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ABSTRACT

We apply image moment invariant analysis to total intensity and polarimetric images calculated from general relativistic
magnetohydrodynamic simulations of accreting black holes. We characterize different properties of the models in our library
by their invariant distributions and their evolution in time. We show that they are highly sensitive to different physical effects
present in the system which allow for model discrimination. We propose a new model scoring method based on image moment
invariants that is uniformly applicable to total intensity and polarimetric images simultaneously. The method does not depend
on the type of images considered and its application to other non-ring like images (e.g. jets) is straight forward.
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1 INTRODUCTION

Accretion onto astrophysical compact sources is the engine that
drives some of the most powerful and luminous events in the universe.
In the case of supermassive black holes (SMBHs), the study of
magnetized accretion flows at near-horizon regions allows for the
inference of the emission region nature and immediate environment
around the source, as well as the properties of the central object.

Due to their relatively large size on-sky as viewed from Earth, two
important SMBH are Sagittarius A* (Sgr A*) at the centre of our
Galaxy and Messier 87* (M87%), at the centre of the giant elliptical
galaxy M87. Both are accreting matter at strongly sub-Eddington
rates. Many analytic and semi-analytic models have been used to
model these low-luminosity accretion systems (e.g. Ichimaru 1977;
Rees et al. 1982; Narayan, Yi & Mahadevan 1995; Reynolds et al.
1996; Melia et al. 1998; Blandford & Begelman 1999; Falcke &
Markoff 2000; Falcke, Melia & Agol 2000; Bromley, Melia & Liu
2001; Yuan, Quataert & Narayan 2003; Broderick & Loeb 2006;
Yuan & Narayan 2014).

In a fully numerical context, the flows onto SMBHs can be
commonly studied using general relativistic magnetohydrodynamic
(GRMHD) simulations (e.g. De Villiers, Hawley & Krolik 2003;
Gammie, McKinney & To6th 2003; Tchekhovskoy, Narayan &
McKinney 2011; Dibi et al. 2012; Sadowski & Narayan 2015; Porth
et al. 2017; Tchekhovskoy 2019), where the accretion process is
initiated and self-consistently evolved as a result of turbulence and
plasma instabilities, for example the magnetorotational instability
(Balbus & Hawley 1991), at scales within a few gravitational radii
from the compact object.

In a conservative framework, the general relativistic equations of
magnetohydrodynamics (GRMHD) are solved in a particular space—
time and evolved according to conservation laws for mass, energy—
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momentum, and the Maxwell equations. A notable result from these
calculations is that the magnetic field evolution and accretion can
naturally produce powerful relativistic outflows by tapping into the
black hole spin energy in the form of jets (Blandford & Znajek 1977)
or winds (Blandford & Payne 1982).

In these hot underluminous accretion flows, the dynamics of the
disc are set by the heavy ions, while the near-horizon emission is
dominated by synchrotron radiation emitted by the lighter relativistic
electrons. The latter are typically not directly simulated in single-
fluid GRMHD simulations and, by employing physical arguments
(e.g. charge neutrality), the electron population characteristics can
be inferred. Only the electron internal energy and electron distri-
bution function remain unconstrained. One approach is to assume
a thermal distribution function and assign an electron temperature
in post-process. There are many choices of this, from a constant
fraction of the internal energy of the ions (Goldston, Quataert &
Igumenshchev 2005), or as a function of the magnetic field strength
(e.g. Moscibrodzka & Falcke 2013; Moscibrodzka et al. 2014; Chan
et al. 2015a), to other kinetic prescriptions that include anisotropic
viscosity (Sharma et al. 2007). Alternatively, different prescriptions
can be included in the GRMHD simulation to infer the properties of
the electrons (e.g. Vaidya et al. 2018). In particular, new algorithms
have been developed which allow for a self-consistent evolution
of the electron thermal energy with that of the MHD fluid (e.g.
Ressler et al. 2015; Gold et al. 2017; Ressler et al. 2017; Chael et al.
2018; Chael, Narayan & Johnson 2019). These are based on electron
heating prescriptions resulting from particle in-cell simulations (e.g.
turbulent cascade scenarios or magnetic reconnection events; Howes
2010; Rowan, Sironi & Narayan 2017; Werner et al. 2018; Kawazura,
Barnes & Schekochihin 2019; Zhdankin et al. 2019).

A variety of observations of Sgr Ax and M87x (including to-
tal intensity, image morphology, polarization, and others), can be
successfully reproduced with these models (e.g. Noble et al. 2007;
Dexter, Agol & Fragile 2009; Moscibrodzka et al. 2009; Dexter
et al. 2010; Shcherbakov, Penna & McKinney 2012; Moscibrodzka
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et al. 2014; Chan et al. 2015b; Gold et al. 2017; Event Horizon
Telescope Collaboration 2019a; Dexter et al. 2020; GRAVITY
Collaboration 2020; Event Horizon Telescope Collaboration 2021b,
2022a). However, much is still unknown about the nature of the
systems and many degeneracies are still present in the models.
This leaves room for much improvement and motivates the de-
velopment of tools and techniques that exploit the richness of the
observations to constrain the models better (e.g. Johnson et al.
2017; Jiménez-Rosales & Dexter 2018; Johnson et al. 2018, 2020;
Palumbo, Wong & Prather 2020; Jiménez-Rosales et al. 2021;
Narayan et al. 2021; Ricarte, Qiu & Narayan 2021; Ricarte et al.
2023).

The first successful observations of Sgr A*and MS87* of the
Event Horizon Telescope (hereafter EHT) made with Very Long
Baseline Interferometry (VLBI) at an observing wavelength of
1.3 mm (230 GHz; EHT Collaboration 2019a, b, c, d, e, f, 2021a,
b, 2022a, b, c, d, e, f), have opened a new window to studying these
sources using the properties of the image alone and motivates the
approach of this work to tackle the problem from an image processing
and computer vision perspective.

Some works have already explored computer vision techniques,
namely neural networks, and their application to parameter estima-
tion analysis of EHT data and models (e.g. Yao-Yu Lin et al. 2020;
van der Gucht et al. 2020; Yao-Yu Lin et al. 2021; Qiu et al. 2023).
Here, we take a different approach and focus on image moment
invariants (IMIs).

