application data, which could not
be an ideal scenario for all real-world systems. If we look at figure 15.1, we see
that the best protocol in terms of latency is KEMTLS. Using KEMTLS-PDK is best,
as it allows earlier sending of application data by the server and has stronger
notions of the security properties.

For mutual authentication, we see that KEMTLS has the biggest impact on
the handshake completion timings. This is the result of the extra RTT that is
needed for mutual authentication in KEMTLS. SIKEp434, on average, increases
the handshake timings by approximately 10ms compared with Kyber-512
for the verification of the peer’s Certificate in both cases. For this reason,
the PQTLS completion time is also slowed down when using SIKEp434 even
without the extra round-trip addition. Although we do not provide timings
for KEMTLS-PDK with mutual authentication, our timings can provide insight
into the cost of the operations and the relevance of the algorithm selection.

.. Optimizations

The cost of transmitting post-quantum parameters is tangible in our measure-
ments. These costs can be further optimized by using a form of certificate
compression [158], although compression will likely mostly reduce the size of
certificate metadata rather than the size of (high-entropy) public keys. Sup-
pression of the intermediate certificates [202] is an alternative idea, but it relies
on clients being kept up-to-date with the server’s intermediates. In either case,
the costs of the post-quantum encapsulation, decapsulation, signing, and
signature verification operations remain.

. Conclusions

The experiments reported on in this chapter are the first that integrate different
post-quantum handshake alternatives to the TLS 1.3 handshake into a real-
world system. These results have shown us how post-quantum algorithms can
impact the handshake completion time, and, therefore, impact the establish-
ment of real-world connections. In general, on the reliable, high-bandwidth
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network that we used, the different post-quantum TLS 1.3 handshake alterna-
tives do not have a handshake completion time that is much different from a
regular TLS 1.3 handshake. The only somewhat exception to this is KEMTLS,
as the extra half or full round trip that is added does increase the comple-
tion time, especially for mutual authentication. For this reason, KEMTLS-PDK

should be investigated more, as it could reduce the completion time.
In this chapter, we implemented post-quantum algorithms in native Go.

We also adapted the Go TLS library to different handshake configurations and
added support for new TLS extensions. We developed a measurement frame-
work that allows performing transatlantic post-quantum TLS 1.3 connections
for retrieving random numbers from a Drand network.

We remark that an important piece to achieving cryptographic agility in
the transition to post-quantum algorithms is the use of delegated credentials.
They allowed us to advertise post-quantum KEMs or post-quantum signa-
tures without generating new certificates or asking certificate authorities to
support new algorithms. Even though authentication is only as strong as
the weakest link, and our deployment thus does not provide post-quantum
secure authentication, this approach enables the investigation of performance
characteristics and the discovery of deployment constraints.

In future work, the network characteristics can be further diversified. We
measured a reliable, high-bandwidth datacenter-to-datacenter connection;
how post-quantum TLS will behave on user-to-server connections remains
an open question. We also only investigated a limited number of algorithms
and did not implement KEMTLS-PDK with mutual authentication. Finally, the
transition of the public-key infrastructure to post-quantum cryptography
remains an open question.
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 Measuring the performance of

KEMTLS in embedded systems

In this chapter, we compare KEMTLS to TLS 1.3 in an embedded setting. To
gain meaningful results, we present implementations of KEMTLS and TLS 1.3
on a Cortex-M4-based platform. These implementations are based on the
popular WolfSSL embedded TLS library and hence share a majority of their
code. In our experiments, we consider both protocols with the round-3 finalist
signature schemes and KEMs in the NIST PQC standardization project, ex-
cept for Classic McEliece which has too-large public keys. Both protocols are
compared in terms of runtime, memory usage, traffic volume, and code size.
We show benchmark results from network settings relevant to the Internet of
Things, namely low-latency broadband, LTE-M, and Narrowband IoT. These
show that in the embedded context, KEMTLS can reduce handshake time by up
to 38%, can lower peak memory consumption, and can save traffic volume
compared to TLS 1.3.

. Introduction

In the comparisons between post-quantum TLS 1.3 and KEMTLS in previous
chapters, we focused on high-end hardware and high-bandwidth connections.
However, TLS is used for more than just protecting web browsing on desktop
computers. The Internet of Things (IoT) increasingly interconnects embedded
devices over the internet. Especially device-to-cloud communication is an
omnipresent IoT use case. New communication protocols like Matter [105]
(formerly Connected Home over IP) mark a new trend by using IPv6 and
forcing every embedded device to establish individual end-to-end-secure
connections. From a security perspective, this makes perfect sense. However,
for embedded software developers this poses a challenge. Key establishment,
digital signatures, and certificate transmission are already problematic for
low-cost, resource-constrained devices. With the advent of post-quantum
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cryptography, it will become even more challenging to establish TLS connec-
tions from those embedded devices.

There has been some work investigating the performance of post-quantum
TLS on embedded devices rather than the large-scale, high-performance com-
puters we discussed in previous chapters. Bürstinghaus-Steinbach, Krauß,
Niederhagen, and Schneider have experimented with Kyber and stateless
hash-based signature scheme SPHINCS+, integrating it in the TLS 1.2 im-
plementation of mbedTLS [247] and showing the performance on various
Arm boards [85]. More recently, Tasopoulos, Li, Fournaris, Zhao, Sakzad,
and Steinfeld have evaluated the performance of post-quantum TLS 1.3 on
embedded systems [339]. They investigated the performance of the NIST
finalist KEMs and the Dilithium and Falcon signature algorithms inWolfSSL’s
TLS 1.3 implementation.

.. Contribution

This chapter investigates if KEMTLS’ advantages transfer to the embedded realm,
by comparing KEMTLS and post-quantum TLS 1.3 (PQTLS) in an embedded
setting. For this purpose, KEMTLS and PQTLS were implemented including all
NIST finalist signature schemes and KEMs, except for Classic McEliece which
has too-large public keys. As the PQTLS and KEMTLS implementations share
large parts of their code base, we can directly compare their performance. Our
analysis focuses on the relevant trade-offs embedded systems engineers face.
We benchmark runtime, memory usage, code size, and bandwidth consump-
tion of our KEMTLS and PQTLS instantiations. The benchmark results were
obtained by running our implementations on a Cortex-M4-based platform.
Our experiments were conducted with a technology stack that is typically
used in real-world deployments, in which the embedded device is a TLS client
talking to a TLS server running on a high-end computer. This computer also
simulated different network technologies throughout the experiments. We
briefly introduce post-quantum cryptography, specifically in the context of
embedded devices. To support our results, the implementation and experi-
mental setup will then be explained in detail. Finally, we present and discuss
the results of our measurements.
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Table 16.1: Comparison of NIST PQC round-3 finalists at NIST PQC security
level I. We show the size (in bytes) of data transmitted during a
protocol exchange, offline data, and operation timings (from [102,
204]) on ARM Cortex M4.

bytes transmitted stored computation (≈Kcycles)

Signatures pk sig sum secret keygen sign verify

Dilithium ★ 1312 2420 3732 2528 1597 4095 1572
Falcon ★ 897 690 1587 1281 163 994 39 014 473
Rainbow † 161 600 66 161 666 103 648 94 907 238

KEMs pk ct sum secret keygen encaps decaps

Kyber ★ 800 768 1568 1632 440 539 490
NTRU † 699 699 1398 953 2867 565 538
SABER † 672 736 1408 1568 352 481 453

★: Scheme was selected for standardization.
†: Scheme was eliminated from the NIST PQC standardization project.

. Post-quantum cryptography on embedded devices

Public-key cryptography was already challenging for embedded systems in a
pre-quantum setting. Themore expensive post-quantum algorithmswillmake
this worse. To gain a better understanding of PQC algorithm performance
on embedded systems, the pqm4 [204] project collects implementations for
the Cortex-M4 platform and benchmarks them. Table 16.1 shows size and
performance trade-offs between the NIST PQC round-3 finalists based on
numbers from [204] and [102]. Here it is important to mention that these
numbers are accomplished on a clocked-down Cortex-M4. Using such a
slowed-down embedded processor is customary for measuring algorithm run
times because it avoids flash wait states. In a real deployment, code would be
fetched from a fast ROM instead of a flash. For our experiments, we are not
exclusively interested in PQCalgorithm runtime, but in the performance of the
overall system. Therefore, we do not clock down our CPU. The ramifications
of this are detailed in section 16.3.2.
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. Experimental setup

The following section describes the experimental setup used to acquire our
results. Both protocols were benchmarked for handshake times, run-times of
algorithms, peak memory usage, code size, and network traffic. Handshake
times were measured in three network environments relevant to the IoT
domain. This includes regular “broadband” internet, as well as two low-
power wide-area network standards, LTE-Machine Type Communication
(LTE-M) and Narrowband-IoT (NB-IoT), developed by the 3rd Generation
network Partnership Project (3GPP). We give the characteristics employed
for these environments in table 16.2. While the performance characteristics of
LTE-M and NB-IoT are based on numbers of the 3GPP [1], the broadband
scenario is based on realistic RTTs of client-to-cloud communication within
Western Europe using a consumer-grade connection [288].

Table 16.2: Connection characteristics

Name Abbrev. Bandwidth RTT time

Broadband [288] BB 1 Mbit 26 ms
LTE Machine Type Communication [1] LTE-M 1 Mbit 120ms
Narrowband-IoT [1] NB-IoT 46 kbit 3 s

.. Cryptographic primitives

As KEMTLS is a post-quantum protocol, it is not specifically designed for tran-
sitional security. Although KEMTLS does not preclude their use, we do not
consider mixed classic/post-quantum certificates or hybrid (post-quantum
plus elliptic-curve) key-exchange methods in our experiments. For compa-
rability, our PQTLS implementation is also exclusively using post-quantum
algorithms. We evaluated all combinations of NIST PQC round-3 finalists,
except for the KEM Classic McEliece. Classic McEliece’s public keys are too
large to fit into memory and do not fit in the ClientHello’s KeyShareEntry
extension [298, Sec. 4.2.8].

Both KEMTLS and PQTLS make use of a CA that signs certificates. The CA’s
certificate, containing the CA’s public key used for signature verification, is
stored on the client device. Only leaf certificates, transmitted by the server
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during the handshake, differ in KEMTLS and TLS 1.3. For PQTLS they include
the public key of a signature algorithm, in KEMTLS a KEM public key. In our
experiments, we omit intermediate certificates.

We only evaluate primitives at the lowest security level, NIST level I. These
are the smallest and most efficient parameter sets.

.. Implementation

All benchmarks were conducted on a Silicon Labs STK3701A board, also
known as the “Giant Gecko”. This board was chosen because it features
a 72MHz ARM Cortex-M4F embedded processor and offers large enough
memory (2MB flash storage, 512 kB SRAM) to fit Rainbow public keys. As
Cortex-M4 is the designated NIST PQC reference platform for embedded
devices, there are optimized assembly implementations available for most
finalist algorithms. The pqm4 project collects these implementations and
provides extensive benchmarks [204]. All PQC implementations used for
benchmarking were taken from the pqm4 project. Only minor modifications,
such as adding verify functions to signature schemes, fixing alignment is-
sues and name-spacing symbol names had to be conducted. The code was
compiled using GCC version 11.1, with the -O3 speed optimization flag. In
contrast to experiments run within the pqm4 project, we do not clock down
the processor to avoid wait states. Instead, the processor runs at full speed.
This makes sense since we are not exclusively interested in the run times of
the primitives but in the performance of the overall system. Running the
processor at full speed makes the PQC algorithms consume more cycles due
to flash wait states and higher costs of memory accesses. However, since the
PQC algorithms do not consume more wall-clock time, the actual handshake
durations are not negatively affected. The Giant Gecko board exclusively
takes on the role of an embedded (KEM)TLS client, wanting to connect to
a backend server. To validate certificates send in the handshake, we flash
the CA’s root certificate into the Giant Gecko’s persistent memory during
setup. For efficiency, the CA directly signs the server’s certificate. This avoids
the need for transmitting intermediate CA certificates, reducing the size of
the certificate chain. As both endpoints in embedded scenarios are usually
under some level of manufacturer control, this is a common deployment.
Communication to the backend server is done via the Giant Gecko’s Ethernet
port, which is directly connected to a high-end computer. This host computer
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simulates different network environments by using Linux’s netem network
emulation framework [174]. The network emulation framework is set up to
throttle bandwidth and delay RTTs according to the aforementioned network
environments. The KEMTLS implementation describe in chapter 10 and used
for the experiments in chapter 13 is used as server software. When running an
iteration of the experiment, the corresponding PQC algorithms and the CA
certificate are linked into the binary using Zephyr’s West build tool. We then
flash the binary onto the board via JLink. Benchmark results are received via
serial communication.

.. Platform

To have a realistic setup, we employed a typical embedded systems software
stack. In our case that includes an embedded real-time operating system
(RTOS) with an open-source TCP/IP stack and added TLS support. For
reproducibility, we used the Apache-licensed Zephyr RTOS [361]. Zephyr
supports over 200 boards and is backed by the Linux Foundation andmultiple
large corporations involved with developing embedded systems, such as NXP,
NORDIC, and Memfault. It provides its own optimized embedded network
stack and allows cycle-accurate runtime measurements (given a board’s hard-
ware supports it). Our application code runs as the exclusive Zephyr thread,
eliminating scheduling costs. We added PQTLS and KEMTLS support to the
operating system via a custom WolfSSL module. KEMTLS certificate genera-
tion were generated by the script described in section 10.7. Post-quantum
certificates for PQTLS were generated using a fork of OpenSSL’s command-line
tool maintained by the Open Quantum Safe project [345]. The TLS 1.3 cipher
suite TLS_CHACHA20_POLY1305_SHA256 was used in all experiments.

.. WolfSSL integration

Previous work [85, 339] also uses WolfSSL for running benchmarks on em-
bedded systems. We decided to use WolfSSL for the same reasons as the
mentioned works and to make comparisons with our results easier. WolfSSL
is designed to be memory efficient and fast on embedded systems. It already
supports TLS 1.3 and has a clean implementation of TLS’s state machine.
This makes it an ideal basis for implementing PQTLS and KEMTLS. Adding
post-quantum algorithms to WolfSSL is straightforward. WolfSSL’s crypto
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provider, called WolfCrypt, has a clean API that can be extended easily. As
the KEM Kyber was already included in WolfSSL by Bürstinghaus-Steinbach,
Krauß, Niederhagen, and Schneider [85], we did not need to make changes
to the TLS 1.3 state machine. Apart from including the relevant ASN.1 ob-
ject identifiers for KEMs and post-quantum signatures, only small changes,
such as increasing the maximum size of certificates, had to be applied. Our
embedded KEMTLS implementation is based on the same WolfSSL version as
our PQTLS implementation. The majority of the code is identical in the PQTLS
and KEMTLS implementation. However, adding support for KEMTLS to Wolf-
SSL still required significant effort. Apart from altering the certificate/ASN.1
parser to allow KEM keys in certificates (and using those), WolfSSL’s internal
state machine, key derivations, and state structures had to be modified. In
both our PQTLS and KEMTLS experiments, the client only performs signature
verification, so no code for signing was linked into the final binary.

. Results

For developers of embedded systems, the trade-offs between ROM (code
size), RAM (memory usage), network traffic, and CPU time (runtime of
code) are most crucial. In this section, we present our findings regarding
the consumption of these resources by KEMTLS and PQTLS using NIST PQC
round-3 finalists.

The runtime of algorithms impacts the device’s energy consumption. This
is especially relevant for battery-powered devices that rely on the possibility
to hibernate when inactive. Network traffic also affects energy consumption,
as operating an antenna is usually a very energy-consuming operation. De-
pending on the underlying wireless technology, network traffic can also be
expensive in terms of network provider fees. Our results are representative of
Cortex-M4-based platforms in general. Hence we focus on benchmarks that
are independent of our specific evaluation board. As energy consumption
varies heavily based on a board’s design, choice of peripherals, and trans-
mission technology we did not include direct energy measurements in our
results. Instead, we present code size, consumed memory, handshake traffic,
handshake duration, and runtime of PQC primitives. All KEMTLS and PQTLS

instantiations were run 1000 times, with each run using a different CA and leaf
certificate. The presented benchmarks are averaged over all runs. NIST PQC
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signature algorithm finalist Rainbow, which is included as a representative for
multivariate-based cryptography, is only present in the KEMTLS results. This is
because Rainbow public keys are very large: there was not enough memory to
fit Rainbow along another signature scheme, and Rainbow public keys would
have a disproportionate impact if used in leaf certificates. It could therefore
not be included in the PQTLS benchmarks. We emphasize that all employed
PQC algorithms were optimized for speed, and not stack consumption.

.. Storage andmemory consumption

Both protocol implementations are roughly the same size. Excluding the im-
plementations of the post-quantum primitives, the code size is around 111 kB.
table 16.3 shows combinations of PQC algorithms with their measured code
size. For KEMTLS, only instantiations with one KEM used for both ephemeral
key exchange and authentication are shown. Including two KEMs does not
give an advantage, but increases code size. However, for completeness, a
table with all combinations can be found in section 16.7. Similarly, PQTLS
instantiations with the same signature algorithm used for CA and leaf cer-
tificates are shown. Additionally, we include the combination of Dilithium
and Falcon, where Dilithium is used as the handshake signature algorithm.
This combination was suggested by Sikeridis, Kampanakis, and Devetsikiotis
to make use of Dilithium’s faster signing times for servers without hardware
support for Falcon’s double-precision floating-point operations [326].

The table also shows the PQC code’s share of the overall code size as a
percentage. Also included in table 16.3 is memory consumption. Shown is the
peak of consumed memory, in both heap and stack, during the handshake.
This includes the memory consumed by the protocol implementation and
PQC primitives.

In contrast to PQTLS, KEMTLS uses a KEM encapsulation instead of a signa-
ture verification to authenticate the connection. KEMTLS, therefore, needs code
for KEM encapsulation, whereas PQTLS does not. PQTLS on the other hand
needs the code for two distinct verification algorithms if different signature
algorithms are used for CA and leaf certificates. Instantiations with NTRU
ephemeral key exchange are notable outliers in terms of code size, requiring
over 200 kB of code. This is in line with results reported by PQM4 [204].
Interestingly, this big increase in code size cannot be observed when NTRU
is used exclusively for authentication. This is because the client requires key
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generation and decapsulation code for ephemeral key exchange, whereas
authentication via KEM only requires encapsulation functionality. (Note
that due to the Fujisaki–Okamoto transform used to obtain IND-CCA security
in NTRU, the decapsulation code contains the encapsulation code as well).
Whenever Rainbow is used, the CA certificate containing a Rainbow public
key takes up between 33% and 53% of the overall consumed storage space.
This, however, does not disqualify Rainbow from usage on embedded systems,
due to its small signature and very fast verification times (see section 16.4.2).

Table 16.3: Code and CA certificate sizes (and as a percentage of total ROM
size), and peak memory usage in the experiments. Parameter sets
used are NIST level I.

KEX Auth. CA PQC code (%) CA size (%) Memory

K
E
M
T
L
S

Kyber Kyber Dilithium 29.0 kB (20.1%) 3.9 kB (2.7%) 49.7 kB
Kyber Kyber Falcon 25.7 kB (18.6%) 1.7 kB (1.2%) 52.8 kB
Kyber Kyber Rainbow 29.8 kB (9.8%) 161.8 kB (53.4%) 167.0 kB
NTRU NTRU Dilithium 203.4 kB (63.9%) 3.9 kB (1.2%) 49.7 kB
NTRU NTRU Falcon 200.0 kB (63.9%) 1.7 kB (0.6%) 52.8 kB
NTRU NTRU Rainbow 204.0 kB (42.8%) 161.8 kB (33.9%) 182.9 kB
SABER SABER Dilithium 31.5 kB (21.5%) 3.9 kB (2.7%) 49.7 kB
SABER SABER Falcon 28.2 kB (20.0%) 1.7 kB (1.2%) 52.8 kB
SABER SABER Rainbow 32.2 kB (10.5%) 161.8 kB (53.0%) 167.9 kB

P
Q
T
L
S

Kyber Dilithium Dilithium 29.0 kB (20.1%) 4.0 kB (2.8%) 58.0 kB
Kyber Dilithium Falcon 34.4 kB (23.3%) 1.8 kB (1.2%) 60.0 kB
Kyber Falcon Falcon 25.8 kB (18.6%) 1.8 kB (1.3%) 56.2 kB
NTRU Dilithium Dilithium 203.4 kB (63.8%) 4.0 kB (1.3%) 56.6 kB
NTRU Dilithium Falcon 208.7 kB (64.9%) 1.8 kB (0.6%) 58.6 kB
NTRU Falcon Falcon 200.1 kB (63.9%) 1.8 kB (0.6%) 54.8 kB
SABER Dilithium Dilithium 31.5 kB (21.5%) 4.0 kB (2.7%) 58.0 kB
SABER Dilithium Falcon 36.8 kB (24.6%) 1.8 kB (1.2%) 60.0 kB
SABER Falcon Falcon 28.2 kB (20.0%) 1.8 kB (1.3%) 56.2 kB

Further, the results show that the lattice-based schemes perform well in
terms of memory consumption. The consumed memory is mainly driven by
stack usage of the PQC signature algorithms. Only Rainbow is an exception
here. With a Rainbow-powered CA certificate, the very large public key
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has to be loaded into memory and held during signature verification. This
requires a large allocation of heap space. Using a custom certificate loader
implementation it would be possible to store the public key in an already usable
form in flash. Then the public key could directly be streamed in from flash
(similar to [161]), without the need to hold it in memory entirely. However,
since we present comparable results of reusable code, we did not include this
kind of optimization for an individual algorithm.

.. Handshake times

Apart from storage and memory consumption, handshake times are key in
an embedded environment. Table 16.4 shows handshake times for different
transmission technologies measured in millions of cycles. A complete table,
with all possible instantiations, can be found in section 16.7. In figure 16.1
we show the handshake times and traffic for the broadband and NB-IoT
scenarios. In a real deployment, the device would likely go into a low-power
mode or sleep instead of actively polling data during a slow transmission. This
behavior however depends highly on the specifics of the embedded system
and its transmission technology. Therefore, to achieve reproducible results,
the CPU was running at a constant speed of 72MHz during all experiments.
This also makes a direct translation to wall time possible. The table also
shows the percentage of cycles spend on the underlying PQC primitives. The
remaining cycles are spent in the TLS state machine, memory operations, or
waiting for I/O.

Time spent in crypto operations is significant in the broadband and LTE-
M setting. Whereas the NB-IoT transmission is so slow, that the share of
cycles spent in cryptographic operations is very low (0.8%–1.7%). In low-
bandwidth/high-RTT settings like NB-IoT, the transmission size of certificates
and public keys is the main driving factor of runtime. Loading large public
keys from storage into memory is a relevant factor as well, slowing down the
otherwise fast Rainbow signature algorithm. Cycles spent to access memory
and storage also become increasingly negligible when using slow transporta-
tion mediums. This is visible in figure 16.1b, where the instantiations with
similarly sized handshake traffic appear in clusters.

Both PQTLS and KEMTLS use a KEM for key exchange. While the perfor-
mance of the module lattice KEMs Kyber and SABER is similar, they both
outperform NTRU for this task. This is mainly due to the rather slow key
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Table 16.4: TLS handshake traffic and runtime for various scenarios. Param-
eter sets used are NIST level I.

Handshake
traffic

Handshake time in Mcycles (% of crypto)
KEX Auth. CA BB (%) LTE-M (%) NB-IoT (%)

K
E
M
T
L
S

Kyber Kyber Dilithium 6.3 kB 17.1 (30.2%) 34.0 (15.2%) 593.6 (0.9%)
Kyber Kyber Falcon 4.5 kB 12.3 (27.2%) 25.7 (13.0%) 467.8 (0.7%)
Kyber Kyber Rainbow 3.9 kB 11.3 (25.1%) 20.4 (13.9%) 459.0 (0.6%)
NTRU NTRU Dilithium 6.0 kB 21.3 (46.0%) 38.1 (25.6%) 595.8 (1.6%)
NTRU NTRU Falcon 4.2 kB 16.6 (47.8%) 25.9 (30.6%) 469.7 (1.7%)
NTRU NTRU Rainbow 3.6 kB 15.7 (47.4%) 24.7 (30.1%) 361.6 (2.1%)
SABER SABER Dilithium 6.0 kB 16.3 (29.4%) 33.3 (14.4%) 590.8 (0.8%)
SABER SABER Falcon 4.2 kB 11.6 (25.5%) 21.0 (14.1%) 464.8 (0.6%)
SABER SABER Rainbow 3.6 kB 10.7 (23.1%) 19.8 (12.5%) 356.8 (0.7%)

P
Q
T
L
S

Kyber Dilithium Dilithium 8.4 kB 19.9 (35.9%) 36.8 (19.5%) 818.1 (0.9%)
Kyber Dilithium Falcon 6.7 kB 14.7 (35.4%) 31.0 (16.8%) 595.8 (0.9%)
Kyber Falcon Falcon 4.5 kB 10.9 (30.1%) 21.0 (15.6%) 464.6 (0.7%)
NTRU Dilithium Dilithium 8.3 kB 24.3 (47.6%) 41.1 (28.1%) 821.3 (1.4%)
NTRU Dilithium Falcon 6.5 kB 19.0 (50.3%) 35.3 (27.2%) 599.2 (1.6%)
NTRU Falcon Falcon 4.3 kB 15.2 (50.3%) 25.4 (30.2%) 468.0 (1.6%)
SABER Dilithium Dilithium 8.3 kB 19.7 (35.2%) 36.6 (19.0%) 817.3 (0.8%)
SABER Dilithium Falcon 6.5 kB 14.5 (34.2%) 30.7 (16.2%) 595.2 (0.8%)
SABER Falcon Falcon 4.3 kB 10.7 (28.5%) 20.9 (14.6%) 464.0 (0.7%)
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16 Measuring the performance of KEMTLS in embedded systems

generation of NTRU increasing handshake time. Slow key generation is also
the reason why PQTLS and KEMTLS instantiations using NTRU have the highest
percentage of cycles spent in PQC operations.

