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The Epithelial Ca2+ Channel TRPV5 in Health and Disease
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The recent identification of the epithelial Ca2+ channel, TRPV5, in kidney represents a major step forward in our knowledge
of renal Ca2+ handling. This membrane channel protein is the first member of a new family of Ca2+-selective cation channels.
It consists of 6 transmembrane spanning domains, including a pore forming hydrophobic stretch between domain 5 and 6.
TRPV5 constitutes the apical entry mechanism of active, transcellular Ca2+ reabsorption. In contrast to the paracellular route,
this transcellular pathway enables the organism to actively control the net amount of Ca2+ reabsorption. In vivo studies
indicated a specific regulation of TRPV5 by calcitriol, oestrogens and dietary Ca2+. The central role of TRPV5 in active Ca2+

reabsorption makes it a prime target for pharmacological manipulation and several disorders related to Ca2+ homeostasis could
benefit from such developments. This review highlights the identification, characteristics and the clinical impact of the
epithelial calcium channel, TRPV5.
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IMPORTANCE OF CA
2+

 HOMEOSTASIS

The maintenance of the Ca2+ balance within the physi-
ological range is pivotal for life. Ca2+ is the most abundant
cation in the human body where it is essential for many
physiological functions, such as synaptic transmission in
neurons, muscle contraction, blood clotting, fertilization
and bone mineralization. The extracellular Ca2+ c a s h o u l d , o n  i r e t i a e c t i e  t i g h t l y  r e g a c e t e d .  H y p e r o l o c e m i a o n  i nm n s , a c e l l  T c i t a b  f e t y o n  
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CELLULAR TRANSPORT IN RENAL EPITHE-
LIAL CELLS

At the cellular level, active Ca2+ reabsorption is gener-
ally envisaged as a 3-step process (Fig. 1B) consisting of
passive entry of Ca2+ across the luminal or apical membrane,
cytosolic diffusion of Ca2+ bound to vitamin D

3
-sensitive

Ca2+-binding proteins (calbindin-D
28K

 and/or calbindin-
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D
9K

) and active extrusion of Ca2+ across the opposite
basolateral membrane by the Na+-Ca2+-exchanger (NCX1)
and/or Ca2+-ATPase (PMCA1b)8. Apical Ca2+ influx is the
rate-limiting step of the whole process and is, therefore, the
most efficient target for hormonal regulation. The molecu-
lar identity of the apical Ca2+ entry pathway remained
elusive until the identification of the epithelial Ca2+ chan-
nels TRPV5 (previously named ECaC1)9 and TRPV6
(previously named Ca2+ transporter 1)10,11. TRPV5 and
TRPV6 constitute a distinct class of highly Ca2+-selective
channels within the superfamily of transient receptor po-
tential (TRP) channels, which encompasses a diversity of
non-voltage cation channels12,13. The tissue distribution of
both channels has been studied extensively by Northern
blot, RT-PCR analysis and immunohisto-chemistry7,14-17.
In humans both channels are coexpressed in the organs that
mediate transcellular Ca2+ transport, including duodenum,
jejunum, bone and kidney. This review will focus prima-
rily on TRPV5, because this Ca2+ channel is the major
isoform in the kidney.

MOLECULAR FEATURES OF TRPV5

The TRPV5 gene is located on human chromosome
7q35 and comprises 15 exons encoding a protein of about
730 amino acids18. This functional channel complex is a
tetramer19 where 4 subunits presumably form a ring-like
structure around a central pore (Fig. 2A). Each subunit

spans the apical plasma membrane 6 times and is predicted
to form a pore region between transmembrane segments 5
and 66 (Fig. 2B). TRPV5 exhibits high Ca2+ selectivity and
permeation over Na+ due to a single aspartate residue
(D542) present in the putative pore-forming region of each
subunit20. Furthermore, TRPV5 is an inwardly rectifying
channel and exhibits a Ca2+-dependent feedback mecha-
nism regulating channel activity21,22.

REGULATION OF TRPV5 ACTIVITY

A tight control of TRPV5 activity is of primordial
importance for the survival of the epithelial cells express-
ing the channel, as well as for the final concentration of
reabsorbed Ca2+ in the body. Thus, various regulatory
mechanisms exist which act on different levels: tran-
scription, translation, trafficking to the plasma membrane
and direct (in)activation of the apical channels (Fig. 3).