IMI are quantities constructed from image moments that exhibit
the property of not changing under a particular affine transformation,
such as translation, rotation, or scaling of the image; which allows
for a convenient and powerful way to characterize images.

IMI were introduced by Hu (1962), as a new tool for pattern
recognition. Since then, many advances have taken place in the
form of improvements and generalizations of Hu’s seven famous
invariants. Their application has been very fruitful in many other
areas such as in medical imaging in two and three dimensions (e.g.
Mangin et al. 2004; Ng et al. 2006; Xu & Li 2008; Li et al. 2017) and
feature extraction (e.g. Flusser & Suk 1993; Yang & Dai 2011; Yang,
Flusser & Suk 2015; Zhang et al. 2015; Yang et al. 2017, 2018).

In this work we explore how geometric IMI can be used for model
comparison and parameter estimation of accretion onto SMBH,
using high-resolution radio and millimeter wavelength images of
astrophysical objects made from data collected by VLBI observations
such as, for example EHT. When comparing models to the VLBI
images, the advantages of using invariants (e.g. under translation or
rotation) becomes obvious, not only because the position angle of the
images is an unconstrained model parameter, but also because VLBI
image reconstructions do not have an absolute reference frame, such
that reconstructed images may be shifted off centre.

VLBI data are usually recorded in full polarization which per-
mits the reconstruction of images in all four Stokes parameters
(Z, 0, U, V) at multiple wavelengths. The goal of this work is to
develop a model comparison method that can be applied uniformly
to all type of images.

This paper is structured as follows. Section 2 gives the information
on the numerical simulations used in this work as well as the ray-
tracing techniques used to generate a library of images of gas around
a black hole. In Section 3, we present the mathematical background
for the image moments and invariants with respect to translation,
rotation, and scaling. Sections 4 and 5 present the main analysis of
image invariants and scoring ideas. In Section 6, we study the time-
dependent behaviour of these quantities. Lastly, Section 7 contains
discussion and conclusions of our work.
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2 BLACK HOLE IMAGE LIBRARY

The black hole image library we use is calculated as described in the
following.

We use a subset of 3D GRMHD, long-duration simulations of
black hole accretion described in Dexter et al. (2020). The simula-
tions have been carried out with the HARMPI' code (Tchekhovskoy
2019), using conservative MHD in a fixed Kerr space—time.

The initial condition consists of a Fishbone—Moncrief torus (Fish-
bone & Moncrief 1976) with inner radius at ry;, = 12 M (in geometric
units) and pressure maximum radius rp,, = 25 M. We consider three
values of dimensionless black hole spin a = 0, 0.5, and 0.9375. The
torus is threaded with a single poloidal loop of magnetic field whose
radial profile can provide either a highly saturated (magnetically
arrested disc, MAD) or relatively modest (standard and normal
evolution, SANE) magnetic flux. For more details see Dexter et al.
(2020).

The GRMHD algorithm includes a self-consistent heating pre-
scription of the electron internal energy density in pair with that of
the single MHD fluid as implemented by Ressler et al. (2015). In
this case, the fluid receives a fraction of the local dissipated energy
according to a chosen subgrid prescription motivated by kinetic
calculations (e.g. Howes 2010; Rowan, Sironi & Narayan 2017;
Werner et al. 2018; Kawazura, Barnes & Schekochihin 2019). Here,
we explore two electron heating prescriptions out of the set of Dexter
et al. (2020): turbulent heating (TB) based on gyrokinetic theory
(Howes 2010) and magnetic reconnection (RC) from particle-in cell
simulations (Werner et al. 2018). We also assume a composition of
pure ionized hydrogen (Wong & Gammie 2022).

To predict observational appearance (images) of the GRMHD
models we carry out radiative transfer simulations. We post-process
GRMHD simulations using the general relativistic ray-tracing public
code GRTRANS? (Dexter, Agol & Fragile 2009; Dexter 2016). We
assume a fast-light approximation.

With the emission mechanism set to synchrotron emission, we
compute the full Stokes vector (I, Q, U, V), which characterizes
the properties of the polarized light. The electron temperature T,
is obtained from the GRMHD electron internal energy density u,
according to kgT. = (Y. — D)myuc/p, where kg is the Boltzmann
constant, y. = 4/3 the adiabatic index for relativistic electrons, m,
the proton mass, and p the density. The mass of the black hole
sets the time-scale of the system. We use a value of 4 x 10° Mg,
where Mg, is the solar mass unit, consistent with that of Sgr Ax.
The mass accretion rate is scaled to match the observed flux density
at 230 GHz of Sgr A*(2.5Jy; e.g. Dexter et al. 2014; Bower et al.
2015; EHT Collaboration 2022a). We calculate images at 230 GHz
at an inclination of i = 25 deg, where the viewing angle is motivated
by recent observations of Sgr A% (GRAVITY Collaboration 2020;
Wielgus et al. 2022; EHT Collaboration 2022¢). The images reso-
lution is always 192 x 192 pixels over a 42 r, (~ 210 pas) field of
view. We blur the images with a 20 pas Gaussian, consistent with
the characteristic imaging resolution of the EHT.

Example of blurred polarized images from one frame from our
library are shown in Fig. 1. It can be seen that the Stokes / and linear
polarization (L P = / Q? + U?) images are typically dominated by
ring-like features. This is true for this type of low-luminosity systems
due to their low-optical thickness and large geometric thickness. The
Stokes V images show more structure and can have both positive and

Uhttps://github.com/atchekho/harmpi
Zhttps://github.com/jadexter/grtrans
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Figure 1. Example polarized images from a model snapshot in our library.
The images have been blurred with a 20 n as Gaussian, characteristic of
the EHT resolution. Top left: total intensity (Stokes I). Top right: linear
polarization. Bottom: Stokes V.

Table 1. 3D GRMHD simulations used in this work to create library of black
hole images.

