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Extreme mass-ratio inspirals (EMRIs) are one of the most sensitive probes of black hole spacetimes with
gravitational-wave measurements. In this work, we systematically analyze the dynamics of an EMRI
system near orbital resonances, assuming the background spacetime is weakly perturbed from Kerr. Using
the action-angle formalism, we have derived an effective resonant Hamiltonian that describes the dynamics
of the resonant degree of freedom, for the case that the EMRI motion across the resonance regime.
This effective resonant Hamiltonian can also be used to derive the condition that the trajectory enters or
exits a resonant island and the permanent change of action variables across the resonance with the
gravitational-wave radiation turned on. The orbital chaos, on the other hand, generally leads to transitions
between different branches of rotational orbits with finite changes of the action variables. These findings
are demonstrated with numerical orbital evolutions that are mapped into representations using action-
angle variables. This study is one part of the program of understanding EMRI dynamics in a generic
perturbed Kerr spacetime, which paves the way of using EMRIs to precisely measure the black hole
spacetime.
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I. INTRODUCTION

An extreme mass-ratio inspiral (EMRI) system com-
prises a supermassive black hole and a stellar-mass com-
pact object, i.e., a black hole or a neutron star [1]. Together
with massive black hole binaries, EMRIs are commonly
believed to be the main extragalactic transient gravitational-
wave sources for space-borne gravitational-wave detectors,
such as the Laser Interferometer Space Antenna, Taiji,
and Tianqin [2–4]. Their formation can be classified into
two distinct channels: one associated with multibody
scattering in nuclear star clusters (“dry channel”) [1] and
the other associated with accretion-assisted migration
(“wet channel”) [5–7]. It has been shown that accretion
disks dramatically boost the EMRI formation rate, such
that the wet EMRIs may be more common for space-
borne gravitational-wave detection [8,9]. There are other

formation mechanisms proposed, such as the destruction
of a stellar-mass black hole binary in the vicinity of a
supermassive black hole [10,11], but the rate is rather
uncertain. Recently, there is a proposal suggesting enhanced
EMRI formation rates in near supermassive black hole
binaries [12], although concerns have been raised regarding
the supply of stellar-mass black holes [13].
EMRIs have a wide range of astrophysical applications.

First, as the mass and spin of the host massive black hole
can be measured accurately (down to percent level or
better), a catalog of EMRI events may be used to infer the
distribution of massive black holes within 105–107M⊙,
which helps to understand the growth mechanisms of
massive black holes. Second, as wet EMRIs are generally
accompanied by active galactic nuclei, they are ideal
candidates for multimessenger observations, which are
particularly useful for studying the accretion physics.
Third, the less-massive object in an EMRI system may
be a mass-gap object [14,15] (similar to the one detected in
GW190814) or a primordial black hole [16], so that the
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EMRI observations may be used to probe the existence of
these objects, determining their abundance and diagnosing
their formation mechanisms.
EMRIs also have important applications in fundamental

physics, including testing strong-field predictions of gen-
eral relativity. They generally have a superior power in
detecting weak environmental forces because of the
large number (104–105) of orbital cycles in band, so that
weak effects may be amplified to achieve detectable
gravitational-wave phase shifts. These environmental
forces may come from the tidal gravitational field of a
third stellar-mass object [17–21], the migration force from
an accretion disk, and/or the interaction between the stellar-
mass black hole and a possible dark-matter cloud [22–29].
From the perspective of testing general relativity, it is
interesting to test the Kerr metric as a key prediction
of general relativity for rotating black holes, as modified
gravity theories may predict different black hole space-
times (e.g., Einstein-dilaton-Gauss-Bonnet [30], dynamical
Chern-Simons gravity [31], and effective field theory
extensions of general relativity [32]). If the central body
is a black hole mimicker such as a boson star, a gravastar,
and/or a wormhole [33] (despite possible issues with
stability [34–37]), the external metric may also be different
from Kerr. A related, important question is: If the back-
ground spacetime is g ¼ gKerr þ h (assuming jhj ≪ 1),
how do we use EMRIs to probe or constrain h? Notice
that the presence of h modifies not only the EMRI
dynamics as an additional force, but also the radiated flux
with respect to the same trajectory.
To understand the EMRI evolution within the back-

ground spacetime described by the metric g ¼ gKerr þ h
(assuming h is stationary), we can separate the EMRI orbit
into nonresonant and resonant regimes. In the nonresonant
regime, the metric perturbation h introduces an extra
conservative force, and the EMRI orbit oscillates around
the Kerr geodesics according to the Kolmogorov-Arnold-
Moser (KAM) theorem; i.e., there is no orbital chaos. With
the gravitational-wave radiation included, we can intui-
tively argue that the conservative quantities are relatively
shifted by OðhÞ and the radiated flux is relatively modified
by OðhÞ, so that the resulting overall gravitational-wave
phase shift is

δΨnonres ∼
1

q
×OðhÞ; ð1Þ

where q (∼10−4 − 10−6) is the EMRI mass ratio and 1=q
represents the number of cycles in band. Notice that,
although both q; jhj ≪ 1, jhj can be larger than q so that
δΨ ≥ 1, which will be observable by space-borne detectors.
Here, we will be particularly interested in the scenario
with jhj > q. In order to describe the long-term secular
evolution in the nonresonant regime, one needs to work out
the modified radiation flux with the modified Teukolsky

equation and determine how to relate the radiated flux
to orbital quantities in the modified spacetime. We shall
present this part of the analysis in a separate work.
In the resonant regime, i.e., kΩr þmΩϕ þ nΩθ ≈ 0 for

k;m; n∈Z, whereΩr;θ;ϕ are geodesic orbital frequencies in
r; θ;ϕ directions, the KAM theorem no longer applies and
orbital chaos can occur. In fact, signatures of chaotic orbits
near resonances have been observed in studies of various
modified Kerr spacetimes [38–49], e.g., in the vertical
jumps of rotation numbers and volume-filling features in
the phase space of the trajectory. A plateau in rotation
number is sometimes observed, which should be associated
with the resonant islands in the phase space. Despite this
progress in understanding the phenomenology of EMRI
resonant behavior in various specific spacetimes, a math-
ematical, universal framework for generic perturbed Kerr
spacetimes is still lacking. More importantly, in order to
allow gravitational-wave measurements to probe the space-
time perturbation h, one needs to assess the impact of h in
the resonant regime for the long-term EMRI evolution,
which is an important goal of this work.
Since we are working in the regime that the perturbative

force (due to h) is greater than the gravitational radiation
reaction, we first solve the conservative dynamics of the
associated spacetime gKerr þ h and view the radiation
reaction as a mapping between different geodesics asso-
ciated with gKerr þ h. Using a method similar to the
treatment of relativistic mean motion resonance in [50],
which, in turn, traces back to the analysis of sustained
resonance for EMRIs with self-force considered (espe-
cially the procedure of applying near identity transforma-
tions) [51], we derive a general effective resonant
Hamiltonian of the form

Heff ¼ α0Θþ β0Θ2 þ ϵ
X
k

HkeikQ ð2Þ

with Θ andQ being the canonical variables for the resonant
degree of freedom (d.o.f.) and relevant definition of other
variables explicitly given in Sec. II. This Hamiltonian
governs the essential dynamics of the EMRI system
within the resonant islands (commonly referred to as the
“libration” regime for planetary systems), and it applies for
generic metric perturbations h, including all the specific
examples mentioned in previous studies [38–49]. The
physical essence of this effective Hamiltonian—similar
to the cases of mean motion resonances widely studied in
planetary systems—is that there is a single resonant d.o.f.
that is slowly varying compared to other d.o.f., so that in a
“slow timescale” where other d.o.f. are averaged out, the
system is described by such a Hamiltonian. When the
gravitational radiation reaction is turned on, the equations
of motion for the resonant d.o.f. should be correspondingly
modified. Note that, away from the chaotic regime, the
discussion presented in [51] becomes particularly useful for
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analyzing the system’s dynamics.1 There are, in general,
two outcomes as a system passes through the resonance
regime under the influence of radiation reaction: transient
passing and resonant trapping (dubbed as “sustained
resonance” in [51]). The transient passing produces a
long-term phase shift

δΨtransient ∼
OðhÞ
q3=2

; ð3Þ

which is larger than the nonresonant effects in the formal
expansions. However, this does not necessarily mean that
δΨtransient is numerically greater than δΨnonres, because the
values of the numerical coefficients play an important role
in the overall amplitude, and these coefficients correspond
to different terms in the harmonics expansion which could
differ by orders of magnitude [see Eq. (10)].
In orbits near the resonant islands, the resonant angle Q

is no longer bounded (the “rotation” regime), which
couples with other nonresonant d.o.f. and gives rise to
chaotic zones in the phase space. In Chap. 9.5 in [52],
a simple pendulum problem was discussed in the
Hamiltonian language to illustrate the properties of chaos
using “the standard map” method. It is plausible that chaos
arises due to similar reasons here in the EMRI system,
where the nonresonant terms effectively introduce time-
dependent harmonics in the Hamiltonian. The resulting
chaos may be analyzed using the (standard) algebraic map
method. The width of chaotic zones is expected to be
proportional to jhj1=2, within which the orbital motion is
chaotic and volume filling in the phase space. In traditional
plots for the rotation number ν (which is defined as the
ratio of average frequencies in two different directions,
e.g., hΩri=hΩθi), the chaotic zones correspond to a vertical
discontinuity in the rotational number, as discussed in,
e.g., [38,47]. The chaotic orbits, in general, contribute
Oðh1=2Þ changes in the action variables Jα during tran-
sitions between different branches of the orbit (Figs. 5
and 6), so that the long-term impact on the gravitational-
wave phase is

δΨchaos ∝
Oðh1=2Þ

q
: ð4Þ

In principle, the chaotic orbit may also introduce transitions
into the resonant islands, after which a sustained resonance
is achieved. One criterion for generic resonance capture
studied in a planetary system is that the capture happens
only in the case of “converging” evolution; i.e., the ratio
between the magnitude of frequencies is converging

