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A B S T R A C T 

We apply image moment invariant analysis to total intensity and polarimetric images calculated from general relativistic 
magnetohydrodynamic simulations of accreting black holes. We characterize different properties of the models in our library 

by their invariant distributions and their evolution in time. We show that they are highly sensitive to different physical effects 
present in the system which allow for model discrimination. We propose a new model scoring method based on image moment 
invariants that is uniformly applicable to total intensity and polarimetric images simultaneously. The method does not depend 

on the type of images considered and its application to other non-ring like images (e.g. jets) is straight forward. 

Key words: accretion, accretion discs – black hole physics – MHD – polarization – radiative transfer. 
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 I N T RO D U C T I O N  

ccretion onto astrophysical compact sources is the engine that 
rives some of the most powerful and luminous events in the universe.
n the case of supermassive black holes (SMBHs), the study of
agnetized accretion flows at near-horizon regions allows for the 

nference of the emission region nature and immediate environment 
round the source, as well as the properties of the central object. 

Due to their relatively large size on-sky as viewed from Earth, two
mportant SMBH are Sagittarius A 

∗ (Sgr A 

∗) at the centre of our
alaxy and Messier 87 ∗ (M87 ∗), at the centre of the giant elliptical
alaxy M87. Both are accreting matter at strongly sub-Eddington 
ates. Many analytic and semi-analytic models have been used to 
odel these low-luminosity accretion systems (e.g. Ichimaru 1977 ; 
ees et al. 1982 ; Narayan, Yi & Mahade v an 1995 ; Reynolds et al.
996 ; Melia et al. 1998 ; Blandford & Begelman 1999 ; Falcke &
ark off 2000 ; Falck e, Melia & Agol 2000 ; Bromley, Melia & Liu

001 ; Yuan, Quataert & Narayan 2003 ; Broderick & Loeb 2006 ;
uan & Narayan 2014 ). 
In a fully numerical context, the flows onto SMBHs can be 

ommonly studied using general relativistic magnetohydrodynamic 
GRMHD) simulations (e.g. De Villiers, Ha wle y & Krolik 2003 ;
ammie, McKinney & T ́oth 2003 ; Tchekhovsk o y, Narayan &
cKinney 2011 ; Dibi et al. 2012 ; Sadowski & Narayan 2015 ; Porth

t al. 2017 ; Tchekhovsk o y 2019 ), where the accretion process is
nitiated and self-consistently evolved as a result of turbulence and 
lasma instabilities, for example the magnetorotational instability 
Balbus & Ha wle y 1991 ), at scales within a few gravitational radii
rom the compact object. 

In a conserv ati ve frame work, the general relati vistic equations of
agnetohydrodynamics (GRMHD) are solved in a particular space–

ime and evolved according to conservation laws for mass, energy–
 E-mail: a.jimenez@astro.ru.nl 
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omentum, and the Maxwell equations. A notable result from these 
alculations is that the magnetic field evolution and accretion can 
aturally produce powerful relativistic outflows by tapping into the 
lack hole spin energy in the form of jets (Blandford & Znajek 1977 )
r winds (Blandford & Payne 1982 ). 
In these hot underluminous accretion flows, the dynamics of the 

isc are set by the heavy ions, while the near-horizon emission is
ominated by synchrotron radiation emitted by the lighter relativistic 
lectrons. The latter are typically not directly simulated in single- 
uid GRMHD simulations and, by employing physical arguments 
e.g. charge neutrality), the electron population characteristics can 
e inferred. Only the electron internal energy and electron distri- 
ution function remain unconstrained. One approach is to assume 
 thermal distribution function and assign an electron temperature 
n post-process. There are many choices of this, from a constant
raction of the internal energy of the ions (Goldston, Quataert &
gumenshchev 2005 ), or as a function of the magnetic field strength
e.g. Mo ́scibrodzka & Falcke 2013 ; Mo ́scibrodzka et al. 2014 ; Chan
t al. 2015a ), to other kinetic prescriptions that include anisotropic
iscosity (Sharma et al. 2007 ). Alternati vely, dif ferent prescriptions
an be included in the GRMHD simulation to infer the properties of
he electrons (e.g. Vaidya et al. 2018 ). In particular, new algorithms
av e been dev eloped which allo w for a self-consistent e volution
f the electron thermal energy with that of the MHD fluid (e.g.
essler et al. 2015 ; Gold et al. 2017 ; Ressler et al. 2017 ; Chael et al.
018 ; Chael, Narayan & Johnson 2019 ). These are based on electron
eating prescriptions resulting from particle in-cell simulations (e.g. 
urbulent cascade scenarios or magnetic reconnection e vents; Ho wes 
010 ; Rowan, Sironi & Narayan 2017 ; Werner et al. 2018 ; Kawazura,
arnes & Schekochihin 2019 ; Zhdankin et al. 2019 ). 
A v ariety of observ ations of Sgr A ∗ and M87 ∗ (including to-

al intensity, image morphology, polarization, and others), can be 
uccessfully reproduced with these models (e.g. Noble et al. 2007 ;
exter, Agol & Fragile 2009 ; Mo ́scibrodzka et al. 2009 ; Dexter

t al. 2010 ; Shcherbakov, Penna & McKinney 2012 ; Mo ́scibrodzka
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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t al. 2014 ; Chan et al. 2015b ; Gold et al. 2017 ; Event Horizon
elescope Collaboration 2019a ; Dexter et al. 2020 ; GRAVITY
ollaboration 2020 ; Event Horizon Telescope Collaboration 2021b ,
022a ). Ho we ver, much is still unknown about the nature of the
ystems and many degeneracies are still present in the models.
his leaves room for much improvement and moti v ates the de-
elopment of tools and techniques that exploit the richness of the
bservations to constrain the models better (e.g. Johnson et al.
017 ; Jim ́enez-Rosales & Dexter 2018 ; Johnson et al. 2018 , 2020 ;
alumbo, Wong & Prather 2020 ; Jim ́enez-Rosales et al. 2021 ;
arayan et al. 2021 ; Ricarte, Qiu & Narayan 2021 ; Ricarte et al.
023 ). 
The first successful observations of Sgr A 

∗and M87 ∗ of the
vent Horizon Telescope (hereafter EHT) made with Very Long
aseline Interferometry (VLBI) at an observing wavelength of
.3 mm (230 GHz; EHT Collaboration 2019a , b , c , d , e , f , 2021a ,
 , 2022a , b , c , d , e , f ), have opened a ne w windo w to studying these
ources using the properties of the image alone and moti v ates the
pproach of this work to tackle the problem from an image processing
nd computer vision perspective. 