Model e~ heating i a
MAD TB, RC 25deg 0.0,0.5,0.9375
SANE TB, RC 25deg 0.0, 0.5, 0.9375

negative values. A summary of the parameters used for the models
is shown in Table 1. Our total image sample consists of 150 frames
per model, spanning a range of 1500 M.

3 IMIS

In 2D, the moment of order pq of a function f(x, y) is defined as

mpq=/ / g (x. ) f (x. ) dx dy: )

where ®,, corresponds to a particular set of basis functions. The
indices p, g usually denote, respectively, the degree of order of the
coordinates x and y as stated within ®. In the case of a 2D image, the
function f(x, y) represents the value of a pixel (x, y) and the integrals
become discrete sums over the image extent.

In general, moments can be constructed using variety of basis
functions depending on the application (e.g. geometric, Gauss-
Hermite; see Flusser & Suk 1993; Yang et al. 2018). In this work
we use a geometric basis, where the set of functions consists of
polynomials of order n > 0, where the latter is an integer.

Some image moments have a well-understood physical interpre-
tation. For example, mi is associated to the total flux of the image,
while (mo/mgo, mo1/moo) represents the centroid of the image. As
the order of the moment increases, however, assigning a physical
meaning becomes a difficult task.

Invariant quantities under affine transformations can be con-
structed using image moments.

In a geometric basis, the centralized moments are translation
invariant and are defined as

pg =D D (x —x0)"(y — y0)* f(x, y)dxdy: )
.

X
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where (xo, yo) is the centroid of the image and is calculated following
equation (1) with @,,(x, y) = x” y7.

The set of u,, can be made scale invariant (i.e. with respect to
image size) by

_ M pq
pa = [l+ #] .
abs | ug

In this work, the intensity function f(x, y) can represent any of the
polarized quantities /, L P, & V. We note that by taking the absolute
value in the denominator, we have extended the usual definition of
equation (3) to allow negative valued pixels, as can be the case for
Stokes V (see Appendix A).

In addition to these transformations, Hu (1962) and Flusser &
Suk (1993) showed that the following moment combinations are
rotationally invariant (Hu 1962; Flusser 2000):

3

HFy = 1m0 + no2
HF = (n20 — n02)” + 47,
HF, = (130 — 3n12)> 4+ Bna1 — 103)°
HF; = (30 + n12)” + (21 + n03)”
HFy = (30 — 3m2)(130 + m2) (030 + 112)° = 321 + 103)°] +
(3n21 = 103)(M21 + 103)[3(030 + M12)> = (721 + 103)°]
HFs = (20 — n02)[(m30 + 112)* — (21 + n03)*1 +
4n11 (30 + n12)(M21 + No3)
HFs = (3121 — n03)(m30 + 112)[(130 + m2)> — 3021 + 103)°1 —
(130 — 3712)(M21 + N03)[3(n30 + M12)” — (21 + 103)°]
HF; = nul(ms0 + m2)* — (o3 + n21)°1 —
(m20 — M02)(M30 + N12)(M03 + M21) )

In the rest of this work we will refer to this set as the ‘HF’
invariants. Here, HF}; k < 6, are the ‘original’ invariants proposed
by Hu (1962). HF; was later added by Flusser (2000). Though
expressions in equation (4) are neither complete nor independent
(HF, = (HF42 + HFGZ)/HF33), they have been used to successfully
extract and characterize image features and are widely used in image
recognition algorithms (see Section 1).

An analogy could be made between abs(HFj), and the moment of
inertia of an object about an axis. In this case, the pixels’ intensities
would be analogous to the object’s density and the rotation axis to
the image’s centroid. An interesting property of the HF invariants is
that while the HFy; k <5, are reflection symmetric, HF¢ and HF;
are skew invariant, which could allow for a distinction of mirrored
images in a collection of otherwise identical images. For more details
on how the invariants change under certain image transformations,
see Appendix B.

It is clear that the complicated functional form of the invariants
prevents a clear interpretation of what each quantity is measuring.
We investigated this further but were unsuccessful in identifying a
clear tendency of how the HF change with respect to different images
(see Appendix. C).

In what follows we will explore their general behaviour when
characterizing our black hole library and their dependence on
physical effects.

MNRAS 527, 1847-1864 (2024)
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Figure 2. Normalized distributions of g(HF) = sign(HFy)log |HF}| of Stokes I images as a function of various physical effects. Columns indicate a different HF
invariant. Rows indicate in order: magnetization (top), spin (middle), and electron heating (RC versus TB, bottom). Each row marginalizes over all non-divided

parameters.

4 INVARIANT DISTRIBUTIONS AS A
FUNCTION OF MODEL PHYSICAL
PARAMETERS

We first explore the sensitivity of the IMIs to the physical model
parameters. We present and discuss the distributions of the invariants
computed per polarized image quantity (I, LP, V) for different
magnetizations, black hole spins, and electron-heating mechanisms,
separately.

4.1 Invariants based on total intensity, Stokes 1

Fig. 2 shows the distributions of g(HF}) = sign(HF)log (|[HF|)
for Stokes /, as a function of different physical effects. The first row
shows the distributions for total flux, /, as a function of magnetization.
It is interesting to note that for 0 < k < 3, the HF} distributions for
either the MAD (blue) or the SANE (red) cases, appear to concentrate
in one lobe, while cases HF); k > 3, splitinto two. Simultaneous sign
changes of certain HF} should be indicative of a degree of mirroring
in the images or sign flip (or both, mirroring and sign flip) in case of
Stokes V maps (see Appendix B).

In the case of the one-lobe distributions, both populations span over
a similar order-of-magnitude range, with the MAD extending slightly
more to lower values. The MAD distribution shows a relatively
higher level of symmetry compared to the SANE, which tend to
skew toward low orders of magnitude. The case HF, shows an
interesting behaviour of the MAD population, with a bi- or even
tri-modal population. The maxima at lower values represents mostly
non-zero spin reconnection MAD models, while the one at higher
values the models with zero spin and turbulent heating mechanism
(Appendix Fig. D1). The peak in the middle is a combination of the
rest. The cases where HF; k > 3, the bimodal distributions of the
models are similar across the value of k. For either magnetization
case, each lobe is located at approximately the same distance from
the origin as their & counterpart. If only log (|[HF|) was plotted
instead, without sign information, the populations would form one

MNRAS 527, 1847-1864 (2024)

continuous lobe with similar shape to the cases where HFy; k <
3. The ‘negative’ models would comprise the higher end of their
respective log (|HFy|) distributions. Cross-referencing these panels
to the ones in Appendix Fig. D1, it can be seen that either family of
lobes correspond to different frames of the same model.

