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Epithelial Ca2� and Mg2� Channels in Health and Disease
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the Netherlands

A near constancy of the extracellular Ca2� and Mg2� concentration is required for numerous physiologic functions at the
organ, tissue, and cellular levels. This suggests that minor changes in the extracellular concentration of these divalents must
be detected to allow the appropriate correction by the homeostatic systems. The maintenance of the Ca2� and Mg2� balance
is controlled by the concerted action of intestinal absorption, renal excretion, and exchange with bone. After years of research,
rapid progress was made recently in identification and characterization of the Ca2� and Mg2� transport proteins that
contribute to the delicate balance of divalent cations. Expression-cloning approaches in combination with knockout mice
models and genetic studies in families with a disturbed Mg2� balance revealed novel Ca2� and Mg2� gatekeeper proteins that
belong to the super family of the transient receptor potential (TRP) channels. These epithelial Ca2� (TRPV5 and TRPV6) and
Mg2� channels (TRPM6 and TRPM7) form prime targets for hormonal control of the active Ca2� and Mg2� flux from the urine
space or intestinal lumen to the blood compartment. This review describes the characteristics of epithelial Ca2� and Mg2�

transport in general and highlights in particular the distinctive features and the physiologic relevance of these new epithelial
Ca2� and Mg2� channels in (patho)physiologic situations.
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C a2� and Mg2� are of great physiologic importance by
their intervention in many enzymatic systems and
their function in neural excitability, muscle contrac-

tion, blood coagulation, bone formation, hormone secretion,
and cell adhesion. The human body is equipped with an effi-
cient negative feedback system that counteracts variations of
the Ca2� and Mg2� balance. This system encompasses parathy-
roid glands, bone, intestine, and kidneys. These divalents are
maintained within a narrow range by the small intestine and
kidney, which both increase their fractional (re)absorption un-
der conditions of deprivation (1,2). If depletion continues, then
the bone store assists to maintain appropriate serum concen-
trations by exchanging part of its content with the extracellular
fluid. The Ca2�-sensing receptor (CaSR) represents the molec-
ular mechanism by which parathyroid cells detect changes in
the ionized Ca2� and Mg2� concentration and modulate para-
thyroid hormone (PTH) secretion (3,4). In addition to the effects
of these divalents on PTH secretion, this hormone in turn
regulates directly the Ca2� and Mg2� balance by modulating
bone resorption, renal reabsorption, and indirectly intestinal
absorption by stimulating 1�-hydroxylase activity and conse-
quently 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) synthesis to
maintain serum Ca2� and Mg2� levels within a narrow phys-
iologic range.

Ca2� (Re)absorption
The major part of the Ca2� reabsorption takes place along the

proximal tubule (PT) and thick ascending limb of Henle’s loop
(TAL) through a paracellular and, therefore, passive pathway
(5). Fine-tuning of the Ca2� excretion occurs in the distal part of
the nephron, where approximately15% of the filtered load of
Ca2� is reabsorbed. This section consists of the distal convo-
luted tubule (DCT), the connecting tubule (CNT), and the initial
portion of the cortical collecting duct (CCD; Figure 1). In these
latter nephron segments (DCT, CNT, CCD), Ca2� reabsorption
is active and occurs against the existing electrochemical gradi-
ent. Together with the fact that here the tight junctions are
impermeable for Ca2� ions, this substantiates that Ca2� is
reabsorbed through an active transcellular pathway. Active
Ca2� reabsorption is generally envisaged as a multistep process
that consists of passive entry of Ca2� across the luminal or
apical membrane, cytosolic diffusion of Ca2� bound to vitamin
D3-sensitive calcium-binding proteins (calbindin-D28K and/or
calbindin-D9K), and active extrusion of Ca2� across the oppo-
site basolateral membrane by a Na�-Ca2� exchanger (NCX1)
and/or Ca2�-ATPase (PMCA1b) (6) (Figure 1, top). This active
transcellular Ca2� transport is under hormonal control of PTH
(7,8), 1,25-(OH)2D3 (7,9–12,103), and calcitonin (13) but also
estrogen (14,15), androgen (16), and dietary Ca2� (10) are pri-
mary regulators.

Mg2� (Re)absorption
Regulation of the total body Mg2� balance principally resides

within the kidney that tightly matches the intestinal absorption
of Mg2�. In the kidney, approximately 80% of the total plasma
Mg2� is ultrafiltrated across the glomerular membrane and
subsequently reabsorbed in consecutive segments of the
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nephron (1). Approximately 10 to 20% of Mg2� is reabsorbed
by the PT. However, the bulk amount of Mg2� (50 to 70%) is
reabsorbed by the TAL, which likely mediates Mg2� reabsorp-
tion via paracellular transport. The final urinary excretion of
Mg2� is mainly determined by active reabsorption of Mg2� in
DCT, because virtually no reabsorption takes places beyond
this segment (Figure 1) (1). Microperfusion studies have shown
that Mg2� is reabsorbed in the superficial DCT, but little knowl-
edge has been gained concerning the cellular mechanisms of
transcellular Mg2� reabsorption (1,17,18). Speculatively, Mg2�

can passively enter the DCT cell across the luminal membrane
driven by a favorable plasma membrane voltage (Figure 1,
bottom). The molecular identity of the responsible influx pro-
tein was unknown, however, and previous studies hypothe-
sized that a Mg2�-specific ion channel is a possible candidate
(1). Subsequently, Mg2� will be transported through the cytosol
and extruded at the opposing basolateral membrane by an
active mechanism given the existing electrochemical gradient.
Again, the identity of responsible transport proteins remains to
be defined, and candidate mechanisms are Mg2�-binding pro-
teins, Na�/Mg2� exchanger and/or an ATP-dependent Mg2�

pump (Figure 1, bottom).