Some works have already explored computer vision techniques,
amely neural networks, and their application to parameter estima-
ion analysis of EHT data and models (e.g. Yao-Yu Lin et al. 2020 ;
an der Gucht et al. 2020 ; Yao-Yu Lin et al. 2021 ; Qiu et al. 2023 ).
ere, we take a different approach and focus on image moment

nvariants (IMIs). 
IMI are quantities constructed from image moments that exhibit

he property of not changing under a particular affine transformation,
uch as translation, rotation, or scaling of the image; which allows
or a convenient and powerful way to characterize images. 

IMI were introduced by Hu ( 1962 ), as a new tool for pattern
ecognition. Since then, many advances have taken place in the
orm of impro v ements and generalizations of Hu’s seven famous
nvariants. Their application has been very fruitful in many other
reas such as in medical imaging in two and three dimensions (e.g.
angin et al. 2004 ; Ng et al. 2006 ; Xu & Li 2008 ; Li et al. 2017 ) and

eature extraction (e.g. Flusser & Suk 1993 ; Yang & Dai 2011 ; Yang,
lusser & Suk 2015 ; Zhang et al. 2015 ; Yang et al. 2017 , 2018 ). 
In this work we explore how geometric IMI can be used for model

omparison and parameter estimation of accretion onto SMBH,
sing high-resolution radio and millimeter wavelength images of
strophysical objects made from data collected by VLBI observations
uch as, for example EHT. When comparing models to the VLBI
mages, the advantages of using invariants (e.g. under translation or
otation) becomes obvious, not only because the position angle of the
mages is an unconstrained model parameter, but also because VLBI
mage reconstructions do not have an absolute reference frame, such
hat reconstructed images may be shifted off centre. 

VLBI data are usually recorded in full polarization which per-
its the reconstruction of images in all four Stokes parameters

 I, Q, U, V ) at multiple wavelengths. The goal of this work is to
evelop a model comparison method that can be applied uniformly
o all type of images. 

This paper is structured as follows. Section 2 gives the information
n the numerical simulations used in this work as well as the ray-
racing techniques used to generate a library of images of gas around
 black hole. In Section 3 , we present the mathematical background
or the image moments and invariants with respect to translation,
otation, and scaling. Sections 4 and 5 present the main analysis of
mage invariants and scoring ideas. In Section 6 , we study the time-
ependent behaviour of these quantities. Lastly, Section 7 contains
iscussion and conclusions of our work. 
NRAS 527, 1847–1864 (2024) 
 BLAC K  H O L E  I MAG E  LI BRARY  

he black hole image library we use is calculated as described in the
ollowing. 

We use a subset of 3D GRMHD, long-duration simulations of
lack hole accretion described in Dexter et al. ( 2020 ). The simula-
ions have been carried out with the HARMPI 1 code (Tchekhovsk o y
019 ), using conserv ati ve MHD in a fixed Kerr space–time. 
The initial condition consists of a Fishbone–Moncrief torus (Fish-

one & Moncrief 1976 ) with inner radius at r in = 12 M (in geometric
nits) and pressure maximum radius r max = 25 M . We consider three
alues of dimensionless black hole spin a = 0, 0.5, and 0.9375. The
orus is threaded with a single poloidal loop of magnetic field whose
adial profile can provide either a highly saturated (magnetically
rrested disc, MAD) or relatively modest (standard and normal
volution, SANE) magnetic flux. For more details see Dexter et al.
 2020 ). 

The GRMHD algorithm includes a self-consistent heating pre-
cription of the electron internal energy density in pair with that of
he single MHD fluid as implemented by Ressler et al. ( 2015 ). In
his case, the fluid receives a fraction of the local dissipated energy
ccording to a chosen subgrid prescription moti v ated by kinetic
alculations (e.g. Howes 2010 ; Rowan, Sironi & Narayan 2017 ;
erner et al. 2018 ; Kawazura, Barnes & Schekochihin 2019 ). Here,
e explore two electron heating prescriptions out of the set of Dexter

t al. ( 2020 ): turbulent heating (TB) based on gyrokinetic theory
Howes 2010 ) and magnetic reconnection (RC) from particle-in cell
imulations (Werner et al. 2018 ). We also assume a composition of
ure ionized hydrogen (Wong & Gammie 2022 ). 
To predict observational appearance (images) of the GRMHD
odels we carry out radiative transfer simulations. We post-process
RMHD simulations using the general relativistic ray-tracing public

ode GRTRANS 

2 (Dexter, Agol & Fragile 2009 ; Dexter 2016 ). We
ssume a fast-light approximation. 

With the emission mechanism set to synchrotron emission, we
ompute the full Stokes vector ( I , Q , U , V ), which characterizes
he properties of the polarized light. The electron temperature T e 

s obtained from the GRMHD electron internal energy density u e 
ccording to k B T e = ( γ e − 1) m p u e / ρ, where k B is the Boltzmann
onstant, γ e = 4/3 the adiabatic index for relativistic electrons, m p 

he proton mass, and ρ the density. The mass of the black hole
ets the time-scale of the system. We use a value of 4 × 10 6 M �,
here M � is the solar mass unit, consistent with that of Sgr A ∗.
he mass accretion rate is scaled to match the observed flux density
t 230 GHz of Sgr A 

∗(2.5 Jy; e.g. Dexter et al. 2014 ; Bower et al.
015 ; EHT Collaboration 2022a ). We calculate images at 230 GHz
t an inclination of i = 25 deg , where the viewing angle is motivated
y recent observations of Sgr A ∗ (GRAVITY Collaboration 2020 ;
ielgus et al. 2022 ; EHT Collaboration 2022e ). The images reso-

ution is al w ays 192 × 192 pix els o v er a 42 r g ( ∼ 210 μas ) field of
iew. We blur the images with a 20 μas Gaussian, consistent with
he characteristic imaging resolution of the EHT. 

Example of blurred polarized images from one frame from our
ibrary are shown in Fig. 1 . It can be seen that the Stokes I and linear
olarization ( LP ≡

√ 

Q 

2 + U 

2 ) images are typically dominated by
ing-like features. This is true for this type of low-luminosity systems
ue to their low-optical thickness and large geometric thickness. The
tokes V images show more structure and can have both positive and

https://github.com/atchekho/harmpi
https://github.com/jadexter/grtrans
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Figure 1. Example polarized images from a model snapshot in our library. 
The images have been blurred with a 20 μ as Gaussian, characteristic of 
the EHT resolution. Top left: total intensity (Stokes I). Top right: linear 
polarization. Bottom: Stokes V. 

Table 1. 3D GRMHD simulations used in this work to create library of black 
hole images. 

Model e − heating i a 

MAD TB, RC 25 deg 0.0, 0.5, 0.9375 
SANE TB, RC 25 deg 0.0, 0.5, 0.9375 
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e gativ e values. A summary of the parameters used for the models
s shown in Table 1 . Our total image sample consists of 150 frames
er model, spanning a range of 1500 M . 