Transcriptional Regulation
TRPV5 is subjected to “long-term” hormonal regula-

tion of transcription that occurs in the nucleus of the cell.
1,25-dihydroxy-vitamin D

3
 (1,25-(OH)

2
D

3
), dietary Ca2+

and 17β-oestradiol are the main regulators acting on gene
transcription of the channel23-25.

Vitamin D is one of the most important regulators of the
body Ca2+ balance and is required for proper development
and maintenance of bone mass26. Previous studies reported

Fig. 1 (A) Model of the nephron, the functional unit of the
kidney, depicting the TRPV5 expressing sections in the
distal convoluted tubules (DCT) and connecting tubules
(CNT). (B) Cell model of transcellular Ca2+ transport.
Ca2+ enters the apical side of the epithelial cell through
the TRPV5 channel, binds to the cytosolic calbindin-
D

28K
 (CaBP

28K
) and is extruded at the basolateral side via

the plasma membrane Na+-Ca2+-exchanger (NCX1) and/
or Ca2+-ATPase (PMCA1b).

Fig. 2  (A) Schematic representation of a single TRPV5 subunit
spanning 6 times the plasma membrane with a short
hydrophobic stretch between transmembrane segments
5 and 6 that forms the pore of the channel. (B) Model of
the molecular assembly of four TRPV5 proteins in the
homotetrameric ring-like structure around the pore of the
channel.
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a stimulatory effect of vitamin D, via its active metabolite,
1,25-(OH)

2
D

3
, on Ca2+ reabsorption27,28. Given the impor-

tance of the TRPV5 channel in active Ca2+ transport, the
regulation of TRPV5 by 1,25-(OH)

2
D

3
 has been investi-

gated using two different models of vitamin D deficiency:
mice lacking the 1,25-(OH)

2
D

3
 receptor (VDR) or mice

presenting decreased 1,25-(OH)
2
D

3
 serum levels due to the

ablation of 25-hydroxyvitamin D3-1α-hydroxylase (1α-
OHase) which catalyses the synthesis of 1,25-(OH)

2
D

3
. In

both cases TRPV5 expression levels were significantly
decreased compared to wild-type littermates23,25,29. Reple-
tion of these animals with 1,25-(OH)

2
D

3
 and/or dietary

Ca2+ restored the hypocalcemia in the 1α-OHase knock-
out mice, which is accompanied by normalization of TRPV5
mRNA expression levels. Similar results were shown for
vitamin D-depleted hypocalcemic rats in which TRPV5
was hardly detectable17, suggesting that the transcription
of TRPV5 is indeed controlled by 1,25-(OH)

2
D

3
. This is

strengthened by the elucidation of the human and murine
TRPV5 promoter that contains four putative vitamin
D-responsive elements (VDRE)16-18. Presumably, 1,25-
(OH)

2
D

3
 directly activates the promoter of TRPV5.

Furthermore, the stimulatory effect of TRPV5 protein
level upon 1,25-(OH)

2
D

3
 administration to vitamin D-

depleted animals suggests a possible (post)-translational
regulation of TRPV5 by 1,25-(OH)

2
D

3
17,23.

Several of the aforementioned studies have provided

evidence that 1,25-(OH)
2
D

3
 regulates TRPV5 channel

expression. It is, however, difficult to distinguish the
effects of hypocalcemia from those of 1,25-(OH)

2
D

3

deficiency. Vitamin D-depleted hypocalcemic rats17 and
mice23 are rescued not only by repletion of 1,25-(OH)

2
D

3
,

but also by dietary Ca2+ supplementation. Interestingly,
dietary Ca2+ enrichment resulted in the normalization of
the reduced TRPV5 expression levels in the 1α-OHase
knock-out mice, as well as for the other Ca2+ transport
proteins participating in active reabsorption23. Thus, in-
duction of TRPV5 transcription by Ca2+ might involve
activation of a putative Ca2+-responsive element. Several
domains have been proposed to function as Ca2+-sensitive
transcriptional regulators, including the serum-responsive
element and the cAMP/Ca2+-responsive element30.
However, the presence and functionality of putative vita-
min D and Ca2+-responsive elements in the TRPV5 pro-
moter remain to be investigated.