Search for Epithelial Ca2� Channels
Several genes involved in the process of transepithelial Ca2�

transport have now been identified, but the Ca2� influx mech-
anism remained unknown for a long time. An expression-
cloning approach using Xenopus laevis oocytes revealed the
molecular identity of the Ca2� influx systems (19,20). The first
member, named TRPV5, was cloned from primary cultures of
rabbit renal distal tubules that are primarily involved in active
transcellular Ca2� transport and encodes a Ca2� channel that
belongs to the TRP family (19). Likewise, a homologous mem-
ber of this family, known as TRPV6, was successfully cloned
from rat duodenum (20).

Search for Genes Involved in
Mg2� Homeostasis

During the past few years, several genes that encode proteins
that are either directly or indirectly involved in renal Mg2�

handling have been identified following a positional cloning
strategy in families with hereditary hypomagnesemia. The first
gene involved, PCLN-1 (or CLDN16), encodes the protein para-
cellin-1 (or claudin-16) (21). This protein is specifically ex-
pressed in the TAL and shows sequence and structural homol-

Figure 1. Transcellular Ca2� and Mg2� transport. Active Ca2� and Mg2� transport is carried out as a three-step process in the distal
part of the nephron. (Top) After entry of Ca2� in distal convoluted tubule (DCT2) and connecting tubule (CNT) through the
epithelial Ca2� channels TRPV5 and TRPV6, Ca2� bound to calbindin diffuses to the basolateral membrane. At the basolateral
membrane, Ca2� is extruded via an ATP-dependent Ca2�-ATPase (PMCA1b) and an Na�-Ca2�–exchanger (NCX1). (Bottom)
Apical Mg2� entry in DCT via TRPM6 (and TRPM7). As extrusion mechanisms are postulated a basolateral Na�/Mg2� exchanger
and/or ATP-dependent Mg2� pump. The Na�,K�-ATPase complex including the �-subunit controls this transepithelial Mg2�

transport. In this way, there is net Ca2� and Mg2� reabsorption from the luminal space to the extracellular compartment.
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ogy to the claudin family of tight junction proteins. Paracellin-1
is mutated in patients who have hypomagnesemia, hypercalci-
uria, and nephrocalcinosis (HHN; MIM 248250). In this auto-
somal recessive disorder, there is profound renal Mg2� and
Ca2� wasting. The hypercalciuria often leads to nephrocalcino-
sis, resulting in progressive renal failure (22,23). Other symp-
toms that have been reported in patients with HHN include
urinary tract infections, nephrolithiasis, incomplete distal tubu-
lar acidosis, and ocular abnormalities (22,24). Immunohisto-
logic studies have shown that claudin-16 co-localizes with oc-
cludin in intercellular junctions of human kidney sections,
indicating that it is a tight junction protein (21). The second
gene, FXYD2, encodes the �-subunit of the Na�,K�-ATPase
pump, which is predominantly expressed in the kidney, with
the highest expression levels in DCT and medullary TAL (25).
FXYD2 is mutated in patients with autosomal dominant renal
hypomagnesemia associated with hypocalciuria (IDH; MIM
154020). Hypomagnesemia in these patients can be severe
(�0.40 mM) and cause convulsions. Remarkably, in some af-
fected individuals, there are no symptoms of Mg2� deficiency
except for chondrocalcinosis at adult age. The molecular mech-
anism for renal Mg2� loss in this autosomal dominant type of
primary hypomagnesemia remains to be elucidated. The third
gene involved, SLC12A3, encodes the thiazide-sensitive sodium
chloride co-transporter (NCC) in DCT and is mutated in pa-
tients with Gitelman syndrome (MIM 263800) (26). This auto-
somal recessive disorder is a frequent hereditary tubular dis-
order that affects renal Mg2� handling, which is characterized
by hypokalemia, hypomagnesemia, and hypocalciuria. Hypo-
magnesemia is found in most patients with Gitelman syndrome
and is assumed to be secondary to the primary defect in NCC,
but the mechanisms underlying hypomagnesemia are poorly
understood.