All KEMs outperform Dilithium when used for authentication. This makes
sense as Dilithium’s verification routine is slower than the encapsulation rou-
tine of all investigated KEMs. Dilithium’s performance also suffers from its
large public key and signature, which increase the required transmission size.
In slow, bandwidth-constrained network environments, such as NB-IoT, this
drawback becomes even more apparent. Rainbow performs well in terms of
handshake times when used as a CA certificate. Not only because it has a
fast, bitsliced Cortex-M4 implementation. Since the large Rainbow public key
is stored on the client device, only the small signature has to be transmitted
during the handshake. Rainbow’s small signature and fast runtime make
it a good fit for CA certificates if the storage and memory demands can be
afforded. The instantiations with Rainbow offer the fastest KEMTLS handshake
times throughout all transmissionmediums. Additionally, the shortest NB-IoT
handshake times use KEMTLS with Rainbow and SABER. Falcon on the other
hand performs very well on the Cortex-M4 platform in our experiments. In
terms of runtime, it even outperforms KEMs for server authentication. How-
ever, this is only true for the client side. Signing operations using Falcon are
considerably more expensive than KEM decapsulation. But these operations
are conducted on the server side, increasing server load, which is not part
of our measurements. Additionally, Falcon’s public key and signature sizes
are comparable to the sizes of the KEM’s public keys and ciphertexts. So it
is not surprising that PQTLS instantiations using Falcon perform well. In the
broadband and LTE-M setting, PQTLS with Falcon and SABER performs as
well as KEMTLS with Rainbow and SABER.

. Discussion

Our results show that KEMTLS with server-only authentication uses less mem-
ory than PQTLS and has similar code sizes. Due to Falcon’s verification al-
gorithm being very efficient, in terms of bandwidth and computation time,
PQTLS with Falcon performs as well as or better than any KEMTLS instantiation.
The only exceptions are the KEMTLS instantiations using SABER orNTRUwith
Rainbow, where the ability of KEMTLS to use Rainbow due to lower memory
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Figure 16.1: Handshake times and traffic for instantiations of KEMTLS and
PQTLS. Letters represent the algorithms Dilithium, Falcon, Kyber,
NTRU, Rainbow, and SABER in the roles of ephemeral key ex-
change, handshake authentication, and CA, in that order.

usage saves a few bytes. Thus, these instances become the best-performing
in the NB-IoT scenario. Falcon also performs better than Dilithium on the
client side, in any scenario.

Although we have not measured client authentication or an embedded
server, we can extrapolate from our results and other work. As reported
by pqm4 [204] and Sikeridis, Kampanakis, and Devetsikiotis [326], Falcon’s
signing algorithm, especially without hardware support, is significantly more
costly than the Dilithium signing algorithm or any of the KEM operations.
This suggests that Falcon is perhaps not generically suitable for post-quantum
authentication.

Sikeridis, Kampanakis, and Devetsikiotis also suggested using a combi-
nation of Dilithium and Falcon for PQTLS, in scenarios where there is no
hardware support for Falcon’s constant-time double-precision floating-point
operations in signing [326]. Dilithium would be put in the leaf certificate,
to make use of its efficient signing times for online handshake signatures.
Falcon’s smaller public key and signature sizes would be beneficial for the
CA certificate algorithm, which signs the leaf certificate only once, but the
signature is transmitted many times. However, our results show that for em-
bedded clients that only need to do signature validation Falcon is preferable
over Dilithium, especially in very low bandwidth scenarios like NB-IoT.
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16 Measuring the performance of KEMTLS in embedded systems

. Conclusion and future work

In this chapter, we compared the performance of KEMTLS and TLS 1.3 using
NIST PQC round-3 finalists in an embedded environment. This environment
was represented by a Cortex-M4-based client communicating with a desktop-
class server. We showed that a KEMTLS client consumes less memory than
TLS 1.3, due to the smaller memory footprint of KEMs. The code size did
not differ between KEMTLS and TLS 1.3. Since only server authentication
was used, both protocols require a signature verify function and KEM for
key exchange. Our run times show that in both protocols PQC primitives
require a significant amount of computational time during the handshake,
sometimes requiring over 50% of the entire handshake time. Even in the LTE-
M setting, the percentage of cycles spent in PQC computations is considerable.
However, in the bandwidth-constrained NB-IoT setting, handshake times are
mostly driven by handshake size. In these conditions, Rainbow’s very small
signatures are an advantage. While Dilithium is generally outperformed by
KEMs when used for authentication, Falcon performs very well due to its
efficient verification algorithm. However, signing in Falcon is a very costly
operation. Future work should therefore investigate KEMTLS and TLS 1.3
using client authentication, and embedded KEMTLS and post-quantum TLS 1.3
servers. In both of these applications, the embedded TLS 1.3 client needs
to produce handshake signatures. This would increase the cost of using
signatures instead of KEMs significantly, leading to new trade-offs. Another
avenue of research is the pre-distributed key setting, where the client already
knows the server’s public key. In this setting, bandwidth can be reduced even
further, which may be compelling for the NB-IoT application.

Finally, we would like to repeat that we used implementations that were
optimized for runtime, not code size, and only were protected against side-
channel attacks based on execution time. As of writing, the discussion on
the effects of protecting the post-quantum schemes against different types of
side-channel and fault attacks is actively ongoing, with new papers appearing
frequently. For applications sensitive to those kinds of attacks, it remains
an open question as to how our results will scale to the cost of the relevant
protections (although transmission sizes, and the reported effects, should
remain the same).
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. Appendix: Extended benchmark results

In tables 16.5 and 16.7 we report code sizes, CA certificate sizes, and memory
usage for all experiments we ran. Tables 16.6 and 16.8 provides all results for
the handshake traffic and handshake timing metrics.

Table 16.5: Code and CA certificate sizes (and as a percentage of total ROM
size), and peak memory usage in the experiments: PQTLS experi-
ments.

KEX Auth. CA PQC code (%) CA size (%) Memory

Kyber Dilithium Dilithium 29.0 kB (20.1%) 4.0 kB (2.8%) 58.0 kB
Kyber Dilithium Falcon 34.4 kB (23.3%) 1.8 kB (1.2%) 60.0 kB
Kyber Falcon Dilithium 34.4 kB (23.0%) 4.0 kB (2.7%) 60.7 kB
Kyber Falcon Falcon 25.8 kB (18.6%) 1.8 kB (1.3%) 56.2 kB
NTRU Dilithium Dilithium 203.4 kB (63.8%) 4.0 kB (1.3%) 56.6 kB
NTRU Dilithium Falcon 208.7 kB (64.9%) 1.8 kB (0.6%) 58.6 kB
NTRU Falcon Dilithium 208.7 kB (64.4%) 4.0 kB (1.2%) 59.3 kB
NTRU Falcon Falcon 200.1 kB (63.9%) 1.8 kB (0.6%) 54.8 kB
SABER Dilithium Dilithium 31.5 kB (21.5%) 4.0 kB (2.7%) 58.0 kB
SABER Dilithium Falcon 36.8 kB (24.6%) 1.8 kB (1.2%) 60.0 kB
SABER Falcon Dilithium 36.8 kB (24.2%) 4.0 kB (2.6%) 60.7 kB
SABER Falcon Falcon 28.2 kB (20.0%) 1.8 kB (1.3%) 56.2 kB
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Table 16.6: TLS handshake traffic and runtime for various PQTLS scenarios

PQTLS Handshake
traffic

Handshake time in Mcycles (% of crypto)
KEX Auth. CA BB (%) LTE-M (%) NB-IoT (%)

Kyber Dilithium Dilithium 8.4 kB 19.9 (35.9%) 36.8 (19.5%) 818.1 (0.9%)
Kyber Dilithium Falcon 6.7 kB 14.7 (35.4%) 31.0 (16.8%) 595.8 (0.9%)
Kyber Falcon Dilithium 6.3 kB 15.5 (33.0%) 29.0 (17.6%) 586.4 (0.9%)
Kyber Falcon Falcon 4.5 kB 10.9 (30.1%) 21.0 (15.6%) 464.6 (0.7%)
NTRU Dilithium Dilithium 8.3 kB 24.3 (47.6%) 41.1 (28.1%) 821.3 (1.4%)
NTRU Dilithium Falcon 6.5 kB 19.0 (50.3%) 35.3 (27.2%) 599.2 (1.6%)
NTRU Falcon Dilithium 6.1 kB 19.9 (47.8%) 33.4 (28.5%) 590.6 (1.6%)
NTRU Falcon Falcon 4.3 kB 15.2 (50.3%) 25.4 (30.2%) 468.0 (1.6%)
SABER Dilithium Dilithium 8.3 kB 19.7 (35.2%) 36.6 (19.0%) 817.3 (0.8%)
SABER Dilithium Falcon 6.5 kB 14.5 (34.2%) 30.7 (16.2%) 595.2 (0.8%)
SABER Falcon Dilithium 6.1 kB 15.3 (32.0%) 28.8 (17.0%) 586.2 (0.8%)
SABER Falcon Falcon 4.3 kB 10.7 (28.5%) 20.9 (14.6%) 464.0 (0.7%)
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Table 16.7: Code and CA certificate sizes (and as a percentage of total ROM
size), and peak memory usage in the experiments: KEMTLS experi-
ments.

KEX Auth. CA PQC code (%) CA size (%) Memory

Kyber Kyber Dilithium 29.0 kB (20.1%) 3.9 kB (2.7%) 49.7 kB
Kyber Kyber Falcon 25.7 kB (18.6%) 1.7 kB (1.2%) 52.8 kB
Kyber Kyber Rainbow 29.8 kB (9.8%) 161.8 kB (53.4%) 167.0 kB
Kyber NTRU Dilithium 41.0 kB (26.3%) 3.9 kB (2.5%) 49.7 kB
Kyber NTRU Falcon 37.7 kB (25.0%) 1.7 kB (1.1%) 52.8 kB
Kyber NTRU Rainbow 41.7 kB (13.3%) 161.8 kB (51.4%) 182.9 kB
Kyber SABER Dilithium 44.9 kB (28.1%) 3.9 kB (2.4%) 49.7 kB
Kyber SABER Falcon 41.7 kB (26.9%) 1.7 kB (1.1%) 52.8 kB
Kyber SABER Rainbow 45.7 kB (14.3%) 161.8 kB (50.8%) 167.9 kB
NTRU Kyber Dilithium 216.3 kB (65.3%) 3.9 kB (1.2%) 49.7 kB
NTRU Kyber Falcon 213.0 kB (65.4%) 1.7 kB (0.5%) 52.8 kB
NTRU Kyber Rainbow 217.1 kB (44.3%) 161.8 kB (33.0%) 182.9 kB
NTRU NTRU Dilithium 203.4 kB (63.9%) 3.9 kB (1.2%) 49.7 kB
NTRU NTRU Falcon 200.0 kB (63.9%) 1.7 kB (0.6%) 52.8 kB
NTRU NTRU Rainbow 204.0 kB (42.8%) 161.8 kB (33.9%) 182.9 kB
NTRU SABER Dilithium 219.7 kB (65.6%) 3.9 kB (1.2%) 49.7 kB
NTRU SABER Falcon 216.4 kB (65.7%) 1.7 kB (0.5%) 52.8 kB
NTRU SABER Rainbow 220.4 kB (44.7%) 161.8 kB (32.8%) 182.9 kB
SABER Kyber Dilithium 44.5 kB (27.9%) 3.9 kB (2.4%) 49.7 kB
SABER Kyber Falcon 41.3 kB (26.8%) 1.7 kB (1.1%) 52.8 kB
SABER Kyber Rainbow 45.3 kB (14.2%) 161.8 kB (50.8%) 167.9 kB
SABER NTRU Dilithium 43.9 kB (27.6%) 3.9 kB (2.5%) 49.7 kB
SABER NTRU Falcon 40.6 kB (26.4%) 1.7 kB (1.1%) 52.8 kB
SABER NTRU Rainbow 44.6 kB (14.0%) 161.8 kB (50.9%) 182.9 kB
SABER SABER Dilithium 31.5 kB (21.5%) 3.9 kB (2.7%) 49.7 kB
SABER SABER Falcon 28.2 kB (20.0%) 1.7 kB (1.2%) 52.8 kB
SABER SABER Rainbow 32.2 kB (10.5%) 161.8 kB (53.0%) 167.9 kB
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Table 16.8: TLS handshake traffic and runtime for various KEMTLS scenarios

KEMTLS Handshake
traffic

Handshake time in Mcycles (% of crypto)
KEX Auth. CA BB (%) LTE-M (%) NB-IoT (%)

Kyber Kyber Dilithium 6.3 kB 17.1 (30.2%) 34.0 (15.2%) 593.6 (0.9%)
Kyber Kyber Falcon 4.5 kB 12.3 (27.2%) 25.7 (13.0%) 467.8 (0.7%)
Kyber Kyber Rainbow 3.9 kB 11.3 (25.1%) 20.4 (13.9%) 459.0 (0.6%)
Kyber NTRU Dilithium 6.1 kB 17.1 (31.5%) 34.1 (15.8%) 592.2 (0.9%)
Kyber NTRU Falcon 4.4 kB 12.4 (28.8%) 21.7 (16.4%) 466.2 (0.8%)
Kyber NTRU Rainbow 3.8 kB 11.4 (27.0%) 20.5 (15.0%) 358.1 (0.9%)
Kyber SABER Dilithium 6.1 kB 16.8 (30.0%) 33.6 (15.0%) 591.5 (0.8%)
Kyber SABER Falcon 4.4 kB 12.0 (26.6%) 21.5 (14.9%) 465.4 (0.7%)
Kyber SABER Rainbow 3.8 kB 11.0 (24.5%) 20.2 (13.4%) 357.4 (0.8%)
NTRU Kyber Dilithium 6.1 kB 21.3 (44.8%) 38.2 (25.0%) 596.9 (1.6%)
NTRU Kyber Falcon 4.4 kB 16.6 (46.4%) 25.9 (29.7%) 470.8 (1.6%)
NTRU Kyber Rainbow 3.8 kB 15.5 (46.3%) 24.7 (29.1%) 462.4 (1.6%)
NTRU NTRU Dilithium 6.0 kB 21.3 (46.0%) 38.1 (25.6%) 595.8 (1.6%)
NTRU NTRU Falcon 4.2 kB 16.6 (47.8%) 25.9 (30.6%) 469.7 (1.7%)
NTRU NTRU Rainbow 3.6 kB 15.7 (47.4%) 24.7 (30.1%) 361.6 (2.1%)
NTRU SABER Dilithium 6.0 kB 20.8 (45.1%) 37.7 (24.9%) 594.9 (1.6%)
NTRU SABER Falcon 4.2 kB 16.2 (46.6%) 25.6 (29.5%) 468.9 (1.6%)
NTRU SABER Rainbow 3.6 kB 15.3 (46.3%) 24.3 (29.1%) 360.9 (2.0%)
SABER Kyber Dilithium 6.1 kB 16.8 (29.4%) 33.6 (14.7%) 593.0 (0.8%)
SABER Kyber Falcon 4.4 kB 11.9 (26.1%) 22.7 (13.7%) 466.8 (0.7%)
SABER Kyber Rainbow 3.8 kB 11.0 (23.7%) 20.2 (12.8%) 458.3 (0.6%)
SABER NTRU Dilithium 6.0 kB 16.8 (30.8%) 33.7 (15.3%) 591.5 (0.9%)
SABER NTRU Falcon 4.2 kB 12.0 (27.9%) 21.5 (15.5%) 465.6 (0.7%)
SABER NTRU Rainbow 3.6 kB 11.0 (25.8%) 20.2 (14.1%) 357.6 (0.8%)
SABER SABER Dilithium 6.0 kB 16.3 (29.4%) 33.3 (14.4%) 590.8 (0.8%)
SABER SABER Falcon 4.2 kB 11.6 (25.5%) 21.0 (14.1%) 464.8 (0.6%)
SABER SABER Rainbow 3.6 kB 10.7 (23.1%) 19.8 (12.5%) 356.8 (0.7%)
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 Improving software quality in

standardization projects

To facilitate the experiments we reported on in the preceding chapters, we
integrated the reference and accelerated implementations of most of the post-
quantum KEMs and signature schemes in the NIST PQC standardization
project. Unfortunately, most of the implementations, which were written
in the C programming language, had quality problems. Additionally, the
calling interface that NIST defined for interacting with the schemes was not
suitable for experimentation in TLS. We set up the PQClean community
effort, in which we collected both cleaned-up reference and platform-specific
implementations of the competitors in the NIST project. In this chapter, we
summarize some of the lessons we learned in this effort: by applying standard
practices from the software engineering community, we think NIST could
have saved themselves, as well as the cryptographic community experimenting
with post-quantum schemes, a lot of time and effort.

. Introduction

The selection of cryptographic algorithms for use in applications and stan-
dards is increasingly accomplished via public competitions, in which re-
searchers are invited to submit algorithms that are then subject to public
review. One significant case study of such a process is the PQC standardiza-
tion project of NIST. In 2016, NIST announced its intention to standardize
quantum-resistant digital signatures and public-key encryption / KEMs in a
multi-year public process that continues as ofMarch 2022. This PQC standard-
ization project was to be modeled after NIST’s earlier public competitions1

that lead to the Advanced Encryption Standard (1997–2001, 15 submissions

1The PQC standardization process was not explicitly called a “competition” as it
might result in several winners.
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total, 2 rounds) and the Secure Hash Algorithm (SHA-3) (2007–2015, 51
submission total, 2 rounds).

The PQC standardization project is NIST’s largest cryptography standard-
ization effort to date. There were 82 initial submissions of which 69 have been
accepted as “complete and proper” submissions. By now, those have been
winnowed down over three rounds of public evaluation to 7 finalists and 8
alternate candidates. The first algorithms were selected for standardization in
July 2022; a fourth round for 4 KEMs meriting further investigation and an
“on-ramp” for new signature scheme designs were also announced.

Comparedwith the AES and SHA-3 competitions, the PQC standardization
project is more complex in several ways, beyond the sheer number of sub-
missions and rounds. The PQC standardization project involves two distinct
cryptographic primitives (digital signatures and KEMs) compared to one in
each of the previous competitions (block ciphers for AES, hash functions for
SHA-3). There is also a much greater variety of mathematical constructions
used to build the candidates. As a consequence, there are much more pro-
nounced differences between the speed and output size characteristics of
the various candidates. Whereas the AES competition prescribed just three
sizes—128-, 192-, or 256-bit keys, all with 128-bit block sizes—post-quantum
KEM candidates (even just among round 3 finalists and alternates) have public
keys ranging in size from 197 bytes to more than 1.3MB and encapsulations
from 128 bytes to 21 kB; and round 3 signature candidates have public keys
from 32 bytes to 1.9MB and signatures from 66 bytes to 209 kB.

Certainly, this scale and variety made NIST’s selection task harder, and
also meant a greater burden on the community in reviewing and evaluating
the candidates, both in terms of security and performance. The wide range of
size and speed characteristics meant that standalone microbenchmarks would
not suffice to evaluate the suitability of candidates for adoption, and instead
would require integration and testing of candidates in a variety of contexts.
This is where the importance of software implementations plays a greater role.

As with previous competitions, NIST required submissions to be accom-
panied by software implementations. Each submission needed to include a
reference implementation and an optimized implementation for Intel x64,
both in ANSI C (no assembly or intrinsics allowed, limited use of external
libraries), along with known-answer test (KAT) values to check correctness.
Submissions could also include additional implementations for other plat-
forms or microarchitectures. NIST provided a C application programming
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interface (API) for each cryptographic primitive as well as a test harness for
known-answer tests. (See section 17.2 for a detailed review of NIST’s original
submission requirements and how they evolved over later rounds.)

In addition to NIST’s internal benchmarking, there have been many com-
munity and industry projects building on software implementations submitted
to NIST. These include: the SUPERCOP benchmarking project [48]; the PQ-
Clean project [207] for standalone C implementations on Intel and ARMv8;
the pqm4 project [204] for ARMCortexM4 platform; and theOpenQuantum
Safe project [333] with a library of C implementations as well as integrations
of those algorithms into popular libraries, applications, and protocols. There
have also been many research papers and industry experiments building on
the above-mentioned projects or directly on software submissions to NIST.

Due to the lack of consistency, organization, and quality of submitted
software, each of the above initiatives has involved a repetition of time and
effort in getting submitted software to compile and run cleanly.

Admittedly, not all cryptographers should be expected to have the software
engineering expertise to create production-quality software, and indeed ex-
pecting so may disincentivize the submission of mathematically innovative
proposals. Nonetheless, a public cryptography standardization initiative does
need software of sufficient quality that works in a variety of settings and has
performance characteristics representative of production implementations,
in order for good decisions to be made.

We argue that the NIST PQC standardization effort—and future public
cryptography standardization—could be improved by having amore extensive
software framework prepared in advance by the organizers for submitters,
relying on modern continuous integration and testing tools. Our goal is to
lay out the requirements for such a framework, based on our experience
in the PQClean project, where we assembled a collection of standalone C
implementations of NIST PQC submissions and developed a continuous
integration testing framework to improve the software we assembled.

.. Organization of this chapter

As this chapter is slightly separate from the other chapters that report on cryp-
tographic protocols, we give a brief overview of its organization. In section 17.2,
we review the submission requirements issued by NIST over the lifetime of the
PQC standardization project to date, specifically as related to software imple-
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mentations; understanding the software submission requirements provides
context to the types and quality of software submitted.

In section 17.3, we begin to examine what went wrong in the process con-
cerning software implementations. Our main observations in this section are
(a) that the reference implementations were not ready to meet all the needs
expected of them; (b) that “ANSI C” as the language for both reference and
optimized implementations may not be the best choice; in particular as (c) no
enforcement of standard software-engineering techniques.

In section 17.4, we propose that future cryptography competitions could be
improved by having the organizers provide an extensive testing framework
for implementations, and we enumerate desired features of such a framework.

In section 17.5 we present details of our PQClean framework, which is an
open-source collection of C implementations of NIST PQC candidates, along
with an extensive array of compile- and runtime tests via a range of continuous
integration tools. Through the process of adding PQC algorithms to PQClean
and running our test framework, we identified flaws in the implementations
of almost every of the 17 schemes from the NIST PQC project that have been
added to PQClean (until 2022); these are summarized in table 17.1.

Much of sections 17.3 to 17.5 focus on C implementations. In section 17.6, we
look beyond PQClean’s central focus on “cleaning” C implementations, and
discuss alternatives to C for representing specifications as well as extensions
beyond testing frameworks for cryptographic standardization processes.

We wrap up in section 17.7 with conclusions and recommendations.

.. Related work

The risk associated with flaws in cryptographic software has been well-known
for decades [11, 171, 317]. There are many potential causes for such flaws,
which are important to distinguish to help put this chapter’s focus into con-
text. There can be cryptographic weaknesses in the cryptographic algorithm
itself (weak parameters or broken cryptographic assumptions), applicable
to any particular implementation, which is therefore outside the scope of
this chapter’s focus. The cryptographic implementation could be used in a
context that does not match the implementation’s threat model: side-channel
attacks against implementations without countermeasures, for example. It
is also possible that applications and protocols might improperly use other-
wise good cryptography algorithms and implementations. The latter is quite
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common; for example, Lazar, Chen, Wang, and Zeldovich [237] evaluated
269 flaws for cryptographic software reported in the Common Vulnerabilities
and Exposures (CVE) database from 2011–2014 and found that only 17%
were in cryptographic libraries, whereas 83% were “misuses of cryptographic
libraries by individual applications”.

Our focus is on when the implementation of a cryptographic algorithm
(for which there are no known cryptanalytic attacks) contains flaws and the
software development steps that lead to those flaws. Blessing, Specter, and
Weitzner [67] examined vulnerabilities specifically in open-source C/C++
cryptographic libraries, and found that only 27% of vulnerabilities were cryp-
tographic issues, whereas 37% were memory safety or resource management
issues, 11% involved improper input validation, and 5% were numeric issues.
There are also high-profile examples that seem to derive from particular C
coding styles, such as the lack of braces leading to the so-called goto fail
bug [231].

In the context of cryptographic standardization projects, Mouha, Raunak,
Kuhn, and Kacker [260] studied software implementations submitted to the
NIST SHA-3 competition. Using solely black-box testing, they found a total of
68 bugs in 41 of the 86 reference implementations submitted, none of which
were discovered by the test suite provided by NIST.