 IMIS  

n 2D, the moment of order pq of a function f ( x , y ) is defined as 

 pq = 

∫ 
∞ 

∫ 
∞ 

� pq ( x , y ) f ( x , y ) dx dy ; (1) 

here � pq corresponds to a particular set of basis functions. The 
ndices p , q usually denote, respectively, the degree of order of the
oordinates x and y as stated within � . In the case of a 2D image, the
unction f ( x , y ) represents the value of a pixel ( x , y ) and the integrals
ecome discrete sums o v er the image extent. 
In general, moments can be constructed using variety of basis 

unctions depending on the application (e.g. geometric, Gauss- 
ermite; see Flusser & Suk 1993 ; Yang et al. 2018 ). In this work
e use a geometric basis, where the set of functions consists of
olynomials of order n ≥ 0, where the latter is an integer. 
Some image moments have a well-understood physical interpre- 

ation. F or e xample, m 00 is associated to the total flux of the image,
hile ( m 10 / m 00 , m 01 / m 00 ) represents the centroid of the image. As

he order of the moment increases, ho we ver, assigning a physical
eaning becomes a difficult task. 
Invariant quantities under affine transformations can be con- 

tructed using image moments. 
In a geometric basis, the centralized moments are translation 

nvariant and are defined as 

pq = 

∑ 

x 

∑ 

y 

( x − x 0 ) 
p ( y − y 0 ) 

q f ( x , y ) dx dy ; (2) 
here ( x 0 , y 0 ) is the centroid of the image and is calculated following
quation ( 1 ) with � pq ( x , y ) = x p y q . 

The set of μpq can be made scale invariant (i.e. with respect to
mage size) by 

pq = 

μpq 

abs 

( 

μ

[ 
1 + 

p+ q 
2 

] 

00 

) . (3) 

n this work, the intensity function f ( x , y ) can represent any of the
olarized quantities I , LP , & V . We note that by taking the absolute
alue in the denominator, we have extended the usual definition of
quation ( 3 ) to allo w negati ve v alued pixels, as can be the case for
tokes V (see Appendix A ). 
In addition to these transformations, Hu ( 1962 ) and Flusser &

uk ( 1993 ) showed that the following moment combinations are
otationally invariant (Hu 1962 ; Flusser 2000 ): 

 F 0 = η20 + η02 

 F 1 = ( η20 − η02 ) 
2 + 4 η2 

11 

 F 2 = ( η30 − 3 η12 ) 
2 + (3 η21 − η03 ) 

2 

 F 3 = ( η30 + η12 ) 
2 + ( η21 + η03 ) 

2 

 F 4 = ( η30 − 3 η12 )( η30 + η12 )[( η30 + η12 ) 
2 − 3( η21 + η03 ) 

2 ] + 

(3 η21 − η03 )( η21 + η03 )[3( η30 + η12 ) 
2 − ( η21 + η03 ) 

2 ] 

 F 5 = ( η20 − η02 )[( η30 + η12 ) 
2 − ( η21 + η03 ) 

2 ] + 

4 η11 ( η30 + η12 )( η21 + η03 ) 

 F 6 = (3 η21 − η03 )( η30 + η12 )[( η30 + η12 ) 
2 − 3( η21 + η03 ) 

2 ] −
( η30 − 3 η12 )( η21 + η03 )[3( η30 + η12 ) 

2 − ( η21 + η03 ) 
2 ] 

 F 7 = η11 [( η30 + η12 ) 
2 − ( η03 + η21 ) 

2 ] −
( η20 − η02 )( η30 + η12 )( η03 + η21 ) (4) 

In the rest of this work we will refer to this set as the ‘HF’
nvariants. Here, HF k ; k ≤ 6, are the ‘original’ invariants proposed
y Hu ( 1962 ). HF 7 was later added by Flusser ( 2000 ). Though
xpressions in equation ( 4 ) are neither complete nor independent 
 H F 2 = ( H F 

2 
4 + H F 

2 
6 ) /H F 

3 
3 ), the y hav e been used to successfully

xtract and characterize image features and are widely used in image
ecognition algorithms (see Section 1 ). 

An analogy could be made between abs( HF 0 ), and the moment of
nertia of an object about an axis. In this case, the pixels’ intensities
ould be analogous to the object’s density and the rotation axis to

he image’s centroid. An interesting property of the HF invariants is
hat while the HF k ; k ≤ 5, are reflection symmetric, HF 6 and HF 7 

re skew invariant, which could allow for a distinction of mirrored
mages in a collection of otherwise identical images. For more details
n how the invariants change under certain image transformations, 
ee Appendix B . 

It is clear that the complicated functional form of the invariants
revents a clear interpretation of what each quantity is measuring. 
e investigated this further but were unsuccessful in identifying a 

lear tendency of how the HF change with respect to different images
see Appendix. C ). 

In what follows we will explore their general behaviour when 
haracterizing our black hole library and their dependence on 
hysical effects. 
MNRAS 527, 1847–1864 (2024) 
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M

Figure 2. Normalized distributions of g ( HF k ) = sign( HF k )log | HF k | of Stokes I images as a function of various physical effects. Columns indicate a different HF 
inv ariant. Ro ws indicate in order: magnetization (top), spin (middle), and electron heating (RC versus TB, bottom). Each row marginalizes o v er all non-divided 
parameters. 
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 I N VA R I A N T  DISTRIBU TIONS  A S  A  

U N C T I O N  O F  M O D E L  PHYSICAL  

A R A M E T E R S  

e first explore the sensitivity of the IMIs to the physical model
arameters. We present and discuss the distributions of the invariants
omputed per polarized image quantity ( I , LP , V ) for different
agnetizations, black hole spins, and electron-heating mechanisms,

eparately. 

.1 Invariants based on total intensity, Stokes I 

ig. 2 shows the distributions of g ( HF k ) = sign( HF k )log ( | HF k | )
or Stokes I , as a function of different physical effects. The first row
hows the distributions for total flux, I , as a function of magnetization.
t is interesting to note that for 0 ≤ k ≤ 3, the HF k distributions for
ither the MAD (blue) or the SANE (red) cases, appear to concentrate
n one lobe, while cases HF k ; k > 3, split into two. Simultaneous sign
hanges of certain HF k should be indicative of a degree of mirroring
n the images or sign flip (or both, mirroring and sign flip) in case of
tokes V maps (see Appendix B ). 
In the case of the one-lobe distributions, both populations span o v er

 similar order-of-magnitude range, with the MAD extending slightly
ore to lower values. The MAD distribution shows a relatively

igher level of symmetry compared to the SANE, which tend to
ke w to ward lo w orders of magnitude. The case HF 0 shows an
nteresting behaviour of the MAD population, with a bi- or even
ri-modal population. The maxima at lower values represents mostly
on-zero spin reconnection MAD models, while the one at higher
alues the models with zero spin and turbulent heating mechanism
Appendix Fig. D1 ). The peak in the middle is a combination of the
est. The cases where HF k ; k > 3, the bimodal distributions of the
odels are similar across the value of k . For either magnetization

ase, each lobe is located at approximately the same distance from
he origin as their ± counterpart. If only log ( | HF k | ) was plotted
nstead, without sign information, the populations would form one
NRAS 527, 1847–1864 (2024) 
ontinuous lobe with similar shape to the cases where HF k ; k ≤
. The ‘ne gativ e’ models would comprise the higher end of their
espective log ( | HF k | ) distributions. Cross-referencing these panels
o the ones in Appendix Fig. D1 , it can be seen that either family of
obes correspond to different frames of the same model. 