Although these linkage analyses revealed the identification
of genes involved in Mg2� homeostasis, the key molecules that
represent the mechanisms for luminal Mg2� influx and baso-
lateral Mg2� extrusion in the process of transcellular Mg2�

transport are still elusive. Importantly, Walder et al. (27) re-
ported that hypomagnesemia associated with secondary hy-
pocalciuria (HSH; MIM 602014) is an autosomal recessive dis-
ease that is genetically linked to chromosome 9p22. This disease
is primarily due to defective intestinal Mg2� absorption, and
affected individuals show neurologic symptoms of hypomag-
nesemic hypocalcemia, including seizures and muscle spasms
during infancy (28–30). Because passive Mg2� absorption is not
affected, the disease can be treated by high dietary Mg2� intake
(31). Renal Mg2� conservation has been reported to be normal
in most patients. In some cases, however, a renal leak has been
reported, suggesting impaired renal Mg2� reabsorption. Pa-
tients who were studied by Konrad et al. and others (28,32)
showed inappropriately high fractional Mg2� excretion rates
with respect to their low serum Mg2� levels. When untreated,
the disease may be fatal or may lead to severe neurologic
damage. Hypocalcemia is secondary to parathyroid failure re-
sulting from Mg2� deficiency. Using a positional candidate
gene-cloning approach, two groups headed by Konrad and
Sheffield (28,29) independently identified mutations in TRPM6

in autosomal recessive HSH, previously mapped to chromo-
some 9q22. The TRPM6 protein is a new member of the long
TRP channel (TRPM) family and is similar to TRPM7 (also
known as TRP-PLIK), a unique bifunctional protein known as a
Mg2�-permeable cation channel properties with protein kinase
activity (33–35). TRPM6 and TRPM7 are distinct from all other
ion channels in that they are composed of a channel linked to a
protein kinase domain recently abbreviated as chanzymes (36).
These chanzymes are essential for Mg2� homeostasis, which is
critical for human health and cell viability (37,38).

In summary, a variety of approaches, including a genetic
screen in patients with primary hypomagnesemia and expres-
sion cloning in Ca2�-transporting epithelial cells, revealed the
identification of TRP cation channels as potential gatekeepers in
the maintenance of the Ca2� and Mg2� balance. The TRP
superfamily is a newly discovered family of cation-permeable
ion channels (33). There are at least three previously recognized
subfamilies of proteins—TRPC (conical), TRPV (vanilloid), and
TRPM (metastatin)—that are expressed throughout the animal
kingdom (http://clapham.tch.harvard.edu/trps/). Recently,
the polycystins were also included in the TRP superfamily
abbreviated as TRPP (polycystin) (39). Each of the proteins
seems to be a cation channel composed of six transmembrane-
spanning domains and a conserved pore-forming region (Fig-
ure 2) (6,33,40). Most members of the TRPC have been charac-
terized as Ca2�-permeable cation channels playing a role in
Ca2� signaling (41). The functional characterization of other
TRP members, including TRPV5 and TRPV6, and TRPM6 and
TRPM7, has recently been started.

TRPV5 and TRPV6
TRPV5 and TRPV6 belong to the TRPV subfamily. These

homologues channel proteins are composed of approximately
730 amino acids, whereas the corresponding genes consist of 15
exons juxtaposed on chromosome 7q35 (42–44). In human em-
bryonic kidney 293 (HEK293) cells heterogeneously expressing
TRPV5 or TRPV6, currents can be activated under conditions of
high intracellular buffering of Ca2�. In addition, the current is
increased by hyperpolarizing voltage steps, which enhances the
driving force for Ca2� (45,46). Outward currents are extremely
small, indicating that these channels are inwardly rectifying
(Table 1, Figure 3). TRPV5 and TRPV6 are subject to Ca2�-
dependent feedback inhibition (46,47). Both channels rapidly
inactivate during hyperpolarizing voltage steps, and this inac-
tivation is reduced when Ba2� or Sr2� is used as a charge
carrier, confirming the Ca2� dependence (47). Currents also
diminish during repetitive activation by short hyperpolarizing
pulses (46). TRPV5 and TRPV6 are so far the only known highly
Ca2�-selective channels in the TRP superfamily. It has been
demonstrated that the molecular determinants of the Ca2�

selectivity and permeation of TRPV5 and TRPV6 reside at a
single aspartate residue (TRPV5D542 [48,49] and TRPV6D541

[50], respectively) present in the predicted pore-forming region.
Neutralization of these negatively charged residues affects the
high Ca2� selectivity of these channels. Therefore, it was sug-
gested that Ca2� selectivity in TRPV5 and TRPV6 depends on
a ring of four aspartate residues in the channel pore, similar to
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the ring of four negative residues (aspartates and/or gluta-
mates) in the pore of voltage-gated Ca2� channels (48,50). Re-
cently, the substituted cysteine accessibility method was used
to map the pore region of TRPV5 (51) and TRPV6 (50). On the
basis of the permeability of the TRPV6 channel to organic
cations, a pore diameter of 5.4 Å was estimated (50). Mutating
TRPV6D541, a residue involved in high-affinity Ca2� binding,
altered the apparent pore diameter, indicating that this residue
indeed lines the narrowest part of the pore (50).