A 2015 survey by Braga and Dahab [78] surveys techniques for the devel-
opment of secure cryptographic software. They identify a sequence of three
levels of cryptographic software development:

1. cryptographic library programming and verification;

2. cryptographic software programming and verification; and

3. cryptographic software testing.

For each level, they identify a range of techniques that can be used to reduce
the risk of flaws, including using secure languages, secure code generation,
applying static and dynamic analysis tools, and using functional tests and
adversarial tests (fault injection, fuzzing).

One trend is to create implementations of cryptographic primitives in
domain-specific or specialized languages and then generate lower-level imple-
mentations from there, with compilers and code generators yielding certain
assurances. Examples include the HACL⋆ library written in F⋆ that generates
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C code [363]; and Jasmin [9] which generates EasyCrypt code that can be
verified for security and functional correctness and x86_64 assembly code
for execution; Jasmin can even include mitigations against microarchitecture
attacks such as SPECTRE [25].

For implementations that are originally written in C, there are some tools
and techniques available for aiding in secure software development, including
a range of general-purpose static and dynamic analysis tools. One specialized
technique in the context of cryptography is the use of Valgrind to detect
control flow based on secret data, an example of which is the TIMECOP
project [273].

. NIST PQC software submission requirements

In this section, we review software requirements laid out by NIST for the PQC
standardization project as it evolved. Figure 17.1 shows a timeline of the main
events in the process. This includes the start of each of the rounds and the
deadlines by which submissions had to be updated, as well as the projected
timeline for publishing the new standards. In 2022, NIST announced that they
would be looking for new signature schemes to be submitted in the “on-ramp”;
they expect to finish that process in “18–24 months” [267].

.. Call for proposals and round  submissions

NIST issued a call for proposals in December 2016 which included a set of
submission requirements and evaluation criteria [270]. In addition to the
design documents, submissions were required to include several components
related to software and testing:

• A reference implementation, written in ANSI C, intended to “promote
understanding of how the submitted algorithm may be implemented”,
in which “clarity… is more important than… efficiency” [270, §2.C.1].

• An optimized implementation, also written in ANSI C, targeting the
Intel x64 processor.

• A statement by the implementations’ owners granting certain rights
to use the implementation “for the purposes of the post-quantum al-
gorithm public review and evaluation process, and implementation if
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Figure 17.1: Timeline of NIST PQC standardization project. Dates after the
end of 2022 are estimates based on recent NIST announcements.

the corresponding cryptosystem is selected for standardization and as
a standard” [270, §2.D.3].

• KAT values to check the correctness of reference and optimized imple-
mentations [270, §5.B].

Submitters could at their discretion include additional implementations
for other platforms, for example using intrinsics or assembly [270, §2.C.1].

The evaluation criteria in [270] referred to software and testing in several
aspects:

• Performance: schemes will be evaluated based on their computational
cost in software and hardware [270, §4.B.2].

• Side channel aspects: schemes that can be made side-channel resistant
efficiently are more desirable than those that cannot, and “optimized
implementations that address side-channel attacks (e.g., constant-time
implementations) are more meaningful than those which do not” [270,
§4.A.6].

• Flexibility: schemes that “can be implemented securely and efficiently
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on a wide variety of platforms” or for which implementations “can be
parallelized to achieve higher performance” are desirable [270, §4.C.1].

NIST stated that the goal of the evaluation process during round 1 was
to “narrow the candidate pool for more careful study and analysis” and that
this “will be done primarily on security, efficiency, and intellectual property
considerations” [270, §5.A]. NIST indicated that submitters would be able to
provide updated optimized implementations for evaluation in round 2.

The call for proposals indicated that correctness and efficiency testing
would be performed by NIST on the “NIST PQC Reference Platform, an Intel
x64 running Windows or Linux and supporting the GCC compiler” [270,
§5.B]. NIST further stated: “At a minimum, NIST intends to perform an
efficiency analysis on the reference platform; however, NIST invites the public
to conduct similar tests and compare results on additional platforms (e.g.,
8-bit processors, digital signal processors, dedicated CMOS, etc.). NIST may
also perform efficiency testing using additional platforms”.

In addition to the text of the submission requirements, several technical
notes on API and testing and some corresponding source code was included.

NIST’s API notes [265] described the C API for signature schemes, public-
key encryption schemes, and key encapsulation mechanisms. The API was
derived from the eBATS (ECRYPT Benchmarking of Asymmetric Systems)
API in the eBACS project [48]. One notable characteristic of the API was that
the signature API generated “attached signatures” (where the output of the
signing function is a single variable-length “signed message” containing both
the message and the signature together) rather than “detached signatures”
(where the output of the signing function is a typically fixed-length signature
digest without message). The API also included a function providing random
bytes, a pseudorandom expander, and an optional deterministic random bit
generator to facilitate known-answer tests.

NIST provided a short document [266] describing the process for generat-
ing known-answer test values, as well as a source-code archive [269] contain-
ing C files for generating KATs for signature schemes, public-key encryption
schemes, and KEMs, and a C header file and implementation of a seeded
pseudorandom number generator for generating consistent KAT values. The
document also included an example Makefile for building and running the
KAT programs.
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.. Round  selection and round  submissions

In January 2019, NIST issued a status report [5] on round 1, including a discus-
sion of its selection of round 2 candidates. The report noted that evaluation
criteria used for selecting round 2 candidates were, in order of importance,
“security, cost and performance, and algorithm and implementation charac-
teristics” [5, §2.3]. Among the comments on individual schemes selected for
round 2 were comments on speed (either positively or negatively) as well as
side-channel attacks and constant-time implementations.

The round 1 status report included a statement that, as a next step, NIST
was interested in more performance data, including “optimized implemen-
tations written in assembly code or using instruction set extensions, and
analyses of implementation suitability of candidate algorithms in constrained
platforms” [5, §4].

.. Round  selection and round  submissions

In July 2020, NIST issued a status report [4] on round 2, including a discussion
of its selection of round 3 candidates. At around the same time, NIST issued
an additional note with guidelines for submitting tweaks for round 3 [264].

The status report on round 2 noted that the evaluation period saw better
data, especially for constant-time implementations on Intel x64 as well as
implementations for ARM Cortex-M4 and hardware implementations, and
observed that this included information about resources required by imple-
mentations, such as RAM or gate counts. The report indicated NIST’s desire
to see “more and better data for performance in the third round” including for
“implementations that protect against side-channel attacks, such as timing at-
tacks, power monitoring attacks, fault attacks, etc.” [4, §2.2]. NIST concluded
the report with a clear request for performance evaluation of implementations
during round 3: “NIST hopes that with only seven finalists and eight alternate
candidates, the public review period will include more work on side-channel
resistant implementations, performance data in internet protocols, and per-
formance data for hardware implementations in addition to more rigorous
cryptanalytical study” [4, §4].

The guidelines for submitting tweaks for round 3 [264] relaxed the require-
ments on the optimized implementation included in the submission: “the
reference implementation should still be in ANSI C; however, the optimized
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implementation is not required to be in ANSI C” and recommended “provid-
ing an AVX2 (Haswell) optimized implementation and […] other optimized
software implementations (e.g., microcontrollers) and hardware implementa-
tions (e.g., FPGAs)”.

.. Round  selections, signature on-ramp, and round 

submissions

In July 2022, NIST issued a status report [6] on round 3, including a discussion
of its selection of the first schemes selected for standardization as well as the
round 4 candidates. In the guidelines for submitting round 4 tweaks, NIST
did not specify any new requirements for software [263]. At the same time,
NIST announced the call for new submissions for signature schemes. In
the guidelines for submitting new signature schemes [261], announced in
September 2022, NIST followed the same requirements as set for the initial
NIST standardization project, again requiring “ANSI C”.

. Problems with NIST PQC reference implementations

In this section, we argue that the reference implementations submitted to the
NIST post-quantum competition did not achieve the declared goal of promot-
ing the understanding of how the submitted algorithm may be implemented
as well as they could have. We give an overview of what we believe to be the
reasons for this; in short, those are a combination of

1. differing expectations of what a reference implementation should ac-
complish;

2. the choice of ANSI C as the primary programming language; and

3. insufficient use of some standard software-development tools and tech-
niques, paired with a lack of experience with writing cryptographic
software in the submission teams.

.. Reference implementation expectations

Let us first look at what one might reasonably expect from a reference im-
plementation or what such an implementation might be used for. NIST’s
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call made it clear that the central goal is about clarity of the code. Once
the programming language—here, ANSI C—is fixed, it is not hard to start
heated debates about what exactly “clarity of code” means; however, this is not
the central problem. What is much more important is that reference code is
typically used for much more than just “promoting understanding”, including:

Generation of test vectors This is probably the most obvious use case for a
reference implementation aside from portraying what the proposed
algorithms look like in code. Being able to reliably generate test vectors
is the foundation for any kind of regression testing of more optimized
implementations.

Basic performance evaluation A more controversial question is if a reference
implementation should also be used as a baseline for performance
evaluation. The call made it pretty clear that performance should not
be a focus for the reference implementation. However, many “reference
implementations” submitted to NIST did include pieces of code that
were clearly optimized for speed rather than for readability. Also, many
papers did report benchmarks of reference implementations [111, 130,
205, 238, 326], sometimes without clear warnings that such benchmarks
say absolutely nothing about the performance of the proposed scheme.

Starting point for optimization A very common approach for performance-
oriented implementations, typically with platform-specific optimiza-
tions, is to start from a reference implementation. The first step is to
identify the routines that take most of the CPU cycles and then step-by-
step replace those with optimized routines, often written in assembly
and targeting a specific microarchitecture. To enable this approach, it
is important that the reference implementation builds for and runs on
the platform targeted for optimization. In particular, when consider-
ing embedded platforms, the use of large external libraries is often a
problem.

Use in protocol experiments Through the course of the NIST PQC standard-
ization project, various efforts have investigated how to upgrade proto-
cols to have post-quantum security, using the primitives (and implemen-
tations) submitted to NIST; see, e.g., [43, 110, 185, 321, 326]. Integration
into cryptographic-protocol frameworks often requires namespacing of
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the code. A meaningful performance evaluation additionally requires
implementations that are optimized for the benchmark platform and ad-
here to all security guidelines requested by that platform, most notably,
not leaking secrets through timing.

Use in (performance-uncritical) production-level experiments Several early
adopters experimented with post-quantum primitives in production
software; prominent examples are the experiments by Google and
Cloudflare with post-quantum TLS [226, 232, 233] and Infineon’s im-
plementations of post-quantum cryptography in contactless smart-
cards [294] and TPMs [151]. While server-side deployments typically
need highly optimized software, a portable (reference) implementation
may be perfectly reasonable for less performance-critical client-side
deployment. This, however, requires that this implementation is secure
in the sense of the threat model the respective application uses.

Portability Many of these possible use cases of a reference implementation
require that code is portable to different platforms, both hardware (e.g.,
32-bit vs. 64-bit platforms or platforms with different endianness) and
software (e.g., different operating systems or compilers). In the PQC
FAQ, NIST clearly states that “key requirements are that the submis-
sion code should be written in a cross-platform manner […]”, however
without clarifying exactly what this means.

Some of the use cases for a reference implementation have strong synergies.
For example, optimized code is also more useful to generate test vectors, and
code suitable for academic protocol-level experiments is more likely to also
be suitable for use in production software. However, some of these possible
use-case scenarios have opposing requirements on a reference implementa-
tion and, ironically, almost all of them have some requirements that do not
help to promote understanding. Notably, pursuing higher performance often
requires unrolling implementations or more advanced (non-“schoolbook”)
implementations of, e.g., field arithmetic. This may distract from the overall
structure of the scheme.
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.. The problems with“ANSI C”

The first problem with requesting software written in “ANSI C” is that the
term is not well defined. As pointed out in a posting to NIST’s pqc-forum
mailing list by Saarinen, “ANSI C” is commonly understood to refer to the
ISO/ANSI C90 standard, which does not even define the long long data
type used by the API. This issue with the definition of “ANSI C” was clarified
in an FAQ entry saying that “implementations written in C99 and C11 are both
perfectly fine” [307]. Furthermore, with regards to the use of the NTL library
that is written in C++, NIST clarified that implementations making use of
NTL should still be “as ANSI C-like as possible, only using C++ functionality
where absolutely required in order to interact with NTL”.

However, these clarifications do not address two other issues inherent to
the C programming language: the fact that the language is underspecified and
that it offers very little support to the programmer to write safe and correct
programs.

Underspecification of C

The C programming language is intentionally underspecified to enable com-
pilation to very fast binary code on a broad range of platforms. Krebbers [222]
summarizes three different kinds of underspecification:

1. Implementation-defined behavior leaves it to the compiler to make de-
cisions about the semantics of certain expressions. These decisions
need to be consistent, i.e., when compiling code for one target, all
occurrences of the same kind of expression are required to have the
same semantics. Also, these semantics should be documented. It is
near impossible to write (cryptographic) software without any expres-
sion that falls into this category. For instance, even the number of bits
in one byte (char) is not fixed by the C semantics. Whether char
is signed or unsigned is also left to implementations. An example of
implementation-defined behavior that causes more issues in real-world
implementations is the endianness of integers.

2. Unspecified behavior leaves it to the compiler to define the semantics
of certain expressions. These decisions do not have to be consistent
throughout the compilation and also do not need to be documented.
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One example is the evaluation order. Carefully written code avoids the
pitfalls of unspecified behavior, either by entirely avoiding expressions
that fall into this category or by ensuring that semantics does not depend
on the compiler’s decision.

3. Undefined behavior allows the compiler to do anything; for example, it
would be within the specification of the C programming language to
generate a binary that deletes all data in the user’s home directory when
encountering a case of undefined behavior. The most notable examples
of undefined behavior are related to memory safety (i.e., reading or
writing out of bounds), but this also includes, for example, signed-
integer overflow, division by zero, modifications of string literals, or
dereferencing a NULL-pointer. Undefined behavior in a program is
generally a bug and very often a security-critical one.

Trusting the programmer

The C programming language, by its design philosophy, gives a lot of power to
the programmer but also puts a lot of trust in the programmer. For example, C
by itself has no mechanism to prevent programmers from accessing memory
at invalid locations, has no mechanisms to ensure that all heap allocations are
eventually freed (and freed only once), and has no mechanism to check for
integer overflows. C does not guarantee that variables are initialized before
they are read, it also features a rather weak type system with somewhat unin-
tuitive rules for implicit casts. This all together makes C a great programming
language to write highly optimized software, but it also makes it very easy
to write programs with bugs that often have severe security implications—in
particular in cryptographic software.

.. Software-engineering issues

Many issues with software implementations submitted to NIST PQC could
have been avoided by following standard software-development practices:

Compiler warnings

A first step to avoiding common pitfalls is to enable compiler warnings and
ensure that code compiles without any warnings. This may sound like a rather
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straightforward thing to do, but it turns out that “compilation without warn-
ings” is much more complex. First, one needs to determine what warnings
should be enabled; enabling “all” warnings with -Wall in GCC or Clang does
by far not enable all warnings, neither do the “extra” (-Wextra) or “pedantic”
(-Wpedantic) warnings levels. Compilation with the Microsoft compiler
uses different flags and, unsurprisingly, also issues different warnings. How-
ever, even standard warning levels are suitable to identify many common
patterns that are typically related to bugs.

Static analysis

More generally, there exist many tools for static analysis of C code, i.e., tools
that analyze code without actually running it [65, 86, 329, 342]. These tools
are typically able to find larger classes of bugs than those identified through
compiler warnings. Aside from the general-purpose static-analysis analysis
tools, there exist also tools specifically to check that cryptographic software
is free of timing leaks [10]. However, the use of these tools is not a default
practice even in the development of widely used cryptographic libraries [195].
One example of a bug that, for example, gcc’s static analyzer can catch is in
the following piece of code that we found in the reference implementation of
a NIST round-1 submission shown in listing 17.1.

Listing 17.1: A buggy piece of code included in one of the NIST round-1 sub-
missions

int64_t* extEuclid(int64_t a, int64_t b) {
int64_t array[3];
int64_t *dxy = array;
// ...
return dxy;

}

The problem with this piece of code is that the function returns a pointer to
a local stack variable. If the calling code dereferences this returned pointer—
what else would it do with a pointer?—the result is undefined behavior. In
principle both GCC (via the -Wreturn-local-addr flag) and Clang (via
the -Wreturn-stack-address flag) issue compiler warnings for this kind of
behavior. However, in our experiments, the indirection through dxy hides
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the bug from this compile-time analysis. The reason that this bug did not
trigger undefined behavior in this submission is simply that the function was
never called from any context—spotting such dead code is another use case
for static analysis.

Dynamic analysis

Another approach to finding bugs is running the code with instrumentation
or inside special environments. The most commonly used tools for dynamic
analysis, at least under Linux, are Valgrind [274, 323], and the AddressSan-
itizer [322] and UndefinedBehaviorSanitizer [343] included with the Clang
compiler. As for static analysis, there also exist specialized tools to identify
timing leaks through dynamic analysis [273].

Testing

Extensive testing is still one of the cheapest andmost widely used techniques to
ensure that software behaves as intended. NIST provided a ratherminimalistic
framework to generate test vectors for regression and compatibility testing
to be used by submitters. Unfortunately, the framework did not include
any negative tests (i.e., tests that ensure failure on invalid inputs) or basic
tests that the API was used as intended. For example, one of the reference
implementations submitted to round 1 of NIST PQC used out-of-bound
accesses of the form

sk[CRYPTO_SECRETKEYBYTES + j]

for positive values of j to access bytes of the public key. The implementation
simply assumed that the public key happens to be stored behind the secret key
in memory. This is something that any reasonable testing framework should
catch.

We do not mean to suggest that submitters to public cryptographic stan-
dardization efforts like NIST PQC should be familiar and up-to-date with all
the intricacies of these tools for engineering (cryptographic) software. On the
contrary: Our proposal, which we detail in the next section, is that the stan-
dardization body soliciting submissions ensures a basic level of code quality
by providing a suitable code-analysis and testing framework.
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. Proposed features of a software framework for

cryptographic competitions

In this section, we propose a testing framework for software submitted to fu-
ture cryptographic competitions. This section aims to be technology agnostic;
we discuss our specific realization, PQClean, which accomplishes many of
these goals, in section 17.5. Where necessary, we focus on the C programming
language as it remains prevalent for cryptographic software.

Our proposal could be implemented either as an offline solution using
virtualization, or online using continuous integration. The benefit of the latter
is that most testing can be executed in the cloud without requiring setup by
or using resources of each submission team.

We propose that such a testing framework be made available together with
the call for proposals, or alternatively, not later than 6 months before the
submission deadline for software implementations.

The framework should include at least the following features.

Build system The framework should include a build system that enables a
reasonable level of compiler warnings and refuses to compile if any
warnings exist. This would help to avoid many obvious mistakes and
would save many hours for other researchers to fix the same bugs.

Provide a working example Along with the testing framework, a working
example should be provided to serve as a reference of what is expected
from submitters. In the case of NIST PQC standardization, this could
have been a KEM and signature scheme based on RSA or elliptic curves.

Automated functional tests Straightforward functional tests should be im-
plemented. For example, for digital signature schemes, a generated
signed message should verify correctly. Failure test cases should also
be included, e.g., a signed message should not verify under a different
public key or a modified ciphertext in an IND-CCA KEM should not
decrypt (or decrypt to a different value, for implicit failure KEMs).

Verify test vectors In addition to asking submission teams to submit test
vectors, the framework should check if the software satisfies the test
vectors. We believe that this is best done by including a hash of the test
vectors in the submission, saving space in the case of large parameter
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sets. (Several round 1 submissions in the NIST PQC standardization
project had KAT file archives over 75MB.)

Provide code building blocks The framework should provide core function-
ality that is likely to be used by most schemes. For the NIST PQC
competition, this primarily consists of hash functions (e.g., SHA-2,
SHA-3), extendable output functions (XOFs) (e.g., SHAKE), the AES
function, and functions outputting randombytes. This ensures that per-
formance differences between implementations are not due to different
implementations of the same building blocks. Requiring implemen-
tations to use the same APIs also eases evaluation and modifications
by other teams. Submissions should not be allowed to ship their own
version of the same functions, though the competition organizers will
need to consider how to deal with requests for specialized versions of
these functions (e.g., vectorized implementations).

Test using all major toolchains The submitted software should support all
major toolchains. In the case of the C programming language, at least
GCC, Clang, and Microsoft’s compiler (CL) should be supported. The
framework should make sure that the code compiles with all of them.
As compilers change over time, it is important to fix a version for each
of them.

Test on all major platforms To ensure that all submitted code is platform-
independent, the tests should be executed on a variety of platforms,
including 32-bit and 64-bit systems, and little-endian and big-endian
architectures.

Leveragemodern static and dynamic analysis The framework should enable
the static analysis included in the toolchains. Additionally, Valgrind
and AddressSanitizer should be used for dynamic software analysis for
detecting memory problems.

Enforce namespacing As implementations from multiple submissions are
likely going to be used in the same software (e.g., in a library) their
namespaces should be properly separated. The framework should en-
able and enforce appropriate namespacing and visibility, requiring
unique names for public API functions (e.g., mykem_lvl1_encaps
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rather than crypto_kem_encaps) and unique names or limited visi-
bility for internal symbols (e.g., static functions within a compilation
unit).

Enforce code style and documentation To improve the readability of code,
submissions should be formatted in the same way. The call for submis-
sions should include the coding guidelines and the framework should
check if the code is formatted accordingly. In the same vein, a com-
mon syntax for documenting code should be defined. The framework
should automatically check if a bare minimum of documentation for
each function in the source code exists.

Benchmarking code The framework should allow basic benchmarks to en-
sure that all teams run benchmark their code in the same way. The
benchmarking results should be reported in the submission document.
Advanced benchmarking (multiple platforms, multiple compilers) may
be provided by the competition organizer, in which case it should be
a public platform with clear submission procedures and transparent
results reporting, or can be taken on by third-party projects like SU-
PERCOP.

Additionally, the framework could include the more advanced features in
the following.

Verify that code is constant time Code intended for use in actual software
needs to have runtime independent of any secret data, i.e., avoiding
branches depending on secrets, secret-dependent memory accesses,
and variable-time instructions depending on secrets. Tools like ct-
verif [10] could be used to detect such timing leakage. Alternatively,
dynamic checking through Valgrind with uninitialized secret data can
be used to catch most of the variable-time code. For some code (e.g.,
rejection sampling) this approach may result in false positives. In that
case, submitters need to be able to mark the finding as a false positive
and provide a rationale for why it is not a security issue.

Disallow dynamic memory allocation Dynamic memory allocations, e.g. us-
ing malloc, present a problem on smaller bare-metal platforms. Addi-
tionally, they are often a source of bugs that would have been prevented
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by exclusively using stack memory. Thus, we recommend disallowing
dynamic memory allocation and enforcing it using a test. In the major-
ity of cases, cryptographic code is only using fixed-sized buffers which
makes switching to stack memory straightforward. If variable-sized
buffers are needed, the software can usually be rewritten to allocate the
worst-case size. Admittedly disallowing dynamic memory allocation
can cause other problems. Some PQC algorithms have rather large
memory usage, and some platforms do have problems with large stack
sizes, especially within threads. Typically, 8MB of stack is the limit on
Linux. If such large buffers are required, dynamic memory allocation
may be acceptable.

To lower the burden for initial software submissions, some of the require-
ments could be optional, i.e., failing tests will merely trigger a warning. In
subsequent evaluation rounds, more requirements could become manda-
tory to gradually increase the quality of implementations. In case any of the
requirements are not fulfilled in the submission, we recommend publicly
disclosing a list of problems with each submission. The submission team
should then be able to remedy the issues within a reasonable time frame. For
this to work transparently, source code should be hosted in a code versioning
system (e.g., git) that is accessible to everyone. Note, however, that there
need to be clear guidelines on the scope of updates allowed. As specifications
are usually frozen during each evaluation round, changes that alter test vec-
tors or algorithmic interoperability should not be allowed while algorithm
specifications are meant to be frozen.

. The PQClean framework

The goal of the PQClean project is to build a repository of highly-tested, high-
confidence implementations, which may be valuable to other projects. As
such, PQClean is a collection of schemes and implementations, but it is not a
software library; the schemes and implementations all exist independently
and PQClean offers no API other than the scheme’s interface. We organize
the implementations in PQClean like in the SUPERCOP [48] project: the
implementations are organized by type (KEM or signature scheme), then by
scheme and specific instantiation (e.g., Kyber-512). Each instantiation might
have several implementations. PQClean supports C and assembly code; for
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some schemes, we also have ARMv8-A or AVX2-specific code. Due to the
nature of assembly code, optimized implementations may not be available on
all operating systems.

.. Common files

PQClean makes some common primitives available to each implementation.
This includes (incremental) hashing primitives, AES, and random number
generators. Anyone extracting implementations from PQClean can re-use
these, or provide their own implementation based on our API. For hashing
and encryption primitives, we additionally provide initialization and cleanup
functions. This allows them to be implemented by heap-based primitives,
as for example provided by OpenSSL [279]. PQClean does not attempt to
offer the most efficient or any machine-optimized implementations of the
primitives.