In the case spin versus no spin, shown in the middle row of
ig. 2 , the different spin populations appear to be in a one-lobe
istribution for k ≤ 3, while the distributions split into two for k
 3. We found that the a = 0.5 models lie generally between the
 = 0 and a = 0.94 and so, in the interest of simplicity and to
ake the differences between the cases more evident, we decided

o separate the models into two categories: zero and non-zero spin,
here the latter includes both a = 0.5 and a = 0.94. The a = 0
opulation (blue) is skewed to low orders of magnitude, as opposed
o the a 	= 0 population (red) which looks relatively symmetric.
ntroducing spin to a non-spinning population appears introduce a
ranslation of the distribution to lower orders of magnitude, without
reserving the shape. In the case of HF 0 , the lower end of the spinning
opulations is dominated by the MAD, while the a = 0 SANE
ominates the higher end of the non-spinning distribution (Appendix
ig. D1 ). 
The bottom row of Fig. 2 , shows the effect of changing the electron

eating mechanism of the invariant population. Turbulent heating
TB, red) displays what is mostly a one-lobe distribution with a slight
ke wness to lo w v alues. Reconnection (RC, blue) concentrates as
ell in one lobe and spans about the same range as the TB population.
ccasionally, it shows a two lobe distribution (e.g. HF 0 , HF 3 ). In

hese cases, the lobe located at lo wer v alues is consistent with non-
ero spin reconnection models, the majority of them being MAD
see bottom panel of Appendix Fig. D1 ). 

.2 Invariants based on linear polarization, LP 

imilarly to Fig. 2 , the distributions in Fig. 3 show two distinct sets
f shapes for the cases k ≤ 3 and k > 3 regardless of the physical
ffect dependency. 
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Figure 3. Similar as Fig. 2 but for LP . 
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The distributions for all MAD and SANE models are shown in 
he top row of Fig. 3 . The distinction between MAD (blue) and
ANE (red) is more evident. For 0 < k ≤ 3, both distributions are
oncentrated in one lobe. The MAD population, ho we ver, is relati vely 
ymmetric and is concentrated toward lower order of magnitude 
 alues. Alternati vely, the SANE distributions concentrate towards 
he higher range of the span and present a tail to lo wer v alues. There
s considerable o v erlap between both distributions. F or k = 0, both
istributions appear to be bimodal. Complementing this information 
ith that from the middle and bottom panels of Appendix Fig. D2 ,

t can be seen that the smaller lobe of the SANE distribution is made
p by zero spin, reconnection models. For k > 3, either distribution
plits into two lobes, each comprised of different frames of the same
odels and each located at approximately the same distance from 

he origin as their ± counterpart. If log ( | HF k | ) was plotted, the
opulations would show similar one-lobe shapes as for the HF k ; k

3 cases. 
Analysing the LP distributions from a spin versus no spin per- 

pecti ve (middle ro w of Fig. 3 ), a similar distribution shape to MAD
ersus SANE is observed across k values. Comparing the relative 
ositions of both distributions, it is clear that a change in spin
ntroduces a translation of the distribution, where an increase in 
 mo v es the inv ariant populations to ward lo wer v alues. 
The bottom row of Fig. 3 shows the effects of a change in electron

eating. Regardless of the electron heating, the populations span 
 v er a similar domain. The SANE RC models seem to make up
ost of the higher end values while the MAD RC dominate the

ower end. 

.3 Moment invariants based on circular polarization, Stokes V 

imilarly to Figs 2 and 3 , Fig. 4 shows the normalized IMI
istributions for circular polarization images. 
The shape of the populations is very similar across all physical 

ffects. In the cases 0 < k ≤ 3, the o v erall shape displays a
oncentration towards the lower end of the span with a tail extending
o higher order values. Interestingly, for Stokes V the case k = 0,
hows a two-lobe split distribution of g ( HF k ) like the one seen for k
 3, contrasting with Stokes I and LP , where only the latter invariants

howed these features. Just as for I and LP , the lobes are comprised of
ifferent frames of the same models and are located at approximately
he same distance from the origin as their ± counterpart. Once again,
f log ( | HF k | ) was plotted instead, the populations would concentrate
n one lobe, skewed to high values. 

Stokes V does not seem to have a significant sensitivity to physical
ffects. The only distinguishable difference between any pair of 
istributions appears to be the location of their maxima. In the case of
agnetization, the MAD distribution are more concentrated to one 
 alue lo wer than the SANE. In the case of spin, the a = 0 distribution
as a maxima at relatively lower values than the a 	= 0. In both the
 = 0 and a 	= 0 cases, the bulk of the distribution appears to be
ominated by MAD models. 
It appears that Stokes V is most sensitive to a change in electron

eating. A change in electron heating results in a slight offset between 
heir maxima, with the RC dominating the lower range of values and
eing made up almost in its entirety by MAD models (see Appendix
ig. D3 ). The TB population peaks at larger values than the RC and
ppears to be also dominated by the MAD. 

.4 Linear versus circular polarization invariants 

t is also instructive to plot the HF invariants in LP versus V domain.
his is shown in Fig. 5 . 
The behaviour of the HF invariants remains very similar regardless 

f the physical effect (magnetization, spin, and electron heating). In 
he case of HF 0 , both sets of distributions form two separate ‘islands’,
his is because Stokes V splits into two as is seen in the first column
f Fig. 4 . For HF k ; 1 ≤ k ≤ 3, the distributions form one island with
xtended and significant overlap. 

In the case of HF k ; 4 ≤ k , since both the LP and Stokes V
istributions slips into two, when shown as V versus LP , this results in
our islands where the respective populations overlap almost entirely. 
MNRAS 527, 1847–1864 (2024) 
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Figure 4. Similar as Fig. 2 but for V . 