(toward one) in time [52]. However, the EMRI evolution
is “diverging.” Therefore, we believe that resonance capture
into resonant islands is unlikely. This point, of course,
requires further numerical confirmation in the future.
To test the effective Hamiltonian description, we have

developed numerical algorithms to do the full evolution
across resonances. In particular, we have developed
numerical algorithms to map the EMRI evolution using
physical variables ðr; θ;ϕ; pr; rθ; pϕÞ to action-angle var-
iables ðqr; qθ; qϕ; Jr; Jθ; JϕÞ. A direct evolution using
action-angle variables is, thus, possible but in realistic
implementations much more susceptible to computational
errors because of the numerical transformations.2 As a
result, we choose to numerically compute the long-term
evolution of EMRIs near resonance using the physical
variables and map them to action-angle variables from time
to time in order to compare to the analysis using the
effective resonant Hamiltonian. The details of the trans-
formation between the physical and action-angle variables
are explained in Appendixes D and E. The numerical
algorithms and the effective Hamiltonian description
should apply to general perturbed Kerr metrics. In this
work, we use the spinning black hole solution in quadratic
gravity [55] as an example, where the perturbed Kerr
spacetime is still stationary and axisymmetric, and we
indeed find decent agreement between the effective
Hamiltonian description and the fully numerical evolution.
The structure of this article is organized as follows. In

Sec. II, we first introduce action-angle variables and their
usage in Hamiltonian systems and then explain why
resonances reduce the number of d.o.f. and near-resonance
orbits are governed by an effective Hamiltonian. In Sec. III,
we numerically evolve a number of near-resonance (2=3
resonance with Ωr=Ωθ ≈ 2=3) orbits in physical coordi-
nates ðx; pÞ and illustrate various features of these orbits
in terms of rotation curves and Poincaré maps. We then
map ðx; pÞ to action-angle variables ðq; JÞ and to resonant
variables ðQ;ΘÞ via a near identity transformation (NIT)
and explain the features found using the effective
Hamiltonian description. In Sec. IV, we calculate the
impact of crossing resonances on the EMRI waveform
using the effective Hamiltonian description. We conclude
this paper in Sec. V. In Appendix B, we analyze the 1=2
resonance, compare it with the 2=3 resonance, and illustrate
the general features of crossing resonances. In Appendix D,
we summarize the necessary steps for mapping the physical

1The original analysis and the scaling laws presented in [51]
are developed for describing the self-force effect, but the method
can be easily adapted to this work.

2An analytical approach to describe geodesic motion in Kerr
spacetime with action-angle variables was proposed in [53] using
a Lie series technique. However, to reach the desired accuracy,
very high orders in this series are needed. Consequently, it turns
out to be computationally expensive, and our numerical approach
is better suited for this problem. See also [54] for an analytic
treatment of the motion of a test particle in a Schwarzschild
spacetime using action-angle variables.
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coordinates to the action-angle variables. In Appendix E,
we show the details of performing NITs.
In this work, we use the geometric units G ¼ c ¼ 1 and

set the supermassive black hole mass to M ¼ 1 if not
specified otherwise.

II. EFFECTIVE RESONANT HAMILTONIAN

Let us consider a point particle’s motion in the spacetime
with metric g ¼ gKerr þ h. The total Hamiltonian is given by

H ¼ 1

2
gαβpαpβ; ð5Þ

and the magnitude of the total Hamiltonian is H ¼ −μ2=2,
where μ is the particle’s rest mass and the physical
coordinates fxα; pαg are canonical variables of the system.
In order to separate out the dynamical effect due to h, we
shall write the Hamiltonian as

H ¼ 1

2
gαβKerrpαpβ þ

ϵ

2
hαβpαpβ

≔ HKerr þ ϵHint; ð6Þ

where hαβ ¼ −gαμKerrg
βν
Kerrhμν and ϵ is a bookkeeping index.

Considering the case with h ¼ 0, i.e., the Kerr spacetime,
one can generally find a canonical transformation to map
the physical coordinates to the action-angle variables:

J α ¼ J αðfxβ; pβgÞ; qα ¼ qαðfxβ; pβgÞ: ð7Þ

Even though this canonical transformation is obtained
assuming the spacetime is Kerr, in the general case that
h is nonzero, it still gives rise to a set of canonical variables
fJ α; qαg for the total Hamiltonian H.3 In other words,
fJ α; qαg satisfy

dqα

dτ
¼ ∂H

∂J α
¼ ∂HKerr

∂J α
þ ϵ

∂Hint

∂J α
;

dJ α

dτ
¼ −

∂H
∂qα

¼ −
∂HKerr

∂qα
− ϵ

∂Hint

∂qα
; ð8Þ

where τ is the proper time of the particle. While it is
convenient to derive the resonant Hamiltonian equations
with the proper time, the result in Sec. II can be directly
represented by the Boyer-Lindquist time t by using the
orbital averaged hdt=dτi, because the resonant dynamics
happens at a slower timescale than the orbital timescale.
In addition, with the inverse transformation of Eq. (7),
HKerrðfxα; pαgÞ may be rewritten as HKerrðfJ α; qαgÞ.
Based on the definition of action-angle variables, the above
equations can then be simplified as

dqα

dτ
¼ Ωα þ ϵ

∂Hint

∂J α
;

dJ α

dτ
¼ −ϵ

∂Hint

∂qα
; ð9Þ

where ΩαðfJ βgÞ ≔ ∂HKerr
∂J α

are the “angular frequencies” for
each angle variable in the Kerr spacetime.

A. Effective resonant Hamiltonian

It is straightforward to see that h drives the evolution of
J α, according to Eq. (9). AsHint is a function of fJ α; qαg,
we Fourier decompose it as

Hint ¼
X
k;m;n

Hk;m;nðfJ αgÞeiðkqrþmqϕþnqθÞ; ð10Þ

where k;m; n∈Z and Hk;m;n is a function of fJ αg. As
q̇α ∼Ωα þOðϵÞ, the variation of J α is driven by oscil-
latory forcing terms with different frequencies. In the long
term, these oscillatory forcing terms introduce no secular
effects so that the trajectory varies around Kerr geodesics,
and there is no chaos in the nonresonant regime (as to be
expected from the KAM theorem). This observation also
justifies using J α for the long-term evolution of EMRIs
with gravitational radiation reaction turned on: In the
nonresonant regime, h only generates oscillations of J α

around its mean value hJ αi, whereas the radiation reaction
produces secular change of J α.
In the resonant regime where the orbital frequencies are

commensurate NαΩα ≈ 0 for certain N ¼ ðNr; Nθ; NϕÞ, we
rewrite the equations of motion for fJ α; qαg as

dqα

dτ
¼ Ωα þ ϵ

X
k∈Z

∂HkNj

∂J α
eikNjqj þ ϵ

X
nj ∈R

∂Hnj

∂J α
einjq

j
;

dJ α

dτ
¼ −iϵ

X
k∈Z

kNαHkNj
eikNjqj − iϵ

X
nj ∈R

nαHnje
injqj ; ð11Þ

where j∈ fr; θ;ϕg and R is defined as the set of all
nonresonant 3-tuples. In order to single out the effect of
resonance in the presence of other fast-oscillatory non-
resonant terms, we apply the technique of near identity
transformations as discussed in [51,56], which is a trans-
formation of the form

q̃α ¼ qα þ ϵLαðfqβ;J βgÞ þOðϵ2Þ;
J̃ α ¼ J α þ ϵTαðfqβ;J βgÞ þOðϵ2Þ; ð12Þ

with Lα and Tα defined, respectively, as
3However, in general, fJ α; qαg are not action-angle variables

for the full Hamiltonian.
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Lα ¼
X
nj ∈R

i
njΩj

∂Hnj

∂J α
einjq

j
;

Tα ¼
X
nj ∈R

nα
njΩj

Hnje
injqj : ð13Þ

The dynamical variables q̃α and J̃ α follow a set of
equations of motion that are free of the “contamination” of
nonresonant terms:

dq̃α

dτ
¼ Ωα þ ϵ

X
k∈Z

∂HkNj

∂J α
eikNjqj þOðϵ2Þ;

dJ̃ α

dτ
¼ −iϵNα

X
k∈Z

kHkNj
eikNjqj þOðϵ2Þ: ð14Þ

In particular, the driving terms on the right-hand side of the
equations always depend on a certain combination of
angles: Njqj, which we shall define as the resonant angle
Q ≔ Njqj. The rate of change of Q is slow as compared to
the frequencies of the nonresonant terms:

dQ
dτ

¼ NαΩα þ ϵ
X
k∈Z

Nα

∂HkNj

∂J α
eikNjqj ð15Þ

because ΔΩ ≔ NαΩα þ ϵNα∂Hð0;0;0Þ=∂J α ≈ 0 based on
the resonance assumption. On the other hand, according
to the second line in Eq. (14), the change rate of each J̃ α is

proportional to each other: ˙̃J r∶
˙̃J θ∶

˙̃J ϕ ¼ Nr∶Nθ∶Nϕ.
This means that we can write J̃ α as

J̃ α ¼ NαΘþ Cα; ð16Þ

where Θ corresponds to the single dynamical “action” and
Cα are constants related to the choice of initial conditions.
The equation of motion for Θ is just

dΘ
dτ

¼ −iϵ
X
k∈Z

kHkNj
eikNjqj : ð17Þ

In fact, combing Eqs. (15) and (17), we can view fQ;Θg
as a set of canonical variables for the effective Hamiltonian

Heff ¼
Z

ΔΩdΘþ 2ϵ
X
k≥1

ReðHkNÞ cos kQ

− 2ϵ
X
k≥1

ImðHkNÞ sin kQ: ð18Þ

Because Θ is the only dynamical action after removing
all nonresonant d.o.f., we can expand ΔΩ in power laws
of Θ as