.. Meta information

In each instantiation folder, there exists a META.yml file, in which some
scheme metadata is tracked. This information includes some scheme-specific
information, like authors; instantiation-specific information, like key sizes;
and information on each of the implementations present, like version and
optionally compatibility information. This machine-readable information
can be helpful for any automated tool using the framework, including the
internal testing framework, as well as for any projects that generate code that
wraps implementations from PQClean.

.. Namespacing

PQClean enforces that all exported symbols, like function names and global
values, have a predictable and unique name. They are “namespaced” by
prefixing with PQCLEAN_, then the name of the scheme and parameter set,
and the name of the implementation. This ensures that no symbols conflict
between, for example, different schemes or different implementations. With-
out this separation, it would be difficult to build software that uses several
primitives or selects implementations based on CPU feature detection.
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.. Automated testing

Currently, there are 22 automated tests in the PQClean testing harness, against
which each scheme is evaluated. The tests range from simply compiling the
source code with compiler warnings or checking the existence of license files,
to parsing source files to exclude certain types of patterns. These tests include
the following; symbols indicate which flaws in table 17.1 the test can potentially
identify:

⋆ that the scheme compiles correctly, without compiler warnings;

♠ Makefile correctness: that all scheme source files are correctly specified
as dependencies;

♣ functional correctness: that the key generation, KEM, and signature
operations function as intended, even on unaligned buffers; we also
check if corrupted ciphertexts and signatures fail to verify;

† that scheme keys, ciphertexts, and signatures match test vectors, includ-
ing NIST’s KAT test vectors;

⋄ running functional tests with sanitizers (Clang’s address sanitizer [322],
memory sanitizer [334], and undefined behavior sanitizer [343]) and
Valgrind [323];

± specification of signedness of char;

= existence of certain timing-suspicious boolean operations;

✓ clang-tidy [342] linting and static analysis;

© existence of license files;

• symbol namespacing;

• no usage of dynamic memory;

• consistent style and formatting.

The testing framework is based on Pytest [223], which allows us to generate
tests for each scheme and implementation flexibly, and generates convenient
output. For tests that compile code, we isolate the source files and compilation
targets so that tests can be executed in parallel.
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Table 17.1: Flaws found, and which tests might have detected them, in how
many of the 10 KEMs and 7 signature schemes that have ever been
included in PQClean.

Flaw KEMs Sigs

Endianness assumptions † 7 2
Platform-specific behavior ♣, ±, †, ✓ 4 0
Alignment assumptions ⋆, ♣, ⋄ 4 4
Signed integer overflow ⋆, ⋄, ✓ 3 1
Memory safety ⋄ 3 4
Other undefined behavior ⋆, ♣ 1 1
Integer sizes ⋄, ⋆, † 6 3
Global state 2 1
Licensing unclear © 3 1
Dead code ⋆, ♠ 3 4
Variable-Length Arrays ⋆ 4 1
Compiler extensions ⋆ 5 2
Non-constant time = 4 0

Tests

⋆ Compilation test
♠ Makefile checks
♣ Functional tests
† Test vectors
⋄ Sanitizers
± Signedness of char
= Timing-suspicious ops.
✓ clang-tidy
© License file

.. Testing platform and platform diversity

The automated tests are run on each commit and pull request to PQClean.
We also run them periodically on the master branch. This ensures that the
implementations continue to be validated as compilers and tools get updated.

The testing platform is based onGitHubActions [159]. This service provides
Linux, Windows, and macOS runners, on which we run our automated tests.
We run all tests on Linux and macOS with a recent version of GNU GCC as
well as with Clang. Windows tests use Microsoft’s CL compiler. Results are
publicly visible through GitHub’s user interface.

Although the native architecture of these systems is the 64-bit, little-endian
Intel x64 architecture, we also run tests on 32-bit Intel x86, 32-bit ARMv7 and
64-bit ARMv8, and big-endian PowerPC. We use user-mode QEMU [346]
emulation together with Linux’s binfmt_misc capability [169] to run our
tests within Docker images that emulate these targets.

Due to the large number of tests being run on every implementation, we
have split the CI jobs per implementation, operating system, compiler, and
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architecture. Otherwise, we quickly exceed the maximum allowed runtime
for each job (5 hours). On pull requests, we only run the tests on the affected
scheme, if possible. This keeps testing times and feedback cycles short.

.. Results

We have integrated over 230 implementations of multiple parameter sets of 17
schemes into PQClean over the course of the project. In almost every scheme
we identified “unclean” code, ranging from missing casts to memory safety
problems and other forms of undefined behavior. In table 17.1 we provide a
summary of the number of schemes affected by some of the more significant
categories of problems. Many of these flaws were detected by our automated
testing, as described in section 17.5.4, but in the process of integration, we also
solved many problems by hand. The symbols in the table correspond to the
tests that might have detected the type of flaw.

Many of the flaws are simply detected by enabling compiler warnings.
Solving these warnings probably took themost time when integrating schemes
into PQClean. Although many of the reported warnings did not immediately
mean the code had a security or correctness flaw, we found that enabling all
warnings did help find those problems that were flaws, as well as improve the
general code quality.

A perhaps surprising issue was the uncertainty around licensing of 4 of the
17 schemes. Although NIST required the submitters of code in submissions to
grant “the right to reproduce, prepare derivative works based upon, distribute
copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process” [270], it is unclear
what the scope of “public review and evaluation” is exactly, and NIST did
not require any specific open-source license. Several of the included schemes
did not include clear licensing information with their implementations. We
contacted their authors and found that many had intended to grant permissive
licensing, or even CC0 copyright waivers, to their implementations. However,
this often resulted in notable delays; one submission team never provided us
with a license and we had to abandon including it in PQClean.
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. Beyond“cleaning C”

The various difficulties we discussed in the previous sections motivate the
question of whether C is the appropriate programming language for a cryp-
tographic standardization project. This is perhaps as much a philosophical
discussion as a technical one. We cannot answer this question definitively for
future standardization projects but feel it is worth highlighting some issues.

.. Is C a good fit for specifications?

C has compilers for almost every system under the sun, whichmakes it very at-
tractive for experiments (implementation-specific behavior notwithstanding).
However, to document and explain an implementation, C is perhaps less well
suited. More expressive higher-level languages like Python are perhaps better
suited for the role of “executable pseudocode”. Rust could perhaps have stood
in as a low-level language that simply does not allowmost of the problems that
our testing system was designed to catch. Additionally, allowing implementa-
tions in computational algebra systems like SageMath [308] or Magma [74]
would permit expressing the mathematical constructions very directly, not
distracting a reader with the details of, for example, polynomial multiplica-
tion. For specifications, there have also been efforts such as hacspec [253] that
aim to not only generate executable code, but also translate specifications to
formal-verification frameworks like F⋆ [336], EasyCrypt [26], or Coq [344].
We believe this pathway has the potential for powerful collaborations with
the world of computer-aided high-assurance cryptography [20].

.. Other languages in PQClean

Although PQClean initially only collected cleaned-up reference C implemen-
tations of schemes, we now also have optimized C and assembly implementa-
tions of schemes that use platform-specific features like AVX2 or Neon. These
implementations are subjected to the same tests as the reference implementa-
tions. It would be possible to extend PQClean to implementations in other
languages as well. The cross-implementation testing of test vectors would
grant more confidence that each implementation is correct and interoperable,
especially if at least one of the implementations has been formally verified
against a machine-readable specification in, e.g., hacspec [253].
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.. Beyond standardization projects

The goal of PQClean could be described as building a repository of highly-
tested, high-confidence implementations. We believe cleaned-up implemen-
tations are valuable to other projects. The Open Quantum Safe [333] and
the pqm4 [204] projects already automatically integrate implementations
from PQClean. We argue that there is value in such an approach for more
algorithms and cryptographic libraries. Firstly, it allows focusing analysis
and testing efforts. It can save developer time and energy to, e.g., implement
automated timing side-channel testing centrally instead of in each individual
project. Any such efforts would then benefit all the consumers of the im-
plementations. Currently, it seems that often when a vulnerability like a
side-channel leak is discovered, it affects many cryptographic libraries and
the effort of patching is duplicated many times. A central repository would
minimize the maintenance effort required. Thus, we do believe that a well-
designed testing framework benefits not only the standardization effort itself,
but may reach beyond, into the phase of deployment.

. Conclusions

This chapter presented what we believe NIST and other bodies coordinating
cryptography standardization competitions should do to improve the soft-
ware quality of submitted code. Properly implemented, a set of guidelines
together with a testing framework could benefit submitters, the community,
and the standardization body itself. It will allow everyone to focus on what
the competition is about: evaluating the candidate cryptographic schemes.

We believe that many of the recommendations in this chapter are uncontro-
versial and should be implemented in any future competition. For example,
providing a working example of what is expected from submitters together
with a testing framework would be the bare minimum. The scope of the
testing framework may be more controversial and one has to be careful to not
raise the bar for submissions too high. Limited resources at standardization
bodies may also limit the features of such a framework.

More controversially, we question if C is a suitable programming language
for reference implementations, especially if the main goal is clarity of the
implementation. While as of now there seems to be no consensus on which al-
ternative should be used, standardization entities should revisit this regularly.
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In this last chapter, I will first summarize the conclusions drawn in this thesis,
before looking out toward new developments.

Post-quantumTLS

In this thesis, we have examined what is necessary to transition TLS to post-
quantum cryptography. In chapter 3, we have discussed how, with minimal
changes, wemay instantiate the current TLS 1.3 handshake with post-quantum
KEM and signature schemes. As post-quantum signature schemes are much
larger than most of the proposals for post-quantum key exchange, we have
revisited OPTLS in chapter 4, which was an early proposal in the develop-
ment of TLS 1.3. OPTLS does not use signature schemes to authenticate
the server (and optionally the client) in the handshake; instead, the original
proposal for OPTLS uses DH key agreement to authenticate [221]. However,
OPTLS’ handshake protocol relies on the fact that DH key agreement is a
non-interactive key-exchange scheme (NIKE). Unfortunately, the only some-
what efficient post-quantum NIKE scheme is CSIDH [91], which limits the
number of algorithms we can use to instantiate OPTLS with; additionally,
there is disagreement about the level of security offered by CSIDH (see, e.g.
[71, 97, 289]) and it has heavy computational requirements.

In light of this, we proposed KEMTLS in chapter 5. This is an alternative to
the TLS 1.3 handshake protocol which, like OPTLS, avoids (post-quantum)
signatures in the TLS handshake and instead uses key exchange. KEMTLS

combines an ephemeral KEM key exchange with a key exchange that uses a
server’s (and optionally client’s) long-term KEM key, as held in a TLS certifi-
cate. By combining the ephemeral key exchange result with the symmetric
key that is encapsulated to the long-term KEM key, we obtain a secret key that
only the party that possesses the long-term KEM private key can compute.
However, in a naive approach, because KEMs are an interactive key exchange
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mechanism, a naive integration of KEMs-based authentication in the TLS
handshake requires an additional round-trip. To avoid this, we allow the
client to use the derived implicitly authenticated secret key to encrypt and
send its request to the server before the server has explicitly confirmed that it
was able to derive the same secret key. This allows the client to send its request
to the server at the same time as it would be able to in the TLS 1.3 1-RTT
handshake. We argue that this makes unilaterally authenticated KEMTLS in
most applications as fast as the TLS 1.3 handshake in terms of RTTs, as servers,
notably HTTP servers used in web browsing, generally cannot provide much
useful information to the client before having received its request.

We note that TLS clients often make many connections to the same server,
for example, because they are making many visits to the same website, or
because they are an Internet-of-Things (IoT) device or a back-end service
that connects to the same TLS server every time. In such scenarios, we argue
that the client may cache or be configured with the server long-term KEM
public key. To further reduce the size of KEMTLS handshakes and improve
handshake performance in such a pre-distributed key scenario, we proposed
KEMTLS-PDK in chapter 6. In KEMTLS-PDK, the client, which already has the
public key of the server, encapsulates a ciphertext to this key and includes its
very first message to the server; this abbreviates the handshake and avoids
the server having to transmit a full certificate chain. Unlike the traditional
TLS resumption or pre-shared key mechanisms, KEMTLS-PDK does not rely on
symmetric keys, so it does not require protected storage. It additionally does
not require the server to keep a database of valid resumption keys. Finally,
KEMTLS-PDK can fall back to the full KEMTLS handshake, for example, if the
client’s copy of the server’s key has expired, whichmakes it a flexible extension
to KEMTLS.

As KEMTLS(-PDK) are new handshake protocols, and especially as KEMTLS

relies on implicit authentication, a security property not previously seen
in TLS, we justify its design by providing extensive proofs of the KEMTLS

and KEMTLS-PDK handshake protocols in chapters 7 and 8. We show that
the KEMTLS and KEMTLS-PDK handshakes provide full forward secrecy and
retroactive explicit authentication to all traffic keys in every fully completed
handshake. In this thesis, we additionally extended the proof for KEMTLS to
cover mutually authenticated KEMTLS and unified the KEMTLS and KEMTLS-

PDK proofs. These proofs in the computational model have been done in
the pen-and-paper approach. To increase the confidence in the security
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of KEMTLS(-PDK), we modeled the protocols and the security properties in
the symbolic analysis tool Tamarin [27, 251] in chapter 9. We approach the
symbolic analysis in two ways: first, by adopting an existing model which
was used to analyze TLS 1.3, adapting it to KEMTLS(-PDK) and proving the
security properties originally claimed for TLS 1.3 for KEMTLS; and by more
directly translating our protocol and pen-and-paper proof to Tamarin. The
latter approach can be directly related to the pen-and-paper results and found
discrepancies with our original security claims.

As a real-world security protocol, the performance of post-quantum TLS is
almost as important as its security. Part III focused on this subject. In chap-
ter 10, we discussed the experimental implementations of the new handshake
protocols in Rust, how we integrated high-performance implementations of
the post-quantum KEMs and signature schemes, and how we have measured
the performance of the handshake protocols in an emulated network setting.
In the next chapters, we show which KEMs and post-quantum signature
schemes can be used to instantiate the handshake protocols, and their perfor-
mance. We specifically discuss post-quantum TLS 1.3 (chapter 11), OPTLS
(chapter 12), KEMTLS (chapter 13) and KEMTLS-PDK (chapter 14). In chapter 15,
we move from a network environment that is simulated on a single computer
with a fictional application payload, to a real-world experiment, which exam-
ines the performance of post-quantum TLS 1.3 and KEMTLS for connections
between two data centers on two continents. Finally, in chapter 16, we examine
a KEMTLS client that runs on a microcontroller and examine its performance
when connecting to a server over low-bandwidth connections typical for the
IoT setting.

In all of these measurements, we see that the size of the handshake con-
tributes non-negligibly to the handshake latency: the time between the client
setting up its network connection and first receiving a response from the
server. This is especially noticeable if the connection has low bandwidth or
if the handshake exceeds the size of the TCP Slow Start algorithm’s initial
congestion window (initcwnd), which has a size of roughly 15 kB [66, 104].
More obviously, the computational overhead of post-quantum algorithms also
contributes to the connection establishment time. KEMTLS allows to signif-
icantly reduce the amount of data that is required for public-key cryptography
in TLS handshakes and avoids (relatively) computation-heavy post-quantum
signature schemes Dilithium [241] and Falcon [293] in favor of the relatively
lighter KEM Kyber [319]. Furthermore, the size of the trusted code base is
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reduced by KEMTLS: the only sensitive computations remaining are KEM
computations, and servers and mutually authenticating clients no longer need
to produce online signatures. Verification code needs much less protection
compared to signing code in hardened platforms. If there is only enough
space for one signature algorithm, KEMTLS’ lack of online signing also allows
picking a signature scheme without concern for its signing performance or
sensitivity to side-channel attacks; this makes the Falcon signature scheme a
much more widely applicable option.

In mutually authenticated connections, KEMTLS still manages to reduce the
size of the handshake, but as it requires an additional round-trip to securely
transmit the client’s certificate and execute the authenticating key exchange,
its performance is worse than that of TLS 1.3 in most experiments. How-
ever, Birghan and Van der Merwe have shown that web browsers seldom
use mutual authentication [61]; in many other applications, we conjecture
that we can avoid the extra round-trip by using KEMTLS-PDK. For unilaterally
authenticated handshakes, KEMTLS-PDK only further improves the handshake
performance compared to KEMTLS by reducing the size of the handshakes. In
mutually authenticated handshakes, KEMTLS-PDK allows the client to transmit
its certificate along the initial ClientHello message, which enables client-
authentication within a 1-RTT handshake. KEMTLS-PDK additionally allows
the selection of algorithms such as Classic McEliece for server authentica-
tion, which have very small ciphertexts but too-large public keys to generally
transfer in TLS handshakes but, if preinstalled, can be used to offer security
based on very conservative assumptions and large reductions in handshake
bandwidth requirements.

Outlook

While working on this thesis, I have had the opportunity to examine the
performance of TLS and network protocols from different angles; specifically,
while interacting with the IETF and working with Cloudflare, I learned a lot
about the many environments that make use of TLS. The requirements are
sometimes very different. TLS is famously used in web browsers, which gener-
ally operate on (compared to microcontrollers) high-performance computers
and smartphones. Websites are often hosted on similar high-performance
computers, and often even on content-delivery networks that deploy hard-
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ware and software that is optimized to set up TLS connections as quickly as
possible. Websites themselves are also quite big; the median page weight in
May 2022 was 2001 kB for mobile web pages [191]. This makes implementing
a new handshake protocol to save a few hundred bytes in the TLS handshake
perhaps less interesting to those operating web browsers, even though in
many parts of the world (mobile) data is expensive: in more than half of
middle-income and low-income countries, 1GB of mobile data costs more
than 2% of the average monthly income [357].

On the other end of the spectrum, TLS is used in small devices and protocols
that have smaller amounts of computational power or constraints on code
size. In those applications, KEMTLS represents an opportunity for considerable
savings, even though it requires investments in implementation. TLS seems
to have been the ubiquitous go-to secure communication protocol in many
system designs; I think that the transition from very small elliptic-curve-
based primitives to much larger post-quantum alternatives may result in more
bespoke approaches as trade-offs are made for individual applications.

Finally, this thesis was completed on the cusp of the National Institute
of Standards and Technology deadline for the call for new post-quantum
signature algorithms [267]. Some new proposals seem promising, offering
small signature sizes and small public keys. The security assumptions of some
of these schemes have not yet received much scrutiny, however, and their
performance characteristics are currently not always clear. Even so, they will
influence the discussion on post-quantum authentication for TLS and other
protocols.

Development of post-quantum TLS will continue in the IETF TLS work-
ing group, where we have contributed to the discussion on post-quantum
authentication in TLS by submitting KEMTLS(-PDK) as an Internet-Draft [94].
The large size of post-quantum signatures and the incumbent large migration
to post-quantum cryptography has also motivated other proposals to reduce
the size of TLS handshakes, for example, by suppressing (intermediate) CA
certificates [202]. In March 2023, Benjamin, O’Brien, and Westerbaan of
Google and Cloudflare have even proposed a complete redesign of the TLS
public-key infrastructure, by replacing the traditional certificates with creden-
tials authenticated by a new system based on the Merkle trees of the current
certificate transparency services [37].

The story of post-quantum TLS appears to have only just begun.
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A Verifying post-quantum signatures in

 kB of RAM

In this chapter, we study implementations of post-quantum signature schemes
on resource-constrained devices. We focus on verification of signatures and
cover NIST PQC round-3 candidates Dilithium, Falcon, Rainbow, GeMSS,
and SPHINCS+ . We assume an ARM Cortex-M3 with 8 kB of memory and
8 kB of flash for code; a practical and widely deployed setup in, for exam-
ple, the automotive sector. This amount of memory is insufficient for most
schemes. Rainbow and GeMSS public keys are too big; SPHINCS+ signa-
tures do not fit in this memory. To make signature verification work for these
schemes, we stream in public keys and signatures. Due to the memory re-
quirements for efficient Dilithium implementations, we stream in the public
key to cache more intermediate results. We discuss the suitability of the sig-
nature schemes for streaming, adapt existing implementations, and compare
performance.

A. Introduction

The generally larger keys and signatures of post-quantum signature schemes
have enormous impact on cryptography on constrained devices. This is
especially important when the payload of the signed message is much smaller
than the signature, due to additional transmission overhead required for the
signature. Such short messages are for example used in the real-world use
case of feature activation in the automotive domain. Feature activation is the
remote activation of features that are already implemented in the soft- and
hardware of the car. For example, an additional infotainment package. Usually,
a short activation code is protected with a signature to prevent unauthorized
activation of the feature.

In the automotive sector, it is very common to perform all cryptographic
operations on a dedicated hardware security module (HSM) that resembles a
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Cortex-M3 processor with a clock frequency of 100MHz and limited mem-
ory resources, e.g., [175]. Typically, the HSM is in the same package as the
main processor with its own memory and is connected via an internal bus
with a bus speed of about 20Mbps. A fair estimate for available memory for
signature verification on the HSM is under 18 kB of RAM and 10 kB of flash.
However, we aim for a lower memory usage of 8 kB of RAM and flash. To
allow additional space for other applications and an operating system.

In this scenario signatures are verified in the very constrained environment
of an HSM. It may not be able to store large public keys or keep large public
keys or signatures in memory. Sometimes even the main processor does not
have sufficient memory resources. Then the public key or signature must be
provided to the HSM by another device in the vehicle network, like the head
unit. In this case, the public key or signature must be streamed in portions
over the in-vehicle network to the destination processor. A typical streaming
rate over the CAN bus of an in-vehicle network is about 500 kbps, considering
a low error transmission rate. Appendix A.5 provides more details on the use
case.

Contribution

In this work, we address the challenge of performing signature verification
of post-quantum signature schemes with a large public key or signature in
a highly memory-constrained environment. Our approach is to stream the
public key or the signature.1 We show that this way signature verification
can be done keeping only small data packets in constrained memory. When
streaming the public key, the device needs to securely store a hash value of
the public key to verify the authenticity of the streamed public key. During
signature verification, the public key is incrementally hashed, matching the
data flow of the streamed public key. We implemented and benchmarked
the proposed public key and signature streaming approach for four different
signature schemes (Dilithium, SPHINCS+ , Rainbow, and GeMSS). Although
for Dilithium streaming the public key is not strictly necessary, the saved
bytes allow us to keep more intermediate results in memory. This results in a
speed-up.

1Appendix A.6 sketches an alternative scheme that relies on symmetric cryptography
with device-specific keys. This would fit even more constrained environments,
but comes at the expense of the downsides of symmetric key management.
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For comparison, we also implemented the lattice-based scheme Falcon for
which streaming small data packets is not necessary in our scenario as the
entire public key and signature fit into RAM. The source code is published and
available at the link found in the data management appendix. We demonstrate
that the proposed streaming approach is very well suited for constrained
devices with a maximum utilization of 8 kB RAM and 8 kB Flash.

Related work

To the best of our knowledge, this is the first work that addresses signature
verification by streaming in the public key or signature. For signature schemes,
streaming approaches have been investigated in [187] but the focus of that work
was on signature generation (for stateless hash-based signatures). Encryption
schemeClassicMcEliece was studied for constrained devices, solving the issue
of public keys being larger than the available RAM by either streaming [305,
335] or placing them in additional Flash [99, 137].

A. Analyzed post-quantum signature schemes

We now briefly discuss the different signature schemes that we considered.
Our exposition is focused on signature verification due to limited space. For
all schemes we selected parameters that meet at least NIST security level
I. Where possible we prioritized verification speed over signature speed as
we assume that signatures are created on devices that are significantly more
powerful than the ones we consider for signature verification.

A.. Hash-based schemes

For hash-based signature schemes security solely relies on the security prop-
erties of the cryptographic hash function(s) used. Hash-based signatures can
be split into stateful and stateless schemes. Stateful schemes require that a
user keeps a state with the secret key. The stateful schemes LMS and XMSS
are already specified as RFCs [181, 249] and standardized by NIST [106]. As
these schemes have sufficiently small signatures and keys, we do not consider
them in this work.

369



A Verifying post-quantum signatures in 8 kB of RAM

SPHINCS+

SPHINCS+ is the last remaining stateless hash-based signature scheme in
the NIST competition [47]. In the following we give a rough overview of
SPHINCS+ signature verification and motivate our parameter choice. For a
high-level description of SPHINCS+ see appendix A.7.

SPHINCS+ signature verification consists of four components. First, the
message compression, second message mapping functions, third computing
hash chains, and fourth verifying authentication paths in binary hash trees.
The message mapping functions take negligible time compared to the other
operations and also only minimally increase space. Hence, they are ignored
in our exposition. Message compression consumes an 𝑛-bit randomizer value
from the signature in addition to the message which can in theory be streamed
in chunks of the internal block size of the used hash function. The resulting
message digest is mapped to a set of indices used later to decide the ordering
of hash values in the authentication path verifications. Hash chain computa-
tion consumes one 𝑛-bit hash value from the signature and iterates the hash
function a few times on the given value. The results of 67 hash chain com-
putations are compressed using one hash function call. Hence, results have
to be kept in memory until one block for the hash function is full. Finally,
authentication path computation takes the 𝑛-bit result of a previous compu-
tation and consumes one authentication path node per tree level. In theory,
these computations can be done one-by-one which would allow streaming
each 𝑛-bit node separately.