In the case spin versus no spin, shown in the middle row of
Fig. 2, the different spin populations appear to be in a one-lobe
distribution for £ < 3, while the distributions split into two for k
> 3. We found that the @ = 0.5 models lie generally between the
a = 0 and ¢ = 0.94 and so, in the interest of simplicity and to
make the differences between the cases more evident, we decided
to separate the models into two categories: zero and non-zero spin,
where the latter includes both @ = 0.5 and a = 0.94. The a = 0
population (blue) is skewed to low orders of magnitude, as opposed
to the a # O population (red) which looks relatively symmetric.
Introducing spin to a non-spinning population appears introduce a
translation of the distribution to lower orders of magnitude, without
preserving the shape. In the case of HF), the lower end of the spinning
populations is dominated by the MAD, while the ¢ = 0 SANE
dominates the higher end of the non-spinning distribution (Appendix
Fig. D1).

The bottom row of Fig. 2, shows the effect of changing the electron
heating mechanism of the invariant population. Turbulent heating
(TB, red) displays what is mostly a one-lobe distribution with a slight
skewness to low values. Reconnection (RC, blue) concentrates as
well in one lobe and spans about the same range as the TB population.
Occasionally, it shows a two lobe distribution (e.g. HFy, HF3). In
these cases, the lobe located at lower values is consistent with non-
zero spin reconnection models, the majority of them being MAD
(see bottom panel of Appendix Fig. D1).

4.2 Invariants based on linear polarization, LP

Similarly to Fig. 2, the distributions in Fig. 3 show two distinct sets
of shapes for the cases k < 3 and k > 3 regardless of the physical
effect dependency.
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Figure 3. Similar as Fig. 2 but for LP.

The distributions for all MAD and SANE models are shown in
the top row of Fig. 3. The distinction between MAD (blue) and
SANE (red) is more evident. For 0 < k < 3, both distributions are
concentrated in one lobe. The MAD population, however, is relatively
symmetric and is concentrated toward lower order of magnitude
values. Alternatively, the SANE distributions concentrate towards
the higher range of the span and present a tail to lower values. There
is considerable overlap between both distributions. For k = 0, both
distributions appear to be bimodal. Complementing this information
with that from the middle and bottom panels of Appendix Fig. D2,
it can be seen that the smaller lobe of the SANE distribution is made
up by zero spin, reconnection models. For k > 3, either distribution
splits into two lobes, each comprised of different frames of the same
models and each located at approximately the same distance from
the origin as their + counterpart. If log (|[HF,|) was plotted, the
populations would show similar one-lobe shapes as for the HFy; k
< 3 cases.

Analysing the LP distributions from a spin versus no spin per-
spective (middle row of Fig. 3), a similar distribution shape to MAD
versus SANE is observed across k values. Comparing the relative
positions of both distributions, it is clear that a change in spin
introduces a translation of the distribution, where an increase in
a moves the invariant populations toward lower values.

The bottom row of Fig. 3 shows the effects of a change in electron
heating. Regardless of the electron heating, the populations span
over a similar domain. The SANE RC models seem to make up
most of the higher end values while the MAD RC dominate the
lower end.

4.3 Moment invariants based on circular polarization, Stokes V

Similarly to Figs 2 and 3, Fig. 4 shows the normalized IMI
distributions for circular polarization images.

The shape of the populations is very similar across all physical
effects. In the cases 0 < k < 3, the overall shape displays a
concentration towards the lower end of the span with a tail extending

to higher order values. Interestingly, for Stokes V the case k = 0,
shows a two-lobe split distribution of g(HF)) like the one seen for &
> 3, contrasting with Stokes / and LP, where only the latter invariants
showed these features. Just as for / and LP, the lobes are comprised of
different frames of the same models and are located at approximately
the same distance from the origin as their & counterpart. Once again,
if log (|[HF|) was plotted instead, the populations would concentrate
in one lobe, skewed to high values.

Stokes V does not seem to have a significant sensitivity to physical
effects. The only distinguishable difference between any pair of
distributions appears to be the location of their maxima. In the case of
magnetization, the MAD distribution are more concentrated to one
value lower than the SANE. In the case of spin, the a = 0 distribution
has a maxima at relatively lower values than the a # 0. In both the
a = 0 and a # 0O cases, the bulk of the distribution appears to be
dominated by MAD models.

It appears that Stokes V is most sensitive to a change in electron
heating. A change in electron heating results in a slight offset between
their maxima, with the RC dominating the lower range of values and
being made up almost in its entirety by MAD models (see Appendix
Fig. D3). The TB population peaks at larger values than the RC and
appears to be also dominated by the MAD.

4.4 Linear versus circular polarization invariants

It is also instructive to plot the HF invariants in LP versus V domain.
This is shown in Fig. 5.

The behaviour of the HF invariants remains very similar regardless
of the physical effect (magnetization, spin, and electron heating). In
the case of HF), both sets of distributions form two separate ‘islands’,
this is because Stokes V splits into two as is seen in the first column
of Fig. 4. For HF; 1 < k < 3, the distributions form one island with
extended and significant overlap.

In the case of HF;; 4 < k, since both the LP and Stokes V
distributions slips into two, when shown as V versus LP, this results in
four islands where the respective populations overlap almost entirely.
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Figure 4. Similar as Fig. 2 but for V.
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Figure 5. Similar to Fig. 2 but for LP and V together.

5 MODEL SCORING PROCEDURES USING

MOMENT INVARIANTS

A few quantities that contain image spatial information have
been considered in past works to differentiate between models
and real black hole images. Those include second-order image
moments to measure image sizes or asymmetries (e.g. EHT Col-
laboration 2019e, 2022e), or spatially resolved linear polarization
fractions and maps (e.g. Palumbo, Wong & Prather 2020; EHT
Collaboration 2021a, b), some only interpretable at low inclina-
tions. Also, when scoring a model, quantities such as Stokes I,
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LP, and Stokes V are often considered independently of each
other.