ΔΩ ¼ α0 þ 2β0ΘþOðΘ2Þ ð19Þ

and dropping the higher-order terms. Substituting this into
Eq. (18), we obtain the desired form of Eq. (2). In reality,
for smooth h we usually find that one of harmonics
dominate over the rest. Such harmonics Hres is likely much
smaller than the amplitude of h itself, as h is generally
dominated by the zeroth harmonic for many models of
modified black hole spacetimes. For the example perturbed
Kerr spacetime we considered in this work, the perturbed
Hamiltonian is dominated by the Hnr;nθ¼0 and Hnr;nθ¼�2

components, where the former ones are nonresonant
components. As a result, for the 2=3 resonance [with
N ¼ ð−3; 2Þ × k] studied in the main text, the dominant
harmonics is k� ¼ �1, and for the 1=2 harmonics [with
N ¼ ð−2; 1Þ × k] discussed in Appendix B, the dominant
harmonics is k� ¼ �2. In addition, we can always remove
the sinQ term by adding or subtracting a constant to the
definition of Q. In the end, the effective Hamiltonian
simplifies to [Hres ¼ �2ϵjHNj depending on the sign
of ReðHkNÞ]

Heff ¼ α0Θþ β0Θ2 þHres cos k�Q; ð20Þ

which is governing the dynamics of the resonant d.o.f.
Notice that there is additional “gauge” freedom of α as one
modified the definition of Θ by a constant:

Θ → Θþ c; α0 → α0 þ 2β0c: ð21Þ

As a result, in practical implementations, we have chosen
the minimal Θ of a trajectory to be zero to fix this gauge
freedom. In this case, we have Heff ¼ HresðΘ ¼ 0Þ if the
minimum locates at Q ¼ 0 [Heff ¼ −HresðΘ ¼ 0Þ if the
minimum locates at Q ¼ �π], and we empirically find that
the dependence of Hres on Θ is weak (see Appendix A)
for the particular orbits considered in this study.4 Notice
that, in general, we find the scaling of Hres to be ϵ1, the
scaling of Θ; α0 to be

ffiffiffi
ϵ

p
, and the scaling of β0 to be one. If

we rescale the variables using their ϵ scaling and adopt a
“slow-time” τ̃ ¼ ffiffiffi

ϵ
p

τ, the resulting equations for Q and Θ
will be ϵ-free. In particular, the dynamical timescale for
completing a “cycle” in theQ − Θ plane isOðjϵj−1=2Þ times
the EMRI orbital timescale:

tres ∼O
�

1

ω
ffiffiffiffiffiffiffiffi
Hres

p
�
; ð22Þ

where ω is the orbital angular frequency.

B. Resonance crossing

The effective Hamiltonian described by Eq. (20) deter-
mines the resonant dynamics as the EMRI system is
trapped in one of the resonant islands. This description

4Note the resonant Hamiltonian formalism applies for generic
HresðΘÞ.
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will be explicitly verified by the numerical evolution of the
system discussed in Sec. III. The form of the effective
Hamiltonian, on the other hand, is very similar to the ones
used to describe mean-motion resonances for multibody
planetary systems discussed in [52]. One difference is that
Hres here does not necessarily follow the

ffiffiffiffi
Θ

p
dependence

usually assumed for planetary systems. Nevertheless, the
form of the effective Hamiltonian naturally gives rise to two
separate regimes in the phase space: the libration and the
rotation regime as shown in Fig. 9 in Sec. III.
Given α0, β0, and Hres, the system follows different

trajectories in the Q − Θ phase space depending on the
value of Heff . Since Heff ¼ HresðΘ ¼ 0Þ and the Hres
dependence on Θ is weak, we have

Heff ¼ Hres ¼ β0

�
Θþ α0

2β0

�
2

þHres cosQ −
α20
4β0

ð23Þ

so that

2Hres ≥ Hresð1 − cosQÞ ≥ −
α20
4β0

: ð24Þ

The critical transition from a rotation orbit to a libration
orbit happens when

Hres ¼ −
α20
8β0

: ð25Þ

The equality marks the condition for the critical trajec-
tory entering or exiting a resonant island: αc ¼
�2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβ0Hresj
p

∝
ffiffiffi
ϵ

p
. This transition may be enabled

either by a parametric change of the effective Hamiltonian
or by an additional dissipative effect such as gravitational
radiation reaction. Let us comment on these two effects
individually.
First, let us focus on the parametric change of the

effective Hamiltonian. With the radiation reaction turned
on, the evolution equation for J̃ α is modified:

dJ̃ α

dτ
¼ −iϵNα

X
k∈Z

kHkNj
eikNjqj þ qGα; ð26Þ

where GαðfJ βgÞ is related to the orbit-averaged fluxes at
infinity, which is approximately constant during the time of
resonance. In addition, in practical implementations, we
find that the k ¼ �1;�2 harmonics usually dominate, and
the ∂HNj

=∂J term in Eq. (15) is much smaller than the ΔΩ
term. As a result, the equations of motion may be simplified
to (hereafter we focus on the k� ¼ 1 case, where the
generalization for other k� is straightforward)

dQ
dτ

¼
X
α

aαJ̃ α þ b;

dJ̃ α

dτ
¼ −NαHres sinQþ qGα; ð27Þ

where
P

α a
αNα ¼ β0 and b is a constant. The parametric

change of the effective Hamiltonian comes from the time-
dependent shift of J β with Nβ ¼ 0. For a r − θ resonance
(as discussed in Sec. III), Nϕ and Nt are zero so the
parametric shift is induced by J t and J ϕ (the energy and
angular momentum). Since Gt and Gϕ induce the time-
dependent modulation of the conserved quantity J t and
J ϕ, the value of α0, β0, and Hres will, in turn, shift in time
as they are all functions of J t and J ϕ. Such shifts can be
viewed as a parametric change of the effective Hamiltonian.
If the parametric shift timescale through the resonance
regime [Oð1Þ change of resonant angle Q due to radiation
reaction] trr ∝ 1=

ffiffiffiffiffiffiffiffi
ΔΩ̇

p
∝ ω−1=

ffiffiffi
q

p
is longer than tres, the

change is adiabatic such that the action of the effective
Hamiltonian is invariant; i.e.,

I ¼
Z

ΘdQ ð28Þ

is constant. According to the phase-space analysis in Chap. 8
in [52], the adiabatic capture into a resonance is possible
only for “converging” evolution; i.e., the ratio of two
frequencies evolves toward one or, equivalently, α (assuming
β is negative) evolves from positive values to negative
values. In the r − θ resonance considered in Sec. III, α
generally evolves from negative values to positive values
with the corresponding frequency ratio differing more in
time. Using the notation of the rotation number ν, under the
influence of radiation reaction, we find that ν, in general,
decreases across resonances, e.g., evolving from > 2=3 to
< 2=3 across the 2=3 resonance. As a result, adiabatic
parametric resonance capture is unlikely. This argument
should apply for generic choice of h.
The second transition mechanism comes from the

evolution of J r and J θ in Eq. (27). The equation of
motion is equivalent to one-dimensional motion with total
effective energy

1

2

�
dQ
dτ

�
2

þ β0Hres cosQþ q
X
α

aαGαQ ¼ K: ð29Þ

As shown in [51], this type of evolution will not lead to the
capture into a resonant island unless higher-order radiation
reaction is considered, in which case the capture condition
is still extremely fine-tuned. In summary, the dissipation in
J r and J θ also does not lead to resonance trapping in the
adiabatic regime.
Once the adiabatic approximation breaks down, it is

possible to have trajectories across the resonant islands.
The island crossing time can be estimated as
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tcross ∼
αc
α̇0

∝
ffiffiffiffiffiffiffiffi
Hres

p
qω

; ð30Þ

where ω is the orbital frequency and α̇0 ∝ q is a parametric
shift of α0 driven by the radiation reaction. Therefore,
the adiabatic approximation breaks down if tcross < tres or
Hres < q (apart from numerical coefficients). Notice that
we write Hres instead of h here, because the harmonics
amplitude Hres can be much smaller than the perturbation
amplitude h. This point is also seen in the numerical
example studied in Sec. III.
In summary, in the adiabatic limit, radiation dissipation

does not drive a near-resonance orbit onto resonance due
to the existence of the adiabatic invariant I . It seems no
obvious pathway for a near-resonance orbit to cross the
resonance in this limit. But as we will see later, the effective
(one-d.o.f.) Hamiltonian description we have been using
breaks down for chaotic transitional orbits, which are
possible to jump from one branch to the other branch with
opposite sign of dQ=dτ even without radiation dissipation.
Therefore, chaotic transitional orbits are the pathway of
crossing resonances without crossing the resonance islands
in the adiabatic limit, while crossing the resonance islands
is a more general pathway for crossing resonances when the
adiabatic approximation breaks down.

C. The emergence of chaos

It is interesting to discuss the emergence of chaos in the
Hamiltonian point of view, especially outside the resonant
islands. According to the derivation in Sec. II A, a near
identity transformation can be applied to remove all the
fast-varying degrees of freedom, so that the resonant
effective Hamiltonian has only one degree of freedom left.
If this description is complete, then no chaos should appear
for the resonant degree of freedom, which clearly contra-
dicts the numerical observations.
One likely explanation is that, when we perform the

near identity transformation in Eqs. (11)–(13), we have
neglected terms with higher order than OðϵÞ. These terms
may not necessarily come from nonlinear h. For example,
let us consider a nonresonant angleQþ qθ that may appear
in some of the terms in Eq. (11). In the process of near
identity transformation we have included the time depend-
ence of qθ as Ωθτ but have neglected the time dependence
of Q, because it evolves on the slow time ∝

ffiffiffi
ϵ

p
. This

assumption is valid for trajectories within the resonant
islands, where the value of Q is bounded in a region less
than 2π. However, outside the resonant islands when Q
starts to rotate, this part of phase produces secular phase
errors for evolution longer than 1=

ffiffiffi
ϵ

p
times the orbital

timescale.
In Chap. 9.5 in [52], it is shown that if additional time-

dependent terms are added to the Hamiltonian of a simple
pendulum (similar to the effective Hamiltonian here):

Heff → Heff þHnonres

X
k

cosðQþ kωτÞ; ð31Þ

where Hnonres and ω are constants, chaos appears. The
emergence of chaos is studied using the “standard map”
method in [52]. Notice these additional terms look at the
nonresonant terms we remove using the near identity
transformation. Therefore, it is plausible that the interplay
between the nonresonant terms and the resonant terms in
Eq. (11) gives rise to the chaotic region outside the resonant
islands. In other words, it is beneficial to keep both resonant
and nonresonant terms in modeling the trajectories in the
chaotic regime, i.e., using qα and J α. On the other hand,
although the single d.o.f. effective Hamiltonian cannot
fully describe the transitional chaotic orbits, it is still
useful in this regime, because the nonchaotic trajectories
predicted by the effective Hamiltonian can be still viewed
as temporary orbits in the chaotic zone, especially in the
region away from the bifurcation points. The transitional
chaotic orbits may be viewed as collections of nonchaotic
orbits in the Q − Θ plane with occasional transition from
one to the other.