SPHINCS+ is defined as a signature framework with a magnitude of dif-
ferent instantiations and parameter sets. SPHINCS+ defines parameters for
three different hash functions: SHA-3, SHA-256, and Haraka. We chose a
SHA-256 parameter set due to its performance, well understood security, and
widely deployed hardware support. Moreover, SPHINCS+ defines simple
and robust parameters. We chose simple as it matches the security assump-
tions of the schemes that we compare to and has better performance. Lastly,
the SPHINCS+ specification [184] proposes fast and small parameters, the
former optimized for signing speed, the latter for signature size. However,
the small parameters have better verification speed. We chose to implement
sphincs-sha256-128s-simple and sphincs-sha256-128f-simple to allow
for a comparison and show what is possible when reduced signing speed is
not an issue. For these SPHINCS+ parameters, signing speed on a general
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purpose CPU is about a factor 16 slower for the s-parameters [47]. All internal
hash values in SPHINCS+ have 𝑛 = 16 bytes for the parameters we use. Public
keys are 2𝑛 = 32 bytes. Hence, they can easily be stored on the device without
any compression.

A.. Multivariate-based schemes

Multivariate signature schemes are based on the hardens of finding solutions
to systems of equations in many variables over finite fields, where the degree
of the equations is at least two. The first multivariate signature scheme was
designed by Matsumoto and Imai [246] and broken by Patarin [282]. Patarin,
with several coauthors, went on to design modified schemes [211, 283, 286]
which form the basis of modern multivariate signature schemes.

To fix notation, let the system of equations be given by 𝑚 equations in 𝑛
variables over a finite field 𝔽𝑞 . Most systems use multivariate quadratic (MQ)
equations, i.e., equations of total degree two. Then the𝑚 polynomials have
the form

𝑓𝑘(𝑥1, 𝑥2,… , 𝑥𝑛) = ∑
1≤𝑖≤𝑗≤𝑛
𝑎(𝑘)𝑖,𝑗 𝑥𝑖𝑥𝑗 + ∑

1≤𝑖≤𝑛
𝑏(𝑘)𝑖 𝑥𝑖 + 𝑐(𝑘) (A.1)

with coefficients 𝑎(𝑘)𝑖,𝑗 , 𝑏
(𝑘)
𝑖 , 𝑐(𝑘) ∈ 𝔽𝑞 .

Let𝑀 be a message and let𝐻 ∶ {0, 1}∗ × {0, 1}𝑟 → 𝔽𝑚𝑞 be a hash function.
A signature on𝑀 is a vector (𝑋1, 𝑋2,… ,𝑋𝑛) ∈ 𝔽𝑛𝑞 and a string 𝑅 ∈ {0, 1}𝑟

satisfying for all 1 ≤ 𝑘 ≤ 𝑚 that 𝑓𝑘(𝑋1, 𝑋2,… ,𝑋𝑛) = ℎ𝑘 for 𝐻(𝑀,𝑅) =
(ℎ1, ℎ2,… , ℎ𝑚). The inclusion of 𝑅 is necessary because not every system has
a solution.

Verification is conceptually easy—simply test that all signature equations
hold. Signing depends on the type of construction and what information the
signer has to permit finding a solution to the system, but this is outside the
scope of this chapter.

General considerations for streaming

MQ systems lead to short signatures, but the public keys need to contain the
coefficients of (equation (A.1)) and are thus very large, in the range of a few
hundred kB. The public keys can be streamed in per blocks of rows or columns,
depending on how the public key is represented. At most𝑚 elements of𝔽𝑞 are
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needed to hold the partial results of evaluating 𝑓𝑘(𝑋1, 𝑋2,… ,𝑋𝑛), 1 ≤ 𝑘 ≤ 𝑚
in addition to the 𝑛 elements for the signature and the 𝑚 elements for the
hash.

Rainbow

Rainbow [122] is a finalist in round 3 of the NIST competition. Rainbow
uses two layers of the Oil and Vinegar (OV) scheme [284]. For Rainbow the
finite field is 𝔽24 , so signatures require ⌈𝑚/2⌉ bytes, leading to 66 bytes at
NIST security level I. We implement rainbowI-classic rather than one of
the “circumzenithal” or “compressed” variants. Public keys are 158 kB for
rainbowI-classic.

In Rainbow, the coefficients 𝑏 and 𝑐 are all zero. During verification, we
load in columns 𝑎(∗)𝑖,𝑗 corresponding to coefficients of each monomial 𝑥𝑖𝑥𝑗,
𝑖 ≤ 𝑗. If 0 ≠ 𝑥𝑖𝑥𝑗 = 𝑘 ∈ 𝔽16, we accumulate 𝑎𝑖,𝑗 into a column 𝑨𝑘, If 𝑥𝑖 = 0,
we skip all columns involving 𝑥𝑖 . The final result is ∑𝑘∈𝔽∗16 𝑘𝑨𝑘 .

GeMSS

GeMSS [89] is an alternate in round 3 of the NIST competition. GeMSS
is based on the HFEv− scheme [285]. For GeMSS the finite field is 𝔽2, so
signatures are very small, starting at 258 bits for NIST security level I, but to
achieve security the public key needs to be very large, starting at 350 kB for
level I.

It bears mentioning that GeMSS is special among multivariates in that it
employs the Patarin-Feistel structure to achieve very short signatures, wherein
a public key is used four times during the verification. With pubkey 𝑓 being
𝑚 equations in 𝑛 variables, to verify the signature of the message𝑴, we do:

1. write the signature as (𝑺4, 𝑿4, 𝑿3, 𝑿2, 𝑿1) where 𝑺𝑖 are size𝑚 and the
𝑿𝑖 are size 𝑛 − 𝑚 (so the actual length of the signature is 4𝑛 − 3𝑚).

2. At stage 𝑖, which goes from 4 to 1, we set 𝑺𝑖−1 = 𝑓(𝑺𝑖‖𝑿𝑖) ⊕ 𝑫𝑖, where
𝑫𝑖 is the first𝑚 bits of (SHA − 3)𝑖(𝑴).

3. The signature is valid if 𝑺0 is the zero vector.

There are three types ofGeMSSparameters. “RedGeMSS” uses very aggressive
parameters; “BlueGeMSS” uses more conservative parameters. Just “GeMSS”

372



A.2 Analyzed post-quantum signature schemes

falls in the middle, and this is what we choose to implement. The parameter
set targeting NIST security level I is gemss-128 and has 350 kB public keys.

A.. Lattice-based schemes

Lattice-based cryptographic schemes are promising post-quantum replace-
ments for currently used public-key cryptography since they are asymptoti-
cally efficient, have provable security guarantees, and are very versatile, i.e.,
they offer far more functionality than plain encryption or signature schemes.

Lattice-based signature schemes are constructed using one of two tech-
niques, either the Gentry, Peikert, and Vaikuntanathan framework that is
based on the hash-and-sign paradigm [157], or the Fiat-Shamir transforma-
tion [240]. The security of lattice-based signature schemes can be proven
based on hard lattice problems (usually the LWE problem, the SIS problem,
and variants thereof ) or the NTRU assumption.

Dilithium

Dilithium was selected for standardization [241]. Signature verification for
Dilithium works as follows: The public key 𝑝𝑘 = (𝜌, 𝒕1) consists of a uniform
random 256-bit seed 𝜌, which expands to the matrix of polynomials 𝑨, and
𝒕1 . For MLWE samples 𝒕 = 𝑨𝒔 + 𝒆, 𝒕1 is the first output of the Power2Round
procedure [241, Figure 3], and (𝒕1, 𝒕0) = Power2Round𝑞(𝒕, 𝑑) is the straight-
forward bit-wise way to break up an element 𝑟 = 𝑟1 ⋅ 2𝑑 + 𝑟0, where 𝑟0 = 𝑟
mod 2𝑑 and 𝑟1 = (𝑟 − 𝑟0)/2𝑑 with −2𝑑/2 ≤ 𝑟0 < 2𝑑/2. Hence, the coefficients
of 𝒕0 are the 𝑑 lower order bits and the coefficients of 𝒕1 — the second part of
the public key— are the ⌈log 𝑞⌉−𝑑 higher order bits of the coefficients of 𝒕. To
verify a signature (𝒛, 𝒉, 𝑐) for a message𝑀, one computes𝒘′ = 𝑨𝒛− 𝑐 ⋅ 𝒕𝟏 ⋅ 2𝑑 ,
uses the hint vector 𝒉 to recover𝒘′𝟏 = UseHint(𝒉, 𝒘′), and finally verifies that
𝑐 = ℎ(ℎ(ℎ(𝜌||𝑡1)||𝑀)||𝒘′𝟏). For the details, we refer to [241].

All Dilithium parameter sets use 𝑞 = 223 −213 +1 and 𝑑 = 13. Hence, while
the coefficients of 𝒕 need 23 bits, the coefficients of the public key 𝒕1 need
only 10 bits. We use the smallest instance of Dilithium, which is NIST level II
parameter set dilithium2. The public key size of dilithium2 in total is 1312
bytes and a signature needs 2420 bytes.
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Falcon

Falcon, too, was selected for standardization [293]. Falcon’s signature veri-
fication works as follows: A signature for message𝑀, consisting of the tu-
ple (𝑟, 𝑠), can be verified given the public key ℎ = 𝑔𝑓−1 (mod 𝑞), where
𝑓, 𝑔 ∈ ℤ𝑞[𝑥]/(𝜙) for a modulus 𝑞 and a cyclotomic polynomial 𝜙 ∈ ℤ[𝑥] of
degree 𝑛. Firstly 𝑟 and𝑀 are concatenated and hashed into a polynomial
𝑐 and 𝑠 is decompressed using a unary code into 𝑠2 . Then, 𝑠1 = 𝑐 − 𝑠2ℎ is
computed and it is verified that (𝑠1, 𝑠2) has a small enough norm (≤ ⌊𝛽2⌋).
Coefficients are compressed one-by-one and hence can be decompressed in-
dividually. The embedding norm that is computed in [293, Algorithm 16, line
6] can be computed in linear time and only requires two coefficients at a time.
However, the preceding polynomial multiplication requires all coefficients of
one operand to be present, preventing coefficient-by-coefficient streaming
for both the signature and the public key at the same time. If, however, only
the signature or the public key is streamed, the polynomial multiplication
could be performed. We use falcon-512, targeting NIST level I, which uses
dimension 𝑛 = 512 and 𝑞 = 12289 ≈ 214 , hence each coefficient of the public
key needs 14 bits.

A. Implementation

The following section describes the implementations of the signature schemes
for the use case of feature activation described in appendix A.1. The signature
verification is performed on a Cortex-M3. The consumption for program
flash should be limited to 8 kB. The RAM usage should not exceed 8 kB. The
bus speed for streaming is assumed to run at either 500 kbps or 20Mbps.

A.. Streaming interface

Signed messages and public keys are streamed into the embedded Cortex-
M3 device. To avoid performance overhead, our streaming implementation
follows a very simple protocol. In a first step, the length of the signed message
is transmitted to the embedded device. Then the embedded device initializes
streaming by supplying a chunk size to the sender and additionally supplies
if signed message or public key is to be streamed first. After every chunk,
the embedded device can request a new chunk or return a verification result.
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The chunk size may be altered between chunks, but the public key and the
signed message are always streamed in-order.The result is a one-bit message,
signaling if the verification succeeded or failed, followed by the message in
case the verification succeeded.

A.. Public key verification

As the public key is being streamed in fromanuntrusted source, it is imperative
to validate that the key is actually authentic. We assume that a hash of the
public key is stored inside the HSM in some integrity-protected area.While the
public key is being streamed in, we incrementally compute a hash of it that we
eventually compare with the known hash. We use the same hash function as
used by the studied scheme, i.e., SHA-256 for sphincs-sha256 and rainbowI-
classic, SHAKE-128 for gemss-128 and SHAKE-256 for dilithium2 and
falcon-512. The hash state is kept in memory, occupying additional 200
bytes for SHAKE-128 and 32 bytes for SHA-256. We use the incremental
SHA-256 and SHAKE implementations from pqm4 [204].

In the case of gemss-128, the public key is needed multiple times; once in
every of the four evaluations of the public map. Note that the integrity needs
to be verified each time.

A.. Implementation details

In the following, we describe the modifications to existing implementations
of the five studied schemes needed to use them with the given platform con-
straints. Table A.1 lists the public key, signature sizes, and the time needed for
streaming them into the device at 500 kbps and 20Mbps.

SPHINCS+

Our SPHINCS+ implementation is based on the round-3 reference imple-
mentation [184]. Preceding work [204] shows that computation time for
SPHINCS+ verification on single-core embedded devices is almost exclu-
sively spent in the underlying hash function. We did therefore not investigate
further optimization possibilities. Aligning the implementation to a streaming
API is fairly straightforward as SPHINCS+ signatures get processed in-order.
For both sphincs-sha256-128f-simple and sphincs-sha256-128s-simple
a public key is 32 bytes and hence does not require streaming.
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Table A.1: Communication overhead in bytes and ms at 500 kbps and
20Mbps. GeMSS requires streaming in the public key 𝑛𝑏_𝑖𝑡𝑒 times
(4 for gemss-128). All other schemes require streaming in the
public key and signed message once.

Streaming data Streaming time

|𝒑𝒌| |𝒔𝒊𝒈| Total 𝟓𝟎𝟎 kbps 𝟐𝟎Mbps

sphincs-sa 32 7 856 7 888 126.2ms 3.2ms
sphincs-fb 32 17 088 17 120 273.9ms 6.9ms
rainbowI-classic 161 600 66 161 666 2 586.7ms 64.7ms
gemss-128 352 188 33 1 408 785c 22 540.6ms 563.5ms
dilithium2 1 312 2 420 3 732 59.7ms 1.5ms
falcon-512 897 690 1 587 25.4ms 0.6ms
a -sha256-128s-simple b -sha256-128f-simple c 4 ⋅ |𝑝𝑘| + |𝑠𝑖𝑔|

For sphincs-sha256-128f-simple, a signature is 17 088 bytes. The se-
lected SPHINCS+ parameter sets use 𝑛 = 16 byte and so a streaming chunk
size of 16 bytes is possible. However, such a small chunk is undesirable due
to overhead in terms of memory and computation. The leading 16 bytes of
the signature make up the randomizer value, followed by the 3696 byte FORS
signature, consisting of 33 authentication paths, and the 13 376 bytes for 22
MSS signatures. Our implementation first processes a 3712 byte chunk con-
taining the randomizer value and FORS signature. This is used to compute
the message digest and then the FORS root, evaluating the 33 authentication
paths. Then, the computed FORS root is verified using the MSS signatures.
The overall 22MSS signatures, each consisting of a WOTS+ signature and
an authentication path, are processed in three chunks. Given the memory
constraints, the largest available chunk size is 4864 byts containing 8MSS sig-
natures. MSS signature streaming is therefore done in two 4864 byte chunks
and one final 3648 byte chunk. Starting from the FORS root, this data is
used to successively reconstruct all the MSS tree roots from the respectively
previous root: first computing 67 hash chains using the WOTS+ signature,
compressing their end nodes in a single hash, and then evaluating an authen-
tication path. The last (or “highest”) MSS tree root is then compared to the
root node in the public key. For this to work, the reserved chunk buffer needs
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to be 4864 bytes large.
For sphincs-sha256-128s-simple, streaming works analogously. The sig-

nature size is 7856 bytes and only seven—slightly larger—MSS signatures
are used within the scheme. This makes it possible to stream in all 7MSS
signatures in a single 4928 bytes chunk. Streaming therefore consists of one
FORS+randomizer-value (2928 bytes) and one MSS (4928 bytes) chunk.

Rainbow

The round-3 submission of Rainbow [122] contains an implementation tar-
geting the Cortex-M4. As it relies only on instructions also available on the
Cortex-M3, it is also functional on the Cortex-M3. However, due to the large
public key (162 kB), we adapt the implementation for streaming. Rainbow
signatures consist of an ℓ bit (128 for rainbowI-classic) salt and 𝑛 (100) vari-
ables 𝑥𝑖 in a small finite field (𝔽16 for rainbowI-classic). Two 𝔽16 elements
are packed into one byte in the signature and public key. We first unpack
the elements of the signature and store one 𝑥𝑖 in the lower four bits of a
byte. This doubles memory usage from 50 to 100 bytes, but makes look-ups
for individual elements easier. After the signature and corresponding 𝑥𝑖 are
stored in memory, the public key is streamed in. The public key consists of
the Macaulay matrix 𝑝(𝑘)𝑖,𝑗 representing the public map consisting of 𝑚 (64)
equations of the form

𝑝(𝑘)(𝑥1,… , 𝑥𝑛) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=𝑖
𝑝(𝑘)𝑖,𝑗 𝑥𝑖𝑥𝑗.

with the 𝑥𝑖, 𝑥𝑗 corresponding to the variables from the signature. For com-
putational efficiency the public key is represented in the column-major form.
The public key’s first 32 byte chunk therefore has the form [𝑝(1)1,1 |𝑝

(2)
1,1 |…|𝑝

(𝑚)
1,1 ]

and the contained coefficients should be multiplied by 𝑥21 . Subsequent 32 byte
chunks have the same form ([𝑝(1)1,2 |…|𝑝

(𝑚)
1,2 ] should be multiplied by 𝑥1 ⋅ 𝑥2

and so forth.) To increase performance, Rainbow implementations delay
multiplications. Before the actual multiplication step, coefficient sums are ac-
cumulated. Every incoming 32 byte chunk is added to one of 15 accumulators
𝑎𝑘 based on the 15 possible values of 𝑦𝑖,𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗 with 𝑦𝑖,𝑗 > 0. If 𝑦𝑖,𝑗 is zero,
the chunk is discarded. Once all chunks are consumed, every accumulator
is multiplied by its corresponding factor ̃𝑎𝑘 = [𝑘 ⋅ 𝑎

(1)
𝑘 |𝑘 ⋅ 𝑎

(2)
𝑘 |…] and added
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summed up the final result.
One can exploit that if an element 𝑥𝑖 is zero, all monomials 𝑥𝑖𝑥𝑗 will be

zero and the corresponding columns of the public key will not contribute to
the result. As every 16th 𝑥𝑖 is expected to be zero, this results in a significant
speed-up. As Rainbow is using 𝔽16 arithmetic, additions are XOR. For multi-
plications, we use the bitsliced implementation from the Rainbow Cortex-M4
implementation [122].

The smallest reasonable chunk size for Rainbow is a single column of
the Macaulay matrix, i.e., 32 bytes. However, as larger chunk sizes result
in lower overhead, we use the largest chunk size which fits in our available
memory. Due to the low memory footprint of the Rainbow implementation,
we can afford to use chunks of 214 columns, i.e., 6848 bytes. As there are 5050
(𝑛 ⋅ (𝑛 + 1)/2) columns, the last chunk is only 128 columns, i.e., 4096 bytes.

GeMSS

To the best of our knowledge, there are no GeMSS implementations avail-
able targeting microcontrollers and we, hence, write our own. We base our
GeMSS implementation on the reference implementation accompanying the
specification [89]. The biggest challenge is that the entirety of the 352 kB
public key is needed in each of the evaluations of the public map 𝒑. Due to
the iterative construction of the HFEv- scheme, there appears to be no better
approach than streaming in the public key in each iteration, i.e., 𝑛𝑏_𝑖𝑡𝑒 (4 for
gemss-128) times.

Each application of the public map 𝑝 requires the computation of

𝑝𝑖 =
𝑛+𝑣

∑
𝑖=0

𝑛+𝑣

∑
𝑗=𝑖
𝑥𝑖𝑥𝑗𝑎𝑖,𝑗 + 𝑎0.

Each column of the Macaulay matrix needs to be multiplied by a product of
two variables and then added to the accumulator. The field used by GeMSS
is 𝔽2 and, hence, field multiplication is logical AND and field addition is
XOR which allows straightforward bitslicing of operations. Unfortunately,
since the number of equations (𝑚) is not a multiple of 8 (𝑚 = 162 for gemss-
128), one cannot simply store the Macaulay matrix in column-major form
since this would result in the columns not being aligned to byte boundaries.
Therefore, GeMSS stores the first 8 ⋅ ⌊𝑚/8⌋ (160) equations in a column-major
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form making up the first ⌊𝑚/8⌋ ⋅ (((𝑛 + 𝑣) ⋅ (𝑛 + 𝑣 + 1))/2 + 1) (347 840)
bytes of the public key with 𝑛 + 𝑣 (𝑛 = 174, 𝑣 = 12) being the number of
variables. The last two equations are stored row-wise occupying the last
2 ⋅ (((𝑛 + 𝑣) ⋅ (𝑛 + 𝑣 + 1))/2 + 1)/8 (4348) bytes.

We split the computation in two parts: The first 8 ⋅ ⌊𝑚/8⌋ equations and the
last (𝑚 mod 8) equations. For the former, the most important optimization
comes from the observation that if either of the two variables 𝑥𝑖 or 𝑥𝑗 is zero,
the corresponding column does not impact the result. Similar to the Rainbow
implementation, in the case 𝑥𝑖 is zero, the entire inner loop and, hence, 𝑛+𝑣−𝑖
columns of the public key can be skipped. As half of the 𝑥𝑖 are expected to
be zero, this results in a vast performance gain. For the last (𝑚 mod 8), we
first compute the monomials 𝑥𝑖𝑥𝑗 and store them in a vector, then we add this
vector to each row of the public key. Lastly, we compute the parity of each row.
The smallest reasonable chunk size for the first part of the computation is one
column of the public key (20 bytes), while it is one row (2174 bytes) for the
second part. However, we use 4560 byte-chunks (285 columns) to achieve
lowest overhead with 8 kB RAM.

Dilithium

OurDilithium implementation is based on previouswork targeting theCortex-
M3 and Cortex-M4 [164]. However, this work predates the round 3 Dilithium
submission [241] which introduced some algorithm tweaks and parameter
changes. Most notably for the performance of dilithium2 verification, the
matrix dimension of 𝑨 changed from (𝑘, ℓ) = (4, 3) to (4, 4). Therefore, we
adapt the existing Cortex-M3 implementation to the new parameters.

For dilithium2, the implementation of [164] requires 9 kB of stack in ad-
dition to the 2.4 kB signature and 1.3 kB public key in memory. We apply a
couple of tricks to fit it within 8 kB: We compute one polynomial of 𝒘′ at a
time, which allows us to stream in the public key 𝒕𝟏 . Usually, one computes
𝒘′ = 𝑨𝒛−𝑐 ⋅ 𝒕𝟏 ⋅ 2𝑑 as NTT−1(�̂� ⋅NTT(𝒛)−NTT(𝑐) ⋅NTT(𝒕𝟏 ⋅ 2𝑑)). Hence,
it is desirable for performance to keep NTT(𝒛) and NTT(𝑐) in memory.
However, that already occupies 5 kB. We instead keep the compressed forms
of 𝒛 and 𝒄 in memory, occupying only ℓ⋅576 = 2304 and 32 bytes, respectively,
and recompute the NTT operations.

Previous implementations of Dilithium use 3 temporary polynomials to
compute NTT−1(�̂� ⋅ NTT(𝒛) − NTT(𝑐) ⋅ NTT(𝒕𝟏 ⋅ 2𝑑)), one for the ac-

379



A Verifying post-quantum signatures in 8 kB of RAM

cumulator and two temporary ones for the inputs. We instead compute
NTT−1(−NTT(𝑐) ⋅ NTT(𝒕𝟏 ⋅ 2𝑑) + �̂� ⋅ NTT(𝒛)), which can be computed
in 2 polynomials by sampling �̂� coefficient-wise, as was also proposed for
Kyber [75].

The total memory consumption comprises the 2420 byte signature, 2 poly-
nomials of 1024 bytes each, 3 Keccak states of 200 bytes each, and about 600
bytes of other buffers, i.e., approximately 5670 bytes in total. To improve
speed, one can cache as much of NTT(𝒛) and NTT(𝒄) as possible. We cache
NTT(𝒄) and 3 polynomials of NTT(𝒛) while still remaining below 8 kB of
stack.

Falcon

Weused a Cortex-M4-optimized implementation which is also part of Falcon’s
submission [292, 293]. It is compatible with Cortex-M3 processors, but relies
on emulated floating point arithmetic. This leads to data-dependent runtimes,
which is unproblematic for verification, but may be an issue when considering
signing as well. On the Cortex-M3, the implementation submitted to NIST
uses around 500 bytes of stack space, public keys of circa 900 bytes, signatures
of around 800 bytes, and a 4 kB scratch buffer. The overall memory footprint
is about 6.5 kB. Hence, streaming in the data in small packets is not necessary.
Our implementation copies the whole public key and signature to RAMbefore
running the unmodified Falcon verification algorithm.

A. Results

We chose an ARM Cortex-M3 board with 128 kB RAM and 1MB Flash, an
STM32 Nucleo-F207ZG, as the platform for the implementation of our case
study. This board meets most of the specifications of an environment with
limited resources of a typical automotive HSM embedded in MCUs. The only
mismatch is the non-volatile memory (NVM). A typical limited HSM has
much less NVM.