Oestrogen participates also in the transcriptional regu-
lation of TRPV5. It is known that oestrogen is involved in
bone mineralization31 and that the deleterious effects of
oestrogen deficiency after menopause leads to a negative
Ca2+ balance associated with postmenopausal osteoporosis32.
In ovariectomized 1α-OHase knockout mice, 17β-oestra-
diol supplementation resulted in elevated renal TRPV5
mRNA and protein levels, accompanied by normalization
of the plasma Ca2+ levels24. Thus, TRPV5 transcription is
controlled by oestrogen independently of vitamin D. These
data suggested that the function of oestrogen in mainte-
nance of the Ca2+ balance might be at least in part fulfilled
by the regulation of TRPV5, thereby controlling (re)ab-
sorption of the amount of Ca2+ that is needed for maintain-
ing the calcium balance. The mechanism of oestrogen-
controlled up-regulation of TRPV5 mRNA remains to be
elucidated, because oestrogen-responsive elements were
not found in the putative TRPV5 promoter region16.

Regulation of Trafficking to the Plasma Membrane
Modulation of the TRPV5 activity also occurs through

translocation of the channel from intracellular pools to the
plasma membrane. However, research on TRPV5 routing
from the endoplasmic reticulum/Golgi compartment to the
plasma membrane is still in its infancy. Immunohistochemi-
cal studies revealed that besides the apical TRPV5
localization, there is significant intracellular staining. In
the latter compartment, TRPV5 could act as an intracellu-
lar reservoir of channels in order to be inserted in the
plasma membrane when Ca2+ is needed7,17. In contrast to
the “long-term” transcriptional regulation, trafficking of
TRPV5 channels to the plasma membrane could provide a

Fig. 3  Integrated model depicting the three different points of
TRPV5 regulation: (1) transcriptional regulation by
vitamin D

3
 (1,25-(OH)

2
D

3
), dietary Ca2+ and oestrogens

(17β-oestradiol), (2) regulation of TRPV5 routing to
the plasma membrane by the S100A10-annexin 2 com-
plex and (3) direct (in)activation of TRPV5 channel at
the plasma membrane by the 80K-H Ca2+ sensor.
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“short-term” regulatory mechanism to increase Ca2+

reabsorption. It would be interesting to elucidate the mo-
lecular mechanisms including accessory proteins that play
a role in the trafficking process of TRPV5. To this end, we
recently demonstrated a regulatory role for the S100A10-
annexin 2 complex in TRPV5 routing33. The S100A10-
annexin 2 complex plays an important role in biological
processes including endocytosis, exocytosis and mem-
brane-cytoskeletal interactions34. Our studies showed that
annexin 2 forms a well-defined heterotetrameric complex
with S100A10 and associates with the TRPV5 carboxyl-
terminal tail. Disruption of the S100A10-binding motif in
TRPV5 resulted in abolishment of channel activity. This
effect was accompanied by a major disturbance in the sub-
cellular localization of TRPV5. Furthermore, down-regu-
lation of annexin 2 using annexin 2-specific small interfer-
ence RNA (siRNA) significantly inhibited TRPV5-medi-
ated currents. Together these results demonstrated that the
S100A10-annexin 2 complex is an important component
for the trafficking of TRPV5 and TRPV6 to the plasma
membrane.

Direct (In)Activation
TRPV5 is constitutively active, unlike many other TRP

channels that are activated upon binding of ligands. This
implies that in order to regulate TRPV5 activity, “short-
term” acting mechanisms must exist to control the activity
of the channels located at the plasma membrane to have a
fast response based on a physiological stimulus. Impor-
tantly the amino- and carboxyl-terminal tails of TRPV5
contain potential regulatory motifs, such as, ankyrin repeats,
PDZ motifs, and protein kinase C (PKC) phosphorylation
sites8.

The ankyrin repeat is a common protein sequence motif
present in a large family of membrane-associated proteins
that connect via their membrane-binding domains to di-
verse proteins, including proteins involved in Ca2+

homeostasis, such as inositol triphosphate (IP3) and
ryanodine receptors35,36. In addition, recent studies on the
TRPV5 homologue TRPV6 showed that ankyrin repeats
are required for physical assembly of functional tetrameric
channels37. Detailed molecular studies are now feasible
and necessary to delineate the function of TRPV5 ankyrin
motifs.

PDZ motifs are recognized by PDZ domains that are
modular protein interaction domains. They can facilitate
biological processes including linkage of ion channels to
the cytoskeleton, as well as targeting of ion channels in
correct spatial arrangement in relation to each other and
specialized regions of the cell38-40. Several PDZ domains

have recently been identified in renal proteins that could
interact with apical transporters such as Na+-H+ exchanger
(NHE), renal outer medullary potassium (ROMK) channel,
cystic fibrosis transmembrane regulator (CFTR), the Na+-
phosphate (NaPi) transporter and TRPV541-44. It was dem-
onstrated that TRPV5 is the target of a complex regulating
mechanism involving the PDZ motif protein NHE regulat-
ing factor 2 (NHERF2) and the serine/threonine kinases
SGK1 and 3. The concerted action of NHERF2 and the
kinases mentioned above markedly up-regulated the activ-
ity of TRPV5 channel45.