In this work, we aim to improve current scoring methods in
two ways. The first improvement is to use IMIs, which encode
structural information of the model images, uniformly for total
intensity and polarimetric images. The second improvement is to
combine the value of /, LP, and V invariants into one when scoring
a model.

Our scoring procedure is based on calculating a ‘distance score’,
ds, between two model frames (or between a model and an observed
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Figure 6. Closest frames from two different models in our entire library according to criterion 1: the joint differences between image-integrated 7, LP, and V,
are the smallest. Both models are SANE RC, with zero spin. Each column shows, from left to right, /, LP, V. The value of each image-integrated quantity is
shown at the bottom of the panel. Linear polarization shows as well the resolved polarization fraction (m) and S, coefficients (see main text for details). The
selected ‘closest” frames from each model are indicated at the top with the label ‘snp’. Two scores are shown at the top of the figure. Left: ds (equation 5)
following AX from (equation 6). Right: ds following AX from (equation 8). The same fixed frames are used for both calculations. Since the scoring algorithm
has been optimized for image-integrated quantities, this frame combination is chosen by minimizing ds from AX given by equation (6). It can be seen that while
the image-integrated values between the frames are very similar, the overall morphology of these images is rather different and is reflected in the large value of

ds calculated from the HF invariants that characterize these images.

image):

ds=|| AX || = /Z AXZ (5)

where AX is a vector made up of the differences between multiple
quantities according to different criteria:

(1) Image-integrated parameters:
AX = ( Alyy, ALPy,, AV, )s (6)

where each entry is the percentile difference of a polarized quantity
between the frames m and n of their respective model:
|Ym - Yn'

AYp = ———————
max(Y) — min(Y)

x 100 percent; ¥ = (I, LP, V)
@)

where max(Y) and min(Y) are the maximum and minimum values of
Y in the entire image population.
(2) Invariants:

AX = (Il A(HF)y,, I, | A(HF)Lp,, I, | A(HF)y,, ) (8)

where A(HF)y,, =( AHFy)y,,, - » AHF)y, ); Y=
(I,LP,V );is a vector made up of the percentile differences
(equation 7) between the HF invariants given in equation (4).

Following this procedure, we define the ‘closest’ and ‘farthest’
models as those with the smallest and largest ds between them:

min(ds ) = min( || AX || ) ;max(ds ) = max( || AX | ). )

We note that in this work the weight of each component of AX is
the same, as is each contribution from the different invariants (in case
of criterion 2). This can be easily adapted to accommodate different
observational uncertainties coming from measurements.

We have applied this scoring procedure to every two-frame
combination (150 x 150 frames), with the exception of self-
frame comparison (150), from every two models in our library
(78 combinations). In total, we find the closest and farthest frames
from two models in our library from a sample of 1800 images and
1743 300 possible combinations. Figs 6 and 7 show examples of /,
LP, Vimages of the closest models in our library according to either
criterion 1 (optimizing for image parameters) or 2 (optimizing for
invariants).
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Smallest differences
Optimizing for Invariants
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Figure 7. Similar to Fig. 6 but optimized for criterion 2. The frames and models are chosen out of all the possible combinations in our entire library (except for
frame self-comparison), by minimizing ds from AX given by equation (8), so that the joint differences between the invariants that characterize the /, LP, and V
images is the smallest. Both frames come from the same model: MAD with spin @ = 0.5 and RC as a heating mechanism. It can be seen that the distance score
based on the image-integrated values is larger compared to that in Fig. 6. The overall morphology of the 7, LP, and V images is much more similar, including
the spatial distribution of linear polarization vectors (white ticks in foreground) in the LP panel, which also display a much more ordered configuration.

In the figures each column shows, from left to right, the I, LP, V
images of either model. The specific closest frame selected from a
model is specified at the top of the panels with the label ‘snp’. The
value of each image-integrated quantity is shown at the bottom. In the
case of linear polarization, three more quantities which encapsulate
spatial information of the polarization are shown: the resolved linear
polarization fraction (m) and the 8, coefficients used to characterize
the spatial distribution of polarization vectors at low inclinations
(Palumbo, Wong & Prather 2020). Two ds scores are shown at the
top of the figure. On the left, ds is calculated using AX from equation
(6) while on the right, A X is defined by equation (8). The same frames
are used for both calculations.?

In the case of Fig. 6, the closest frames come from two SANE
RC models, both with spin zero, while for Fig. 7, the closest frames
come from the same MAD RC with a = 0.5 model.

3We note that the scoring we have suggested for IMI is not the same that is
currently used for image-integrated quantities so it is an unfair comparison.
These other metrics that have been used in model comparison have their
merits and give reasonable results. The comparison we make to HF invariants
is not meant to discredit them, but rather to show the effectiveness of the IMI
and to consider them as a supplementary approach.
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It is evident that very different kinds of models can generate
frames with very similar image-integrated quantities (Fig. 6) but
with images that look quite distinct between each other. This causes
a very large difference with respect to the value of the invariants.
When taking into consideration the structure and morphology of
the image (Fig. 7), similar images can be found between distinct
models. However, the differences using invariants are comparatively
larger than when considering criterion 1 based on image-integrated
quantities, pointing to a higher sensitivity and discerning power of
the former. Both frames come from the same model: MAD with
spin @ = 0.5 and RC as a heating mechanism. Since the frames are
highly correlated (see Section 6), the algorithm naturally chooses
consecutive frames. Even so, the invariants pick up on the fact
it is not the same image and is still larger than that for image
parameters, pointing to a higher sensitivity and discerning power
of these quantities.