We clock the Cortex-M3 at 30MHz (rather than the maximum frequency
of 120MHz) to have no Flash wait states. In a practical deployment in an
HSM one would use fast ROM instead of Flash and, hence, our cycle counts
are close to what we would expect in an automotive HSM.
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Table A.2: Cycle count for signature verification for a 33-byte message. Aver-
age over 1000 signature verifications. Hashing cycles needed for
verification of the streamed in public key (hashing and comparing
to embedded hash) are reported separately. We also report the
verification time on a practical HSM running at 100MHz and also
the total time including the streaming at 20Mbps.

w/o pk vrf. w/ pk verification w/ streaming

pk vrf. total timee at 20Mbps

sphincs-sa 8741 k 0 8741 k 87.4ms 90.6ms
sphincs-fb 26 186 k 0 26 186 k 261.9ms 268.7ms
rainbowI-classic 333 k 6850 kd 7182 k 71.8ms 136.5ms
gemss-128 1619 k 109 938 kc111 557 k 1115.6ms 1679.1ms
dilithium2 1990 k 133 kc 2123 k 21.2ms 21.8ms
falcon-512 581 k 91 kc 672 k 6.7ms 8.2ms
a -sha256-128s-simple b -sha256-128f-simple c SHA-3/SHAKE d SHA-256
e At 100MHz (no wait states)

We base our benchmarking setup on the pqm3 framework and adapt it to
support our streaming API. For counting clock cycles, we use the SysTick
counter. We stream in the signed message and public key using USART, but
disregard the cycles spent waiting for serial communication. We use arm-
none-eabi-gcc version 10.2.0 with -O3. We use a random 33-byte message
which resembles the short messages needed for feature activation.

Table A.2 presents the speed results for our implementations. The stud-
ied signature schemes rely on either SHA-256 (rainbowI-classic, sphincs-
sha256) or SHA-3/SHAKE (dilithium2, falcon-512, and gemss-128). In
a typical HSM-enabled device SHA-256 would be available in hardware and
SHA-3/SHAKE will also be available in the future. However, on the Nucleo-
F207ZG no hardware accelerators are available. Hence, we resort to software
implementations instead. For SHA-256 we use the optimized C implemen-
tation from SUPERCOP.2 For SHA-3/SHAKE, we rely on the ARMv7-M
implementation from the XKCP.3

2https://bench.cr.yp.to/supercop.html
3https://github.com/XKCP/XKCP
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While GeMSS and Rainbow only compute a (randomized) hash of the
message, SPHINCS+, Dilithium, and Falcon use hashing as a core building
block of the verification. Consequently, the amount of hashing in multivari-
ate cryptography is minimal (2% for rainbowI-classic, 4% for gemss-128),
while it makes up large parts for lattice-based (65% for dilithium2, 36%
for falcon-512) and hash-based signatures (90%for sphincs-sha256-128s-
simple and 88% for sphincs-sha256-128f-simple). Clearly lattice-based
and hash-based schemes would benefit more from hardware accelerated hash-
ing.

Additionally, we need to verify the authenticity of the streamed in public
key. We report the time needed for public key verification separately. For
hash-based signatures this operation comes virtually for free as the public key
itself can be stored in the device, so that no hashing is required. For multi-
variate cryptography, the public key verification becomes the most dominant
operation due to the large public keys and fast arithmetic. This is particularly
pronounced for GeMSS as the public key is the largest and needs to be verified
4 times.

Table A.3 presents the memory requirements of our implementations.

Table A.3: Memory and code-size requirements in bytes for our implemen-
tations. Memory includes stack needed for computations, global
variables stored in the .bss section and the buffer required for
streaming. Code-size excludes platform and framework code as
well as code for SHA-256 and SHA-3.

Memory Code

Total Buffer .bss Stack .text

sphincs-sa 6904 4928 780 1196 2724
sphincs-fb 7536 4864 780 1892 2586
rainbowI-classic 8168 6848 724 596 2194
gemss-128 8176 4560 496 3120 4740
dilithium2 8048 40 6352 1656 7940
falcon-512 6552 897 5255 400 5784
a -sha256-128s-simple b -sha256-128f-simple
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A. Appendix: Feature activation

Feature Activation is intended to activate additional functionality on an em-
bedded device that is already deployed and active in the running environment.
It differs from a software update because all software and required hardware
for the feature’s functionality is already included in the device, but not acti-
vated.

The feature is activated by an authentic message from an authorized in-
stance. The activation of the feature is device specific, therefore the activation
messages must not be portable to other devices. Protocol A.1 describes the
actual feature activation process between an embedded device on which the
feature is to be activated and an authorized instance, e.g., a back-end system.
To authenticate the feature activation request, a signature is part of the mes-
sage sent from the authorization instance to the embedded device. Nowadays,
this signature is implemented, for example, by an ECC signature, which is
not a post-quantum algorithm. In the scenario shown, the overall protocol
does not take into account any resource constraints on the device, so that,
for example, the ECC signature and the public key are stored entirely on the
device.

Protocol A.1 can be roughly paraphrased as follows: The user, e.g. the car
owner, creates a request to activate a desired feature for a specific vehicle (iden-
tified by a vehicle identification number (VIN)). This can be done through
an online platform. The authorization instance, which can be represented
by a back-end, validates the feature request for the feature policies it stores
for the requested vehicle, and requests and verifies the user’s authentication.
Upon successful authorization, the authorization instance generates a device-
specific feature activation request𝐴𝑚𝑠𝑔 for the device that is part of the vehicle
and implements the requested feature. Furthermore, the authorization in-
stance generates a signature 𝑇1 for the message 𝐴𝑚𝑠𝑔 using its private key
𝑝𝑟𝐴𝐸 . When the device successfully verifies the signature 𝑇1, it updates its
feature policies, activates the requested feature, and stores the feature policy
hash. Finally, the embedded device confirms the feature activation status in a
message 𝐴𝑟𝑒𝑐 to the authorization instance. The authorization instance itself
also updates and stores the feature policy for the specific device.
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Protocol A.1: Protocol for feature activation

User Auth. Entity: 𝐴𝐸 Device: 𝐷
Req. feature
−−−−−−−−−−−→
activation

Validate feature
activation request

Req.
←−−−−−−−−−−−−−
authentication

Authenticate
−−−−−−−−−−−→ Verify authentication

Generate 𝐴𝑚𝑠𝑔
𝑇1 ∶ 𝑆𝑖𝑔𝑛𝑝𝑟𝐴𝐸 (𝐴𝑚𝑠𝑔)

Send {𝐴𝑚𝑠𝑔|𝑇1}
−−−−−−−−−−−−−→ Verify 𝑇1 using 𝑝𝑏𝐴𝐸

Update feature
policies

Activate feature

Secure hash of the
feature policies

Update feature
Send {𝐴𝑟𝑒𝑐}←−−−−−−−−−− Generate 𝐴𝑟𝑒𝑐

polices of𝐷

A. Appendix: Alternative implementation

For embedded applications it is sometimes attractive to use symmetric cryp-
tography in place of public-key cryptography. Not only is symmetric crypto-
graphy a lot faster, it also benefits from already-present hardware acceleration
and key sizes are significantly smaller. Of course, the secret keys in symmetric
devices are extremely sensitive. We need that a secret key extracted from a par-
ticular deployed device does not compromise the entire scheme. This implies
the need to provision each device with its own individualised key. However,
when deploying hundreds or thousands of devices this means we have a po-
tentially significant key management problem. Fortunately, the many-to-one
architecture in this automotive application implies we only need a single key
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between each device and the back-end. Furthermore, each deployed device
has public identifiers, like the vehicle VIN or a serial number. This allows us
to only let the manufacturer store a single key for all deployed devices.

We use these properties to construct an efficient key distribution scheme.
Let each device have a unique identifing number 𝑛. This could for example
be the concatenation of the vehicle VIN and the device’s serial number. We
let the manufacturer generate a main secret key 𝐾𝑚 . Then, we provision at
time of manufacturing each device with the following key 𝐾𝑑, such that

𝐾𝑑 = KDF(𝐾𝑚, 𝑛).

Here, KDF is an appropriate key-derivation function.
Then, whenever the device needs to use their key 𝐾𝑑 in communication

with themanufacturer, they send over their identifier 𝑛 along with themessage.
For example, if they need to send an authenticated message 𝑚, they might
send {𝑛,𝑚,MAC𝐾𝑑 (𝑛,𝑚)}. The manufacturer can then easily compute 𝐾𝑑
based on 𝑛 and the main secret 𝐾𝑚, and verify the message. As the device
does not have access to 𝐾𝑚, they can only have produced thisMAC if they
were provisioned with 𝐾𝑑 at time of manufacture.

Of course, this entire scheme falls down when 𝐾𝑚 is compromised. As
such, special care needs to be taken to protect it. Although the private keys
used in public-key cryptography also need to be protected, we can use revoca-
tion mechanisms to recover from a compromise. This is not possible with
symmetric cryptography.

A. Appendix: Hash-Based Signatures

Hash-based signature schemes are signature schemes for which security solely
relies on the security properties of the cryptographic hash function(s) used. In
contrast to other proposals for digital signature schemes it does not require an
additional complexity theoretic hardness assumption. Given that the security
of cryptographic hash functions is well understood and even more, we know
that generic attacks using quantum computers cannot significantly harm the
security of cryptographic hash functions, hash-based signatures present a
conservative choice for post-quantum secure digital signatures. The descrip-
tion in this section is simplified, and we refer to the official specification [184]
for a detailed exposition.
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One-Time Signature Schemes (OTS)

Hash-based signatures built on the concept of a one-time signature scheme
(OTS). This is a signature scheme where a key pair may only be used to
sign one message. If two messages are signed with the same secret key, the
scheme becomes insecure. Such OTS can be constructed from cryptographic
hash functions. The very generic concept is that the secret key consists of
random values while the public key contains their hash values. A signature
consists of a subset of the values in the secret key, selected by the message.
A signature is verified by hashing the values in the signature and comparing
the resulting hash values to the respective values in the public key. The OTS
commonly used today is the Winternitz OTS (WOTS) or variations thereof
which generalizes the above concept to hash chains. WOTS has the important
property that a signature is verified by computing a candidate public key by
hashing the values in the signature several times (depending on the message)
and comparing the result to the public key.

Merkle Signature Schemes (MSS)

Given a OTS, a many-time signature scheme can be constructed following
the concept of Merkle Signature Schemes (MSS) [255]. For these, a num-
ber (a power of 2) of OTS key pairs is generated and their public keys are
authenticated using a binary hash tree, called a Merkle tree. The hashes of
the public keys form the leaves of the tree. Inner nodes are the hash of the
concatenation of their two child nodes. The root node becomes the MSS
public key. Assuming WOTS is used as OTS, a signature consists of the leaf
index, a WOTS signature and the so-called authentication path (cf. figure A.1).
The authentication path contains the sibling nodes on the path from the used
leaf to the root. Verification uses the WOTS signature (and the message) to
compute a candidate public key and from that the corresponding leaf. This
leaf is then used together with the authentication path to compute a root
node: Starting with the leaf, the current buffer is concatenated with the next
authentication path node and hashed to obtain the next buffer value. The
order of concatenation is determined by the leaf index in the MSS signature.
The final buffer value is then compared to the root node in the public key.

In general, this leads a so-called stateful scheme as a signer has to remember
which OTS key pairs she already used. This concept is the general idea
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pk

Figure A.1: The authentication path of the fifth leaf (from [47])

underlying the schemes described in recent RFCs [181, 249] LMS and XMSS.

SPHINCS+

The limitation of having to keep a state as signer can be overcome in practice
using the SPHINCS construction [45] (previous theoretically efficient pro-
posals by Goldreich go back to the last century but were only of theoretical
interest). SPHINCS+ [47] essentially instantiates the SPHINCS construction.
The first idea in SPHINCS uses a few-time signature scheme (FTS)—a signa-
ture scheme where a key pair can be used to sign a small number of messages
without keeping a state before the scheme gets insecure. SPHINCS+ uses a
huge number of FTS key-pairs (in the order of 264 depending on the param-
eters). For every newmessage, a random FTS key is picked to sign. By making
the number of FTS keys large enough, the probability that one key gets used
to sign more than a few messages can be made vanishingly small. The public
keys of all these FTS key pairs are authenticated using a certification tree
of MSS key pairs called the hypertree. The hyper tree is essentially a PKI.
The top MSS key works as a root CA and the bottom layer MSS keys certify
FTS public keys. The whole structure is deterministically generated using
pseudorandom generators. That way, it is not necessary to store which OTS
keys where used for an MSS key because the message that a specific OTS key
will be used to sign is predetermined.

The FTS in SPHINCS+ is FORS. A FORS secret key consists of several sets
of random values the values in each set are authenticated via a Merkle tree.
These trees have the hashes of the secret values as leaves. The public key is the
hash of the concatenation of all root nodes of these Merkle trees. A signature
consists of one secret key value from each set (determined by the message)
and the respective authentication path. Verification works by computing the
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leaves from the signature values and afterwards computing candidate root
nodes as for MSS. This can be done per tree. Afterwards, the roots are used
to compute a candidate public key.

A SPHINCS+ signature consists of a randomizer R that is hashed with
the message to obtain the message digest, a FORS signature, and the MSS
signatures on the path from the FORS keypair to the top tree. Verification
computes amessage digest using themessage and R. Themessage digest is split
into the index of the FORS signature and the indices of the Secret key values
in the FORS signature. With this, the FORS signature is used to compute a
candidate public key. This candidate FORS public key is used as message to
compute a candidate MSS root node with the first MSS signature which is
used as message for the next signature, and so on. The final MSS root node is
compared to the root node in the public key.
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The best algorithms for the LPN problem require sub-exponential time and
memory. This often makes memory, and not time, the limiting factor for
practical attacks, which seem to be out of reach even for relatively small
parameters. In this chapter, we try to bring the state-of-the-art in solving
LPN closer to the practical realm. We improve upon the existing algorithms
by modifying the Coded-BKW algorithm to work under various memory
constrains. We correct and expand previous analysis and experimentally
verify our findings. As a result we were able to mount practical attacks on the
largest parameters reported as of the original publication of this work, using
only 239 bits of memory.

B. Preliminaries

We will denote vectors and matrices with bold-face letters, like 𝒗 or𝑴. We
write inner product of two vectors as ⟨𝒗1, 𝒗2⟩ The Hamming weight of 𝒗 is
𝑤𝑡(𝒗). We write Ber𝜏 for a Bernoulli distribution with parameter 𝜏. Bin𝑛𝜏 is
the binomial distribution with 𝑛 trails and success rate 𝜏. We write 𝑦

$
← 𝑌

when we uniformly sample 𝑦 from 𝑌.
The LPN Search problem can be defined using the following definition

from [69].

Definition B.1. (Search LPN problem). Let 𝒔
$
← 𝔽𝑘2 be a secret vector of

length 𝑘 and let 0 ⩽ 𝜏 < 12 be a constant noise parameter. An LPN oracle 𝒪LPN
𝒔,𝜏

outputs independent random samples (𝒂, 𝑐) according to the distribution:

{(𝒂, 𝑐) | 𝒂
$
← 𝔽𝑘2 , 𝑐 = ⟨𝒂, 𝒔⟩ + 𝑒, 𝑒 ← Ber𝜏} .

The Search LPN Problem, denoted by LPN𝑛𝑘,𝜏 is to find the (secret) vector 𝒔,
given access to the LPN oracle.
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We will be interested in algorithms that solve LPN𝑛𝑘,𝜏 in time 𝑡, using at most
𝑛 samples and using at most𝑚 bits of memory. Such an algorithm may fail
with a certain probability 𝜃. Sometimes, instead of the noise parameter 𝜏 we
will use the bias of an LPN instance LPN𝑘,𝜏 , defined as 𝛿 = 𝐸 ((−1)𝑋) = 1 − 2𝜏
where𝑋 ∼ Ber𝜏 . We will refer to the bias of the secret as 𝛿𝑠 .

B. Solving LPN problems

The known algorithms that solve an LPN instance LPN𝑘,𝜏 typically follow a
common structure. We can usually split them in two phases: a reduction
phase in which a reduction algorithm reduces the problem to a smaller one
LPN𝑘′,𝜏′ , 𝑘′ ⩽ 𝑘; and a decoding phase in which a decoding algorithm recovers
the secret of the smaller LPN instance. Intuitively, a smaller LPN problem
is easier to decode, but a reduction typically increases the level of noise and
may change the number of samples.

It is possible to apply a sequence of reduction algorithms before decoding
the reduced LPN𝑘′,𝜏′ instance. This is already implied by the original BKW
algorithm. Bogos and Vaudenay [70] proposed using chains of different re-
duction algorithms before applying a decoding algorithm. We summarize
this meta-algorithm in algorithm B.1.

Note that most decoding algorithms recover only part of the secret. How-
ever, the algorithm can be repeated to obtain more information. We will, as
in the literature, only discuss the first run of the algorithm, since this is the
most resource-intensive of recovering the full 𝒔.

B.. Reduction algorithms

We will now briefly discuss algorithms that reduce an LPN𝑛𝑘,𝜏 problem to an
LPN𝑛

′

𝑘′,𝜏′ problem. For more details on these algorithms, we refer to the cited
works.

drop-reduce(𝒃)

Deletes all samples that do not have 𝑏 zero bits at the end.

𝑘′ = 𝑘 − 𝑏; 𝑛′ = 𝑛2−𝑏; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿𝑠;
𝑡 = 𝒪 (𝑘𝑛);𝑚 = 𝒪 (𝑘𝑛).
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Algorithm B.1: General LPN decoding algorithm

Input: 𝑛 samples (𝒂, 𝑐) from 𝒪LPN
𝒔,𝜏 , list of reduction algorithms ℛ, and

decoding algorithm𝐷
Output: Information on 𝒔
for 𝑅 ∈ ℛ do

Apply 𝑅 to obtain LPN𝑘′,𝜏′ , 𝑘′ ⩽ 𝑘 and 𝑛′ samples.
𝑘 ← 𝑘′, 𝑛 ← 𝑛′

end for
Use decoding algorithm𝐷, consuming 𝑛 samples.
return Information on 𝒔

xor-reduce(𝒃)

Partitions samples by the last 𝑏 bits and sums all pairs of vectors within each
partition [239]. This cancels out the last 𝑏 bits. The bias of the LPN problem
is squared as per the piling-up lemma: the bias of the sum of 𝑛 Bernoulli
variables with bias 𝛿 is 𝛿𝑛 .

𝑘′ = 𝑘 − 𝑏; 𝑛′ = 𝑛(𝑛−1)2𝑏+1 ; 𝛿′ = 𝛿2; 𝛿′𝑠 = 𝛿𝑠;
𝑡 = 𝒪 (𝑘 max(𝑛, 𝑛′));𝑚 = 𝒪 (max(𝑘𝑛, 𝑘′𝑛′)).

sparse-secret

Transforms the problem so that the secret is Bernoulli-distributed with 𝜏 < 12
instead of uniform [16, 70, 170]. This reduction does not simplify the LPN
problem, but is necessary for code-reduce.

𝑘′ = 𝑘; 𝑛′ = 𝑛 − 𝑘; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿;𝑚 = 𝒪 (𝑘𝑛);
𝑡 = 𝒪 (min𝜒∈ℕ ( 𝑛′𝑘2

log2 𝑘−log2 log2 𝑘
+ 𝑘2, 𝑘𝑛′⌈ 𝑘𝜒⌉ + 𝑘

3 + 𝑘𝜒2𝜒)).

code-reduce([𝒌, 𝒌′] 𝒄𝒐𝒅𝒆)

Uses the covering property of codes to reduce the LPN problem size [69,
70, 170]. Using a linear [𝑘, 𝑘′] code, code-reduce approximates the samples
to the closest codeword of the code. The effect on the bias is called bc and
depends on the original 𝛿 and the properties of the code. A bigger bc is better,
as it will maximize the bias of the reduced LPN instance.
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Theorem B.2. (Upper bound for bc [70]). A [𝑘, 𝑘′, 𝐷] linear code 𝐶 has for
any 𝑟 ∈ ℕ and 𝛿𝑠 ∈ [0, 1]:

bc ⩽ 2𝑘
′−𝑘
𝑟

∑
𝑤=0
(𝑘
𝑤
) (𝛿𝑤𝑠 − 𝛿𝑟+1𝑠 ) + 𝛿𝑟+1𝑠 .

Equality for any 𝛿𝑠 implies that 𝐶 is a (quasi-)perfect code, in which case 𝑟
equals the packing radius 𝑅 = ⌊𝐷−12 ⌋.

In [170], the analysis of code-reduce was done for codes that reach the
bound in theorem B.2. This overestimates the efficiency of the reduction. In
practice, we know a few small codes that are close to the bound and have
efficient decoding. Instead, Bogos and Vaudenay concatenate small codes that
either reach or are close to the bound [70]. We use the same approach. As
the modified 𝛿𝑠 is hard to quantify, we only allow code-reduce to be applied
once.

𝑘 = 𝑘′; 𝑛′ = 𝑛′; 𝛿′ = 𝛿 ⋅ bc; 𝑡 = 𝒪 (𝑘𝑛);𝑚 = 𝒪 (𝑘𝑛).

𝑐-sum-Dissection(𝒃)

It is possible to sum up more than just two samples, such that the last bits
add up to 0. This was initially proposed in [362] as LF(4). Esser, Heuer,
Kübler, May, and Sohler [139] rephrased it as a time-memory trade-off for
solving LPN problems. They use the Dissection technique [123] to solve 𝑐-
sum problems in lists of samples. Dissection requires that 𝑐 is one of 𝑐𝑖 ∈
{ 12 (𝑖
2 + 3𝑖 + 4) ∣ 𝑖 ∈ ℕ}. The first few 𝑐 are 2, 4, 7, 11. It also requires that

log2(𝑛/𝑐𝑖) ⩽ 𝑏/𝑖.

𝑘′ = 𝑘 − 𝑏; 𝑛′ = (𝑛𝑐) ⋅ 2
−𝑏; 𝛿′ = 𝛿𝑐; 𝛿′𝑠 = 𝛿𝑠; 𝑡 = 𝒪 (2𝑐𝑖−1

𝑛
𝑐𝑖 );

𝑚 = 𝒪 (𝑘𝑛).

Note that Delaplace, Esser, andMay [114] have suggested improving 𝑐-sum-
Dissection by using the Van Oorschot–Wiener Parallel Collision Search
(PCS) algorithm [349]. We denote this variant as 𝑐-sum-PCS(𝑏).
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Algorithm B.2: WHT algorithm [239]

Input: A set 𝑉 of 𝑠 𝑘′-bit samples (𝒂, 𝑐) ∈ 𝒪LPN
𝒔′,𝜏′ .

Output: (𝒔′1,… , 𝒔′𝑘′ ) from 𝒔
′

𝑓(𝒙) = ∑(𝒂,𝑐)∈𝑉 1𝑉1,…,𝑘′=𝒙(−1)
𝑐

̂𝑓(𝒙) = ∑𝑥 (−1)
⟨𝒂,𝒙⟩𝑓(𝑥)

return (𝒔′1,… , 𝒔′𝑘′ ) = argmax𝒂∈ℤ𝑘′2 (
̂𝑓(𝒂))

B.. Decoding algorithms

The general algorithm from algorithm B.1 for solving LPN reduces LPN𝑛𝑘,𝜏 to
a smaller instance LPN𝑛

′

𝑘′,𝜏′ through a number of reduction steps. It then
solves the final instance using some sort of decoding algorithm. The original
BKW used majority decoding [68]. This was improved by using the Walsh–
Hadamard transform (WHT) [239] and subsequently used in [70, 170].

𝑡 = 𝑘′ ⋅ 2𝑘
′−1(log 𝑠 + 1) + 𝑘′𝑠;𝑚 = 𝑘′(2𝑘

′
+ 𝑠).

Esser, Kübler, and May [140] used the folklore Gauss algorithm that per-
forms simpleGaussian eliminations using 𝑘′ samples, assuming error-freeness.
The obtained candidate 𝒔′ is then tested against 𝑠 samples to determine
whether the error’s distribution is closer to Bin𝑠𝜏 or Bin𝑠1

2
. The Pooled-Gauss

variant randomly selects samples from a re-used pool.

𝑡 = (𝑘′3 + 𝑘′𝑠) ⋅ log2 𝑘′ ⋅ (1 − 𝜏′)−𝑘
′
;𝑚 = 𝑘′(𝑘′ + 𝑠).

The two algorithms are given in algorithm B.2 and algorithm B.3.