III. NUMERICAL EVOLUTION

In this section, we will use the spinning black hole (BH)
solution in quadratic gravity [55,57] as an example per-
turbed Kerr spacetime for clarifying the resonance crossing
process. This spacetime has been numerically studied
before [47], which is convenient for us to validate and
compare the part of our results in physical coordinates.
While being obtained from a specific quadratic gravity
theory, the results presented in this section should apply to
various perturbed Kerr metrics in general.

A. Quadratic gravity

For the purpose of numerical evolution, we have focused
on a particular quadratic gravity theory, namely, Einstein-
scalar-Gauss-Bonnet (EsGB) gravity. Quadratic gravity
usually arises as an effective field theory for the low-
energy limit of some quantum gravity theories [58,59]. In
addition, EsGB is the only theory quadratic in the curvature
that leads to second-order field equations for any coupling,
ensuring that the theory is ghost-free [60].
It introduces an additional scalar field ϑ coupled to the

metric gμν through the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κRþ αGBϑG

−
1

2

�∇μϑ∇μϑþ 2VðϑÞ�þ Lmat

�
; ð32Þ

where κ ¼ ð16πGÞ−1, g is the determinant of the metric,
R is the Ricci scalar, G≡ R2 − 4RμνRμν þ RμνρσRμνρσ is the
Gauss-Bonnet invariant, VðϑÞ is a potential that will be set
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to zero in the following, and Lmat is the Lagrangian density
describing the matter fields. The coupling constant αGB has
the dimension of ½length�2, so we also define the following
dimensionless constant:

ζ ≡ α2GB
κM4

; ð33Þ

where M is the mass of the black hole. The set of field
equations for the theory are

Gμν þ
αGB
κ

DðϑÞ
μν ¼ 1

2κ

�
TðmatÞ
μν þ TðϑÞ

μν
�
; ð34Þ

□ϑ ¼ αGBG; ð35Þ

where TðmatÞ
μν and TðϑÞ

μν are, respectively, the matter and scalar
field stress-energy tensors with

TðϑÞ
μν ¼ 1

2
gμν

�∇ρϑ∇ρϑ − 2VðϑÞ� −∇μϑ∇νϑ ð36Þ

and

DðϑÞ
μν ¼ −2R∇μ∇νϑþ 2ðgμνR − 2RμνÞ∇ρϑ∇ρϑ

þ 8Rρðμ∇νÞ∇ρϑ − 4gμνRρσ∇ρ∇σϑþ 4Rμνρσ∇ρ∇σϑ:

ð37Þ

This theory has been extensively studied in the past, and
solutions have been obtained both numerically [61,62]
and analytically [30,57,63]. Spherically symmetric solu-
tions are known to lead to integrable orbits, so here we will
focus on only stationary and axisymmetric solutions. As no
exact closed-form solutions are known for rotating BHs,
analytical solutions are obtained as an expansion in the
small coupling and for small rotation. This is the path we
will follow in the following.
These metrics were obtained following two independent

approximation schemes, one for small coupling ζ ≪ 1 and
the other one for small spin χ ≡ a

M ≪ 1, with a the dimen-
sional spin parameter. Then, the solution was resummed
in order to interpret the solution as a perturbation of the
Kerr metric [55]

gμν ¼ gðKerrÞμν þ
X
l;m

ζ0lα0mδgðl;mÞ
μν ; ð38Þ

where α0 and ζ0 are bookkeeping parameters and gðKerrÞμν is
the usual Kerr metric in Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ:

gðKerrÞtt ¼ −
�
1 −

2Mr
Σ

�
; gðKerrÞtϕ ¼ −

2Marsin2θ
Σ

;

gðKerrÞrr ¼ Σ
Δ
; gðKerrÞθθ ¼ Σ;

gðKerrÞϕϕ ¼
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θ; ð39Þ

where Σ≡ r2 þ a2 cos2 θ and Δ≡ r2 − 2Mrþ a2. As
we treat quadratic gravity as an effective field theory, we
will need only the linear order in the coupling l ¼ 1 and

consider the set of perturbations δgð1;mÞ
μν . As an example, we

give the explicit expressions of the perturbation up to linear
order in spin:

δgð1;0Þtt ¼ −
ζM3

3r2

�
1þ 26M

r
þ 66M2

5r2
þ 96M3

5r3
þ 80M4

r4

�
;

δgð1;0Þrr ¼ −
ζM2

f2r2

�
1þm

r
þ 52m2

3r2
þ 2M3

r3
þ 16m4

5r4
−
368m5

3r5

�
;

δgð1;1Þtϕ ¼ 3

5
ζMχ

M3sin2θ
r3

�
1þ 140M

9r
þ 10M2

r2

þ16M3

r3
−
400M4

9r4

�
; ð40Þ

with f ≡ 1 − 2M
r and all other components vanish. In the

following, we will use the solution up to quintic order in
spin, but, as the expressions are quite lengthy, we refer to
Ref. [55] for the full expressions.

B. Evolution in physical coordinates ðxμ;pμÞ
We consider the spinning BH solution of the quadratic

gravity as an example of perturbed Kerr spacetime, where
the perturbed spacetime is still stationary and axisym-
metric. For a test particle moving in the perturbed Kerr
spacetime along a geodesic, the total Hamiltonian H, the
energy E, and the angular momentum L are still conserved,
but the Carter constant C is not.
In this work, we choose a perturbed Kerr spacetime with

BH spin a ¼ 0.2 and the quadratic gravity coefficiency
ζ ¼ 0.002 as a fiducial example. To get an intuition for the
chaotic behavior of near-resonance orbits in a perturbed
Kerr spacetime, we consider a series of geodesics with
total Hamiltonian H ¼ −1=2M2 (or, equivalently, the
particle rest mass μ ¼ 1), energy E ¼ 0.96M, angular
momentum L ¼ 3.5M2, and initial condition ðr; θ; prÞini ¼
ðrini; π=2; 0Þ—ðpθÞini is then automatically determined and
solved for numerically. Given the initial conditions, we
evolve the system according to the Hamiltonian equations

ẋA ¼ ∂Hðxμ; pμÞ
∂pA

; ṗA ¼ −
∂Hðxμ; pμÞ

∂xA
ð41Þ
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from τini ¼ 0 to τend ¼ 6 × 107M, with the index A running
over ðr; θÞ.
For each orbit, we calculate the rotation number

ν ≔
hΩri
hΩθi ; ð42Þ

which is the ratio of average frequency in the r direction
and that in the θ direction. Numerically, it can be computed
as ν ≈ Nṙ¼0=Nθ¼π=2, where Nṙ¼0 is the number of times the
orbit passes the pericenter and apocenter and Nθ¼π=2 is the
number of times the orbit passes the equator in the same
time interval. In the top left panel in Fig. 1, we show the
rotation numbers of the orbits (labeled by rini) that are close
to the 2=3 resonance. The near-resonance orbits can be
classified into three categories: orbits in the rotation regime
(blue line), chaotic transitional orbits (orange line), and
orbits in the libration regime (green horizontal line).
Similar features in the rotation curve have been found

in previous studies on various non-Kerr metrics (see,
e.g., [38–48]). These features (including both the plateau
and jumps in the rotation curve) were believed to be the
signatures of chaos. However, as we will show later, only
the steep part of the rotation curve (orange line) corre-
sponds to chaotic orbits, while the remaining parts corre-
spond to nonchaotic orbits: either on-resonance nonchaotic
orbits (the plateau part, green line) or the near-resonance
nonchaotic orbits (the mildly changing part, blue line).
To better understand the orbits in each category, we also

plot the Poincaré map ðr; prÞθ¼π=2 of three representative
orbitsO1=2=3 with rini ¼ ð7.2156;7.21566875;7.215675ÞM
in Fig. 1. In the upper right/ middle left/ middle right
panels, we show the Poincaré maps of these three orbits
O1;2;3, where O1 and O2 are similar simple closed curves,
whileO3 consists of three disconnected pieces. In the lower
left panel, we show an enlarged version of the O2 map
around r ¼ 8M. An interesting feature is that the curve
turns back around r ¼ 8.15M at τ ≈ 4 × 107M; i.e., the
map ðr; prÞ moves in the anticlockwise direction before
this time and in the clockwise direction afterward. This
turning back behavior is a key signature of transitional
chaotic orbits, which allows orbits to switch from one
branch (i.e., the “anticlockwise” branch) to the other
(i.e., the “clockwise” branch) without crossing the resonant
islands. This transition is further discussed using the
language of action-angle variables in Sec. III C (see
Fig. 6). In the lower right panel, we show a similarly
enlarged version of the O3 map around r ¼ rini, where the
map is, in fact, an “island” instead of a simple curve.
Though we have seen rich phenomena of near-resonance

EMRI dynamics in the physical coordinates, no simple
picture or unified description of these phenomena is
available. In order to obtain a systematic and quantitative
description of the underlying physics, working with action-
angle variables is generally useful.