It is interesting to note that in Fig. 7, the polarization maps
(white ticks in foreground of LP panels), which indicate the spatial
distribution of the linear polarization vectors, show very similar
configurations between the frames. The value of the resolved linear
polarization fraction (m) differs by less than 2 percent. The B,
coefficients, alternatively, show more difference in the consecutive
frames: the magnitude of the 8, coefficient changes by 50 per cent
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Figure 8. Similar to Fig. 7 but maximizing the distance score obtained according to criterion 2, that is, the joint differences between the invariants that
characterize the /, LP, and V images are the largest of all combinations. In this case, the most different frames in our library correspond to those from a MAD
and SANE, non-zero spin with magnetic reconnection as the electron heating mechanism. It is clear that the images exhibit different morphologies and spatial
distribution of polarization vectors. The distance score from invariants is also much larger than that obtained from image parameters.

while the angle coefficient has a much larger difference between the
values.

In Fig. 8 we show as well the two frames that are the most
different in our library according to their invariants. This is achieved
by maximizing ds obtained from criterion 2. It can be seen that the
structural differences between the images are far more evident, which
is reflected in the large value of the distance score for invariants.

6 TIME EVOLUTION OF INVARIANTS

Studying the time evolution of invariants is also of great interest,
since it provides a powerful new tool to compare models and
data from multiple epoch observations, where structural changes
in the source’s image may be present. Specially after the results of
EHT Collaboration (2022d, e), where the quick variability of Sgr
A*complicates the imaging process, but provides an opportunity to
test theoretical models. With more data to come from more observing
campaigns with the EHT, the analysis and modelling of these sources
in the time domain are increasingly becoming more important.

In Fig. 9 we show a variety of different quantities that describe
the time properties of g(HF)) for I (top row), LP (middle row), and
V (bottom row) for all models. The first column shows the time
evolution of all three observed quantities for the whole duration of
our simulations. There appears to be no particularly characteristic

feature in the curves, though it is interesting to mention that the
behaviour for Stokes V is variable over a wider range of values,
presumably due to a switch in ‘polarity’ of the quantity with time.

In the second and third columns we present, respectively, the
autocorrelation and the power spectral density (PSD) of the time
series. Both of these calculations were done using scipy.Welch
(Welch 1967; Virtanen et al. 2020) with an overlapping window of
50 snapshots. This serves as a smoothing kernel and allows us to
observe more clearly a trend in the data.

In the case of the autocorrelation function, we show the first 120 M
(limit set by the overlapping window of 50 snapshots). We observe
that the frames become de-correlated on a time-scale of 20-30 M, as
indicated by the drop to zero of the curves. Stokes V appears to drop
steeper than / and LP.

As previously mentioned, in the last column we plot the PSD of
the time evolution. This is useful to discover any recurring behaviour
in the data, for example a peak at F = 0.01 M~! would be indicative
of periodic behaviour every 100 M. The other, and main reason, is to
identify the existence of a general trend which could be, for example,
in the form of a power law. Even though the spacing between the
frames in our library is relatively big (10 M) and the duration of the
models is short (1500 M), which limits the frequency space that we
are able to probe, we find an interesting behaviour. For / and LP, the
spectrum can be described as a plateau at low frequencies, with a
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Figure 9. Left column: time evolution of the g(HF() value for I, LP, and V for all simulations. Middle column: the autocorrelation of the time series for the
first 12 snapshots (120 M). Right column: the power spectrum density of the time series.

power-law drop-off at higher ones. Interestingly, this is not observed
for Stokes V. This points towards the presence of red noise in the
data, reminiscent of what has been found for image-integrated total
intensity from a large set of EHT GRMHD simulations (Georgiev
et al. 2022).

We have calculated these quantities for all HF invariants, but
decided to show only those for HF in the interest of simplicity.
A generic observation is that higher order invariants de-correlate
immediately.

Such an extensive analysis in the time domain of the invariants
from all observables (I, LP, and V), for all the models is a powerful
tool. These new variability constraints could be combined and used
as a prescription for aiding imaging algorithms (e.g. Broderick et al.
2022), or parameter estimation pipelines (e.g. Yfantis et al. 2023).

7 DISCUSSION

In this work, we have explored how geometric IMI can be used as
a new method for model discrimination of accretion onto BH. We
have used a library of polarized images calculated from a variety
of models from GRMHD simulations and calculated their IMI.
Since IMI encapsulate structural changes of the images (though it
is still unclear what exact image property is measured by each one;
Appendix C), we have shown that they can be highly sensitive to
different physical effects present in the system (e.g. magnetization,
spin of the black hole and electron heating mechanism; see Section 4).
These distributions could be used to identify the probability that a
given (calculated or measured) image belongs to a population with
certain parameters. Given the modest size of our library, we leave
this for future work.
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Current model scoring methods consider a variety of properties
of the images they produce and compare to the corresponding ob-
servables. Each quantity, however, is often calculated with different
approaches and a final model score, which could give sensible results,
is considered independently. We have proposed a new scoring method
that is based on IMI and is not only applicable to total intensity and
polarimetric images uniformly, but also combines the value of I,
LP, and V invariants into one (see Section 5). We do not attempt to
quantify EVPA images because they may be a subject to external
Faraday rotation caused by material far out in regions outside the
domain of the models. An application to EHT data is left for future
work.

Given the powerful properties of the IMI, if it were possible to
disentangle the EHT beam resolution with the ‘true’ image under-
neath it would be possible to conduct mass measurements with the
observations and mass-agnostic model comparison. Unfortunately it
is not clear how to do it exactly. Perhaps there exists an extension
of the IMI basis to Fourier space, where the observations are made.
Whether this is possible while keeping the properties of the IMI
intact, we leave for future work. In addition, it is worth to mention
that future EHT arrays and observations (either at 345 GHz or space
VLBI) will have better resolution and the blurring will be smaller,
which is an exciting prospect to look forward to.

Still, this technique as is has an advantage over directly model
fitting the visibilities of VLBI data, since the images are already
an excellently calibrated data set and there is no need for further
calibration. Moreover, our new procedure is versatile with the type
of image morphologies that are considered. This means that it is not
limited to ring-like structures and could be applied to other kinds of
images with more extended or elongated features such as jets, which
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have been observed at longer wavelength VLBI observations (e.g.
22, 43, and 86 GHz Kravchenko et al. 2020; Park et al. 2021). We
explore this in Appendix E, where we have applied our algorithm
to images with prominent jets in our model library. We find that our
scoring method works as well for these non-ring images, as expected.
We have also applied the scoring method to an extended sample of
images that go beyond accretion onto black holes (Appendix F). We
find that the algorithm successfully judges and finds the two black
hole images in the collection as those with the smallest distance
between them.