B.. Finding the best reduction chain

Bogos and Vaudenay proposed in [70] to search for the most efficient combi-
nation of reductions (reduction chain) before decoding the problem. They
present their algorithm as an automaton that defines all possible reduction
paths. They used (concatenated) perfect, quasi-perfect and random codes for
the code-reduce reduction and failure probability 𝜃 = 0.33. We modify the
algorithm to include the Pooled-Gauss decoding algorithm, as well as more
reduction techniques. We present the updated automaton in figure B.1.
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Algorithm B.3: Gauss algorithm [140]

function Gauss(𝒪LPN
𝒔′,𝜏′ , 𝜏

′)
repeat
(𝑨, 𝒄) ← (𝒪LPN

𝒔′,𝜏′)
𝑘′ such that 𝑨 is full rank

𝒔′ = 𝑨−1𝒄
until Test(𝒔′, 𝜏′, 12𝑘 , (

1−𝜏′
2 )
𝑘
)

return 𝒔′

end function

function Test(𝒔′, 𝜏′, 𝛼, 𝛽 )

𝑠 = (
√ 32 ln(

1
𝛼 )+√ln(

1
𝛽 )

1
2−𝜏
′ )

2

𝑐 = 𝜏′𝑠 + √3 ( 12 − 𝜏
′) ln ( 1𝛼) 𝑠

(𝑨, 𝒄) ← (𝒪LPN
𝒔′,𝜏′)
𝑠

return 𝑤𝑡(𝑨𝒔′ + 𝒄) ⩽ 𝑐
end function

1initial

2

3 4

decoded

sum-up-reduce

drop-reduce

sum-up-reduce
drop-reduce

sparse-secret

sum-up-reduce
drop-reduce

code-reduce

sum-up-reduce
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WHT
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WHT

Pooled
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Figure B.1: The automaton accepting valid LPN reduction chains. sum-up-
reduce represents any of the reductions combining samples, i.e.,
xor-reduce, lf4-reduce, 𝑐-sum-Dissection or 𝑐-sum-PCS.
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B. Fair comparison betweenWHT and Gauss

We revisit both WHT and Gauss and provide a unified analysis in order to
compare them. Our analysis shows that assuming negligible decoding error
1/2𝑘 , both algorithms require (almost) the same number of samples. However,
their efficiency depends very differently on the size of the problem and the
bias. As a consequence, they are suitable for different scenarios. This has
several implications.

First, we show that there is no obstacle in obtaining a negligible error in
WHT by choosing an appropriate number of samples. This was overlooked
in [140].

Second, we provide the basis for a fair comparison between chains of
reduction steps ending inGauss andWHT. Aswewill see later, this disproves
the claim in [140] that Gauss can be combined with various reduction steps
and give better results than performing reduction steps and using WHT. This
further explains the experimental results from [140] which imply that Gauss
almost always performs better without any sum-up-reduce reduction steps.

As a side result, we improve the efficiency of Gauss by obtaining a better
bound for the sample complexity.

Proposition 1. If

𝑠 = ( 4
(1 − 2𝜏)2

− 2) ln 1√2𝜋𝛾

samples are available, where 𝛾 ∈ (0, 1√2𝜋𝑒], the WHT algorithm applied to
LPN𝑛𝑘,𝜏 outputs the correct solution with probability at least 1 − 𝛾.

Proof. We detail the analysis for a positive bias following the approach of [70].
For a negative bias, the analysis is equivalent. WHT outputs the candidate
with the largest value of ̂𝑓. Failure occurs when there exists another ̄𝒔 ≠ 𝒔
such that ̂𝑓( ̄𝒔) > ̂𝑓(𝒔), i.e., whenHW(𝑨 ̄𝒔 + 𝒄) < HW(𝑨𝒔 + 𝒄). Let ̄𝒚 = 𝑨 ̄𝒔 + 𝒄
and 𝒚 = 𝑨𝒔 + 𝒄. Then the expectation and variance of the random variables
𝒙𝑖 = 𝒚𝑖 − ̄𝒚𝑖 is E(𝒙𝑖) =

2𝜏−1
2 and Var(𝒙𝑖) =

1
2 − (
2𝜏−1
2 )
2 . Let

𝑍 =
√𝑠(𝑆𝑠 − E(𝒙𝑖))
√Var(𝒙𝑖)

,

where 𝑆𝑠 =
𝒙1+⋯+𝒙𝑠
𝑠 . By the Central Limit Theorem 𝑍

𝑑
→ 𝑁(0, 1). Using
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B Practically solving LPN

standard upper-tail inequalities for the standard normal distribution𝑁(0, 1),
we obtain

𝑃𝑟 [ ̂𝑓( ̄𝒔) > ̂𝑓(𝒔)] = 𝑃𝑟 [𝑍 ⩾ (1−2𝜏)
√𝑠

√2−(1−2𝜏)2
] ⩽ 𝑒
− (1−2𝜏)

2𝑠
2(2−(1−2𝜏)2)

√2𝜋
(B.1)

Taking 𝑠 = ( 4(1−2𝜏)2 − 2) ln
1
√2𝜋𝛾 , inequality (B.1) becomes

𝑃𝑟 [ ̂𝑓( ̄𝒔) > ̂𝑓(𝒔)] ⩽ 𝛾.

We can make the probability of an error in the WHT procedure arbitrarily
small if we take 𝛾 = negl(𝑘).

Proposition 2. If

𝑠 = (
√2𝜏(1 − 𝜏) ln( 1√2𝜋𝛼 ) + √

1
2 ln(

1
√2𝜋𝛽 )

1
2 − 𝜏

)

2

samples are available for 𝛼, 𝛽 ∈ (0, 1√2𝜋𝑒], the Test function from the Gauss
algorithm applied on LPN𝑛𝑘,𝜏 accepts the correct solution with probability at least
1 − 𝛼, and rejects incorrect solutions with probability at least 1 − 𝛽.

Proof. A correct 𝒔′ input to the Test algorithm, means that 𝒆 = 𝑨𝒔′ +𝒄 follows
the Binomial distribution Bin𝑠𝜏, i.e., 𝒆𝑖 ∼ Ber𝜏, 𝑖 ∈ {1,… , 𝑠}. Then E(𝒆𝑖) = 𝜏
and Var(𝒆𝑖) = 𝜏(1 − 𝜏). Using the same approach as in proposition 1 for

𝑍 =
√𝑠(𝑆𝑠 − E(𝒆𝑖))
√Var(𝒆𝑖)

,

and 𝑆𝑠 =
𝒆1+⋯+𝒆𝑠
𝑠 , and we obtain

𝑃𝑟 [HW(𝑨𝒔′ + 𝒄) ⩾ 𝑐] ⩽ 1√2𝜋
exp(− 1
2𝑠
⋅ (𝑐 − 𝑠𝜏)

2

𝜏(1 − 𝜏)
) (B.2)

Taking 𝑐 = 𝑠𝜏 + √2𝑠𝜏(1 − 𝜏) ln 1√2𝜋𝛼 (similarly as in [140]), equation (B.2)
turns into 𝑃𝑟 [HW(𝑨𝒔′ + 𝒄) ⩾ 𝑐] ⩽ 𝛼. For the chosen 𝑐, the probability that a
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B.4 Combining code-reduce with Gauss

correct 𝒔′ will produce an error 𝒆 of largerweight than 𝑐 can bemade negligible.
Therefore we can use this 𝑐 as a threshold value in the Test algorithm.

We estimate 𝑃𝑟 [HW(𝑨𝒔′ + 𝒄) ⩽ 𝑐] similarly,

𝑃𝑟 [HW(𝑨𝒔′ + 𝒄) ⩽ 𝑐] ⩽ 1√2𝜋
exp(−(𝑠 − 2𝑐)

2

2𝑠
) (B.3)

Taking 𝑠 = (
√2𝜏(1−𝜏) ln( 1√2𝜋𝛼 )+√

1
2 ln(

1
√2𝜋𝛽 )

1
2−𝜏

)

2

and the previously found 𝑐, equa-

tion (B.3) turns into 𝑃𝑟 [HW(𝑨𝒔′ + 𝒄) ⩽ 𝑐] ⩽ 𝛽. With this we have also
estimated the required amount of samples needed for the Test function.

In order to compare fairly the two decoding algorithms, the errors 𝛾 for
WHT and 𝛼+𝛽 for Gauss should be approximately the same. For simplicity
we take 𝛼 = 𝛽 = 𝛾 = 1/(2𝑘√2𝜋). Thenwe get approximately the same amount
of needed samples i.e.

𝑠𝐺 ≈
8𝑘 ln 2
(1 − 2𝜏)2

, 𝑠𝑊𝐻𝑇 ≈
4𝑘 ln 2
(1 − 2𝜏)2

This shows that we can ignore the sample number 𝑠 from the time andmem-
ory expressions of both decoding algorithms and look at them as functions in
𝑘′ and 𝜏′ . Interestingly, the time complexity of both algorithms is exponential
in 𝑘′, but with different bases: 2 for WHT and ((1 − 𝜏)−1) for Gauss. As
we add more reduction steps, ((1 − 𝜏)−1) grows and the Gauss algorithm
quickly overruns WHT. Hence, we can expect that having more reduction
steps favors WHT instead of Gauss as this reduces the LPN problem, and
it becomes more likely that we can fit the WHT algorithm in memory. This
observation is shown in figure B.2 and further confirmed in appendix B.2.3.

B. Combining code-reducewith Gauss

In [140] it was suggested that the low-memory Gauss decoding algorithms
can be combined with various reduction algorithms. The intuitive combina-
tion with the code-reduce reduction that uses little memory and does not
consume any samples, would appear to make sense. Using Pooled-Gauss,
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Figure B.2: Comparing WHT and Gauss for different 𝛿′ = 𝛿2
𝑐
.

𝑐 indicates the number of reduction steps.

Algorithm B.4: Coded Pooled Gauss

Input: 𝑛 = 𝑘 + 𝑘2 log22 𝑘 + 𝑠 samples from 𝒪LPN
𝒔,𝜏 ,

a [𝑘, 𝑘′] code 𝐶 with generator matrix 𝐺
Output: Linear relations on 𝒔
sparse-secret()
code-reduce(𝑘, 𝑘′, 𝐶)
𝑠 ← Pooled-Gauss(𝑘′)
return 𝒔′ of size 𝑘′ such that 𝒔𝐺𝑇 = 𝒔′

a variant that does not regenerate samples, this combination looks like al-
gorithm B.4. However, we will show that this approach is not more viable than
just applying Pooled-Gauss to the full problem. Even hypothetical codes
that reach the Hamming Bound [172] don’t have good enough bc that makes
Coded (Pooled) Gauss better.

In our analysis we assume that we can decode a sample in insignificant
time. We explore whether even under this assumption, Coded Gauss can
be competitive. In practice, constant decoding time is only feasible for (con-
catenations of ) small codes. Those are not the best possible covering codes
theoretically.
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B.4 Combining code-reduce with Gauss

B.. Analysis of the required bias of the code

In order for Coded Pooled Gauss to have advantage over Plain Pooled Gauss,
we need the time complexity of Coded Pooled Gauss to be better, i.e.

(𝑘3 + 𝑘𝑠) log22 𝑘

( 12 +
1
2𝛿)
𝑘 ⩾
(𝑘′3 + 𝑘′𝑠) log22 𝑘

′

( 12 +
1
2𝛿bc)
𝑘′ + 𝑠 + 𝑛. (B.4)

Recall that theoremB.2 bounds the bc of any [𝑘, 𝑘′] code and that the bound
is met for perfect or quasi-perfect codes. Combining it with the Hamming
bound, reached by perfect codes, (2𝑘

′
⩾ ∑𝑅𝑤=0 (

𝑘
𝑤)), we can compute the upper

bound on bc for any [𝑘, 𝑘′] code. In turn, this gives us the best possible time
complexity for Coded (Pooled) Gauss using any [𝑘, 𝑘′] code. Unfortunately,
our calculations show (see figure B.3(a)) that the required bc can not be
reached even for codes on the Hamming bound. This implies that Coded
(Pooled) Gauss is always worse than immediately applying (Pooled) Gauss.

Note that here, since we only combine code-reduce and Gauss we have
𝛿 = 𝛿𝑠 (the sparse-secret transformation is performed right before code-
reduce). However, in order for the code-reduce step to be worth applying we
actually need 𝛿 < 𝛿𝑠 . This corresponds to applying other reduction steps in
between sparse-secret and code-reduce. Figure B.3(b) depicts this scenario.
As before, 𝑐 indicates the number of reduction steps. Note that as 𝑐 increases,
so does the possible advantage of applying code-reduce.
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Figure B.3: Minimal bc for Coded Gauss to be faster than just applying Gauss
and the bc obtained at the Hamming bound. (b) actually requires
additional reduction steps before code-reduce.
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The previous analysis does not give the full picture. We have neglected the
running time of the in-between steps for the sake of argument and to show
that the only favorable case involves several reduction steps before Coded
Gauss.

B.. Memory Cost

The samples used by Gauss to test if candidate 𝒔′ is correct greatly contributes
to its memory consumption. With small bias, Gauss is not memory-efficient.
For quite realistic 𝛿 ⋅ bc ≈ 10−6 and 𝑘′ ⪆ 16, Gauss needs many terabytes of
memory. When 𝛿 ⋅ bc ≈ 10−7, it even crosses into the exabytes. This further
limits realistic attacks. We note that relaxing the failure probability reduces the
memory consumption, though not by many orders of magnitude. However,
this could make the difference for a practical attack to fit in memory.

B. Findingmemory restricted reduction chains

Our main goal here is to find the best reduction chains in the spirit of [70]
but under memory constraints. As a first step, we modified the chain finding
algorithm from [70] to only allow branches to be taken if the memory con-
sumed by the reduction or decoding is below a set limit. Although in theory
this approach should yield the best chain in the end, it is extremely inefficient,
time-consuming, and does not scale well. This was especially visible after
adding new reduction steps to the algorithm. However, we noticed that the
automaton can be greatly simplified due to many impossible branches and
some clear optimization steps due to the memory restrictions.

Proposition 3. The sequence sum-up-reduce → drop-reduce can never
occur in the best reduction chain for solving a given LPN𝑘0,𝜏0 search problem
under memory constrains.

Proof. We will prove the claim for sum-up- reduce=xor-reduce. The rest
can be shown very similarly. Suppose that after a number of reduction steps we
need to reduce the problem LPN𝑘,𝜏 . Using the sequence xor-reduce→ drop-
reduce, we can reduce it first to LPN𝑘−𝑏,𝜏′ using xor-reduce, and then to
LPN𝑘′,𝜏′ using drop-reduce. Here 𝜏′ = (1 − (1 − 2𝜏)2) /2 and 𝑏 ∈ [0, 𝑘 − 𝑘′].
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B.5 Finding memory restricted reduction chains

Table B.1: Complexities of solving LPN𝑘,𝜏 in restricted memory

𝒌 = 𝟏𝟐𝟖 𝟐𝟓𝟔 𝟑𝟖𝟒 𝟓𝟏𝟐

𝝉 𝒎 = 40 60 80 40 60 80 40 60 80 40 60 80

𝟎.𝟎𝟓 Our work 𝟐𝟔𝑾 𝟐𝟔𝑾 𝟐𝟔𝑾 𝟑𝟖𝑾 𝟑𝟖𝑾 𝟑𝟖𝑾 𝟓𝟖𝑮 𝟒𝟗𝑾 𝟒𝟗𝑾 𝟔𝟖𝑾 𝟓𝟖𝑾 𝟓𝟖𝑾

Hybrid / MMT 37 34 37 34 37 34 54 40 54 40 54 40 70 48 68 48 68 48 87 57 87 57 84 57

𝟎.𝟏𝟎 Our work 𝟑𝟏𝑾 𝟑𝟏𝑾 𝟑𝟏𝑾 𝟓𝟎𝑾 𝟒𝟔𝑾 𝟒𝟔𝑾 𝟖𝟏𝑮 𝟔𝟎𝑾 𝟔𝟎𝑾 𝟗𝟗𝑾 𝟗𝟐𝑾 𝟕𝟑𝑾

Hybrid / MMT 41 38 41 38 41 38 76 53 61 53 61 53 106 70 106 70 74 70 136 87 136 87 101 87

𝟎.𝟏𝟐𝟓 Our work 𝟑𝟑𝑾 𝟑𝟑𝑾 𝟑𝟑𝑾 𝟓𝟔𝑾 𝟒𝟗𝑾 𝟒𝟗𝑾 𝟗𝟐𝑮 𝟕𝟏𝑾 𝟔𝟒𝑾 𝟏𝟏𝟒𝑾 𝟏𝟎𝟓𝑾 𝟕𝟖𝑾

Hybrid / MMT 41 41 41 41 41 41 86 61 61 61 61 61 121 81 110 81 81 81 157 102 157 102 101 102

𝟎.𝟐𝟓 Our work 𝟑𝟖𝑾 𝟑𝟖𝑾 𝟑𝟖𝑾 𝟏𝟎𝟐𝑮 𝟓𝟖𝑾 𝟓𝟖𝑾 𝟏𝟒𝟎𝑮 𝟗𝟐𝑾 𝟕𝟕𝑾 𝟏𝟕𝟗𝑮 𝟏𝟖𝟔𝑮 𝟏𝟏𝟓𝑾

Hybrid / MMT 47 57 47 57 47 57 113 95 69 95 69 95 175 134 135 134 104 134 230 172 202 172 171 172

𝟎.𝟒𝟎 Our work* 𝟓𝟏𝑾 𝟒𝟖𝑾 𝟒𝟖𝑾 𝟏𝟑𝟔𝑮 𝟖𝟒𝑾 𝟕𝟏𝑾 𝟏𝟖𝟗𝑮 𝟏𝟕𝟔𝑮 𝟏𝟏𝟔𝑾 𝟐𝟒𝟓𝑮 𝟐𝟒𝟏𝑮 𝟐𝟎𝟗𝑾

Hybrid / MMT 62 75 57 75 57 75 129 132 93 132 81 132 197 189 160 189 139 189 264 245 228 245 207 245

𝐺: Gauss decoding method. 𝑊: WHT decoding method.
Hybrid / MMT per [140], generated by a version of their script that contains

a bug-fix acknowledged by the authors.
*: 0.40 results do not use random codes from [70].

The sequence takes time

𝑡 = 𝑘max{𝑛, 𝑛(𝑛 − 1)
2𝑏+1
} + (𝑘 − 𝑏)𝑛(𝑛 − 1)

2𝑏+1

and memory𝑚 = max{𝑘𝑛, (𝑘 − 𝑏)𝑛(𝑛−1)2𝑏+1 }. For some constants 𝐴, 𝐵, 𝐶, these
can be written as functions in 𝑏 as 𝑡(𝑏) = 𝐴 + 𝑛(𝑛 − 1)𝐵𝑘−𝑏2𝑏+1 and 𝑚(𝑏) =
𝐴 + 𝐶𝑛(𝑛 − 1) 𝑘−𝑏2𝑏+1 . It is easy to see that both functions are strictly decreasing
in 𝑏, so the minimum on [0, 𝑘 − 𝑘′] is achieved when 𝑏 = 𝑘 − 𝑘′ . Note further
that the number of remaining samples does not depend on 𝑏, so the choice of
𝑏 does not affect subsequent reduction steps. Summarizing, in the best chain
any sequence xor-reduce→ drop-reduce collapses to just xor-reduce.

We also looked into the sequences code-reduce → drop-reduce and
code-reduce → sum-up-reduce. However, due to the very complex re-
lation between the time complexity and the bias bc of the code, we could
not make a compact analysis similar to proposition 3. Instead, we performed
an extensive set of experiments where we tested the appearance of these se-
quences just before a decoding algorithm is applied, i.e., sequences of type
code-reduce→ reduce→ decode. Our experiments showed that such se-
quences never appear, and that they collapse to code-reduce → decode.
Therefore, we decided to not allow in the automaton any other reduction
steps after code-reduce.
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B Practically solving LPN

As a final modification, we put drop-reduce as a first step. This is a logical
choice in a memory restricted environment and has been used in previous
works as well [140]. Samples can be generated on the fly and discarded imme-
diately if they don’t satisfy the requirements of drop-reduce. This creates a
time-memory trade-off since only the reduced samples from drop-reduce
remain in memory.

We updated the automaton from figure B.1 using our findings, and what we
get is depicted in figure B.4.
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decoded

sum-up-reduce

sum-up-reduce

drop-reduce sparse-secret

sum-up-reduce

code-reduce

WHT

Pooled

Gauss

WHT

Pooled

Gauss WHT

Pooled
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Figure B.4: The updated automaton using the results from appendix B.5. The
notation is the same as in figure B.1.

B.. Experimental Results

We applied our algorithm to find reduction chains that fit in 240 (128GiB), 260

(128 PiB) and 280 (128 ZiB) bits of memory. 240 bits is an amount of memory
that is readily available from server vendors in common configurations. 260

bits is a much larger, but not necessarily impractical amount of memory. A
top supercomputer, Summit, has over 250 PB of storage [278].1 Finally, 280 is
included to give some safety margin.

In table B.1, we show that solving most LPN instances is fastest using the
WHT decoding algorithm. Only when we get severely memory-restricted,
does the algorithm find chains with Gauss. This improves upon the results
of [140], who were not able to fit any WHT-based algorithm in 260 bits of

1While this is networked storage, Summit nodes have over 10 PB of local storage
combined. 128 PB of RAM is probably within reach in the near future.
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memory. We also see that the found reduction and decoding chain is able
to recover LPN256,0.25 in 258 time. This is a significant improvement on the
complexity of 263 for their best attack on LPN256,0.25 , which involved a quantum
algorithm. Going up to𝑚 = 80 shows that more memory does not necessarily
allow for better algorithms. This is probably related to the fact that the most
significant factor affecting memory requirements is the number of samples,
which in turn affects the required time.

B. Practical attack on LPN

Using our results, withmemory limit𝑚 = 39, we have executed several attacks.
The results are listed in table B.2. We implemented the reductions and solving
algorithms in Rust. We hope these results andmemory bounds aremeaningful
and illustrate what some time complexities mean in practice. Experiment
were run on a computer with 192GB RAM and two Intel Xeon Gold 6230s
totaling 80 threads. Their runtime, due to the tight memory restriction, is
dominated by drop-reduce, so we also give the number of bits dropped.

Table B.2: Solved LPN𝑘,𝜏 instances with𝑚 = 39

𝒌 𝝉 Exp. time Init. samples drop bits runtime

190 1/8 240.9 231.0 7 33minutes
200 1/8 244.4 231.2 12 290minutes
150 1/4 244.5 231.4 12 281minutes
154 1/4 248.4 231.4 16 3 741minutes

We see that our results scale in line with the theoretical complexity. For
𝑘 = 512, we see that for 𝜏 = 18 the theoretical time complexity is 𝑡 = 2114 .
Extrapolating to this complexity, we would expect to need 277 minutes to run
an attack in practice, with our implementation. Of course, both extrapolations
assume the exact same hardware and software for attacking a problem of this
size. There is potential for acceleration by using GPUs or trivially distributing,
e.g., drop-reduce over multiple computers. We leave this for future work.
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B. Conclusion

In this chapter we focused on practical consideration for solving the LPN
problem, in particular the issue of memory consumption. We improved the
state-of-the-art by modifying and enhancing the Coded-BKW algorithm to
work under various memory constraints. Our analysis of Coded (Pooled)
Gauss disproved that this intuitive combination of low-memory algorithms
is generally feasible. We further showed that when combined with several
reduction steps, Gauss is generally always worse than using WHT, especially
for practical parameters. The practicality of our approach was demonstrated
by mounting attacks on the largest parameters reported so far, in only 239 bits
of memory.
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Lists of abbreviations

TLSmessage abbreviations

CH ClientHello message
SH ServerHello message
HRR HelloRetryRequest message
CCS ChangeCipherSuite message
CKC ClientKemCiphertext message
SKC ServerKemCiphertext message
EE EncryptedExtensions message
CR CertificateRequest message
CRT Certificate message
SCRT ServerCertificate message
CRTV CertificateVerify message
SCV ServerCertificateVerify message
CCRT ClientCertificate message
CCV ClientCertificateVerify message
FIN Finished message
SF ServerFinished message
CF ClientFinished message

405



TLS key abbreviations

TLS key abbreviations

AHS Authenticated Handshake Secret key

CAHTS Client Authenticated Handshake Secret key
CATS Client Application Traffic Secret key
CHTS Client Handshake Secret key

dAHS Derived Authenticated Handshake Secret key
dES Derived Early Secret key
dHS Derived Handshake Secret key

EMS Exporter Main Secret key
ES Early Secret key
ETS Early Traffic Secret key

HS Handshake Secret key

MS Main Secret key

RMS Resumption Main Secret key

SAHTS Server Authenticated Handshake Secret key
SATS Server Application Traffic Secret key
SHTS Server Handshake Secret key
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Abbreviations

Abbreviations

AEAD authenticated encryption with associated data
AKE authenticated key exchange

CA certificate authority
CSR certificate-signing request
CT certificate transparency

DC delegated credential
DH Diffie–Hellman key exchange

ECDH elliptic-curve Diffie–Hellman

FO Fujisaki–Okamoto

IETF Internet Engineering Task Force
IoT Internet-of-Things
IRTF Internet Research Task Force

KAT known-answer test
KDF key-derivation function
KEM key encapsulation mechanism

LPN Learning Parity with Noise

MAC message-authentication code
MLWE module-learning with errors
MSS maximum segment size

NIKE non-interactive key exchange
NIST United States National Institute of Standards

and Technology

OCSP online certificate status protocol
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Abbreviations

PKI public-key infrastructure
PQC post-quantum cryptography
PSK pre-shared key

RFC Request For Comments, an IETF or IRTF pub-
lication often containing a standard.

RTT round-trip time

TLS Transport Layer Security
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Availability of software and

experimental results

This thesis research has been carried out under the research data management
policy of the Institute for Computing and Information Science of Radboud
University, The Netherlands.

In this appendix, we list the software implementations that have been used
to obtain the results in different chapters, as well as where to find the raw
measurement data obtained in our experiments. The latest version of any
software, documentation, and recorded experimental data will be available
via https://thomwiggers.nl/publication/thesis/.