Figure 5. Similar to Fig. 2 but for LP and V together. 
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 M O D E L  S C O R I N G  PROCEDURES  USING  

O M E N T  I N VA R I A N T S  

 few quantities that contain image spatial information have
een considered in past works to differentiate between models
nd real black hole images. Those include second-order image
oments to measure image sizes or asymmetries (e.g. EHT Col-

aboration 2019e , 2022e ), or spatially resolved linear polarization
ractions and maps (e.g. Palumbo, Wong & Prather 2020 ; EHT
ollaboration 2021a , b ), some only interpretable at low inclina-

ions. Also, when scoring a model, quantities such as Stokes I ,
NRAS 527, 1847–1864 (2024) 
P , and Stokes V are often considered independently of each
ther. 
In this work, we aim to impro v e current scoring methods in

w o w ays. The first impro v ement is to use IMIs, which encode
tructural information of the model images, uniformly for total
ntensity and polarimetric images. The second impro v ement is to
ombine the value of I , LP , and V invariants into one when scoring
 model. 

Our scoring procedure is based on calculating a ‘distance score’,
s , between two model frames (or between a model and an observed
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Figure 6. Closest frames from two different models in our entire library according to criterion 1: the joint differences between image-integrated I , LP , and V , 
are the smallest. Both models are SANE RC, with zero spin. Each column shows, from left to right, I , LP , V . The value of each image-integrated quantity is 
shown at the bottom of the panel. Linear polarization shows as well the resolved polarization fraction 〈 m 〉 and β2 coefficients (see main text for details). The 
selected ‘closest’ frames from each model are indicated at the top with the label ‘snp’. Two scores are shown at the top of the figure. Left: ds (equation 5 ) 
following � X from (equation 6 ). Right: ds following � X from (equation 8 ). The same fixed frames are used for both calculations. Since the scoring algorithm 

has been optimized for image-integrated quantities, this frame combination is chosen by minimizing ds from � X given by equation ( 6 ). It can be seen that while 
the image-integrated values between the frames are very similar, the o v erall morphology of these images is rather different and is reflected in the large value of 
ds calculated from the HF invariants that characterize these images. 
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mage): 

s = ‖ �X ‖ = 

√ ∑ 

i 

�X 

2 
i ; (5) 

here � X is a vector made up of the differences between multiple
uantities according to different criteria: 

(1) Image-integrated parameters: 

X = ( �I mn , �LP mn , �V mn ) , (6) 

here each entry is the percentile difference of a polarized quantity 
etween the frames m and n of their respective model: 

Y mn = 

| Y m 

− Y n | 
max ( Y ) − min ( Y ) 

× 100 per cent ; Y = ( I , LP , V ) 

(7)

here max( Y ) and min( Y ) are the maximum and minimum values of
 in the entire image population. 
(2) Invariants: 

X = ( ‖ � ( H F ) I mn 
‖ , ‖ � ( H F ) LP mn 

‖ , ‖ � ( H F ) V mn 
‖ ) (8) 
here � ( H F ) Y mn 
= ( � ( H F 0 ) Y mn 

, ... , � ( H F 7 ) Y mn 
) ; Y =

 I , LP , V ); is a vector made up of the percentile differences
equation 7 ) between the HF invariants given in equation ( 4 ). 

Following this procedure, we define the ‘closest’ and ‘farthest’ 
odels as those with the smallest and largest ds between them: 

in ( ds ) = min ( ‖ �X ‖ ) ; max ( ds ) = max ( ‖ �X ‖ ) . (9) 

We note that in this work the weight of each component of � X is
he same, as is each contribution from the different invariants (in case
f criterion 2). This can be easily adapted to accommodate different
bservational uncertainties coming from measurements. 
We have applied this scoring procedure to every two-frame 

ombination (150 × 150 frames), with the exception of self- 
rame comparison (150), from every two models in our library 
78 combinations). In total, we find the closest and farthest frames
rom two models in our library from a sample of 1800 images and
 743 300 possible combinations. Figs 6 and 7 show examples of I ,
P , V images of the closest models in our library according to either
riterion 1 (optimizing for image parameters) or 2 (optimizing for 
nvariants). 
MNRAS 527, 1847–1864 (2024) 
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Figure 7. Similar to Fig. 6 but optimized for criterion 2. The frames and models are chosen out of all the possible combinations in our entire library (except for 
frame self-comparison), by minimizing ds from � X given by equation ( 8 ), so that the joint differences between the invariants that characterize the I , LP , and V 

images is the smallest. Both frames come from the same model: MAD with spin a = 0.5 and RC as a heating mechanism. It can be seen that the distance score 
based on the image-integrated values is larger compared to that in Fig. 6 . The o v erall morphology of the I , LP , and V images is much more similar, including 
the spatial distribution of linear polarization vectors (white ticks in foreground) in the LP panel, which also display a much more ordered configuration. 
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In the figures each column shows, from left to right, the I , LP , V
mages of either model. The specific closest frame selected from a

odel is specified at the top of the panels with the label ‘snp’. The
alue of each image-integrated quantity is shown at the bottom. In the
ase of linear polarization, three more quantities which encapsulate
patial information of the polarization are shown: the resolved linear
olarization fraction 〈 m 〉 and the β2 coefficients used to characterize
he spatial distribution of polarization vectors at low inclinations
Palumbo, Wong & Prather 2020 ). Two ds scores are shown at the
op of the figure. On the left, ds is calculated using � X from equation
 6 ) while on the right, � X is defined by equation ( 8 ). The same frames
re used for both calculations. 3 

In the case of Fig. 6 , the closest frames come from two SANE
C models, both with spin zero, while for Fig. 7 , the closest frames
ome from the same MAD RC with a = 0.5 model. 
NRAS 527, 1847–1864 (2024) 

 We note that the scoring we have suggested for IMI is not the same that is 
urrently used for image-integrated quantities so it is an unfair comparison. 
hese other metrics that have been used in model comparison have their 
erits and give reasonable results. The comparison we make to HF invariants 

s not meant to discredit them, but rather to show the ef fecti veness of the IMI 
nd to consider them as a supplementary approach. 

o
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p
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f  
It is evident that very different kinds of models can generate
rames with very similar image-integrated quantities (Fig. 6 ) but
ith images that look quite distinct between each other. This causes
 very large difference with respect to the value of the invariants.
hen taking into consideration the structure and morphology of

he image (Fig. 7 ), similar images can be found between distinct
odels. Ho we ver, the dif ferences using inv ariants are comparati vely

arger than when considering criterion 1 based on image-integrated
uantities, pointing to a higher sensitivity and discerning power of
he former. Both frames come from the same model: MAD with
pin a = 0.5 and RC as a heating mechanism. Since the frames are
ighly correlated (see Section 6 ), the algorithm naturally chooses
onsecutiv e frames. Ev en so, the invariants pick up on the fact
t is not the same image and is still larger than that for image
arameters, pointing to a higher sensitivity and discerning power
f these quantities. 
It is interesting to note that in Fig. 7 , the polarization maps

white ticks in foreground of LP panels), which indicate the spatial
istribution of the linear polarization vectors, show very similar
onfigurations between the frames. The value of the resolved linear
olarization fraction 〈 m 〉 differs by less than 2 per cent. The β2 

oef ficients, alternati vely, sho w more dif ference in the consecuti ve
rames: the magnitude of the β2 coefficient changes by 50 per cent
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Figure 8. Similar to Fig. 7 but maximizing the distance score obtained according to criterion 2, that is, the joint differences between the invariants that 
characterize the I , LP , and V images are the largest of all combinations. In this case, the most different frames in our library correspond to those from a MAD 

and SANE, non-zero spin with magnetic reconnection as the electron heating mechanism. It is clear that the images exhibit different morphologies and spatial 
distribution of polarization vectors. The distance score from invariants is also much larger than that obtained from image parameters. 
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hile the angle coefficient has a much larger difference between the 
alues. 