In this analysis we only considered models at low viewing angles,
but the application to other viewing angles is straight forward. We
observed that, as a function of inclination, the overall shape of the
distributions remains very similar, only at high inclinations are the
changes slightly more evident.

We have also explored the effect that blurring has on the HF
distributions. This is of particular interest since the EHT will observe
at 345 GHz in the future, for which the resolution will be better by
40 per cent. The general behaviour we observe is that the differences
between the invariants of different images become smaller and
converge to zero as the size of the blurring kernel increases. For
the particular improved resolution the EHT at 345 GHz, the changes
to the invariant distributions are very small and not particularly
evident when shown in a logarithmic scale. As a consequence, the
invariant distributions will remain very similar between 230 and
345 GHz.

Lastly, we have studied the time-dependent behaviour of the
invariants. We show that the models de-correlate at scales of 20—
30M. The power spectral distributions of the / and LP invariants
show a plateau at low frequencies that falls like a power law at
high frequencies. This is not observed for Stokes V. This power-law
trend seems to be consistent with other findings by Georgiev et al.
(2022) regarding light-curve variability in BH accretion GRMHD
simulations.

In this work, we have shown that IMI are a promising new
approach for characterizing the nature of astrophysical systems and
will certainly prove useful when learning about the intricacies of
magnetized accretion onto massive black holes.
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APPENDIX A: MOMENT INVARIANTS
VERIFICATION AND PROPERTIES

Here, we demonstrate that our script for calculating IMHI is correct.
We show the invariance of IMHI with respect to translation, rotation,
and scaling. Without loss of generality, we use one of the frames of
a non-zero spin, MAD reconnection model.

Each column of Fig. Al, shows the Stokes / image under the
following (sequential) transformations: original, scaling of field of
view (fov) by a factor of two, scaling of fov by factor of three, rotation
(randomly selected value of 45 deg) and translation, where centre of
the image was shifted, randomly, from (0, 0) pas to (—160, 200) pas.

The values of the percentile differences of the HF invariants for
each transformed image in Fig. Al and the original are shown in
Table Al.

Fig. A3(a) shows the percentile differences of the HF invariants
between each transformed image from Fig. Al and the original. It
can be seen that the values of the invariants of the transformed images
remain very similar with respect to the original. The largest difference
arises with rotation. This is due to numerical errors introduced
by interpolated values to new ‘in-between’ pixels of the image.
However, even taking this into account, the largest differences are of
the order of 107°%.

Due to linear polarization images being always positive, we expect
the behaviour of the invariants to be similar to the one for Stokes /.

We explore the behaviour of Stokes V images, where the value
of a pixel value can be in the negative regime. We use the Stokes V
image from the same frame as before and transform it in the same
way as described for Stokes /. Fig. A2 shows the corresponding
transformed images, while Fig. A3(b) shows the value of the
percentile differences between the transformed Stokes V images
and the original. The values of these differences are presented in
Table A2.

It can be seen that though the percentile differences are generally
larger for Stokes V compared to Stokes /, but the largest difference
is of the order of 107#, and so we conclude that the HF invariants for
Stokes V are indeed invariant.
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Table Al. Percentile differences of the HF invariants between each transformed image in Fig. Al and the original.

|AHF |AHF| |AHF,| |AHF3| |AHF4| |AHFs| |AHF| |AHF7|

[per cent] [per cent] [per cent] [per cent] [per cent] [per cent] [per cent] [per cent]
Original - 2 x fov 5.62e-14 2.96e-13 4.29¢-7 8.18e-7 8.90e-6 2.73e-6 1.38e-6 6.84e-7
Original - 3 x fov 9.83e-14 9.87e-14 8.54e-7 1.62e-6 1.77e-5 5.44e-6 2.75e-6 1.36e-6
Original - rotation 1.10e-7 3.35e-6 2.68e-6 2.23e-7 8.63e-5 3.62e-6 9.81e-7 1.81e-6
Original - translation 1.31e-7 2.79¢-6 1.64e-5 3.07e-6 7.23e-5 3.29¢-6 1.36e-5 4.55e-6

Table A2. Percentile differences of the HF invariants for each transformed image in Fig. A2 and the original.

|AHFy| |AHF| |AHF,| |AHF3| |[AHF4| |AHFs| |AHF¢| |AHF7|
[per cent] [per cent] [per cent] [per cent] [per cent] [per cent] [per cent] [per cent]
Original - 2 x fov S5.4le-12 1.87e-11 1.15e-5 1.52e-2 2.79e-5 1.41e-5 4.77e-5 3.74e-4
Original - 3 x fov 1.61e-11 4.76e-11 2.29e-5 3.03e-5 5.57e-5 2.80e-5 9.51e-5 7.46e-4
Original - rotation 9.92e-6 2.28e-5 1.35e-4 1.18e-4 2.38e-4 1.25e-4 1.38e-4 5.73e-4
Original - translation 9.96e-6 2.26e-5 7.17e-5 4.98e-5 1.13e-4 6.43e-5 1.97e-5 9.32¢e-4
Stokes I
Original 2 x fov 3 x fov Rotation Translation

44x10" 44x10°" 44<10° 400 44x10 "

3.3x107 3.3x107 33107 200 3.3x107
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Figure Al. Stokes / of a randomly selected frame from our library. Each column shows the image being modified by a sequential transformation. These are, in
order: original, scaled fov to twice the original, increased fov by three times, rotation of 45 deg, translation of image centre from (0, 0) pas to (—160, 200) pas.

Stokes V
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Figure A2. Same as Fig. A1l but for Stokes V.
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Figure A3. Percentile differences of HF invariants between the original and each transformed image from (a) Fig. Al and (b) Fig. A2.
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Figure B1. Stokes I, LP, and Stokes V images and invariants of a randomly selected frame from our library. Each column shows the image being modified by
a different transformation. These are, in order: original, negative image, reflection, combination of negative image, and reflection.