The renal expression profile of TRPV5 has been studied in
great detail (Table 1). In different species, it was demonstrated
that TRPV5 co-localizes in the kidney with the other Ca2�

transport proteins, including calbindin-D28K and the extrusion
proteins PMCA1b and NCX1 in DCT2 and CNT, with the
highest immunochemical abundance in DCT2, and a gradual
decrease along CNT (52,53). A minority of cells along CNT
lacked immunopositive staining for TRPV5 and the other Ca2�-
transporting proteins. These negative cells were identified as
intercalated cells (52). Taken together, these findings suggest
that the major sites of transcellular Ca2� transport are DCT2
and, probably to a lesser extent, CNT. Recently, Hoenderop et
al. (54) generated TRPV5 null (TRPV5�/�) mice by genetic
ablation of TRPV5 to investigate the function of TRPV5 in renal
and intestinal Ca2� (re)absorption. It is interesting that meta-
bolic studies demonstrated that TRPV5�/� mice exhibit a ro-

bust calciuresis compared with wild-type (TRPV5�/�) litter-
mates. Serum analysis showed that TRPV5�/� mice have
normal plasma Ca2� concentrations but significantly elevated
1,25-(OH)2D3 levels (54). For locating the defective site of the
Ca2� reabsorption along the nephron, in vivo micropuncture
studies were performed. Collections of tubular fluid revealed
unaffected Ca2� reabsorption in TRPV5�/� mice up to the last
surface loop of the late proximal tubule. In contrast, Ca2�

delivery to puncturing sites within DCT and CNT were signif-
icantly enhanced in TRPV5�/� mice. It is interesting that poly-
uria and polydipsia were consistently observed in TRPV5�/�

mice compared with control littermates. Polyuria facilitates the
excretion of large quantities of Ca2� by reducing the potential
risk of Ca2� precipitations. This hypercalciuria-induced poly-
uria has been observed in humans and animal models (55,56).
Furthermore, TRPV5�/� mice produced urine that was signif-
icantly more acidic compared with TRPV5�/� littermates.
Acidification of the urine is known to prevent renal stone
formation in hypercalciuria, because the formation of Ca2�

precipitates is less likely at an acidic pH (57). A significant
increase in the rate of Ca2� absorption was observed in
TRPV5�/� mice compared with wild-type littermates, indicat-
ing a compensatory role of the small intestine. Expression stud-
ies using quantitative real-time PCR in TRPV5�/� mice dem-

Figure 2. Structural organization of TRPV5/6 and TRPM6/7. TRPV5 and TRPV6 contain a cytosolic amino- and carboxyl-terminus
containing ankyrin (ANK) repeats (A). TRPM6 and TRPM7 belong to the largest TRP channels consisting of approximately 2000
amino acids, including very large cytosolic amino- and carboxyl-termini including an atypical protein kinase domain (B). The
six-transmembrane unit is one of four identical or homologous subunits presumed to surround the central pore (C). The gate and
selectivity filter are formed by the four two-transmembrane domains (TM5–pore loop–TM6) facing the center of the channel.
Cations are selected for permeation by the extracellular-facing pore loop, held in place by the TM5 and TM6 �-helices.
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onstrated increased TRPV6 and calbindin-D9K levels in
duodenum consistent with Ca2� hyperabsorption.

Immunohistochemical studies indicated that TRPV6, origi-
nally cloned from duodenum, is localized to the brush-border
membrane of the small intestine. In enterocytes, TRPV6 is co-
expressed with calbindin-D9K and PMCA1b (58,59). It is inter-
esting that Hediger and co-workers (60) studied the functional
role of TRPV6 in Ca2� absorption by inactivation of the mouse
TRPV6 gene. These TRPV6 null (TRPV6�/�) mice were placed
on a Ca2�-deficient diet and subsequently challenged in a
45Ca2� absorption assay. TRPV6�/� mice showed a consistent
decrease in Ca2� absorption over time. From these initial data,
it was concluded that TRPV6�/� mice show a significant Ca2�

malabsorption, suggesting that TRPV6 is indeed the rate-limit-
ing step in 1,25-OH2D3–dependent Ca2� absorption (60). Re-
cently, it was found that TRPV6 is expressed in the mouse
kidney along the apical domain of the late portion of the DCT
(DCT2) through inner medullary collecting duct (61). TRPV6
co-localizes with TRPV5 and the other Ca2� transport proteins
in DCT2, suggesting a role in Ca2� reabsorption. In addition,
the protein is detected in the intercalated cells and the inner
medullary collecting duct that are not involved in transepithe-
lial Ca2� transport, pointing to additional functions of TRPV6.
Thus, the precise role of this epithelial Ca2� channel in kidney
remains to be established, but given the widespread distribu-
tion of TRPV6 throughout the nephron segments, functions of
TRPV6 could involve Ca2� reabsorption, Ca2� signaling, and
others. Detailed characterization of the TRPV6�/� mice will
address these important questions shortly. It is interesting that
quantitative PCR measurements indicated that the mouse pros-
tate contains high expression levels of TRPV6 (61). Although
the exact function in this organ remains to be elucidated, pre-
vious reports have suggested that TRPV6 expression correlatesT
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Figure 3. Current-voltage relationship of TRP channels. Repre-
sentative transmembrane currents in response to a voltage
ramp (I–V relation) of TRPV5/6 and TRPM6/7 channels.
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with prostate carcinoma tumor grade (16,62,63). Together, these
findings indicate that TRPV6 expression is associated with
prostate cancer progression and, therefore, represents a prog-
nostic marker and a promising target for new therapeutic strat-
egies to treat advanced prostate cancer (63). TRPV5 and TRPV6
share several functional properties, including the permeation
profile for monovalent and divalent cations, anomalous mole
fraction behavior, and Ca2�-dependent inactivation (47,64).
However, detailed comparison of the amino- and carboxyl-
termini of the TRPV5 and TRPV6 channels illustrates signifi-
cant differences, which may account for the unique electro-
physiologic properties of these homologous channels (65). The
initial inactivation is faster in TRPV6 compared with TRPV5,
and the kinetic differences between Ca2� and Ba2� currents are
more pronounced for TRPV6 than for TRPV5 (66,67). It is
interesting that structural determinants of these functional dis-
similarities are not located in either the amino- or carboxyl-
terminus but in the TM2-TM3 linker (67). It is intriguing that
TRPV5 has a 100-fold higher affinity for the potent channel
blocker ruthenium red than TRPV6 (65). Physiologic conse-
quences of these functional differences remain to be established
and are of interest with respect to the structural organization of
these channels (66). Cross-linking studies, co-immunoprecipi-
tations, and molecular mass determination of TRPV5/6 com-
plexes using sucrose gradient sedimentation showed that
TRPV5 and TRPV6 form homo- and heterotetrameric channel
complexes (Figure 2C). Hetero-oligomerization of TRPV5 and
TRPV6 might influence the functional properties of the formed
Ca2� channel complex. As TRPV5 and TRPV6 exhibit different
channel kinetics with respect to Ca2�-dependent inactivation
and Ba2� selectivity and sensitivity for the inhibitor ruthenium
red, the influence of the heterotetramer composition on these
channel properties was investigated. Concatemers that con-
sisted of four TRPV5 and/or TRPV6 subunits that were config-
ured in a head-to-tail manner were constructed. A different
ratio of TRPV5 and TRPV6 subunits in these concatemers
showed that the phenotype resembles the mixed properties of
TRPV5 and TRPV6. An increased number of TRPV5 subunits in
such a concatemer displayed more TRPV5-like properties, in-
dicating that the stoichiometry of TRPV5/6 heterotetramers
influences the channel properties (66). Consequently, regula-
tion of the relative expression levels of TRPV5 and TRPV6 may
be a mechanism to fine-tune the Ca2� transport kinetics in
TRPV5/6–co-expressing tissues (68). It is interesting that Ni-
emeyer and colleagues (69) identified the third ankyrin (ANK)
repeat as being a stringent requirement for physical assembly
of TRPV6 subunits. Deletion of this repeat or mutation of
critical residues within this repeat renders nonfunctional chan-
nels that do not co-immunoprecipitate or form tetramers. It was
proposed that the third ANK repeat initiates a molecular zip-
pering process that proceeds past the fifth ANK repeat and
creates an intracellular anchor that is necessary for functional
subunit assembly (69).

Previous studies in animal and cell models demonstrated
that TRPV5 and TRPV6 channels are tightly regulated at the
transcriptional level by various hormones, including 1,25-
(OH)2D3, estradiol, androgen, and also dietary Ca2� intake,

which are described in detail (6,70). Recently, the effect of PTH
was studied on the renal expression of TRPV5 (71). The para-
thyroid glands play a key role in maintaining the extracellular
Ca2� concentration through their capacity to sense minute
changes in the level of blood Ca2� (4). Early studies using
micropuncture and cell preparations demonstrated that PTH
stimulates active Ca2� reabsorption in the distal part of the
nephron via a dual signaling mechanism involving protein
kinase A– and protein kinase C–dependent processes
(7,8,72,73). Preliminary studies demonstrated that parathyroid-
ectomy in rats resulted in decreased serum PTH levels and
hypocalcemia, which were accompanied by decreased levels of
TRPV5, calbindin-D28K, and NCX1. Supplementation with PTH
restored serum Ca2� concentrations and abundance of these
Ca2� transporters in kidney. These data suggest that long-term
treatment with PTH affects renal Ca2� handling through the
regulation of the expression of the Ca2� transport proteins,
including TRPV5 (71). Promoter analysis should reveal the
molecular mechanism of this PTH-mediated increase in TRPV5
expression. In addition, several regulatory proteins that interact
with TRPV5 and/or TRPV6 have been identified, including
calmodulin (74–76), S100A10-annexin 2 (58), and 80K-H (77)
(Table 1). These newly identified associated proteins have fa-
cilitated the elucidation of important molecular pathways mod-
ulating transport activity. Calmodulin and 80K-H both have
been implicated as Ca2� sensors. Disturbance of the EF-hand
structures in these proteins directly affects TRPV5/6 channel
activity. Interaction of TRPV5/6 with the S100A10-annexin 2
complex is critical for trafficking of these epithelial Ca2� chan-
nels toward the plasma membrane.