In Fig. 8 we show as well the two frames that are the most
ifferent in our library according to their invariants. This is achieved 
y maximizing ds obtained from criterion 2. It can be seen that the
tructural differences between the images are far more evident, which 
s reflected in the large value of the distance score for invariants. 

 TIME  E VO L U T I O N  O F  I N VA R I A N T S  

tudying the time evolution of invariants is also of great interest, 
ince it provides a powerful new tool to compare models and 
ata from multiple epoch observations, where structural changes 
n the source’s image may be present. Specially after the results of
HT Collaboration ( 2022d , e ), where the quick variability of Sgr
 

∗complicates the imaging process, but provides an opportunity to 
est theoretical models. With more data to come from more observing 
ampaigns with the EHT, the analysis and modelling of these sources
n the time domain are increasingly becoming more important. 

In Fig. 9 we show a variety of different quantities that describe
he time properties of g ( HF 0 ) for I (top row), LP (middle row), and
 (bottom row) for all models. The first column shows the time
volution of all three observed quantities for the whole duration of
ur simulations. There appears to be no particularly characteristic 
eature in the curves, though it is interesting to mention that the
ehaviour for Stokes V is variable o v er a wider range of values,
resumably due to a switch in ‘polarity’ of the quantity with time. 
In the second and third columns we present, respectively, the 

utocorrelation and the power spectral density (PSD) of the time 
eries. Both of these calculations were done using SCIPY .Welch 
Welch 1967 ; Virtanen et al. 2020 ) with an o v erlapping window of
0 snapshots. This serves as a smoothing kernel and allows us to
bserve more clearly a trend in the data. 
In the case of the autocorrelation function, we show the first 120 M

limit set by the o v erlapping window of 50 snapshots). We observe
hat the frames become de-correlated on a time-scale of 20–30 M, as
ndicated by the drop to zero of the curves. Stokes V appears to drop
teeper than I and LP . 

As previously mentioned, in the last column we plot the PSD of
he time evolution. This is useful to disco v er an y recurring behaviour
n the data, for example a peak at F = 0.01 M 

−1 would be indicative
f periodic behaviour every 100 M . The other, and main reason, is to
dentify the existence of a general trend which could be, for example,
n the form of a power la w. Ev en though the spacing between the
rames in our library is relatively big (10 M) and the duration of the
odels is short (1500 M), which limits the frequency space that we

re able to probe, we find an interesting behaviour. For I and LP , the
pectrum can be described as a plateau at low frequencies, with a
MNRAS 527, 1847–1864 (2024) 
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Figure 9. Left column: time evolution of the g ( HF 0 ) value for I , LP , and V for all simulations. Middle column: the autocorrelation of the time series for the 
first 12 snapshots (120 M). Right column: the power spectrum density of the time series. 
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o wer-law drop-of f at higher ones. Interestingly, this is not observed
or Stokes V. This points towards the presence of red noise in the
ata, reminiscent of what has been found for image-integrated total
ntensity from a large set of EHT GRMHD simulations (Georgiev
t al. 2022 ). 

We have calculated these quantities for all HF invariants, but
ecided to show only those for HF 0 in the interest of simplicity.
 generic observation is that higher order invariants de-correlate

mmediately. 
Such an e xtensiv e analysis in the time domain of the invariants

rom all observables ( I , LP , and V ), for all the models is a powerful
ool. These new variability constraints could be combined and used
s a prescription for aiding imaging algorithms (e.g. Broderick et al.
022 ), or parameter estimation pipelines (e.g. Yfantis et al. 2023 ). 

 DISCUSSION  

n this work, we hav e e xplored how geometric IMI can be used as
 new method for model discrimination of accretion onto BH. We
ave used a library of polarized images calculated from a variety
f models from GRMHD simulations and calculated their IMI.
ince IMI encapsulate structural changes of the images (though it

s still unclear what exact image property is measured by each one;
ppendix C ), we have shown that they can be highly sensitive to
ifferent physical effects present in the system (e.g. magnetization,
pin of the black hole and electron heating mechanism; see Section 4 ).
hese distributions could be used to identify the probability that a
iven (calculated or measured) image belongs to a population with
ertain parameters. Given the modest size of our library, we leave
his for future work. 
NRAS 527, 1847–1864 (2024) 
Current model scoring methods consider a variety of properties
f the images they produce and compare to the corresponding ob-
erv ables. Each quantity, ho we ver, is often calculated with different
pproaches and a final model score, which could give sensible results,
s considered independently. We have proposed a new scoring method
hat is based on IMI and is not only applicable to total intensity and
olarimetric images uniformly, but also combines the value of I ,
P , and V invariants into one (see Section 5 ). We do not attempt to
uantify EVPA images because they may be a subject to external
araday rotation caused by material far out in regions outside the
omain of the models. An application to EHT data is left for future
ork. 
Gi ven the po werful properties of the IMI, if it were possible to

isentangle the EHT beam resolution with the ‘true’ image under-
eath it would be possible to conduct mass measurements with the
bservations and mass-agnostic model comparison. Unfortunately it
s not clear how to do it exactly. Perhaps there exists an extension
f the IMI basis to Fourier space, where the observations are made.
hether this is possible while keeping the properties of the IMI

ntact, we leave for future work. In addition, it is worth to mention
hat future EHT arrays and observations (either at 345 GHz or space
LBI) will have better resolution and the blurring will be smaller,
hich is an exciting prospect to look forward to. 
Still, this technique as is has an advantage o v er directly model

tting the visibilities of VLBI data, since the images are already
n excellently calibrated data set and there is no need for further
alibration. Moreo v er, our new procedure is versatile with the type
f image morphologies that are considered. This means that it is not
imited to ring-like structures and could be applied to other kinds of
mages with more extended or elongated features such as jets, which



BH accretion c har acterization with invariants 1857 

h  

2  

e  

t  

s
W  

i  

fi
h
b

 

b
o  

d
c

 

d
a  

4  

b
c  

t  

t
e
i
3

i
3  

s  

h
t  

(  

s
 

a
w  

m

A

W  

a
W
g
p
N
A

8

T
t

R

B
B
B
B
B
B

B
B
C  

C
C  

C  

D
D
D
D  

D  

D
D  

E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
F
F
F
F
G
G
G
G  

G
H
H
I
J
J
J
J
J
K  

K  

L
M  

M  

M
M  

M  

N
N

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/1847/7326777 by R
adboud U

niversiteit N
ijm

egen user on 13 D
ecem

ber 2023
av e been observ ed at longer wav elength VLBI observations (e.g.
2, 43, and 86 GHz Kravchenko et al. 2020 ; Park et al. 2021 ). We
xplore this in Appendix E , where we have applied our algorithm
o images with prominent jets in our model library. We find that our
coring method works as well for these non-ring images, as expected. 
e have also applied the scoring method to an extended sample of

mages that go beyond accretion onto black holes (Appendix F ). We
nd that the algorithm successfully judges and finds the two black 
ole images in the collection as those with the smallest distance 
etween them. 