Previous studies indicated an important regulatory role
of PKC isoforms in hormonal regulation of transcellular
Ca2+ reabsorption4,6. Theoretically, PKC could phosphory-
late TRPV5 directly or indirectly via other PKC substrates.
Despite the fact that TRPV5 contains several conserved
PKC phosphorylation sites, present in the carboxyl-
terminus, there is no experimental data showing direct
phosphorylation of the channel. Recently, we demon-
strated a role for the PKC substrate (80K-H) in the Ca2+-
dependent regulation of TRPV5 channel activity. Our
study showed that 80K-H and TRPV5 co-localize in 1,25-
(OH)

2
D

3
-responsive epithelia where they form a hetero-

meric complex along the plasma membrane46. 80K-H
bound to the carboxyl-terminal tail of TRPV5 and con-
trolled TRPV5 activity in a Ca2+-dependent manner via its
two EF-hand structures. Electrophysiological studies us-
ing 80K-H mutants showed that three domains of 80K-H
(the two EF-hand structures, the highly acidic glutamic
stretch and the HDEL sequence) are critical determinants
of TRPV5 activity. Importantly, inactivation of the EF-
hand pair reduced the TRPV5-mediated Ca2+ current and
increased the TRPV5 sensitivity to intracellular Ca2+, ac-
celerating the feedback inhibition of the channel. None of
the 80K-H mutants altered the TRPV5 plasma membrane
localization or the association of 80K-H with TRPV5,
suggesting that 80K-H has a direct effect on TRPV5
activity46. 80K-H is the only characterized protein so far
that can act as Ca2+ sensor regulating the epithelial Ca2+

channel TRPV5.

PHENOTYPE OF THE TRPV5 KNOCK-OUT MICE

As described in the aforementioned paragraphs, TRPV5
has the critical determinants for active Ca2+ transport
across the renal epithelia. In order to understand the func-
tion of this channel in vivo Hoenderop et al. realized
genetic ablation of TRPV5 in mice, allowing further inves-
tigation of the physiological function of the Ca2+ channel19.
Balance studies demonstrated that mice lacking TRPV5
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(TRPV5-/-) excreted six times more Ca2+ in their urine
compared to wild-type mice (TRPV5+/+). Besides this
significant calciuresis, polyuria and polydipsia was con-
sistently observed in TRPV5-/- mice when compared to
control littermates. The large quantity of urine excretion in
TRPV5-/- mice reduced the potential risk of Ca2+ precipita-
tions, which could be formed due to the high urinary Ca2+

concentration. The hypercalciuria-induced polyuria has
been observed previously in humans and animal models47,48.
The acidification of urine that occurred in TRPV5-/- mice,
contributed to the prevention of stone formation, since the
formation of Ca2+ precipitates is less likely at an acidic
pH49. To locate the defective site of the Ca2+ reabsorption
along the nephron in vivo micropuncture studies were
subsequently performed. Collections of tubular fluid re-
vealed normal Ca2+ reabsorption in TRPV5-/- mice up to the
last surface loop of the late proximal tubule. In contrast, the
Ca2+ delivery to puncturing sites within DCT and CNT was
significantly enhanced in TRPV5-/- mice. It is worthwhile
to note that TRPV5-/- mice exhibited a significant increase
in the rate of the intestinal Ca2+ absorption indicating a
compensatory role to maintain a normal Ca2+ balance.
Finally, TRPV5-/- mice exhibited a significant disturbance
of the bone structure, including reduced trabecular and
cortical bone thickness. Together, these data demonstrated
that the lack of TRPV5 results in important disturbances
not only of Ca2+ (re)absorption, but also of the whole body
Ca2+ homeostasis.

TRPV5 IN RELATION TO HUMAN DISEASES

The role of TRPV5 in diverse Ca2+-related disorders has
been considered including variation in the urinary Ca2+

excretion during treatment with pharmaceutical agents,
nephrolithiasis, idiopathic hypercalciuria (IH) and post-
menopausal osteoporosis.