TRPM6 and TRPM7
TRPM6 is a protein of approximately 2000 amino acids en-

coded by a large gene that contains 39 exons (28,29,33). TRPM6
shows approximately 50% sequence homology with TRPM7,
which forms a Ca2�- and Mg2�-permeable cation channel (38).
Unlike other members of the TRP family, TRPM6 and TRPM7
contain long carboxyl-terminal domains with similarity to the
�-kinases (Figure 2B) (35). The combination of channel and
enzyme domains in TRPM6 and TRPM7 is unique among
known ion channels and raises intriguing questions concerning
the function of the enzymatic domains and physiologic role of
these chanzymes. The identification of TRPM6 as the gene
mutated in HSH represents the first case in which a human
disorder has been attributed to a channel kinase. However, the
precise function of this kinase domain remains to be estab-
lished. To date, TRPM7 regulation has received most of the
attention. TRPM7 is ubiquitously expressed and implicated in
cellular Mg2� homeostasis, whereas TRPM6 has a more re-
stricted expression pattern predominantly present in absorbing
epithelia (28,29,38). Although in HSH the defect at the level of
the intestine is established, there is also evidence for impaired
renal Mg2� reabsorption (28,32). The renal expression of
TRPM6, in addition to the renal leak in patients with HSH,
stresses the potential important role of TRPM6 in renal Mg2�

reabsorption. In kidney, TRPM6 is expressed in DCT, known as
the main site of active transcellular Mg2� reabsorption along
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the nephron (38). In line with the expected function of being the
gatekeeper of Mg2� influx, TRPM6 was predominantly local-
ized along the apical membrane of these immunopositive tu-
bules. Immunohistochemical studies of TRPM6 and NCC,
which were used as specific markers for DCT, indicated a
complete co-localization of these transport proteins in the kid-
ney (38). Until now, specific Mg2�-binding proteins have not
been identified, but it is interesting to mention that the Ca2�-
binding proteins parvalbumin and calbindins also bind Mg2�

(78). Importantly, TRPM6 co-localized with parvalbumin in
DCT1 and with calbindin-D28K in DCT2 (38). In addition to the
DCT segment, Schlingmann et al. (28,38) reported the presence
of TRPM6 mRNA by nephron segment–specific PCR analysis in
the proximal tubule, which was not confirmed by immunohis-
tochemistry. In small intestine, absorptive epithelial cells
stained positively for TRPM6 detected by in situ hybridization
and immunohistochemistry (28,38). In these cells, TRPM6 was
localized along the brush-border membrane (38).

To functionally characterize TRPM6, the protein was hetero-
geneously expressed in HEK293 cells. TRPM6-transfected
HEK293 cells perfused with an extracellular solution that con-
tained 1 mM Mg2� or Ca2� exhibited characteristic outwardly
rectifying currents upon establishment of the whole-cell con-
figuration as was demonstrated for TRPM7 (Figure 3)
(37,38,79). It is intriguing that at physiologic membrane poten-
tials of the DCT cell (�80 mV), small but significant inward
currents were observed in TRPM6-expressing HEK293 cells
with all tested divalent cations as the sole charge carrier. How-
ever, mutations in TRPM6 are linked directly to HSH, empha-
sizing that this channel is an essential component of the epi-
thelial Mg2� uptake machinery. It is possible that the TRPM6-
mediated Mg2� inward current is more pronounced in native
DCT and intestinal cells as a result of specific co-factors, such as
intracellular Mg2� buffers, that are missing in overexpression
systems such as HEK293 cells.

The unique permeation rank order determined from the in-
ward current amplitude at �80 mV was comparable to TRPM7
(Ba2� � Ni2� � Mg2� � Ca2�) (35,38). Experiments using the
Mg2�-sensitive radiometric fluorescent dye Magfura-2 demon-
strated a coherent relationship between the applied extracellu-
lar Mg2� concentration and the measured intracellular Mg2�

level in TRPM6-expressing cells. Intracellular Mg2� was ele-
vated further when the plasma membrane was hyperpolarized
to the physiologic level of �80 mV, consistent with influx
through the TRPM6 channel. For evaluating the effect of intra-
cellular Mg2� on TRPM6 activity, the Mg2� concentration was
altered directly in a spatially uniform manner using flash pho-
tolysis of the photolabile Mg2� chelator DM-nitrophen. Eleva-
tion of intracellular Mg2� by a flash of ultraviolet light reduced
the TRPM6-induced current, indicating that the channel is reg-
ulated by the intracellular concentration of this ion. Likewise,
TRPM7 channel activity is strongly suppressed by Mg2�-ATP
concentrations in the millimolar range (37,80). Kozak and Ca-
halan (81) demonstrated that internal Mg2� rather than ATP
inhibits channel activity.