C. Evolution in action-angle variables ðJ α;qαÞ
and in resonant variables ðΘ;QÞ

In Sec. II, we have presented an (effective) Hamiltonian
description of the resonant d.o.f. in the resonance regime.
In going from the full Hamiltonian to the effective
Hamiltonian, all the nonresonant degrees of freedom have
been removed by applying a NIT. This is valid because
the nonresonant degrees of freedom act as fluctuations to
the resonant dynamics, which evolves on the “slow time”:
τ̃ ¼ ffiffiffi

ϵ
p

τ. When the resonant motion is switched to the
rotational regime, the interplay between resonant and
nonresonant degrees of freedom gives rise to the transi-
tional chaotic orbits that cannot be fully characterized by
the effective Hamiltonian. Nevertheless, the Hamiltonian
description offers a general mathematical framework to
analyze the resonance phenomena. We shall transform the
orbit information obtained in the previous section in the
physical coordinates to the action-angle coordinates and
numerically verify the formalism discussed in Sec. II. The
technical tools for making such transformations are explic-
itly given in Appendixes D and E. To the best of our
knowledge, this is also the first time that EMRI evolutions
(in the perturbed Kerr spacetime without radiation reaction
included) are shown with action-angle variables.
We start by plotting the resonant angle and actions for the

sequence of orbits shown in Fig. 1 evolved using physical
coordinates. In the left panel in Fig. 2, we show the
evolution of the resonant angle QðτÞ and the conjugate
momentum ΘðτÞ of orbit O1, where QðτÞ monotonically
increases, which is consistent with ν < 2=3 as

Q̇ ¼ −3 ˙̃qr þ 2 ˙̃qθ ¼ −3hΩri þ 2hΩθi ¼ 2hΩθi
�
1 −

3

2
ν

�
:

ð43Þ

The plot shows the resonant momentum Θ obtained from
J̃ θ and J̃ r; the results are consistent with each other, as a
direct verification for Eq. (17).
By interpolatingQðτÞ, we numerically obtain the deriva-

tive Q̇ðτÞ and show Q̇ðΘÞ in the right panel, which is almost
a perfect straight line. As a consistency check, we can also
infer the resonant angular velocity ΔΩðΘÞ via the effective
Hamiltonian. Writing the effective Hamiltonian as the
kinetic energy and the potential energy

Heff ≔ Hkin þHpot ¼
Z

Θ

0

ΔΩðΘÞdΘþ
X
k

HkNeikQ;

ð44Þ

it is straightforward to see Heff ¼ HpotðΘ ¼ 0Þ; therefore,
we have Hkin ¼ HpotðΘ ¼ 0Þ −HpotðΘÞ. We numerically
fit HkinðΘÞ with c0 þ α0Θþ β0Θ2 and obtain the linear
relation ΔΩðΘÞ ¼ α0 þ 2β0Θ, which perfectly matches
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the numerical results of Q̇ðΘÞ as shown in the right
panel in Fig. 2.
Let us now look at the phase diagram for the resonant

d.o.f. In the first panel in Fig. 3, we show the diagram
Jθ −Q of orbit O1, which is quite noisy, because Jθ

contains both resonant and nonresonant degrees of free-
dom. After the NIT, the nonresonant degrees of freedom are
removed, and we obtain the plots for J̃θ −Q, which clearly
shows that the near-resonance orbit O1 is effectively a
system of single d.o.f. In addition, we see that the orbit O1

FIG. 1. Near-resonance orbits in the perturbed Kerr spacetime with parameter ða; ζÞ ¼ ð0.2; 0.002Þ. Upper left panel: the rotation
numbers of near-resonance orbits, with ðE; LÞ ¼ ð0.96; 3.5Þ and initial conditions ðθ; prÞini ¼ ðπ=2; 0Þ, where the dots are the numerical
results and the straight lines of three different colors denote three different kinds of orbits: regular orbits in blue, chaotic transitional
orbits in orange, and on-resonance orbits in green, and the three square dots are three representative orbits O1=2=3 (blue/orange/green)
with initial radius rini ¼ ð7.2156; 7.21566875; 7.215675Þ, respectively. Upper right/middle left/middle right panels: Poincaré maps
ðr; prÞjθ¼π=2 of orbits O1=2=3, respectively. Lower left panel: enlarged Poincaré map of orbit O2, and XðrÞ ¼ 3.38 × 10−2 × ðr − 8.2Þ,
where a turn back shows up around r ¼ 8.15 at τ ≈ 4 × 107. Lower right panel: enlarged Poincaré map of orbit O3, where an island
clearly shows up.
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is in the rotation regime, because the resonant angle Q
covers the full range of ½0; 2π�. In the third panel, we show
the kinetic part Hkin of the effective Hamiltonian and a
quadratic fitting to it. In the fourth panel, we show the
numerical potential energy Hpot, the fitted kinetic energy
Hkin, and the total energy Heff ¼ Hkin þHpot, which is a
constant as expected.
Figure 4 is similar to Fig. 3 except we consider the action

Jr instead of Jθ. In the left panel, we barely see any
correlation between the action Jr and the resonant angle Q,
because the nonresonant degrees of freedom dominate
the variations of Jr. The curve ΘðJ̃rÞ is recovered via
the NIT, which reduces the variations by more than one
order of magnitude (see Appendixes D and E for the
details regarding the implementation of the NIT), though
dispersion remains due to the presence of relatively large
numerical errors in the NIT procedure. As a result, we find
a similar dispersion in the kinetic energy HkinðΘÞ, and,
consequently, the conservation of the effective Hamiltonian

HeffðτÞ is not as good as in the Jθ case. In the following
analyses, we will use the higher-precision ΘðJ̃θÞ.
To illustrate chaotic orbits, we perform a similar analysis

for orbit O2 and show the results in Figs. 5 and 6. In the
left panel in Fig. 5, we see that this orbit consists of
two branches, a Q-increasing branch (the “counterclock-
wise” branch in Fig. 1) and a Q-decreasing branch (the
“clockwise” branch in Fig. 1), and a transition occurs
around τ ¼ 4 × 107M. This transition is also marked by a
jump in momentum Θ, which, in turn, induces an extra
phase shift in the waveform as we will discuss in Sec. IV.
As shown in the right panel, ΔΩðΘÞ on the two different
branches follows the same linear relation, which indicates
the existence of a symmetry between the two branches.
This symmetry is revealed more explicitly in the second
panel in Fig. 6, where the Θ −Q diagram consists of two
symmetric branches that are connected by a sharp transi-
tion around Q ¼ 2π (the bifurcation point indicated by
the arrow).

FIG. 2. Left panel: evolution of near-resonance orbitO1 in terms of resonant angleQ and the conjugate momentumΘ. Right panel: the
resonant angular velocity Q̇ðΘÞ, where the dots are the numerical derivative of QðτÞ and the straight line is ΔΩðΘÞ ¼ α0 þ 2β0Θ
from Eq. (19).

FIG. 3. First panel: phase diagram Jθ −Q of orbit O1. Second panel: phase diagram ΘðJ̃θÞ −Q of orbit O1. Third panel: the effective
kinetic energyHkin ≔

R
Θ
0 ΔΩðΘÞdΘ as a function of momentum Θ, where the dots are the numerical results of HpotðΘ ¼ 0Þ −Hpot and

the solid line is a quadratic fitting
R
Θ
0 ΔΩðΘÞdΘ ¼ c0 þ α0Θþ β0Θ2. Fourth panel: numerical result of potential energy HpotðτÞ ≔P

HkeikQ, fitting result of kinetic energy HkinðτÞ ≔ c0 þ α0Θþ β0Θ2, and the summation of the two HeffðτÞ ≔ HpotðτÞ þHkinðτÞ.
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The behavior of orbits in the libration regime (orbits that
are on the plateau of the rotation curve in Fig. 1) is similar
to a simple harmonic oscillator, with the resonant angle Q
limited to a finite range jΔQj < 2π (see Figs. 7 and 8 for
orbitO3 as an example). The orbitO3 lies on the edge of the

plateau of the rotation curve in Fig. 1, whose Θ −Q phase
diagram is quite similar to that of orbit O2, with jΔQj
smaller than but close to 2π. Moving toward the center
of the plateau from the left edge, we find the orbital
phase diagram becomes more confined in both Θ and Q

FIG. 5. Similar to Fig. 2 except for orbit O2. In the left panel, a turn back in Q and a jump in Θ appear around τ ≈ 4 × 107M.

FIG. 6. Similar to Fig. 2 except for orbitO2. In the second panel, two branches show up in theQ − Θ phase diagram, and the transition
from one branch to another occurs at Q ≈ 2π.

FIG. 4. First panel: phase diagram Jr −Q of orbit O1. Second panel: phase diagram ΘðJ̃rÞ −Q of orbit O1. Third panel: the effective
kinetic energy Hkin ≔

RΘ
0 ΔΩðΘÞdΘ as a function of momentum Θ, where the dots are the numerical results of HpotðΘ ¼ 0Þ −Hpot.

Fourth panel: numerical result of potential energyHpotðτÞ ≔
P

HkeikQ, fitting result of kinetic energyHpotðτÞ ≔ c0 þ α0Θþ β0Θ2, and
the summation of the two HeffðτÞ ≔ HpotðτÞ þHkinðτÞ.
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directions. For the orbit exactly lying in the center, both Θ
and Q turn out to be constants, and this point is the so-
called stable point. The on-plateau orbits on the right-hand
side (of the stable point) are symmetric to their counterparts
on the left-hand side, in the sense that their orbital phase
diagrams Q − Θ are the same.
Orbits belonging to different categories and the sym-

metry explained above could be summarized with the
effective Hamiltonian Heff ¼ α0Θþ β0Θ2 þHres cosQ.
For a given set of parameters ðα0; β0; HresÞ, the orbits in
the Q − Θ space are simply contours of constant effective
energy, and the orbital behavior (libration, transition, or
rotation) is largely determined by the effective energy. As
an example, we take ðα0; β0; HresÞ ¼ ð1.00 × 10−6;−0.04;
3.03 × 10−12Þ (the orbit O3 parameters as shown in Figs. 7
and 8), and the critical effective energy turns out to be
Hcrit ¼ −α20=ð4β0Þ −Hres ¼ 2.94 × 10−12 [cf. Eq. (25)].
We show different contour levels in Fig. 9. The low-energy
contour Heff ¼ 0.5 × 10−12 < Hcrit is in the rotation
regime (e.g., orbit O1). In fact, this orbit consists of two
symmetric and disconnected branches, which correspond to
orbit O1 (Q̇ > 0) and its symmetric counterpart (Q̇ < 0),
respectively. The high-energy contour Heff ¼ 4 × 10−12 >
Hcrit is in the libration regime, and this contour corresponds

to a pair of orbits that are of the same effective energy while
opposite rotation directions (e.g., orbit O3 and its sym-
metric counterpart). The contour of even higher energy
Heff ¼ 8.5 × 10−12 corresponds to orbits that are closer to
the stable point. The contour with critical energy partially
captures the orbital properties in the transition regime

FIG. 7. Similar to Fig. 2 except for orbit O3.