Thiazide diuretics, widely used in hypertension therapy,
have the unique characteristic of increasing renal Na+

excretion, while decreasing Ca2+ excretion50. These di-
uretic agents decrease renal Na+ reabsorption by inhibiting
the apical Na+-Cl- cotransporter (NCC) in DCT, resulting
in an increased salt and water loss, and thereby decrease the
extracellular volume (ECV)51. The decreased Ca2+ excre-
tion during chronic thiazide administration has been ex-
plained by an increased passive Ca2+ transport in proximal
tubules as well as a direct stimulation of active Ca2+

reabsorption in the DCT7,52,53. This hypocalciuric effect
could provide therapeutic opportunities in IH and
nephrolithiasis. Costanzo et al. proposed a mechanism
where acute administration of chlorothiazide in the tubular

lumen stimulates transcellular Ca2+ transport in DCT50.
However, later studies suggest that the ECV contraction
occurring during chronic thiazide treatment is primarily
responsible for the hypocalciuria by enhancing the
paracellular Ca2+ reabsorption54-56. In addition, thiazides
decreased the mRNA expression and protein abundance of
several transporters responsible for active Ca2+ reabsorption,
regardless of volume status or calciuresis57, excluding thus
a stimulatory role of TRPV5 in chronic thiazide-induced
hypercalciuria.

The hypercalciuria induced by the treatment with the
immunosupressant drug tacrolimus has been attributed to
decreased renal Ca2+ reabsorption and increased bone
resorption58-60. A recent study showed that administration
of tacrolimus for 7 days not only induces an increase of
renal Ca2+ excretion, but also down regulates the renal
mRNA expression of proteins involved in active Ca2+

transport including the TRPV5 channel61. These results
together with the fact that serum Ca2+ concentration was
unaltered support the hypothesis that tacrolimus induces a
primary defect in renal active Ca2+ reabsorption by specifi-
cally inhibiting the transcription of Ca2+ transport proteins.

When hypercalciuria is combined with normal serum
Ca2+ levels in the absence of any known underlying cause,
it is idiopathic and termed IH. The pathogenesis of this
autosomal dominant disorder is either excessive intestinal
Ca2+ absorption (absorptive IH) or defective renal tubular
Ca2+ reabsorption62, which are both in line with the
normocalcemic and hypercalciuric phenotype of the TRPV5
knock-out mice described above. Linkage analysis was
effectuated for 9 families and a phenotype suggesting a
primary renal defect. There were, however, no mutations
identified in the open reading frame containing 15 exons
and 3 kb of the 5’-flanking region of the TRPV5 gene63.
The involvement of TRPV5 gene in IH cannot be com-
pletely excluded because the IH population is a heteroge-
neous group. Moreover, activating or silencing mutations
in TRPV5 can hypothetically lead to primary renal as well
as absorptive IH. In addition, single nucleotide polymor-
phisms (SNPs) in the Ca2+-sensing receptor (CaSR) have
been shown to significantly increase the relative risk of
hypercalciuria and, therefore, may be involved in the
complex genetic background of IH64. The same may be
applicable to SNPs in the gene encoding the epithelial Ca2+

channel or genes involved in the regulation of TRPV5
activity.

It has been previously demonstrated that oestrogen
deficiency after menopause is associated with increased
renal Ca2+ loss65. This perturbation can be corrected by
oestrogen replacement therapy and is not attributable to an
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increased filtered load, thereby suggesting a direct effect
on renal Ca2+ reabsorption66. Furthermore, kidney stones
develop less commonly in premenopausal women than in
men. This has been associated with a lower urinary Ca2+

excretion relative to age-matched males, suggesting that
oestrogen protects against Ca2+ nephrolithiasis via an in-
creased reabsorption of Ca2+ 67-69. Van Abel et al. studied
the effect of oestrogen on the proteins involved in active
Ca2+ reabsorption and showed that the presence of oestro-
gen may protect premenopausal women against Ca2+ neph-
rolithiasis by increasing TRPV5 expression and stimulat-
ing Ca2+ reabsorption24.

CONCLUSIONS

The epithelial Ca2+ channel TRPV5 plays an essential
role in active Ca2+ reabsorption and, therefore, in Ca2+

homeostasis. Active transcellular Ca2+ transport involves a
chain of Ca2+ transport proteins facilitating the apical
influx of Ca2+, transport to the basolateral membrane and
extrusion into the blood stream. Regulation of the TRPV5
channels that mediate the rate-limiting Ca2+ entry step is
pivotal to control the Ca2+ transport rate, which warrants
further investigations. Furthermore, future studies should
include the molecular determinants regulating TRPV5
activity (Table 1) as targets for novel therapeutics in Ca2+

homeostasis-related disorders.
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