APPENDIX B: MOMENT INVARIANT
PROPERTIES

We show how the HF invariants (equation 4) behave under reflection
and taking the negative of an image (Fig. B1). Without loss of
generality, we choose a random frame from our library.

When taking the negative of an image, there are three flips in the
sign of the invariants. These are HF\, HF's, and HF;. The change
in sign of HF, could be analogous to an inversion of the direction
of rotation of the moment of inertia of a body about an axis. While
a physical intuition for a flip in HF5 is unclear, the change in HF;
should indicate some degree of reflection with respect to the original
image.

Reflection of an image produces two expected changes in
the invariants: only HFs, HF; change sign. Since these exhibit
antisymmetric properties under reflection, they are indicative of
mirroring in the images. This could be because the centroid of
the image shifted to the reflected position of that of the original
image.
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A combination of negative image and reflection causes three sign
flips in HFy, HF 5, HF . It is interesting that a sign change in HF7 is
cancelled out by both transformations.

APPENDIX C: MINIMIZED AND MAXIMIZED
DIFFERENCES BETWEEN INVARIANTS.

We explore the behaviour of HF invariants applied to our image
library in an attempt to identify what particular image property is
measured by each individual quantity (equations 4). Fig. C1 shows
the frames where the percentile differences (equation 7) between
each invariant have been minimized (top) or maximized (bottom)
considering all the frames in the entire library. Only Stokes / has been
considered, for illustrative purposes. Each difference for each IMI
has been determined independently of the other seven. Unfortunately,
no clear tendency is observed and the complicated functional form
of the invariants hinders a clear interpretation of what each one is
measuring. This is reflected by the similarities and differences seen
in the images in all cases.
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Figure C1. Frames where the difference between the value of each HF invariant for Stokes I has been minimized (top) or maximized (bottom) considering the
entire library. The difference between each IMI has been determined independently of the other seven. It is unclear how each HF invariant particularly grades
the similarities and differences in the images.

APPENDIX D: DETAILS OF THE MOMENT
INVARIANT DISTRIBUTIONS

Figs D1, D2, and D3 show decomposition of the distributions of HF
invariants as a function of different model parameters. This helps
understand the origin of different peaks in the distributions.
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Figure D1. Normalized stacked distributions of g(HF}) = sign(HF)log |HF}| of Stokes I images as a function of various physical effects. Columns indicate a
different HF invariant. Rows indicate: spin (top), electron heating (RC versus TB, bottom).
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Figure D2. Similar to Fig. D1 but for LP.
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Figure D3. Similar to Fig. D1 but for Stokes V.

APPENDIX E: APPLICATION TO JET-LIKE
IMAGES

‘We have applied our algorithm to identify the closest images from a
set of non-ring like images in our library. We limited our choice to
frames from the SANE TB high spin model at 86 GHz, which feature
a very prominent jet.

In Fig. E1 we show the closest frames according to criterion 2
in (equation 8), where the frames between which the smallest joint
difference from all the HF invariants is achieved. Because all the
images from this subsample come from the same model, we have

MNRAS 527, 1847-1864 (2024)

excluded all the possible pairs formed from comparing a frame with
itself (150). In total, the algorithm selected the best possible combi-
nation of frames out of 150 x 150 — 150 = 22 350 combinations. It
can be seen that since the algorithm is not given the option to chose
the same frame, it naturally chooses consecutive frames. This is in
agreement with the high correlation between the snapshots of a model
(see Section 6).

Even so, the invariants are sensitive enough to pick up on the fact
it is not the same image and therefore, the ds from invariants is still
larger than the score obtained using image parameters.
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Optimizing for Invariants
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Figure E1. Closest frames in jet-like images of a SANE model optimized for the smallest difference between the HF invariants (equation 8).

APPENDIX F: APPLICATION OF SCORING
METHOD TO EXTENDED SAMPLE OF IMAGES

We have applied our scoring algorithm to a wider sample of images
composed of two from our library and a few non-black hole images:
a frame from a SANE a = 0.5 TB model and one from a MAD
a = 0 RC (these have been chosen without loss of generality), a
doughnut with a bite, an eye, and a yawning dog (Fig. F1, top row).
The non-black hole images are in the public domain.

All images have the same number of pixels 192 x 192, and have
been blurred by a 20 p as gaussian (the images have been assumed to
cover the same field of view). Since the invariants are scale invariant,
the is no need for normalization of fluxes.

Taking the SANE image as a reference, the bottom row of Fig. F1
shows the images sorted according to their distance to it, with
increasing values of ds from left to right. The value of the distance
score is indicated at the bottom left of each panel. The algorithm
successfully finds the closest black holes among the collection of
images. The ds of the non-black hole images to the SANE appears to
be the same for all. Howeyver, this is due to the invariants difference
being divided by the difference between the maximum and minimum
of the population of images (equation 7). There is a seven order of
magnitude difference between these values, which can be seen in
Table F1.
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Figure F1. Application of distance scoring algorithm to extended library. Top row: unblurred images. Bottom: blurred images by a 20 L as gaussian. Taking as
reference the SANE model, the images have been sorted according to their distance to it, with increasing values from left to right. ds is indicated in the panels.

Table F1. Distance score applied to extended library.

HF)y HF, HF, HF3 HF, HF;s HF HF;
SANE 1.726e3 1.632e4 1.750e7 2.648e8 1.590e16 —3.827¢9 —8.489%¢15 1.681e10
MAD 3.115e3 1.596e5 2.560e9 2.594e9 —7.526el7 1.023e12 —6.642el18 8.232e10
Doughnut ~ 2.5888e-4 7.265e-10 3.900e-13 4.170e-14 —3.124e-27 —1.067e-18  —4.303e-27 —1.767e-19
Eye 6.061e-5 2.066e-11 3.908e-17 1.056e-15 2.022e-31 4.800e-21 7.208e-32 6.757e-23
Dog 3.866e-4 7.101e-11 1.299e-12 3.093e-12 6.047e-24 2.488e-17 —1.37le-24  —3.882e-18
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