FIG. 8. Similar to Fig. 3 except for orbit O3.

FIG. 9. Contours of effective Hamiltonian HeffðQ;ΘÞ with the
red arrows showing their evolution directions.
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(e.g., O2). The limitation is that there is no chaos in this
one-degree-of-freedom description, because the number
of degrees of freedom is equal to the number of con-
served quantity (the effective energy). In reality, we find the
layers of chaos (as previous observed in various space-
times [38–40,46]) lying between the rotational and libration
orbits, thanks to the contribution from nonresonant terms.

IV. IMPACT FOR EMRI EVOLUTION

The long-term impact of resonance relies on the jump
of action variables ΔJ α, as discussed in [18,64]. First, let
us neglect the effect of chaotic transitional orbits, so that
Eq. (29) can be used to compute the shift of the action
variables across a resonance. Introducing Hβ ¼ β0Hres

and G ¼ P
α aαGα, we can rewrite Eq. (29) in a more

convenient form:

1

2

�
dQ
dτ

�
2

þHβ cosQþ qGQ ¼ K; ð45Þ

or

dQ
dτ

¼ �
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −Hβ cosQ − qGQ

p
; ð46Þ

where the sign depends on the branch the orbit belongs to
(e.g., see Fig. 9). This equation determines the τ depend-
ence of the resonant angle Q. The additional kicks on J̃ α,
according to Eq. (27), are given by

ΔJ̃ α ¼ −NαHres

Z
∞

−∞
sinQðτÞdτ; ð47Þ

where τ ¼ −∞ is assumed to be sufficiently before the
resonance and τ ¼ ∞ is assumed to be sufficiently after
the resonance. The above equation immediately suggests
that the discontinuities of J̃ α across the resonance are
proportional to Nα, a phenomenon also found in [65,66].
This point is important for incorporating resonance effects

into EMRI waveforms, as it demonstrates nicely that only
one free parameter is needed to search for these resonances
instead of multiple free parameters.
In the nonadiabatic limit where Hβ ≪ qG, the solution

of QðτÞ can be approximated as Q ≈Q0 þ qGτ2=2, for
which τ ¼ 0 is set at the point that dQ=dτ ¼ 0. As a result,
we have

ΔJ̃ α ¼ −NαHres

ffiffiffiffiffiffiffi
π

qG

r
ðcosQ0 þ sinQ0Þ; ð48Þ

which is consistent with [18,64]. Notice that in this limit
the trajectory may temporarily cross the resonant islands
in the phase space because the resonance capture condition
derived for the parametric change of the effective
Hamiltonian (see Ref. [52]) requires adiabatic evolution.
In general, we can rewrite Eq. (47) as

ΔJ̃ α ¼ −NαHres

Z
∞

−∞
sinQðτÞ dQ

dQ=dτ

¼ −
ffiffiffi
2

p
NαHres

Z
Q�

−∞
dQ

sinQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −Hβ cosQ − qGQ

p
¼ −

ffiffiffi
2

p
Nα

Hresffiffiffiffiffiffiffi
qG

p fðK=qG;Hβ=qGÞ; ð49Þ

where at Q ¼ Q� we assume that dQ=dτ ¼ 0, so that
K ¼ Hβ cosQ� þ qGQ�. This function is shown in Fig. 10
with Hβ=qG fixed to three different values and in Fig. 11
K=qG fixed to three different values. In the adiabatic limit
Hβ ≫ qG, we can approximate f ∼Oð1ÞðHβ=qGÞ−1=2, so
that the overall ΔJ̃ α is proportional to ðHβÞ1=2.
With the chaotic transitional orbits considered, the orbit

may jump from one branch to the other branch before
reaching the turning point (dQ=dτ ¼ 0), as shown in Fig. 6.
In this case, the trajectory makes the transition between
branches along with a jump in Θ: ΔΘchaos ¼ ΔJ̃ α;chaos=Nα.
The corresponding turning Q� in Eq. (49) should be
replaced by

FIG. 10. These plots show the function fðK=qG;Hβ=qGÞ that appears in ΔJ̃ α in Eq. (49) for Hβ fixed to qG, 10qG, and 100qG,
respectively. For a given value of Hβ=qG, there is a minimum value of K=qG for which f is well defined, denoted as ðK=qGÞmin. The
function is 2π periodic inK=qG, so we plot it only forK=qG − ðK=qGÞ∈ ½0; 2π�. The shape of the function remains relatively consistent
across different values of Hβ=qG, yet the actual values and the range it covers decrease as Hβ=qG increases.
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K ¼ Hβ cosQc þ qGQc þ ðβ0ΔΘchaosÞ2
8

ð50Þ

so that the accumulated shift in J̃ α before and after the
transition is

ΔJ̃ α ¼ −
ffiffiffi
2

p
NαHres

Z
Qc

−∞
dQ

sinQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −Hβ cosQ − qGQ

p
þ ΔJ̃ α;chaos

¼ ΔJ̃ c
α þ ΔJ̃ α;chaos: ð51Þ

Because the nonresonant terms and resonant terms are
generated by the same h, we expect that the width of the
chaotic zone is a fraction of the size of the resonant island,
which is proportional to

ffiffiffiffiffiffiffiffi
Hres

p
. As a result, we expect that

ΔJ̃ α;chaos ∝
ffiffiffiffiffiffiffiffi
Hres

p
. The numerical value of ΔΘchaos in

Fig. 6 is approximately 10% of the size of the critical
resonant island in the Θ direction (also approximately true
for the jump in the 1=2 resonance case shown in Fig. 16),
which is given by jα0=β0j. This number may not be
universal for resonances, because we find that, even for the
same system, the transitional with longer evolution tends
can give rise to larger jumps. Nevertheless, it can serve as a
rough estimate for the impact of chaos. The size of ΔΘchaos
determines the upper limit Qc in the evaluation for ΔJ c

α.
For numerical illustration purposes, in Fig. 12, we have
increased ΔΘchaos such that it is

ffiffiffiffiffiffiffi
0.1

p
times jα0=β0j. We

find that ΔJ c
α follows a similar scaling law as ΔJ̃ α in

Eq. (49). As we decrease the magnitude of ΔΘchaos, we
expect that the coefficient of the scaling law will be closer
to the ones shown in Fig. 11.
Overall, the long-term phase shift due to resonance

should be

ΔΨ ∼
ΔJ
J

1

q
; ð52Þ

where the 1=q factor comes from the 1=q scaling of the
radiation reaction timescale. Accordingly, we conclude

that, in the nonadiabatic regime, the transient resonance
crossing gives rise to

ΔΨ ∼
OðHresÞ
q3=2

: ð53Þ

In the adiabatic regime, the chaotic transitional orbits
generally gives rise to a phase shift

ΔΨchaos ∼Oð0.1ÞH
1=2
res

q
; ð54Þ

and the total induced-phase shift including the additional
change of J α before and after reaching the transitional
orbits should approximately scale as

ΔΨ ∼
OðH1=2

res Þ
q

: ð55Þ

V. DISCUSSION AND CONCLUSION

An EMRI system may be influenced by environmental
gravitational perturbations, which can come from nearby
astrophysical objects, dense dark matter distributions,

FIG. 11. Similar to Fig. 10, these plots depict the function fðK=qG;Hβ=qGÞ but now for K=qG fixed. The yellow, dashed lines show
numerical fits in the adiabatic regime; for the fits we used only Hβ=qG∈ ð40; 200Þ for the first two plots, while we used the entire plot
range for the right plot.

FIG. 12. This plot shows the integral in Eq. (51) withQc set such
that ΔΘchaos is

ffiffiffiffiffiffi
0.1

p
times the size of the critical curve in the Θ

direction, which is jα0=β0j. We have set K=qG − ðK=qGÞmin ¼ π.
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and/or exotic compact objects. Because of the large number
of orbital cycles in band (104–105) for space-borne
gravitational-wave detectors, EMRIs will provide unprec-
edented opportunities to probe these environmental forces.
To enable waveform building for upcoming gravitational-
wave experiments, it is necessary to comprehend the EMRI
evolution and waveform on perturbed Kerr backgrounds.
The work presented here represents one part of this

program, in which resonance effects on the EMRI dynam-
ics and its impact on the waveform is analyzed by
introducing a resonance effective Hamiltonian. With this
formalism, one can make connection with extensive liter-
ature on mean-motion resonance in planetary systems.
Future studies along this direction will be interesting,
especially in terms of understanding the transitional chaotic
orbits from the Hamiltonian point of view. On the other
hand, for realistic EMRI evolution, the system likely falls
into the nonadiabatic regime for resonance crossing
(except for relatively large h), as discussed in Sec. IV.
Since the numerical investigation in Sec. III have not
included gravitational radiation reaction, it will also be
interesting to perform the numerical studies with radiation
reaction included to verify the corresponding statements
in Secs. II B and IV.
The other part of the program, i.e., understanding the

EMRI evolution in the nonresonance regime of a perturbed
Kerr background, will be discussed in a separate work. By
combining the results in these studies, one should be able to
build an EMRI waveform model (on top of the EMRI
waveform model on a Kerr background) for a generic Kerr
perturbation h.
This method is not only important for future space-borne

gravitational-wave detection, but likely also useful for
constructing waveforms to test modified gravity theories
using comparable mass-ratio binaries in the band of
ground-based gravitational-wave detectors. Indeed, for
waveforms consistent with general relativity, there is
literature [67–76] pointing out that the EMRI-inspired
waveform, with an appropriate rescaling using the mass-
ratio parameter, agrees surprisingly well with the waveform
obtained from numerical relativity for comparable mass-
ratio systems. As the EMRI method does not require the
post-Newtonian or post-Minkowskian expansion, it will
serve as a promising route for generating high-precision
waveforms for comparable mass-ratio binaries. It is also
natural to expect that a modified gravity waveform produced
with the EMRI approach may also inherit similar advan-
tages. This application may be potentially important, as
presently we have limited waveform models going beyond
the post-Newtonian approximation, partially because of the
well-posedness issue in many modified theories of gravity.
In this work, we have assumed axisymmetric for the

metric perturbation h. If h is nonaxisymmetric, the analysis
in Secs. II and IV should still apply except that we should
include more general resonances with nonzero Nϕ, similar

to the tidal resonance considered in [18]. Because of the
expanded space of relevant resonances, it becomes more
likely that, during the evolution of an EMRI system,
multiple resonances will be important. If the EMRI crosses
the resonances in a nonadiabatic manner, from Eq. (48) we
see that there is a phaseQ0 that is related to the initial phase
of the orbit. It will be interesting to investigate whether Q0

of later resonances can still be determined accurately, with
the earlier resonance jumps influencing the orbit on the
radiation reaction timescale.
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APPENDIX A: WEAK DEPENDENCE
OF Hres ON Θ

Taking orbit O1 as an example, we show the dependence
of Hres ¼ 2jH−3;2j on the momentum Θ in Fig. 13. It is
evident that the variation of Hres is negligible compared
with that of the phase factor eiQ.