Micropuncture studies have demonstrated that the luminal
concentration of free Mg2� in DCT ranges from 0.2 to 0.7 mM

(1). Because the Ca2� concentration is in the millimolar range,
the apical Mg2� influx pathway should exhibit a higher affinity
for Mg2� than for Ca2�. It is interesting that dose-response
curves for the Na� current block at �80 mV indicated four
times higher KD values for Ca2� compared with Mg2� (38).
These data suggest that the pore of the TRPM6 has a higher
affinity for Mg2� than for Ca2�. In this way, TRPM6 comprises
a unique channel because all known Ca2�-permeable channels,
including members of the TRP superfamily, generally display a
10 to 1000 times lower affinity for Mg2� than for Ca2�. It is
interesting that HEK293 cells transfected with the TRPM6 mu-
tants identified in HSH patients (TRPM6Ser590X and
TRPM6Arg736fsX737) displayed currents with similar amplitude
and activation kinetics as nontransfected HEK293 cells, indicat-
ing that these mutant proteins are nonfunctional, in line with
the postulated function of TRPM6 being Mg2� influx step in
epithelial Mg2� transport (38). The observation that TRPM7
conducts Mg2� and is required for cell viability suggested that
the TRPM7-mediated Mg2� influx is essential for cellular Mg2�

homeostasis rather than the extracellular Mg2� homeostasis
(37). It is interesting that Schmitz et al. (82) demonstrated that
Mg2� supplementation of cells that lack TRPM7 expression
rescued growth arrest and cell lethality that was caused by
TRPM7 inactivation (Table 1). Although TRPM7 is permeable
for Ca2�, as well as trace divalents such as Zn2�, Ni2�, Ba2�,
and Co2�, supplementation with these cations was ineffective,
indicating the specific effect of Mg2� on these cellular pro-
cesses.

Recently, it was postulated that TRPM6 requires assembly
with TRPM7 to form functional channel complexes in the
plasma membrane and that disruption of multimer formation
by a mutated TRPM6 variant, TRPM6S141L, results in HSH (83).
In this study, TRPM6S141L was not directed to the cell surface by
TRPM7 and failed to interact with the coexpressed TRPM7.
Remarkably, in contrast to TRPM7, Gudermann and co-work-
ers (83) found that TRPM6 expression in Xenopus oocytes and
HEK293 cells did not entail significant ion currents. In contrast,
Voets et al. (38) measured significantly larger currents in
TRPM6-transfected HEK293 cells compared with control cells.
An explanation for this discrepancy might be the existence of
specific TRPM6 splice variants with different functional prop-
erties. Chubanov et al. (83) demonstrated that 5� rapid amplifi-
cation of cDNA ends revealed three short alternative 5� exons,
called 1A, 1B, and 1C, that were found to be individually
spliced onto exon 2, suggesting that the TRPM6 gene harbors a
promoter with alternative transcription start sites. These cDNA
have been named accordingly TRPM6a, TRPM6b, and TRPM6c,
and additional functional measurements are needed to explain
possible biophysical differences.

A key question concerns the nature of mechanisms underly-
ing the activation and regulation of TRPM6 and TRPM7. In
particular, what is the function of the atypical protein �-kinase
domain located in the carboxyl terminus? �-Kinases are a re-
cently discovered family of proteins that have no detectable
sequence homology to conventional protein kinases (84). To
characterize the TRPM7 kinase activity in vitro, we performed
studies in which the catalytic domain was expressed in bacteria
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(85). This kinase is able to undergo autophosphorylation and to
phosphorylate substrates such as myelin basic protein and
histone H3 on serine and threonine residues. The kinase is
specific for ATP and requires Mg2� or Mn2� for optimal activ-
ity. Clapham and co-workers (35) found that kinase activity is
necessary for TRPM7 channel function. Although kinases have
long been known to modulate ion channels, TRPM7 is unusual
in that the channel has its own kinase. Future studies will
address the question of whether the kinase, present in TRPM6
and TRPM7, has specific cellular targets that might modulate
ion channel activity and, therefore, the Mg2� balance.

Mutual Disturbance of the Ca2� and
Mg2� Balance

A tight coupling of the Ca2� and Mg2� balance is frequently
observed in patients and animal models (86,87). In hypomag-
nesemia with secondary hypocalcemia, Simon et al. (21) proposed
that paracellin-1 is involved in controlling both the Ca2� and
Mg2� permeability of the paracellular pathway in TAL. Immuno-
localization studies demonstrated that this tight junction protein is
expressed in TAL. Defective paracellular Ca2� and Mg2� absorp-
tion by inactive paracellin-1 explains the observed hypomag-
nesemia and hypercalciuria in patients with HHN (Table 2).

Mutations in the Ca2�-sensing receptor (CaSR) are also asso-
ciated with disturbed Mg2� handling (Table 2). Mutations in
this receptor are identified in autosomal dominant hypopara-
thyroidism, which is characterized by hypercalcemia and hy-
pocalciuria (88). Hypomagnesemia is observed in up to half of
the patients (89). Mutations in the parathyroid and kidney CaSR
result in a lower set point for plasma Ca2� and Mg2� on PTH
secretion (86). Consequently, renal Ca2� and Mg2� reabsorption
is suppressed, and the disease is characterized by inappropri-
ately low serum PTH and increased Ca2� and Mg2� excretion.
Furthermore, mutations in CaSR were identified in patients
with hypercalcemic disorders of familial benign (hypocalciuric)
hypercalcemia and neonatal severe primary hyperparathyroid-
ism (90). Inactivation of the CaSR likely leads to inappropriate
reabsorption of Ca2� and Mg2� in the TAL (91) and Mg2�

transport in DCT (92). Therefore, renal excretion of Ca2� and
Mg2� is reduced, which leads to hypercalcemia and in some
cases hypermagnesemia (93). It should be noted that the CaSR
plays a role in controlling renal Ca2� and Mg2� secretion
independent of its role in regulating PTH release. Recent stud-
ies using double knockout mice for CaSR and PTH showed a
much wider range of values for serum Ca2� and renal excretion
of Ca2� than those in control (PTH�/�) littermates, despite the
absence of any circulating PTH (94,95).