In this analysis we only considered models at lo w vie wing angles,
ut the application to other viewing angles is straight forward. We 
bserved that, as a function of inclination, the o v erall shape of the
istributions remains very similar, only at high inclinations are the 
hanges slightly more evident. 

We have also explored the effect that blurring has on the HF
istributions. This is of particular interest since the EHT will observe 
t 345 GHz in the future, for which the resolution will be better by
0 per cent. The general behaviour we observe is that the differences
etween the invariants of different images become smaller and 
onverge to zero as the size of the blurring kernel increases. For
he particular impro v ed resolution the EHT at 345 GHz, the changes
o the invariant distributions are very small and not particularly 
vident when shown in a logarithmic scale. As a consequence, the 
nvariant distributions will remain very similar between 230 and 
45 GHz. 
Lastly, we have studied the time-dependent behaviour of the 

nv ariants. We sho w that the models de-correlate at scales of 20–
0 M. The power spectral distributions of the I and LP invariants
how a plateau at low frequencies that f alls lik e a power law at
igh frequencies. This is not observed for Stokes V. This power-law 

rend seems to be consistent with other findings by Georgiev et al.
 2022 ) re garding light-curv e variability in BH accretion GRMHD
imulations. 

In this work, we have shown that IMI are a promising new
pproach for characterizing the nature of astrophysical systems and 
ill certainly pro v e useful when learning about the intricacies of
agnetized accretion onto massive black holes. 
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PPENDI X  A :  M O M E N T  I N VA R I A N T S  

ERI FI CATI ON  A N D  PROPERTIES  

ere, we demonstrate that our script for calculating IMHI is correct.
e show the invariance of IMHI with respect to translation, rotation,

nd scaling. Without loss of generality, we use one of the frames of
 non-zero spin, MAD reconnection model. 

Each column of Fig. A1 , shows the Stokes I image under the
ollowing (sequential) transformations: original, scaling of field of
iew (fov) by a factor of two, scaling of fov by factor of three, rotation
randomly selected value of 45 deg ) and translation, where centre of
he image was shifted, randomly, from (0 , 0) μas to ( −160 , 200) μas .

The values of the percentile differences of the HF invariants for
ach transformed image in Fig. A1 and the original are shown in
able A1 . 
Fig. A3 (a) shows the percentile differences of the HF invariants

etween each transformed image from Fig. A1 and the original. It
an be seen that the values of the invariants of the transformed images
emain very similar with respect to the original. The largest difference
rises with rotation. This is due to numerical errors introduced
y interpolated values to new ‘in-between’ pixels of the image.
o we ver, e ven taking this into account, the largest differences are of

he order of 10 −5 %. 
Due to linear polarization images being al w ays positive, we expect

he behaviour of the invariants to be similar to the one for Stokes I . 
We explore the behaviour of Stokes V images, where the value

f a pixel value can be in the ne gativ e re gime. We use the Stokes V
mage from the same frame as before and transform it in the same
ay as described for Stokes I . Fig. A2 shows the corresponding

ransformed images, while Fig. A3 (b) shows the value of the
ercentile differences between the transformed Stokes V images
nd the original. The values of these differences are presented in
able A2 . 
It can be seen that though the percentile differences are generally

arger for Stokes V compared to Stokes I , but the largest difference
s of the order of 10 −4 , and so we conclude that the HF invariants for
tokes V are indeed invariant. 
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Table A1. Percentile differences of the HF invariants between each transformed image in Fig. A1 and the original. 

| � HF 0 | 
[per cent] 

| � HF 1 | 
[per cent] 

| � HF 2 | 
[per cent] 

| � HF 3 | 
[per cent] 

| � HF 4 | 
[per cent] 

| � HF 5 | 
[per cent] 

| � HF 6 | 
[per cent] 

| � HF 7 | 
[per cent] 

Original - 2 × fov 5.62e-14 2.96e-13 4.29e-7 8.18e-7 8.90e-6 2.73e-6 1.38e-6 6.84e-7 
Original - 3 × fov 9.83e-14 9.87e-14 8.54e-7 1.62e-6 1.77e-5 5.44e-6 2.75e-6 1.36e-6 
Original - rotation 1.10e-7 3.35e-6 2.68e-6 2.23e-7 8.63e-5 3.62e-6 9.81e-7 1.81e-6 
Original - translation 1.31e-7 2.79e-6 1.64e-5 3.07e-6 7.23e-5 3.29e-6 1.36e-5 4.55e-6 

Table A2. Percentile differences of the HF invariants for each transformed image in Fig. A2 and the original. 

| � HF 0 | 
[per cent] 

| � HF 1 | 
[per cent] 

| � HF 2 | 
[per cent] 

| � HF 3 | 
[per cent] 

| � HF 4 | 
[per cent] 

| � HF 5 | 
[per cent] 

| � HF 6 | 
[per cent] 

| � HF 7 | 
[per cent] 

Original - 2 × fov 5.41e-12 1.87e-11 1.15e-5 1.52e-2 2.79e-5 1.41e-5 4.77e-5 3.74e-4 
Original - 3 × fov 1.61e-11 4.76e-11 2.29e-5 3.03e-5 5.57e-5 2.80e-5 9.51e-5 7.46e-4 
Original - rotation 9.92e-6 2.28e-5 1.35e-4 1.18e-4 2.38e-4 1.25e-4 1.38e-4 5.73e-4 
Original - translation 9.96e-6 2.26e-5 7.17e-5 4.98e-5 1.13e-4 6.43e-5 1.97e-5 9.32e-4 

Figure A1. Stokes I of a randomly selected frame from our library. Each column shows the image being modified by a sequential transformation. These are, in 
order: original, scaled fov to twice the original, increased fov by three times, rotation of 45 deg , translation of image centre from (0 , 0) μas to ( −160 , 200) μas . 

Figure A2. Same as Fig. A1 but for Stokes V. 