FIG. 13. Hres versus Θ for orbit O1: Hres varies less than 0.2%
as Θ is varied.
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APPENDIX B: 1=2 RESONANCE

In the main text, we have been focusing on orbits that are
close to the 2=3 resonance, i.e., ν ≈ 2=3. In this appendix,
we examine the orbits that are close to the 1=2 resonance,
which share some common features with those 2=3-
resonance orbits but also yield some differences.
Similar to the 2=3 resonance, we consider the perturbed

Kerr spacetime with parameters ða; ζÞ ¼ ð0.2; 0.002Þ and
orbits with energy and angular momentum ðH;E; LÞ ¼
ð−0.5; 0.96; 3.5Þ and initial conditions ðθ; prÞini ¼
ðπ=2; 0Þ, rini ≈ 4.72M. In the top left panel in Fig. 14,
we show the rotation numbers of the orbits (labelled by rini)
that are close to the 1=2 resonance. Different from the
2=3-resonance case, there is no plateau appearing in the
rotation curve; i.e., there is no orbit in the libration regime.
The remaining near-resonance orbits can be classified into
two categories: orbits in the rotation regime (blue line) and
chaotic transitional orbits (orange line). In the remaining

three panels, we show the Poincaré map ðr; prÞθ¼π=2 of
orbit O2 and two enlarged versions. In the lower two
panels, we see that the Poincaré maps consists of two
branches, a Q-increasing branch (the counterclockwise
branch in Fig. 14) and a Q-decreasing branch (the clock-
wise branch in Fig. 14) with the transition occurring around
τ ¼ 2 × 107M. Similar to the 2=3-resonance case, this
transition is also marked by a jump in momentum Θ
(see Figs. 15 and 16).
The major difference between the 2=3-resonance orbits

considered in the main text and the 1=2-resonance orbits
considered here is most easily understood from their
Poincaré maps. The 2=3-resonance orbits cross one of
the islands and the island center, which is a stable point,
while the 1=2 orbits avoid the islands by crossing the
adjunction point between two islands, which is an unstable
point. As a result, the 1=2-resonance orbits pass the
resonance without being trapped on the resonance; i.e.,
no orbit has ν ¼ 1=2.

FIG. 14. Near-resonance orbits in the perturbed Kerr spacetime with parameter ða; ϵÞ ¼ ð0.2; 0.002Þ. Upper left panel: the rotation
numbers of near-resonance orbits, with ðE; LÞ ¼ ð0.96; 3.5Þ and initial conditions ðθ; prÞini ¼ ðπ=2; 0Þ, where the dots are the numerical
results and the straight lines of two different colors denote two different kinds of orbits: regular orbits in blue and chaotic transitional
orbits in orange, and the square dot is the representative orbit O2 with initial radius rini ¼ 4.72152. Upper right panel: Poincaré map
ðr; prÞjθ¼π=2 of orbits O2, respectively. Lower left panel: enlarged Poincaré map of orbit O2, where we see two branches. Lower right
panel: further enlarged Poincaré map of orbit O2, and XðrÞ ¼ −3 × ðr − 4.7214Þ, where a turn back shows up around r ¼ 4.72
at τ ≈ 2 × 107M.

RESONANT DYNAMICS OF EXTREME MASS-RATIO INSPIRALS … PHYS. REV. D 108, 104026 (2023)

104026-17



If we consider more general initial conditions for distinct
sets of orbits, such as ðprÞini ≠ 0, we generally observe that
the orbits will cross one of the islands but without crossing
the island center (the stable point) or the adjunction point
between two islands (the unstable point).

APPENDIX C: 2=3 RESONANCE WITH
STRONGER PERTURBATION

In order to verify the
ffiffiffi
ϵ

p
dependence of the size of the

resonant regimes and the chaotic regime in the phase space,
as suggested by the effective Hamiltonian formalism, we
increase ζ from 0.002 in Fig. 1 to ζ ¼ 0.02 in Fig. 17. It is
evident that the width of the plateau (proportional to the
size of the resonant island) and the height of the segment
near the plateau (proportional to the size of the chaotic
regime) are both approximately increased by

ffiffiffiffiffi
10

p
.

APPENDIX D: MAPPING TO ACTION-ANGLE
VARIABLES ðq; JÞ

The necessary steps for mapping to action-angle varia-
bles ðq; JÞ in Kerr spacetime has been investigated in detail
in Refs. [77,78], and we closely follow their discussions in
this work. With this mapping in hand, in principle, one can

evolve the equation of motion in terms of action-angle
variables [Eq. (9)]. But, as we will see later, the mapping is
mostly done numerically, which is slow and not sufficiently
accurate in the long-term evolution for pinning down
the small near-resonance features. Therefore, we choose
to perform the evolution in physical coordinates ðx; pÞ and
then map them to action-angle variables ðq; JÞ.

FIG. 15. Similar to Fig. 5, except for the transitional orbit O2 that is close to the 1=2 resonance.

FIG. 16. Similar to Fig. 6, except for the transitional orbit O2 that is close to the 1=2 resonance.

FIG. 17. Similar to the first panel in Fig. 1, except with ζ ¼ 0.02.
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In the Kerr spacetime, the energy and the z component of
angular momentum are, respectively,

E ¼ −pt ðD1Þ

and

L ¼ pϕ: ðD2Þ

The Carter constant is [79]

C ¼ p2
θ þ a2 cos2 θðμ2 − p2

t Þ þ cot2 θp2
ϕ; ðD3Þ

and the Hamiltonian is

H ¼ 1

2
gμνpμpν ¼

Δ
2Σ

p2
r þ

1

2Σ
p2
θ þ

ðpϕ þ asin2θptÞ2
2Σsin2θ

−
½ðr2 þ a2Þpt þ apϕ�2

2ΣΔ
: ðD4Þ

For mapping the physical coordinates to the action-angle
variables, we need to invert the four equations above
and write the momentum pμ in terms of the integrals of
motion as

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
VrðrÞ

p
Δ

; pθ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
VθðθÞ

p
;

pt ¼ −E; pϕ ¼ L; ðD5Þ

where the two potentials are

VrðrÞ ¼ ½ðr2 þ a2ÞE − aL�2 − Δ½μ2r2 þ ðL − aEÞ2 þ C�;

VθðθÞ ¼ C −
�
ðμ2 − E2Þa2 þ L2

sin2θ

�
cos2θ: ðD6Þ

Given the integrals of motion Pα ¼ ðH;E; L; CÞ, one can
obtain the pericenter (apocenter) separations r−ðþÞ as the two
largest roots to equation VrðrÞ ¼ 0 and obtain the minimum
(maximum) polar angles θ−ðþÞ as the roots to equation
equation VθðθÞ ¼ 0 satisfying the constraint cos2 θ∈ ½0; 1�.
In terms of commonly used orbital parameters, eccentricity e
and semilatus rectum p, r� ¼ p=ð1 ∓ eÞ.
The actions are defined as

Jr ¼
1

2π

I
prdr;

Jθ ¼
1

2π

I
pθdθ;

Jt ¼
1

2π

Z
2π

0

ptdt ¼ −E;

Jϕ ¼ 1

2π

I
pϕdϕ ¼ L; ðD7Þ

and the numerical integration above is straightforward with
the momenta defined in Eq. (D5).
To obtain the angle variables, we need the canonical

transformation from the physical coordinates ðxμ; pνÞ to
ðqα; JβÞ associated with a general solution to the Hamilton-
Jacobi equation

H

�
xμ;

∂S
∂xμ

�
þ ∂S

∂τ
¼ 0: ðD8Þ

Since the Hamiltonian does not involve time τ explicitly,
the Hamilton principle function S can be written in the
form

S ¼ γτ þWðxμ; PαÞ; ðD9Þ

where γ ¼ μ2=2 and Wðxμ; PαÞ is called Hamilton’s
characteristic function. As shown by Carter [79],

Wðxμ; PαÞ ¼ −Etþ Lϕ�WrðrÞ �WθðθÞ; ðD10Þ

where

WrðrÞ ¼
Z

r
dr

ffiffiffiffiffiffi
Vr

p
Δ

;

WθðθÞ ¼
Z

θ
dθ

ffiffiffiffiffiffi
Vθ

p
: ðD11Þ

Taking Wðxμ; JβÞ as a generating function that generates a
canonical transform from the physical coordinates ðxμ; pνÞ
to ðqα; JβÞ (Chap. 9 in [80]), we have

pν ¼
∂W
∂xν

ðxμ; JβÞ;

qα ¼ ∂W
∂Jα

ðxμ; JβÞ ¼
∂W
∂Pβ

∂Pβ

∂Jα
: ðD12Þ

There is some sign uncertainty in the definition of
Wðxμ; PαÞ [Eq. (D10)], which is fixed by the first line
in Eq. (D12); i.e., we fix the sign uncertainty with

W ¼ −Etþ Lϕþ sgnðprÞWrðrÞ þ sgnðpθÞWθðθÞ;
ðD13Þ

in calculating qα from the second line in Eq. (D12). Then
the calculation of qα consists of three major components:
∂Pβ=∂Jα and ∂Wr;θ=∂Pα.
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1. ∂Jβ=∂Pα and ∂Pβ=∂Jα
The analytic expressions of the partial derivatives

∂Jβ=∂Pα had been detailed in [77,78], and we repeat the
nontrivial components for convenience here:

∂Jr
∂H

¼ Yðr−; rþÞ
π

;

∂Jr
∂E

¼ Wðr−; rþÞ
π

;

∂Jr
∂L

¼ −
Zðr−; rþÞ

π
;

∂Jr
∂C

¼ −
Xðr−; rþÞ

2π
; ðD14Þ

and

∂Jθ
∂H

¼ −
2

ffiffiffiffiffi
zþ

p
a2

πβ
½KðkÞ − EðkÞ�;

∂Jθ
∂E

¼ −
2

ffiffiffiffiffi
zþ

p
Ea2

πβ
½KðkÞ − EðkÞ�;

∂Jθ
∂L

¼ −
2L

πβ
ffiffiffiffiffi
zþ

p ½KðkÞ − Πðz−; kÞ�;

∂Jθ
∂C

¼ −
1

πβ
ffiffiffiffiffi
zþ

p KðkÞ; ðD15Þ

where W, X, Y, and Z are defined, respectively, as [77]

Wðr−; rþÞ ¼
Z

rþ

r−

r2Eðr2 þ a2Þ − 2MraðL − aEÞ
Δ

ffiffiffiffiffiffi
Vr

p dr;

Xðr−; rþÞ ¼
Z

rþ

r−

1ffiffiffiffiffiffi
Vr

p dr;

Yðr−; rþÞ ¼
Z

rþ

r−

r2ffiffiffiffiffiffi
Vr

p dr;

Zðr−; rþÞ ¼
Z

rþ

r−

r½Lr − 2MðL − aEÞ�
Δ

ffiffiffiffiffiffi
Vr

p dr: ðD16Þ

Here, KðkÞ is the complete elliptic integral of the first
kind, EðkÞ is the complete elliptic integral of the second
kind, and Πðn; kÞ is the Legendre elliptic integral of the
third kind:

KðkÞ ¼
Z

π=2

0

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

p ;

EðkÞ ¼
Z

π=2

0

dψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

q
;

Πðn; kÞ ¼
Z

π=2

0

dψ

ð1 − nsin2ψÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

p dψ ; ðD17Þ

where β ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − E2

p
, k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

z−=zþ
p

, with z ¼ cos2 θ and
z� are the two roots to VθðzÞ ¼ 0 with 0 < z− < 1 < zþ.
With ∂Jβ=∂Pα, its inverse matrix ∂Pβ=∂Jα can be

obtained either numerically or analytically, where the
analytic formulas of the angular frequencies

Ωα ≔
∂H
∂Jα

ðD18Þ

have been derived in [78] and are

Ωt ¼ KðkÞWðr−; rþÞ þ a2zþE½KðkÞ − EðkÞ�Xðr−; rþÞ
KðkÞYðr−; rþÞ þ a2zþ½KðkÞ − EðkÞ�Xðr−; rþÞ

;

Ωr ¼ πKðkÞ
KðkÞYðr−; rþÞ þ a2zþ½KðkÞ − EðkÞ�Xðr−; rþÞ

;

Ωθ ¼ πβ
ffiffiffiffiffi
zþ

p
Xðr−; rþÞ=2

KðkÞYðr−; rþÞ þ a2zþ½KðkÞ − EðkÞ�Xðr−; rþÞ
;

Ωϕ ¼ KðkÞZðr−; rþÞ þ L½Πðz−; kÞ − KðkÞ�Xðr−; rþÞ
KðkÞYðr−; rþÞ þ a2zþ½KðkÞ − EðkÞ�Xðr−; rþÞ

:

ðD19Þ

2. ∂Wr=∂Pα and ∂Wθ=∂Pα

Comparing the definition of Jr with that of Wr, it is
evident that ∂Wr=∂Pα is similar to ∂Jr=∂Pα:

∂Wr

∂H
¼ Yðr−; rÞ

π
;

∂Wr

∂E
¼ Wðr−; rÞ

π
;

∂Wr

∂L
¼ −

Zðr−; rÞ
π

;

∂Wr

∂C
¼ −

Xðr−; rÞ
2π

: ðD20Þ

In a similar way, comparing the definition of Jθ with that
of Wθ, we have

∂Wθ

∂H
¼ −

ffiffiffiffiffi
zþ

p
a2

πβ
½Kðϕ; kÞ − Eðϕ; kÞ�;

∂Wθ

∂E
¼ −

ffiffiffiffiffi
zþ

p
Ea2

πβ
½Kðϕ; kÞ − Eðϕ; kÞ�;

∂Wθ

∂L
¼ −

L
πβ

ffiffiffiffiffi
zþ

p ½Kðϕ; kÞ − Πðϕ; z−; kÞ�;

∂Wθ

∂C
¼ −

1

2πβ
ffiffiffiffiffi
zþ

p Kðϕ; kÞ; ðD21Þ

where
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Kðϕ; kÞ ¼
Z

π=2

ϕ

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

p ;

Eðϕ; kÞ ¼
Z

π=2

ϕ
dψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

q
;

Πðϕ; n; kÞ ¼
Z

π=2

ϕ

dψ

ð1 − nsin2ψÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

p ; ðD22Þ

and ϕ¼ ϕðθÞ ¼ arcsinðcosðθÞ= ffiffiffiffiffi
z−

p Þ, i.e., ϕðθ ¼ π=2Þ ¼ 0

and ϕðθ ¼ θ−Þ ¼ π=2.
Note that the lower integration limits inWr;θ [Eq. (D11)]

are undefined; as a result, the mapping qαðxμ; pνÞ can be
determined only up to some constant for a given Pβ or,
equivalently, Jα. In this work, we have fixed the lower
integration limits to r− and θ−, respectively; i.e., we have
fixed the mapping freedom by choosing qrðr ¼ r−Þ ¼ 0

and qθðθ ¼ θ−Þ ¼ 0. With all the equations summarized
above, we can numerically obtain the mapping qαðxμ; pνÞ
and Jαðxμ; pνÞ.

APPENDIX E: NEAR IDENTITY
TRANSFORMATION ðq;JÞ → ðq̃; J̃Þ

In our two-d.o.f. case, the near identity transformation
[Eq. (12)] is formulated as

q̃α ¼ qα þ ϵ
X

nr;nθ ∈R

i
nrΩr þ nθΩθ

∂Hnr;nθ

∂Jα
eiðnrqrþnθqθÞ;

J̃α ¼ Jα þ ϵ
X

nr;nθ ∈R

nα
nrΩr þ nθΩθ Hnr;nθe

iðnrqrþnθqθÞ; ðE1Þ

where fnr; nθg is defined as the set of all nonresonant
integers. The near identity transformation involves opera-
tions on different Fourier componentsHnr;nθ of the perturbed
Hamiltonian Hintðqα; JβÞ and its derivatives ∂Hnr;nθ=∂Jα.
As a first step, we need to write the perturbed

Hamiltonian in terms of action-angle variables

Hintðxμ; pνÞ ¼
1

2
hμνðxAÞpμpν → Hintðqα; JβÞ; ðE2Þ

i.e., we need to determine the inverse mapping xAðqα; JβÞ
and pAðqα; JβÞ, where A∈ fr; θg. Making use of the
symplectic relations between two sets of canonical varia-
bles and the chain rule, we obtain

∂xμ

∂qα
¼ ∂Jα

∂pμ
¼ ∂Jα

∂Pβ

∂Pβ

∂pμ
;

∂pμ

∂qα
¼ −

∂Jα
∂xμ

¼ −
∂Jα
∂Pβ

∂Pβ

∂xμ
: ðE3Þ

The above equations show that r, θ, and pr;θ explicitly
depend on qr;θ only, e.g.,

∂r
∂qr

¼ ∂Jr
∂Pβ

∂Pβ

∂pr
;

∂r
∂qθ

¼ ∂Jθ
∂Pβ

∂Pβ

∂pr
; ðE4Þ

and similar for θ and pr;θ. Note that the derivative ∂Pβ

∂pr

calculation is somewhat subtle; e.g., ∂C=∂pr would be zero
if we treat the factor μ2 in Eq. (D3) as a constant. In fact,
we should replace μ2 with −2Hðx; pÞ; i.e., ∂C=∂pr ¼
a2 cos2 θ × ð−2∂Hðx; pÞ=∂prÞ.
Given initial conditions ðr; θ; pr; pθÞjðqr;qθÞ¼ð0;0Þ, one

can evolve the above equations and numerically obtain
ðr; θ; pr; pθÞ for any ðqr; qθÞ∈ ½0; 2π� × ½0; 2π�. As a check
of the accuracy of the numerical algorithm used in solving
Eqs. (E3), one can use the fact that ðr; θ; pr; pθÞ are
periodic functions of ðqr; qθÞ with period 2π. Consistent
with the mapping from ðx; pÞ to ðq; JÞ explained in the
previous section, where we set qrðr ¼ r−Þ ¼ 0 and
qθðθ ¼ θ−Þ ¼ 0, we choose the following initial conditions:

ðr; θ; pr; pθÞjðqr;qθÞ¼ð0;0Þ ¼ ðr−; θ−; 0; 0Þ: ðE5Þ
As an example, we consider a Kerr BH with spin a ¼ 0.2
and an orbit with Pα ¼ ðH;E; L; CÞ ¼ ð−0.5; 0.96; 3.5;
1.552Þ, i.e., eccentricity e ¼ 0.364, semilatus rectum
p ¼ 9.821, and cos2ðθ−Þ ¼ 0.112. The inverse mapping
is shown in Fig. 18. With the inverse mapping, it is
straightforward to numerically obtain the perturbed
Hamiltonian Hintðqr; qθ; JαÞ, which can be decomposed as

FIG. 18. ðr; θ; pr; pθÞ as functions of qr and qθ for the example orbit.
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Hintðqr; qθ; JαÞ ¼
X
nr;nθ

Hnr;nθðJαÞeiðnrq
rþnθqθÞ: ðE6Þ

Its derivatives can be numerically calculated as

∂Hnr;nθ

∂Jα
¼ ∂Hnr;nθ

∂Pβ

∂Pβ

∂Jα
; ðE7Þ

when no analytic expression of
∂Hnr;nθ
∂Pβ

is available.
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