Formally analyzing KEMTLS in Tamarin

The two Tamarin models, including the Tamarin-generated proofs, are avail-
able under the CC-BY 4.0 license at:

Thom Wiggers. (2022). KEMTLS-TLS13Tamarin. Archived at
Zenodo. doi: 10.5281/zenodo.7844627. Model described in
section 9.3.
Douglas Stebila. (2022). Tamarin-multi-stage-model. Archived
at Zenodo. doi: 10.5281/zenodo.7844620. Model described in
section 9.5.

Experiments with post-quantum TLS ., OPTLS, KEMTLS, and KEMTLS-PDK

on simulated networks

For the experiments in chapters 11 to 14 we used and modified open-source
cryptographic software and TLS libraries. In addition, we wrote new software
to facilitate our experiments and to create certificates. Our modifications and
the new software are described in chapter 10. All software we modified is
under permissive open-source licenses; we place any newly-developed code
into the public domain (CC0).

The software used in the experiments for this thesis as well as the experi-
mental results can be found at:
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Availability of software and experimental results

Thom Wiggers. (2023). thomwiggers/kemtls-experiment: thesis-
deposit. Archived at Zenodo. doi: 10.5281/zenodo.10143416

Full measurement results from all experiments reported in chapters 11 to 14
can be found in the measuring/archived-results folder.

For OPTLS, we report additional preliminary results with higher-security
parameters for CSIDH. These benchmarks were done independently, and the
software and measurement results can be found at:

Fabio Campos and Thom Wiggers. (2023). kemtls-secsidh/code.
Archived at Zenodo. doi: 10.5281/zenodo.10142359
Thom Wiggers. (2023). kemtls-secsidh/secsidh. Archived at Zenodo.
doi: 10.5281/zenodo.10142361

Measuring the performance of KEMTLS in embedded systems

The code for the embedded client application, as well as the server software
based on an earlier version of the Rustls implementation of post-quantum
TLS and KEMTLS used in the experiments on simulated networks, is available
under permissive licensing at:

Ruben Gonzalez. (2022). wolfssl-kemtls-experiments. Archived at
Zenodo. doi: 10.5281/zenodo.7844877

Measuring the performance of KEMTLS over the internet

In chapter 15, we describe an implementation of post-quantum TLS 1.3 and
KEMTLS(-PDK) in the Go standard library. This version integrates CIRCL [141]
and can be used as a replacement for the standard Go compiler to compile
otherGo programs. Hence, anyonewanting to experimentwith post-quantum
algorithms or the new handshake protocols can compile programs with our
modified Go compiler.

Sofía Celi and Armando Faz-Hernandéz. (2021). Go-kemtls.
Archived at Zenodo. doi: 10.5281/zenodo.7844629

The source code of the client application used in experiments is available via:

Sofía Celi and Armando Faz-Hernandéz. (2021). KEMTLS-local-
measurements. Archived at Zenodo.
doi: 10.5281/zenodo.7844865
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Improving software quality in standardization projects

Chapter 17 discusses PQClean. This ongoing project is available on GitHub at
https://github.com/PQClean/PQClean/, but an archived copy of the
state of the project at the end of round 3 of the NIST PQC standardization
project can be found at:

Thom Wiggers, Douglas Stebila, Matthias J. Kannwischer, and Peter
Schwabe. (2022). PQClean (tag round3). Archived at Zenodo.
doi: 10.5281/zenodo.7844947

Verifying post-quantum signatures in 𝟖 kB of RAM
The implementations of the signature schemes, including scaffolding for exe-
cuting the benchmarks, can be found at:

Ruben Gonzalez and Matthias J. Kannwischer. (2021). Streaming
Post-Quantum Public Keys and Signatures. Archived at Zenodo.
doi: 10.5281/zenodo.7863702

Practically solving LPN

The software that allows experimenting with and execution of attacks on LPN
problems can be found at:

Thom Wiggers. (2021). thomwiggers/lpn. Archived at Zenodo.
doi: 10.5281/zenodo.4655955
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Summary

The Transport Layer Security (TLS) protocol is the most-used secure com-
munication protocol on the internet. In this thesis, we examine the challenges
and trade-offs when protecting TLS against attacks using large-scale quantum
computers that can break the cryptography used in the current versions.

In chapter 1, we introduce cryptography in general and our subject in
particular. Chapter 2 establishes common notions, notation, and definitions
that we use in other chapters. The remainder is organized into three parts.

Part I: Post-QuantumTLS

This part introduces the protocols and the changes that need to be made to
transition to post-quantum cryptography.

Chapter : The TLS protocol

In this background chapter, we examine the current state-of-the-art version
of the TLS protocol, version 1.3. TLS 1.3 is based on Diffie–Hellman (DH)
key exchange, which has no post-quantum equivalent. We examine existing
proposals to integrate post-quantum key encapsulation mechanism (KEM)
and signature schemes in the protocol with small changes. In the conclusion
of this chapter, we briefly review the literature on experiments with post-
quantum TLS, showing that especially the large sizes and/or computational
requirements of post-quantum signature schemes are challenging for the
deployment of post-quantum TLS.

Chapter : Post-quantumOPTLS

Chapter 4 revisits OPTLS, which was an early proposal by Krawczyk and Wee
for the TLS 1.3 handshake protocol which was later abandoned. This protocol
uses a different authentication mechanism than the signed-key-exchange
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approach that is common across TLS versions that are used today: OPTLS
authenticates by completing a DH key exchange with a long-term DH public
key in certificates. This key exchange requires the authenticated party to use
the secret key corresponding to that public key to compute a shared secret
key; the shared secret key is in turn used to compute a message-authentication
code (MAC). This MAC proves that the authenticated party has access to the
secret key and thus must be who they claim to be.

The OPTLS handshake protocol seems a promising approach to avoid
the downsides of post-quantum signature schemes that we identified in the
previous chapter. Unfortunately, the way OPTLS uses DH for authentication
relies on the non-interactive key exchange (NIKE) properties of DH. This
is a problem for constructing a post-quantum version of OPTLS, as there
are few post-quantum NIKEs: the only scheme that fits in the OPTLS key-
exchange messages, CSIDH, requires large amounts of computation time and
its security is the subject of debate.

Chapter : Post-quantum KEMTLS

This chapter introduces KEMTLS, the main contribution of this thesis. KEMTLS

takes the idea from OPTLS to construct a TLS handshake without handshake
signatures but uses KEMs instead of NIKE. To get around the additional
round-trip that KEM-based authentication would impose, KEMTLS changes
the TLS handshake so that the client can use an implicitly-authenticated key to
send its request to the server in the same place as it would in TLS 1.3. In TLS 1.3,
the server can send data before the client has sent its request, but we argue that
the server often has to wait for the client’s request before it can send anything
useful; this certainly is the case in HTTP, the protocol used in web browsing.
In this way, KEMTLS preserves the ability of the client to send its request after
one round-trip time (RTT), while at the same time eliminating handshake
signatures. This saves significant amounts of bandwidth and computation.

This chapter also discusses a variant of KEMTLS with client authentica-
tion. Unfortunately, the client can not send its client certificate before it has
(implicitly) authenticated the server, so the handshake protocol of mutually
authenticated KEMTLS has an additional round-trip before the client can send
its request. Finally, deploying KEMTLS does require obtaining certificates that
have KEM public keys, and we briefly discuss the way certificates are currently
issued and how this could be done for post-quantum KEMs.
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Part II: Security of KEMTLS

Chapter : More efficient KEMTLS with pre-distributed keys

KEMTLS assumes that the client has no prior knowledge of the server’s long-
term keys. However, in many cases the client might have such knowledge:
clients often connect many times to the same server. In such cases, the long-
term public key might be cached or otherwise be known to the client before
the connection is set up. Under this assumption, this chapter describes a more
efficient key-exchange protocol which we call KEMTLS-PDK, KEMTLS with pre-
distributed keys. By using the prior knowledge of the server’s long-term KEM
public key, we allow the client to submit a ciphertext to the server in the first
handshake message. This significantly abbreviates the handshake protocol
and avoids the exchange of certificates entirely, reducing the amount of data
transmitted. Because the ciphertext that is encapsulated to the server’s long-
termKEMpublic key is implicitly authenticated, we can use this key to encrypt
the client’s certificate. This allows us to construct a mutually authenticated
KEMTLS-PDK handshake that has the same number of round-trip times as
unilaterally authenticated KEMTLS-PDK, saving a full round-trip compared
to the mutually authenticated KEMTLS handshake. Finally, compared to pre-
shared key variants of TLS 1.3, KEMTLS-PDK avoids symmetric keys and thus
does not need to distribute or protect sensitive shared secret keys.

Part II: Security of KEMTLS

In part I, we proposed two new handshake protocols for TLS: KEMTLS and
KEMTLS-PDK. In this part of the thesis, we discuss their security properties.

Chapter : Security of KEMTLS

In chapter 7, we model and prove the security of unilaterally and mutually
authenticated KEMTLS. We provide a granular definition of forward secrecy
that captures the nuances of the authentication properties at different stages
in the KEMTLS handshake. Our proof is in the reductionist security model:
this quantifies the security of the protocol by the security properties of the
underlying primitives, such as the security of KEMs, MACs, and hash func-
tions. Specifically, we prove match security andmulti-stage security of KEMTLS.
A surprising result is that the ephemeral key exchange of KEMTLS requires
IND-1CCA security and not IND-CPA security as one might expect.

467



Summary

Chapter : Security of KEMTLS-PDK

This chapter instantiates KEMTLS-PDK in the same model as KEMTLS. Using the
same approach as in the previous chapter, we give the security properties of
KEMTLS-PDK in the reductionist security model and prove match and multi-
stage security for the protocol. We take careful consideration to correctly
model the first client message in KEMTLS-PDK, which is replayable. Finally, we
briefly discuss the security of the two protocols together.

Chapter : Formally analyzing KEMTLS in Tamarin

Proving the security of a protocol using pen-and-paper methods is tedious
and error-prone. When reading and writing these proofs, it is easy to miss
details, or indeed fill in details by reading “between the lines”. Computer-
assisted proofs fill this gap: by rigorously specifying the model and every
step of the proof in a computer program, we can use computers to check
our work. In this chapter, we use the Tamarin symbolic analysis tool to
examine the security of KEMTLS and KEMTLS-PDK. We approach the security
of KEMTLS(-PDK) in two ways: by adapting an existing model of TLS 1.3 to
represent our proposals, and by transforming our pen-and-paper properties
to a Tamarin model. We show that KEMTLS and KEMTLS-PDK is secure in both
of our models. The first approach has the benefit of using the fully-featured
TLS 1.3 model, which includes details like handshake encryption, and reuses
security lemmas that have already been battle-tested in the other model. This
model closely resembles what an implementation would look like. The second
approach sticks much closer to the pen-and-paper models from chapters 7
and 8 and does not feature details such as handshake encryption or the full
key-derivation sequence. However, it can specify and verify the granular
security properties from our reductionist security analyses and allowed us
to find some mistakes in the original versions of our proofs. These mistakes
have been fixed in the versions of the proofs that appear in this thesis.

Part III: Implementing andmeasuring post-quantumTLS

This final part of the main body of our thesis instantiates the protocol de-
signs discussed in part I with post-quantum primitives and measures their
performance. This allows us to compare the performance of these variants.
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Chapter : Implementing andmeasuring post-quantumTLS in Rust

This chapter discusses how we implemented post-quantum TLS 1.3, OPTLS,
KEMTLS, and KEMTLS-PDK for the experiments in chapters 11 to 14. We show
howwemodified the TLS handshake state machine in Rustls, howwe generate
the certificates for our experiments, and how we integrated the post-quantum
primitives. We also discuss our emulated network setup in this chapter.

Chapter : Performance of post-quantumTLS

In this chapter, we discuss instantiations of post-quantum TLS 1.3 with post-
quantum primitives at NIST PQC security levels I, III and V. We choose
many different combinations of algorithms for the post-quantum handshakes.
This allows us to make comparisons across the many different schemes that
are available. Our results show that, on our server-grade hardware, the per-
formance of most primitives is fast enough for use in TLS 1.3. Hash-based
signature schemes, however, perform poorly due to their large sizes and sig-
nificant computational requirements. Handshake sizes in general, which
are in large part determined by the post-quantum signature schemes used,
significantly affect the handshake performance; especially if the size exceeds
the roughly 15 kB initial congestion window. If this size is exceeded, an extra
round-trip is introduced to the handshake by the TCP congestion control
algorithms. Our results mirror those of other experiments with post-quantum
instantiations of TLS, in Kyber, Dilithium, and Falcon seem the most promis-
ing algorithms for use in post-quantum TLS 1.3. The results also suggest that
using different signature algorithms for handshake authentication and offline
signatures may be necessary to balance handshake size and requirements for
side-channel protections and special hardware support.

Chapter : Performance of post-quantumOPTLS

This chapter instantiates OPTLS with the post-quantum NIKE CSIDH. We
discuss why CSIDH is currently the only scheme that is suitable for use in
post-quantum OPTLS, but also cover the discussion on the security of this
primitive. Next, we show that although CSIDH has very small public keys
its runtime performance is too poor for it to be a strong candidate for post-
quantum TLS. This problem is exacerbated if, as we discuss, we need to size
up the parameters of CSIDH from 512 bits to 5000 bits or beyond.
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Chapter : Performance of KEMTLS

This chapter covers the performance of KEMTLS. We instantiate the KEMTLS

handshake with post-quantum primitives at NIST PQC security levels I, III,
and V in similar ways as we have in chapter 11. This allows us to make direct
comparisons between equivalent TLS 1.3 and KEMTLS handshakes. Our results
show that compared to post-quantum TLS 1.3, unilaterally authenticated
KEMTLS saves significant amounts of handshake data and computation time.
Mutually authenticated KEMTLS however suffers from the extra round-trip
required to protect the client certificate message, although it still saves at least
30% of data in most of our experiments.

Chapter : Performance of KEMTLS-PDK

The performance of KEMTLS-PDK is discussed in this chapter. Similar to the
previous chapters, we show how it can be instantiated with post-quantum
primitives at NIST PQC security levels I, III, and V. Because KEMTLS-PDK

assumes that the client already has the server’s long-term KEM public key
and we do not need to transmit it, KEMTLS-PDK additionally allows us to use
the conservative Classic McEliece algorithm for handshake authentication.
This algorithm has very large public keys, but very small ciphertexts. We
compare the performance of the KEMTLS-PDK handshakes in this chapter to
those of a variant of TLS 1.3. This variant avoids transmission of certificates
by allowing the client to indicate that the server can omit them: this is similar
to our pre-distributed-key scenario and allows for apples-to-apples compar-
isons with TLS. KEMTLS-PDK performs slightly better than this cached-TLS
variant and saves handshake data in most instantiations. We also compare
the performance of KEMTLS-PDK with KEMTLS: by avoiding the transmission
of server public keys we (expectedly) save significant amounts of data.

Chapter : Measuring the performance of KEMTLS over the internet

The previous chapters discussed the performance of post-quantum TLS vari-
ants in simulated network environments. In this chapter, we show the results
of an experiment that measured the performance of post-quantum TLS and
KEMTLS(-PDK) in a more realistic scenario. We implemented the protocols in
the Go standard library and used this for connections between two conti-
nents. Over these connections, we ran a real-world application. We also show
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how to experiment in production systems, by delegating trust from existing,
CA-issued certificates to not-yet-standardized post-quantum schemes. Our
results show that the impact of post-quantum primitives is noticeable on
handshake completion times, but that the impact is manageable. Handshakes
using KEMTLS complete faster than those using post-quantum TLS 1.3, but
mutually authenticated KEMTLS suffers from the additional round-trip times.

Chapter : Measuring the performance of KEMTLS in embedded

systems

This chapter gives a first look at the performance of KEMTLS when imple-
mented on a device that has significantly less power than the servers used
in previous experiments. We implemented post-quantum TLS and KEMTLS

clients on an ARM Cortex-M4-based microcontroller and measure the hand-
shakes for different network environments. We focus on network settings
that are relevant to the embedded space, namely Narrowband-IoT and LTE
Machine-Type communication. Our results show that KEMTLS uses less mem-
ory than TLS 1.3, but that for unilaterally authenticated handshakes there
was no significant difference in code size. Our run times show that in both
protocols post-quantum cryptography (PQC) primitives require a significant
amount of computational time during the handshake, sometimes requiring
over 50% of the entire handshake time. Even in the LTE-M setting, the per-
centage of cycles spent in PQC computations is considerable. However, in the
bandwidth-constrained NB-IoT setting, handshake times are mostly driven by
handshake size. As KEMTLS handshakes are often smaller, using this protocol
may help the performance.

Chapter : Improving software quality in standardization projects

This last chapter of the main body takes a step back from the post-quantum
protocols and instead looks at the state of the software that has been used
in all of our experiments. The NIST PQC standardization project submis-
sions were accompanied by reference implementations of the schemes, but
these were often of poor quality and not immediately suitable for use in ex-
periments. In this chapter, we delve into this problem. We argue that the
NIST PQC standardization effort—and future public cryptography standard-
ization initiatives—could be improved by having a more extensive software
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framework prepared in advance by the organizers for submitters, relying on
modern continuous integration and testing tools. If this is done, the large
number of bugs that we found could have largely been avoided. We attempt
to lay out the requirements for a testing framework, based on our experience
in the PQClean project, where we assembled a collection of standalone C
implementations of NIST PQC submissions and developed a continuous
integration testing approach to improve the software we assembled. Finally,
we look beyond PQClean’s central focus on “cleaning” C implementations and
discuss alternatives to C for representing specifications as well as extensions
beyond testing frameworks for cryptographic standardization processes.

Additional papers

Finally, we include two additional papers that are slightly outside of the main
subject of this thesis.

Appendix A: Verifying post-quantum signatures in  kB of RAM

In this chapter, we discuss how post-quatum signatures can be verified on
devices with very small memory. Motivated by a use case from the automotive
sectory, we assume an ARMCortex-M3 with 8 kB of memory and 8 kB of flash
for code. This amount of memory is insufficient for most schemes. Rainbow
andGeMSS public keys are too big and SPHINCS+ signatures do not fit in this
memory. Tomake signature verification work for these schemes, we show how
to stream in public keys and signatures to the verification subroutine. Due to
the memory requirements for efficient Dilithium implementations, we use
streaming for the public key to give us more space to cache more intermediate
results.

Appendix B: Practically solving LPN

In this chapter, we discuss the Learning Parity with Noise (LPN) problem.
The best algorithms for the LPN problem require sub-exponential time and
memory. This often makes memory, and not time, the limiting factor for
practical attacks, which seem to be out of reach even for relatively small
parameters. In this chapter, we try to bring the state-of-the-art in solving
LPN closer to the practical realm. We improve previous algorithms that find
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combinations of attacks to solve particular LPN problems, by reducing the
search space. Then, we show how memory constraints can be added to the
search algorithm, which in turn helps find more practical attacks. We show
how to, and execute, attacks on the largest LPN parameters as of when the
paper was published.
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Samenvatting

Dit proefschrift gaat over het Transport Layer Security (TLS) protocol, het
meestgebruikte beveiligde communicatieprotocol is op het internet. Speci-
fieker bekijken we wat de uitdagingen en afwegingen zijn om het protocol
resistent te maken tegen aanvallen met kwantumcomputers; dit zijn compu-
ters die kwantumeffecten gebruiken in plaats van de ‘gebruikelijke’ nullen
en enen. Kwantumcomputers kunnen gebruikt worden om de veiligheid van
huidige versies van TLS te breken; cryptografische systemen die bestand zijn
tegen aanvallen met kwantumcomputers noemen we post-kwantum. In de
hoofdstukken 1 en 2 wordt dit probleem verder uitgewerkt en de context geïn-
troduceerd. De rest van het proefschrift behandelt de verschillende aspecten
van dit onderweg in drie delen.

Deel I: Post-kwantumTLS

In dit deel wordt eerst het originele TLS protocol (versie 1.3) en bestaan-
de voorstellen voor post-kwantum TLS besproken. Daarna bespreken we
eerst een ouder voorstel voor het TLS 1.3 protocol, OPTLS. Dit alternatie-
ve protocol maakt geen gebruik van digitale handtekeningen: in de post-
kwantumsetting zijn die namelijk kostbaar in termen van grootte en rekentijd.
Helaas werkt OPTLS niet zonder zogenoemde niet-interactieve sleuteluitwis-
selingsalgoritmen, en daarvoor hebben we weinig geschikte post-kwantum
kandidaten. De rest van dit hoofdstuk introduceert KEMTLS, de belangrijkste
bijdrage van dit werk, en de variant KEMTLS-PDK, welke gebaseerd zijn op het
idee achter OPTLS, maar door een slimme truc niet een extra ronde heen-en-
weer-communicatie nodig hebben. KEMTLS maakt gebruik van zogenoemde
KEMs, een vorm van sleuteluitwisselingsalgoritmen dat op dit moment ge-
standaardiseerd wordt door het Amerikaanse NIST. KEMs zijn efficiënter dan
post-kwantumalgoritmen voor het maken van digitale handtekening, waar-
door we KEMTLS voorstellen als een efficiënter alternatief dan eenvoudigweg
TLS 1.3 met post-kwantumprimitieven te instantiëren.
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Deel II: Veiligheid van KEMTLS

In dit deel bewijzen we de veiligheid van de nieuwe protocollen die we voor-
gesteld hebben. We bewijzen de veiligheidseigenschappen van KEMTLS en
KEMTLS-PDK in het reductionistische model met een bewijs van zogenoemde
match en multi-stage security gebaseerd op stapsgewijze reducties in de vorm
van spellen. Omdat het maken van bewijzen met pen en papier een fout-
gevoelige aangelegenheid is, geven we ook een bewijs van de eigenschappen
van KEMTLS(-PDK) dat gebruik maakt van Tamarin, een computerprogram-
ma dat bewijzen van symbolische modellen van beveiligingsprotocollen kan
controleren.

Deel III: Implementeren enmeten van post-kwantumTLS

Dit deel bespreekt hoe de besproken post-kwantum TLS-protocollen geïmple-
menteerd kunnen worden. We laten in de hoofdstukken 11 tot 14 zien hoe snel
de protocollen een beveiligde verbinding kunnen opzetten wanneer ze gebruik
maken van verschillende cryptografische primitieven met NIST veiligheids-
niveaus I, III en V. We vergelijken zo de prestaties van post-kwantum TLS 1.3,
OPTLS, KEMTLS en KEMTLS-PDK. Voor OPTLS gebruiken we CSIDH, een
specifiek post-kwantum niet-interactief sleuteluitwisselingsalgoritme, maar
het blijkt dat dit algoritme te langzaam is voor gebruik in TLS. Het gebruiken
van KEMTLS kan daarentegen voor besparingen in de tijd en uitgewisselde
data die nodig is voor het opzetten van een verbinding zorgen. We bekijken
in opvolgende hoofdstukken de prestaties van post-kwantum TLS en KEMTLS

in een realistischer setting, namelijk voor verbindingen van een applicatie die
over het internet werkt. We vergelijken ook post-kwantum TLS en KEMTLS op
computers met beperkte rekenkracht en geheugen.

Tot slot bespreken we de kwaliteit van de software in het NIST standaardi-
seringsproject; deze software hebben we veel gebruikt in onze experimenten,
maar was niet meteen geschikt hiervoor. Er zaten veel fouten in de software,
en door gebrek aan zaken als namespacing was het moeilijk om verschillende
implementaties te integreren in een programma. We geven aanbevelingen
hoe een volgend standaardiseringsproject georganiseerd zou kunnen worden,
zodat dit soort problemen vermeden kunnen worden.

Zie de Engelstalige samenvatting voor een uitgebreider overzicht per hoofdstuk.
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Aanvullende hoofdstukken

Na het hoofdonderwerp van dit proefschrift volgen in de appendices nog twee
hoofdstukken die minder direct gerelateerd zijn aan het hoofdonderwerp.
Het eerste hoofdstuk beschrijft hoe op computers (microcontrollers) met
zeer beperkte hoeveelheden werkgeheugen en opslagruimte voor code toch
post-kwantum digitale handtekeningen kunnen worden geverifieerd, zelfs als
deze handtekeningen of de voor verificatie benodigde publieke sleutels veel
groter zijn dan het werkgeheugen. Hiervoor wordt een aanpak voorgesteld op
basis van streamen: door de publieke sleutel of handtekening in delen aan te
bieden aan de microcontroller kan de berekening voor de verificatie op een
incrementele manier worden gedaan.

In het tweede hoofdstuk bespreken we het LPN probleem. Dit is een the-
oretisch probleem dat aan de basis ligt van verschillende post-kwantum syste-
men. In dit hoofdstuk bekijken we hoe verschillende (bestaande) aanvallen
op dit probleem efficiënt gecombineerd kunnen worden om grotere LPN-
problemen op te lossen.We leggen de nadruk op praktische aanvallen: bestaan-
de aanvallen gebruiken vaak subexponentiële hoeveelheden tijd en geheugen,
terwijl het gebruiken van grote hoeveelheden geheugen typisch een grotere
barrière vormt voor het daadwerkelijk kunnen uitvoeren van een aanval. We
laten zien hoe combinaties van aanvallen gevonden kunnen worden die pas-
sen binnen een vooraf bepaalde hoeveelheid geheugen, en voeren ook enkele
van deze aanvallen uit.
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