Patients with mutations in TRPM6, the �-subunit of the Na�-
K�-ATPase, or NCC exhibit besides hypomagnesemia also hy-
pocalciuria (Table 2). Expression of these affected genes is
restricted to the DCT. However, an interaction between trans-
cellular Ca2� and Mg2� pathways in the distal part of the
nephron is still unclear. There is limited overlap in expression
between the Ca2� transport proteins and TRPM6, �-subunit, or
NCC (38,53,96). It is interesting that hypocalcemia in HSH
patients can be corrected only by administration of high dietary
Mg2� content. Several studies reported that normalization of T
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the hypomagnesemia by dietary supplementation resulted in a
prompt release of PTH and subsequent correction of the hy-
pocalcemia (97–99). These findings suggest that hypocalcemia
in HSH is caused by a disturbance in PTH-mediated Ca2�

reabsorption. The factors that determine whether Mg2� defi-
ciency will result in inhibition of PTH release, a lack of response
of the bone to PTH, or both remain to be clarified.

Gitelman syndrome in adults is characterized by consistent
hypomagnesemia, hypocalciuria, and hypokalemic metabolic
alkalosis (Table 2). The affected NCC gene results in loss of
normal thiazide function, and the phenotype is identical to
patients with chronic use of thiazide diuretics. Likewise, hy-
pocalciuria is observed when animals receive long-term treat-
ment with thiazides (100). Recently, it was postulated that
thiazides induce hypovolemia, which stimulates proximal elec-
trolyte reabsorption, explaining the observed hypocalciuria
(100). This finding is in line with the observation that thiazide
exposure leads to structural degeneration of DCT, resulting in
downregulation of Ca2� transport proteins, arguing an in-
creased transcellular Ca2� transport in this segment (100,101).
This increased rate of apoptosis might reduce the absorptive
surface area of the DCT in general and, therefore, could explain
the observed hypomagnesemia.

Furthermore, mutations in the �-subunit of Na�-K�-ATPase
are the cause of IDH (Table 2). A cell model that hypothesized
that the mutated �-subunit manipulates the activity of the
Na�,K�-ATPase by disturbing routing of the total protein com-
plex to the plasma membrane has been proposed (25). As a
consequence, the reduced intracellular K� concentration, in-
creased intracellular Na� concentration, or depolarization of
the membrane may subsequently lead to reduced Mg2� influx
through the apical TRPM6 channel, resulting in Mg2� wasting
(25). However, the exact molecular mechanism of decreased
Mg2� reabsorption and the associated hypocalciuria remains to
be elucidated.

Taken together, many diseases in which Ca2� and Mg2�

disturbances are linked have been reported (Table 2). In some
cases, there is an explanation for the mutual disorder in Ca2�

and Mg2� handling, but in the majority of the diseases, the
origin of this coupling is still unclear. Particularly, the limited
overlap between the Ca2� transport (DCT2-CNT) and Mg2�

transport (DCT1-DCT2) machinery indicated that additional
mechanisms might be involved.

Research Directions
This review has focused on the identification, function, and

regulation of the Ca2� and Mg2� transport proteins. In the past
few years, significant advances were achieved in our knowl-
edge about the maintenance of the Ca2� and Mg2� balance. The
identification of the epithelial Ca2� (TRPV5 and TRPV6) and
Mg2� (TRPM6 and TRPM7) channels provided insight in a new
molecular concept of Ca2� and Mg2� influx in specialized
epithelia and other cell systems in which these channels facili-
tate Ca2� and Mg2� transport. There are striking similarities
between the characteristics of the TRPV5/6 and TRPM6/7
channel pairs, such as expression profiling, structural organi-
zation, and function with respect to the maintenance the Ca2�

and Mg2� balance (Table 1). To date, several studies have
focused on the regulation of TRPV5 and TRPV6, whereas many
questions remain to be investigated for TRPM6 and TRPM7.
For instance, the hormonal regulation of these Mg2� channels
has not been studied yet. The next step is to clarify the cellular
events in epithelial Ca2� and Mg2� transport. For instance, the
mechanisms by the DCT cells to sense the extracellular Ca2�

and Mg2� concentration and appropriately adapt the transport
rates are fertile areas for future research. The continued use of
molecular and cell physiologic techniques to probe the consti-
tutive and congenital disturbances of Ca2� and Mg2� metabo-
lism will increase further our understanding of renal electrolyte
transport and provide new insights into the way in which renal
diseases are diagnosed and managed.
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