Figure A3. Percentile differences of HF invariants between the original and each transformed image from (a) Fig. A1 and (b) Fig. A2 . 
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M

Figure B1. Stokes I , LP , and Stokes V images and invariants of a randomly selected frame from our library. Each column shows the image being modified by 
a different transformation. These are, in order: original, ne gativ e image, reflection, combination of ne gativ e image, and reflection. 
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PPENDIX  B:  M O M E N T  I N VA R I A N T  

ROPERTIES  

e sho w ho w the HF inv ariants (equation 4 ) behave under reflection
nd taking the ne gativ e of an image (Fig. B1 ). Without loss of
enerality, we choose a random frame from our library. 
When taking the ne gativ e of an image, there are three flips in the

ign of the invariants. These are HF 0 , HF 5 , and HF 7 . The change
n sign of HF 0 could be analogous to an inversion of the direction
f rotation of the moment of inertia of a body about an axis. While
 physical intuition for a flip in HF 5 is unclear, the change in HF 7 

hould indicate some degree of reflection with respect to the original
mage. 

Reflection of an image produces two expected changes in
he invariants: only HF 6 , HF 7 change sign. Since these exhibit
ntisymmetric properties under reflection, they are indicative of
irroring in the images. This could be because the centroid of

he image shifted to the reflected position of that of the original
mage. 
NRAS 527, 1847–1864 (2024) 
A combination of ne gativ e image and reflection causes three sign
ips in HF 0 , HF 5 , HF 6 . It is interesting that a sign change in HF 7 is
ancelled out by both transformations. 

PPENDI X  C :  MI NI MI ZED  A N D  MAXI MIZED  

I FFERENCES  BETWEEN  I NVARI ANTS.  

e explore the behaviour of HF invariants applied to our image
ibrary in an attempt to identify what particular image property is
easured by each individual quantity (equations 4 ). Fig. C1 shows

he frames where the percentile differences (equation 7 ) between
ach invariant have been minimized (top) or maximized (bottom)
onsidering all the frames in the entire library. Only Stokes I has been
onsidered, for illustrative purposes. Each difference for each IMI
as been determined independently of the other seven. Unfortunately,
o clear tendency is observed and the complicated functional form
f the invariants hinders a clear interpretation of what each one is
easuring. This is reflected by the similarities and differences seen

n the images in all cases. 
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Figure C1. Frames where the difference between the value of each HF invariant for Stokes I has been minimized (top) or maximized (bottom) considering the 
entire library. The difference between each IMI has been determined independently of the other seven. It is unclear how each HF invariant particularly grades 
the similarities and differences in the images. 
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PPENDIX  D :  DETA ILS  O F  T H E  M O M E N T  

N VA R I A N T  DISTRIBU TIONS  

igs D1 , D2 , and D3 show decomposition of the distributions of HF
nvariants as a function of different model parameters. This helps 
nderstand the origin of different peaks in the distributions. 
igure D1. Normalized stacked distributions of g ( HF k ) = sign( HF k )log | HF k | of S
ifferent HF invariant. Rows indicate: spin (top), electron heating (RC versus TB, b
MNRAS 527, 1847–1864 (2024) 

tokes I images as a function of various physical effects. Columns indicate a 
ottom). 
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Figure D2. Similar to Fig. D1 but for LP . 

Figure D3. Similar to Fig. D1 but for Stokes V . 
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PPENDIX  E:  APPLICATION  TO  J E T-L I K E  

MAG ES  

e have applied our algorithm to identify the closest images from a
et of non-ring like images in our library. We limited our choice to
rames from the SANE TB high spin model at 86 GHz, which feature
 very prominent jet. 

In Fig. E1 we show the closest frames according to criterion 2
n (equation 8 ), where the frames between which the smallest joint
ifference from all the HF invariants is achieved. Because all the
mages from this subsample come from the same model, we have
NRAS 527, 1847–1864 (2024) 
xcluded all the possible pairs formed from comparing a frame with
tself (150). In total, the algorithm selected the best possible combi-
ation of frames out of 150 × 150 − 150 = 22 350 combinations. It
an be seen that since the algorithm is not given the option to chose
he same frame, it naturally chooses consecutive frames. This is in
greement with the high correlation between the snapshots of a model
see Section 6 ). 

Even so, the invariants are sensitive enough to pick up on the fact
t is not the same image and therefore, the ds from invariants is still
arger than the score obtained using image parameters. 
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Figure E1. Closest frames in jet-like images of a SANE model optimized for the smallest difference between the HF invariants (equation 8 ). 
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PPENDIX  F:  APPLICATION  O F  S C O R I N G  

E T H O D  TO  EXTENDED  SAMPLE  O F  IMAG ES  

e have applied our scoring algorithm to a wider sample of images
omposed of two from our library and a few non-black hole images:
 frame from a SANE a = 0.5 TB model and one from a MAD
 = 0 RC (these have been chosen without loss of generality), a
oughnut with a bite, an eye, and a yawning dog (Fig. F1 , top row).
he non-black hole images are in the public domain. 
All images have the same number of pixels 192 × 192, and have

een blurred by a 20 μ as gaussian (the images have been assumed to
o v er the same field of view). Since the invariants are scale invariant,
he is no need for normalization of fluxes. 
Taking the SANE image as a reference, the bottom row of Fig. F1
hows the images sorted according to their distance to it, with
ncreasing values of ds from left to right. The value of the distance
core is indicated at the bottom left of each panel. The algorithm
uccessfully finds the closest black holes among the collection of 
mages. The ds of the non-black hole images to the SANE appears to
e the same for all. Ho we ver, this is due to the invariants difference
eing divided by the difference between the maximum and minimum 

f the population of images (equation 7 ). There is a seven order of
agnitude difference between these values, which can be seen in 
able F1 . 
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Figure F1. Application of distance scoring algorithm to extended library. Top row: unblurred images. Bottom: blurred images by a 20 μ as gaussian. Taking as 
reference the SANE model, the images have been sorted according to their distance to it, with increasing values from left to right. ds is indicated in the panels. 

Table F1. Distance score applied to extended library. 

HF 0 HF 1 HF 2 HF 3 HF 4 HF 5 HF 6 HF 7 

SANE 1 .726e3 1 .632e4 1 .750e7 2 .648e8 1 .590e16 − 3 .827e9 − 8 .489e15 1 .681e10 
MAD 3 .115e3 1 .596e5 2 .560e9 2 .594e9 − 7 .526e17 1 .023e12 − 6 .642e18 8 .232e10 
Doughnut 2 .5888e-4 7 .265e-10 3 .900e-13 4 .170e-14 − 3 .124e-27 − 1 .067e-18 − 4 .303e-27 − 1 .767e-19 
Eye 6 .061e-5 2 .066e-11 3 .908e-17 1 .056e-15 2 .022e-31 4 .800e-21 7 .208e-32 6 .757e-23 
Dog 3 .866e-4 7 .101e-11 1 .299e-12 3 .093e-12 6 .047e-24 2 .488e-17 − 1 .371e-24 − 3 .882e-18 
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